34
Evolution des lois d‘echelle dans les amas de galaxies а partir d'observations du satellite XMM : physique de la formation des grandes structures Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année, CEA, Saclay, 14 octobre 2005 [email protected]

Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

  • Upload
    luyu

  • View
    26

  • Download
    0

Embed Size (px)

DESCRIPTION

Evolution des lois d‘echelle dans les amas de galaxies а partir d'observations du satellite XMM : physique de la formation des grandes structures. Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année, CEA, Saclay, 14 octobre 200 5. - PowerPoint PPT Presentation

Citation preview

Page 1: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Evolution des lois d‘echelle dans les amas de galaxies а partir d'observations du satellite XMM : physique de la formation des grandes structures Doctorant: Sergey ANOKHIN

Directrice de thèse: Monique Arnaud

Séminaire étudiants 2eme année, CEA, Saclay, 14 octobre 2005 [email protected]

Page 2: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La formation des amas de galaxies Les amas de galaxies sont les plus grandes

structures quasi-virialise dans notre Univers. Leur formation est recente (depuis z ~ 2). Masse totale ~ 1014-1015 M☼ Taille ~ 1-10 Mpc Le gaz c’est ~15% de masse total

Leur proprietes permettent d’etudier la physique de la formation des structures

Par l’étude des amas de galaxies nous sommes capable déduire les paramètres cosmologiques.

Les proprietes importantes des amas: La masse totale Temperature La luminosité L’entropie Le quantité de structures

Page 3: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

L’auto similarité des amas de galaxies Modèles de formation hiérarchique des

structures : La formation et l’évolution des

structures est simple et dépend uniquement de la gravitation.

Dans ces modeles la population des amas est similaire.

Q est: Luminosité (Lx) ou la masse total (Mtot) ou la masse de gaz (Mgas) ou l’entropie (S)

T - la température A(z) est le paramètre de l’évolution z – redshift α – pente

TzAQ )(

Universal profiles

log

/

c)

[NFW 95]

Z=0Z=0.5Z=1

[Bryan & Norman 98]

M h-1(z) T3/2

Page 4: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

XMM-Newton

Nous utilisons les donnees de satelite XMM-Newton Ce sattelite est unique par sa grande surface collectrice et son champ

de vue Le satellite a 4 télescopes. Télescopes rayons X : MOS1/RGS,

MOS2/RGS, pn et un télescope optique OM Le but de satellite XMM est l’étude des objets de l’Univers dans les

rayons X. On peut observer des amas situés jusqu’à un redshift z = 1.4

[SOC]

Page 5: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Description du traitement des données

Prétraitement. La création des fichiers d’ événements.

Nettoyage des « flares ». Recherche des sources ponctuelles. Correction de l’effet de vignetage. Double soustraction du fond. Obtention des profils de brillance de surface. Obtention des spectres.

Page 6: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Prétraitement

La création des fichiers des paramètres Current Calibration File (CCF) Observation Data File (ODF)

La récupération des fichier des événements EPIC MOS, EPIC pn.

La filtration La soustraction des événements aux mauvaises

positions (FLAG=0, pixel ou colonne brillante, bord des CCDs…)

La soustraction des événements clairement particules ( MOS : pattern<12 , PN : pattern = 0)

Page 7: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La nettoyage des « flares » Le satellite XMM-Newton se trouve dans l’ espace

ouvert avec un fort environnement de particules. Le flux des particules du soleil n’est pas constant, et

nous pouvons observer cet effet dans le courbe de lumière.

Page 8: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le nettoyage manuel des flares

Il faut faire la filtration des flares pour optimiser le signal sur bruit. La courbe de lumière (la dépendance de quantité des événement

en fonction du temps) pour le camera PN dans la bande énergies 12-14 keV et dans la bande d’énergie 0.3 -14 keV.

On peut voir évidement les flares dans la bande a haute énergie et mieux les ailes a basse énergie.

12-14 KeV 0.3-14 KeV

GTIGTI

Page 9: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le nettoyage automatiques des flares.

La modelisation par la distribution de Poisson permet de faire le nettoyage precis des flares.

On peut verifier GTI

Ok

Page 10: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La soustraction des sources ponctuelles.

Par le satellite XMM-Newton nous observons beaucoup objet astrophysiques. Notre intérêt est les amas de galaxies donc il faut faire la soustraction d’autres objets astrophysiques.

Nous partons de la liste des sources fournies par le SSC, la verifions, et nous excluons les regions correspondantes dans l’analyse de donnees.

Page 11: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La correction des effets vignetage.

Notre système optique n’est pas idéal donc la probabilité de détecter des photons X dans le centre est plus grande que dans les régions extérieures du champ de vue . Il faut faire la correction de cette effets (nous attribuons a chaque événement son “weight”).

Weight(E,x,y) est la probabilite de detection des evenements sur cette rayon et avec cette energie rapport a celle au centre.

Page 12: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le fond: CXB et NXB

Le satellite XMM-Newton est un instrument très sensible. Mais pour obtenir une information propre il faut faire la soustraction du fond.

Il existe deux types de fond: CXB – le fond X de notre

galaxie et extragalactique NXB – les particules qui

viennent de toutes les directions et traversent le satellite.

Page 13: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La double soustraction: fond NXB

O(E,x,y): les observations ont trois composantes:1) le fond CXB, 2) le fond NXB et 3) la source S(E,x,y).

La premiere soustraction:il faut soustraire le fond NXB (le fond constant )

Le “blank field” (BF) est une somme d’observations a haute lattitude galactique. Le quantite de fond NXB dans l’ observation et le BF normalise est la meme Apres la premiere soustraction on a obtenu les donnees de notre amas avec le fond

CXB (de observation moins celle du BF). Donc, pour obtenir le donnees d’amas propre il faut soustraire ce fond residuel CXB. Ce fond est constant sur le champ de vue.

― =Radius

Count Rate

Les

am

as

CRavg=Const≠0

)()(),,(),,(),,( EBQEOyxESyxEBQyxEO CXBCXB

),,( yxEO ),,( yxEBQ)()(

),,(

EBQEO

yxES

CXBCXB

Page 14: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La double soustraction: fond CXB

La deuxième soustraction On a trouve le valeur moyenne dans la région extérieure –

CRavg(extr). On a soustrait cette valeur dans toutes les régions En théorie, a la fin de toute les soustractions on a obtenu

l’information sur notre amas mais…

)()(),,( EBQEOyxES CXBCXB

CRavg=Const≠0― Les

am

as

CRavg=Const=0

),,( yxES

=)(extrCRavg

EXTRCXBCXB EBQEO )()( ),,( yxES

Page 15: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le champ vide différents

… mais un traitement des données correct n’est pas suffisant. Il faut avoir des données du fond (BF) correctes. ==>

On a fait l’analyse des fonds différents pour avoir la possibilité utiliser le meilleure fond dans notre recherche. : D.Lumb A.Read J.Nevalainen NoWeight (sans weigth et sans fond)

Page 16: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le champ vide différents

Les profiles des fonds avons les bosses. Il y a toujours le problème:

La mauvais soustraction des sources La soustraction dans le centre de champ de vue

Solution Il faut faire la soustraction de la source centrale dans les observation du fond BF mais

après cette opération on peut perdre la statistique important dans le centre. On a choisi le fond de J.Nevalainen – c’est le meilleure fond mais n’est pas idéal dans ce

fond il faut soustraire les sources ponctuelles exterieures, mais pas dans le centre.

D.Lumb A.Read J.Nevalainen

Source Source centralPlus d’observations;

choix du mode

Pas de soustraction de

sources

Page 17: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

No champ vide

Pour faire la comparaison avec BF different on a pris le donnees d’amas de galaxies RXJ2359.5-3211.

On voit dans les figures les profils de surface de brilliance avec les soustractions BF differententes et sans soustraction BF.

Detector: MOS1

0,0

00

10

,00

10

,01

0,1

1,00E-02 1,00E-01 1,00E+00 1,00E+01

Rayon, arcmin

Co

un

t R

ate

A.Read

J.Nevalainen

D.Lumb

NoWeight

Detector: MOS2

0,0

00

10

,00

10

,01

0,1

1,00E-02 1,00E-01 1,00E+00 1,00E+01

Rayon, arcmin

Co

un

t R

ate

A.Read

J.Nevalainen

D.Lumb

NoWeight

Detector: pn

0,0

00

10

,00

10

,01

0,1

1,00E-02 1,00E-01 1,00E+00 1,00E+01

Rayon, arcmin

Co

un

t R

ate

A.Read

J.Nevalainen

D.Lumb

NoWeight

Page 18: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Les Resultats

Traitment des amas de galaxies: RXJ2359.5-3211 : Z=0.48 RXJ1334.3+5030 : Z=0.62 WJ1342.8+4028 : Z=0.70

RXJ2359.5-3211

T=3.1±0.3 keV

RXJ1334.3+5030

T=5.0±0.4 keV

WJ1342.8+4028

T=3.1±0.5 keV

Page 19: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Spectre

Nous avons mesure la temperature de ces amas. Notre resultat pour l’amas RXJ1334.3+5030 est

presque le meme que dans la publication D.Lumb et all [2003].

Notre resultat pour amas WJ1342.8+4028 est dans la barre d’erreur du resultat Kotov & Vikhlinin [2004].

L’ amas RXJ2359.5-3211 n’ai pas encore traite

RXJ2359.5-3211T=3.1±0.3 keVZ=0.48

RXJ1334.3+5030T=5.0±0.4 keVZ=0.62

WJ1342.8+4028T=3.1±0.5 keVZ=0.70

Page 20: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Profils de brillance

Dans ces images on peut voir les images des amas et leur profil de brilliance en X

Profil: courbe bleue – PN, courbe verte et rouge – MOS1&2

L’ amas RXJ1334.3+5030 en fusion

RXJ2359.5-3211T=3.1±0.3 keV

RXJ1334.3+5030T=5.0±0.4 keV

WJ1342.8+4028T=3.1±0.5 keV

Page 21: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Fin

Merci pour votre attention!

[email protected]

Page 22: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La double soustraction

Prétraitement Le tournant d’axe toute les détecteurs dans même direction. Le vignetage (pour le fond et pour le source???) La normalisation du fond par le haut bandes énergies???

obsbkg tt

bkglivetime

obslivetimepn

tKevCounts

tKeVCounts

Q

)1412(

)1412(

QyxEWeightyxEeight bkgbkg ),,(),,(W *

bkglivetime

obslivetimemos

tKevCounts

tKeVCounts

Q

)1210(

)1210(

Page 23: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La double soustraction

B(E,x,y): le fond est le somme du fond NXB et le fond CXB. Nous avons fait le correction de vignetage pour toute les données , mais le fond NXB ne devrais pas corriger sur cet effet donc il faut le fond NXB multiplie sur le “weight” pour …

O(E,x,y): les observations ont trois composant le fond CXB le fond NXB et le source S(E,x,y).

),,(),,(),,( yxEBWeightyxEByxEB CXBNXB

),,(),,(),,(),,( yxEOWeightyxEOyxESyxEO CXBNXB

Page 24: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La double soustraction : le fond NXB Le hypothèse.

Le fond NXB = constant avec le temps Donc

On peut faire grand statistique de ce fond pour grand période du temps.

“Count ”du fond NXB est proportionnelle de temps d’expositions.

),,(),,( yxEBQyxEO NXBNXB

livetimeNXB tCount ~

bkg

obs

t

tQ * *QQ

Page 25: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La double soustraction. Le fond NXB La soustraction de NXB

),,(

),,(),,(),,(

),,(),,(

yxEN

yxEBQyxEOyxES

yxEBQyxEO

CXBCXB

Avant l’utilisation de double soustraction il faut faire correctement la soustraction des flares et la filtration des événements.

Page 26: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La double soustraction : le fond CXB

)(),,( EByxEB CXBCXB )(),,( EOyxEO NoSourceCXB

NoSourceCXB

Le hypothèse: Le fond ne change pas dans le champs de vue. Donc: On peut calculer le fond dans le régions près de amas de

galaxie et soustraire ce fond Pour calculer le fond il faut choisir le régions ou il n’y a pas les

sources ponctuelles. Pour déterminer et vérifier les régions du fond CXB on peut

utiliser la brillance (luminosité) des amas de galaxie.

),()()()(

),,(),,(

yxFECEBQEO

yxEBQyxEO

CXBCXB

NoSource

Page 27: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

La double soustraction : le fond CXB

La soustraction du fond CXB Quand nous avons fait le soustraction de sources ponctuelles notre

surface a diminue donc il faut multiplier sur le coefficient Apres la soustraction et normalisation nous avons obtenu

l’information propre sur l’amas de galaxie étudie. Dans le méthode de “double soustraction” il y a deux hypothèse

donc il faut vérifier l’utilisation des hypothèse pour chaque cas.

),,(

)()(

),,(),,(),,(

)(),,(

yxES

QEBQEO

yxEByxEOyxES

QECyxEN

SNoSourceCXBCXB

CXBCXB

S

NoSourceS Surface

SurfaceQ

Page 28: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le fond NXB: D.Lumb

Dans le haut bande énergie (7-10 keV), le fond NXB du D. Lumb a la déclinaison (vert) par rapprot du fond J.Nevalainen et du fond A.Read

Page 29: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le fond NXB: D.Lumb

La solution: La soustraction des restes des sources

ponctuelles Il faut utiliser les amas de galaxies avec le taille

moins 2 arcmin

Page 30: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le fond NXB: A.Read

Pour ce fond on utilise les observations naturelle donc dans le centre des observations existe le source donc A.Read soustrait le région central dans le fond. Donc nous avons obtenu le mauvais statistiques dans le région central avec le temps expositions petites.

Apres la soustraction de région central peuvent rester l’ auréole .

La solution: il faut n’utilise pas le région central du fond .

Page 31: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le fond NXB: A.Read

Le fond a l’effet sur le frontière de plaques de détecteur PN et après filtration.

La solution . Il faut augmenter le taille de CCD(???) pour la camera PN.

Page 32: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le fond NXB: No Weight

Content

Page 33: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

Le fond NXB: J.Nevalainen

C’est le fond nouveaux mais ce fond a le profile plat. Les fichiers événements ont groupe pas standard donc il y a le

problème de calcule du temps exposition. Nous avons décide l’utiliser ce fond pour notre traitement.

Page 34: Doctorant: Sergey ANOKHIN Directrice de thèse: Monique Arnaud Séminaire étudiants 2eme année,

L’utilisation de méthode “double soustraction”. Spectre. Pour utiliser ce méthode il faut faire les spectres:

IO: La région centrale (interne) d’amas de galaxie (des observations). On a détermine le taille d’amas (le régions central) par le profile de brillance du surface.

IB: Le région central (interne) du fond NXB EO: le région extérieurs des observation EB: la région extérieurs du fond NXB OoT: l’événement de Out-of-Time pour la camera PN

L’utilisation de méthode de double soustraction La soustraction du OoT pour le fond et pour les observations La soustraction du fond pour la région centrale: SpIO – SpIB = Spinter

La soustraction du fond pour la région extérieur : SpEO – SpEB = Spextr

Le rapport du surface pour la région externes et interne (central) Qs=Sfinter / Sfextr

La soustraction du fond CXB: Spcluster = Spinter – Spextr · Qs