64
DYNAMIQUE MOLECULAIRE QUANTIQUE: DE LA SIMULATION AU CONTRÔLE Laboratoire de Photophysique Moléculaire du CNRS, Orsay, France Permanents Doctorants Osman ATABEK Eric CHARRON Arne KELLER Roland LEFEBVRE Annick WEINER François DION Catherine LEFEBVRE Post-doctorante Perola MILMAN

DYNAMIQUE MOLECULAIRE QUANTIQUE: DE LA SIMULATION …cermics.enpc.fr/~stoltz/aci0205/atabek.pdf · DYNAMIQUE MOLECULAIRE QUANTIQUE: DE LA SIMULATION AU CONTRÔLE Laboratoire de Photophysique

Embed Size (px)

Citation preview

DYNAMIQUE MOLECULAIRE QUANTIQUE: DE LA SIMULATION AU CONTRÔLE

Laboratoire de Photophysique Moléculaire du CNRS, Orsay, France

Permanents Doctorants

Osman ATABEK

Eric CHARRON

Arne KELLER

Roland LEFEBVRE

Annick WEINER

François DION

Catherine LEFEBVRE

Post-doctorante

Perola MILMAN

LPPM – CNRS, OrsayMPI, Germany

H. Figger

CEA, Saclay

C. Cornaggia

U. Laval, Canada

T.T.Nguyen Dang

U. Sherbrooke, Canada

A.D.Bandrauk

ACI, CERMICS

C. Le Bris

U. Umeå, Sweden

C. Dion

U. Bourgogne

D. Sugny

U. Besançon

G. Jolicard

LASER CONTROL STRATEGIES

Basic Mechanisms Optimal Control

Target State

Generic Strategies

BASIC MECHANISMS

Internal degrees of freedom: Nuclear vibrational dynamics

High frequency regime: field molω ω>>

Time independent picture

ATD*, BS*, VT*

Experimental verification

* Above Threshold Dissociation, Bond Softening, Vibrational Trapping

Field-free potentials

Field-dressedpotentials

Diagonalization of the radiative coupling:

0

0

1( )2det 0

1 ( )2

g

u

V V R E

E V V R

ω µ

µ

±

±

+ −=

h

Strong field mechanisms:

Bond Softening

Vibrational Trapping

COUPLED EQUATIONS IN FLOQUET FORMALISM

Floquet ansatz

Integration over r

Time periodicity

Integration over t

MULTI-PHOTON ABOVE THRESHOLD DISSOCIATION

A. Giusti-Suzor, X. He, O. Atabek and F.H. Mies, Phys. Rev. Lett., 64, 515 (1990);

P. Bucksbaum, A. Zavriyev, H.G. Muller and D.W. Schumacher, Phys. Rev. Lett., 64, 1883 (1990)

Field-freeSingle-photon dressedMulti-photon dressedMulti-photon adiabatic dressedMulti-photon ATD basic mechanisms

3D LIGHT-DRESSED POTENTIALS(Schematic view)

K. Yamanouchi, Science, 295, 1659 (2002)

BARRIER LOWERING – BOND SOFTENING

Aligned fragments

VIBRATIONAL TRAPPING

Misaligned fragments

ANGULAR RESOLVED KINETIC ENERGY DISTRIBUTIONS

2 22 2532( , ) ( , ) (1 )g unmH v H v H s Hλ+ + + + +

=Σ ⎯⎯⎯⎯→ Σ ⎯⎯→ +

R. Numico, A. Keller and O. Atabek, Phys. Rev. A , 60, 406 (1999)

,0g

,1u

,2g

,3u1hν1hν

2hν 3hν

2hν 3hν

EXPERIMENT vs THEORY

22 0785 16 /H nm I TW cmλ+ = =

• Electric discharge producing welldefined rovibrational populations of

• Spatial intensity distribution;

• Initial rovibrational distribution;

• Abel transformation

2H +

K. Sandig, H. Figger, T.W. Hänsch, Phys. Rev. Lett., 85, 4876 (2000)

V.N. Serov, A. Keller, O. Atabek, N. Billy, Phys. Rev. A68, 053401 (2003)

BASIC MECHANISMS

Internal degrees of freedom: Nuclear vibrational dynamics

Low frequency regime: field molω ω≈

Time dependent picture

DDQ*, BL*

Experimental verification

* Dynamical Dissociation Quenching, Barrier Lowering

DYNAMICAL DISSOCIATION QUENCHING

[ ]0 0 0( ) cos ( ) cos( )E t E t t E tω ω δ= − = +0δ =

tT

2πδ =

tT

1/4

0

0

( , ) cos( )det 0

cos( ) ( , )g

g

V W R t E tE t V W R t

µ ω δµ ω δ

±

±

− +⎡ ⎤=⎢ ⎥+ −⎣ ⎦

t=0

DYNAMICAL DISSOCIATION QUENCHING

t=T/4

tT

0δ =

tT

[ ]0 0 0( ) cos ( ) cos( )E t E t t E tω ω δ= − = +

2πδ =

1/4

0

0

( , ) cos( )det 0

cos( ) ( , )g

g

V W R t E tE t V W R t

µ ω δµ ω δ

±

±

− +⎡ ⎤=⎢ ⎥+ −⎣ ⎦

WAVE PACKET PROPAGATION

Time t=0

[ ]0 0 0( ) cos ( ) cos( )E t E t t E tω ω δ= − = +

0δ =2δ π=

WAVE PACKET PROPAGATION

Time t=4T

[ ]0 0 0( ) cos ( ) cos( )E t E t t E tω ω δ= − = +

0δ =2δ π= Quenching

Dynamical Dissociation Quenching

P=1

-Dis

soci

atio

n

Time (a.u.)

δ =

δ =

Quenching0δ =

Dissociation2δ π=

2H +

F. Châteauneuf, T.T. Nguyen Dang, N Ouellet and O. Atabek, J. Chem. Phys. 108, 3974 (1998)

EXPERIMENTAL VERIFICATION

Two-colour field

with c/ω1 =1280-1550 nmc/ω2 =2180-1700 nm

E(t)= E0 cos(ω1t) + E0 cos (ω2t)= E0 cos[(ω1+ω2)t/2] cos [(ω1-ω2)t/2]

OPA- Ti Sapphire

H. Niikura, P. B. Corkum, D. M. Villeneuve, Phys.Rev.Lett, 90, 203601 (2003)

Optimal gate timesVibrational periods

2 ( 2)16

H vT fs+ =

:

2 ( 2)22

D vT fs+ =

:

8gatet fs:

11gatet fs:

/ 2gatet T:

H. Niikura, P. B. Corkum, D. M. Villeneuve, Phys.Rev.Lett., 90, 203601 (2003)

[ ])22cos()cos()cos()( 0 φθγθδω ++Ω++Ω+= tttEtE

ωUV=400nm, ΩIR=635cm-1 (1.6x104 nm), I=5x1013 W/cm2

IR envelope Field

BASIC MECHANISMS

External degrees of freedom: Nuclear rotational dynamics

Alignment and orientation

Time dependent picture

Pendular states, ω+2ω, KickExperimental verification

CN

H

θ

No Orientation (θ > 0) Low reaction cross-section ε

Orientation (θ = 0) High reaction cross-section

CN H ε

MOTIVATION

Reaction cross sections Brooks (1976);

Laser induced isomerisation, isotope separationCharron, Giuisti-Suzor (1994);

Molecular trapping Seideman (1997);

High order harmonic generation Hay (2002);

Surface processing, catalysis Tenner (1991);

Nanotechnologies Sakai (1998).

EXPERIMENTAL MEASUREMENT

Breaking the molecule by MEDI (Multielectron Dissociative Ionization) measure the angular distributions of the ionizedfragments, Rosca-Pruna and Vrakking, Phys. Rev. Lett. 87, 153902 (2001);

RIPS (Raman Induced Polarization Spectroscopy): non-intrusiveobservation of a signal proportional to

Renard et.al. Phys. Rev.Lett. 90, 153601 (2003).

2cos 1 3θ< > −

TECHNIQUESBrute force, DC electric field (combined with lasers), Friedrich,

Herchbach (1991);

Microwave pulses in optimal control schemes, Judson, Lehmann, Rabitz, Warren (1990);

Picosecond two-color phase-locked lasers in coherent control, Vrakking, Stolte (1997);

Two IR lasers (ω+2ω) resonant with a vibrational transition of a polar molecule, Dion, Keller, Bandrauk, Atabek (1998);

Half-cycle pulses HCP, Dion, Keller, Atabek (2001);

Train of short pulses, Rabitz, Keller, Atabek (2004).

H. Stapelfeldt and T. Seideman, Rev. Mod. Phys., 75, 543 (2003)

. ~J θ∆ ∆ h

Efficiency

Duration

maxJ

Tim

e (a

.u.)

<cos

θ>

The Model

Rigid rotor Hamiltonian:

2 2 20

1cos ( cos )2

( ) ( )E EH t tBJ µ θ α θ α⊥= − − ∆ +

//α α α⊥∆ = −

Time dependent Schrödinger equation

( , , ) ( ) ( , , )i t H t tt

ψ θ φ ψ θ φ∂=

Measure of alignment / orientation 222 2

0 0cos ( ) ( , , ) cos sint t d d

π πθ ψ θ φ θ θ θ φ= ∫ ∫

22

0 0cos ( ) ( , , ) cos sint t d d

π πθ ψ θ φ θ θ θ φ= ∫ ∫

Basis set methodBasis set of spherical harmonics

,0

( , , ) ( ) ( , )N

J J MJ

t c t Yψ θ φ θ φ=

= ∑

Coupled equations for ( )Jc t

'

'

12

'0 '

0

2 '12 '

2

0

2

( ) ( )

( ) , cos

( )

( ,

( ) , cos ,( )

1)

)

(J J

N

JJ

N

JJ

E tBJi c t c t

c t J M J M

c t

E t

E t J M J M

J α

µ θ

α θ

=

=

⎡ ⎤= −⎣ ⎦

+

− ∆

&h

with ( 0)Jc t = known

Split-operator methodWave packet propagation

' '( ) exp ( ) ( )t t

tit t H t dt t

δψ δ ψ

+⎡ ⎤+ = −⎢ ⎥⎣ ⎦∫h

For small time steps

( ) exp ( 2) ( )

exp exp exp2 2

it t tH t t t

i t i i ttV VT

ψ δ δ δ ψ

δ δδ

⎡ ⎤+ ≈ − +⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎡ ⎤≈ − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

h

h h h

with H VT= +

Solved using Fast Fourier Transforms

PENDULAR STATES

Quantum Model Classical Model

/ θ∂ ∂

B. Friedrich and D. Herschbach, Phys. Rev. Lett., 74, 4623 (1995)

ADIABATIC vs SUDDEN PULSES

Time (ps)10 20

Pulse duration 20 ps

Adiabatic excitation of a single pendular state; isotropic distribution at theend of the pulse.

ADIABATIC vs SUDDEN PULSES

Pulse duration 1.7 psSudden excitation; post-pulse alignment

A. Keller, C. Dion and O. Atabek, Phys. Rev. A 61, 023409 (2000)

(ω+2ω) Mechanism

[ ]0( ) cos( ) cos(2 ) ; 0.5E t E t tω γ ω γ= + =

C.Dion,et.al, Chem. Phys.Lett.302,215 (1999)

The Kick Mechanism: Half Cycle Pulses

ε~150kV/cm (~ ), no risk of ionization damage;Non-negligible field components at rotational transition;Sudden excitation Marked asymmetry (12:1) between max and min.

8 210 /W cm

( ~ 1 ) ( ~ 20 )rop t st ps T p<<

D.You, R.Jones, P.Bucksbaum, D.Dykaar, Opt. Lett.18,290 (1993)

Impulsive limit: sudden approximation2( , , ) exp( ) ( , , )it BJ t tψ θ φ ψ θ φ= h%

2 20( , , ) exp( ) cos exp( ) ( ,( ) , )E tBJ BJi ii t t t t

tψ θ φ µ θ ψ θ φ∂ ⎡ ⎤= − −⎣ ⎦∂% %h h h

200

2

( , , )

exp( ) cos exp(( ) ( ,) , ) ( , , 0)p

p

t

t

E ti i it t tJ dB tBJ

ψ θ φ

µ θ ψ θ φ ψ θ φ

=

⎡ ⎤− +⎣ ⎦∫

%

% %h hh

22 exp( ) ~ 1p

i BJ tBJ

t << ⇒h

h

( , , ) exp( cos ) ( , , 0)pt iAψ θ φ θ ψ θ φ=% %

00

( )ptA E t dtµ

= ∫h

2( , , ) exp( )exp( cos ) ( , ,0)pit t t iABJψ θ φ θ ψ θ φ≥ = − h

The Kick Mechanism: Half Cycle Pulses

Sudden

Exact

( ~ 1 ) ( ~ 20 )rop t st ps T p<<2

~ 0.13 ( 1) 1p J JtBJ

+ <<h

Validity of the sudden limit

( 25 ) ( 25 ) 0.015J Jexact sudden

JMax P t ps P t ps= − = ≤

Final rotational distribution

Root mean-square η = 0.03

4 ps

C.Dion, A.Keller, O.Atabek, Eur. Phy. J. D14,249 (2001)

OPTIMAL CONTROL

• Molecular Orientation dynamics

• Attosecond pulse synthesis

Optimal Control

1

sin() )( ( )n n n

N

n

E t E t tω φ=

= +∑En(t)

Model

( , , ) ( ) ( , , )i t H t ttψ θ φ ψ θ φ∂

=∂

h

2 212

20 ( ) (( ) cos ( cos ) )H t J t E tB Eµ θ α θ α⊥= − − ∆ +

Evaluation function

cos ( ) costθ ψ θ ψ=

Optimization loop

Target(s)

1

2

2

cos ( )

1 cos ( )f rot

f

f

t T

trot

j t

j t dtT

θ

θ+

=

= ∫

Parameters

0 1 2 3

, , ,, , ,t t t t

E ω φ

Generating offspring

1tpsps

E0 9(10 / )V mω 1cm−

φ ( )radπ0t

2t3t ps

ps

0.0410310.76

0.00.310.61

1.19

0.041031

0.760.00.490.61

1.19

individual mutation

10310.04

0.76

0.00.310.61

1.19arithmetic crossover multi-point crossover

+ =

0.046321.30

0.00.44

1.00

1.25

+ = +

0.041031

0.040.04 0.04632 632 1031

0.76 1.300.0 0.0

1.30 0.760.0 0.0

0.31 0.44 0.31 O.440.61 1.00 1.00 0.61

1.19 1.25 1.19 1.25

0.04831

1.030.0

0.380.81

1.22

1j

E(t)

<cos

θ>(t)

NG number of generation

HCN

1 cos ( )fj tθ=

O.Atabek, C.Dion,A.B.H.Yedder, J.Phys.B 36,4667(2003)

1 cos ( )fj tθ=

HCN

NG=11

O.Atabek, C.Dion,A.B.H.Yedder, J.Phys.B 36,4667(2003)

1 cos ( )fj tθ=

O.Atabek, C.Dion,A.B.H.Yedder, J.Phys.B 36,4667(2003)

HCN

NG=57

1 cos ( )fj tθ=

O.Atabek, C.Dion,A.B.H.Yedder, J.Phys.B 36,4667(2003)

HCN

NG=245

1 cos ( )fj tθ=

O.Atabek, C.Dion,A.B.H.Yedder, J.Phys.B 36,4667(2003)

HCN

NG=383

1 cos ( )fj tθ=

O.Atabek, C.Dion,A.B.H.Yedder, J.Phys.B 36,4667(2003)

HCN

NG=500

n En (W/cm2) ω (cm-1) φ (π rad.)

1 1.01364E08 1389.541 1.12406

2 2.99976E12 500.051 0.31723

3 2.99989E12 500.000 1.31887

ATTOSECOND PULSE SYNTHESIS

A. Ben-Haj Yedder, O. Atabek, C. Le Bris, S. Chelkowski, A. Bandrauk, Phys. Rev. A69, 041802R (2004)

Chirped field

HHG: phases and amplitudes

Emitted field:

• without optimization;

•after optimization

HHG FOR 1D OPTICAL LATTICES

ε

izz

xk

1 11

( ,... , ; ,... ) ( , ; )N

N N i i ii

H x x t z z H x t z=

= ∑2

( , ; ) ( ) . ( , )2

ixi i i i i i

pH x t z V x ex E z t

m= + −

Schrödinger Equation

( , ; ) ( , ; ) ( , ; )i i i i i i i i iH x t z x t z i x t zt

ψ ψ∂=

∂h

Polarization

1

( , ) ( , ; ) ( , ; ) . ( )N

i i i i i i i ii

P z t x t z ex x t z z zψ ψ δ=

= −∑

Maxwell Equation2 2 2

2 2 2 2 2

( , ) ( , ) 4 ( , )E z t E z t P z tz c t c t

µ πµ∂ ∂ ∂− =

∂ ∂ ∂

TARGET STATE

•Projection of the observable into a finite dimensionalHilbert subspace.

•Eigenstate of the projected observable corresponding to its lowest eigenvalue (variational principle).

Train of kicks: the target state

<cos θ> replaced by ( ) ( ) ( ) ( )cos ; , ,m NN N N Nm m m m j m

C P P P j m j mθ +

== = ∑

Target state (eigenfunction of ( ) )NmC

2( ) 12 sin ,

2 2

m NN

mj m

j mj m

N Nχ π

+

=

+ −⎛ ⎞⎛ ⎞≈ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠∑

Finite subspace( ) : , ( , 1,... )NmH j m j m m m N= + +

Individual kick2cosA

Ai tBi J

JU e U eθ −= =

( ) ( )0 0cos cos

2N N

Nπχ θ χ ⎛ ⎞≈ ⎜ ⎟+⎝ ⎠

Efficiency

Duration

Choice of parameters to remain in ( )NmH ( ) 2cos ( ) cos ( ) ( )

0 0 0A Ai N i N Ne P e Pθ θ χ η− ≈

which, for small A, amounts to [ ]2 32( 2)A Nη π ⎡ ⎤≈ +⎣ ⎦ ( 1, 4) 0.02A N η= = ⇒ ≈

Train of kicks: the strategy

1st kick

2 kick

Maximum of<cosθ> after the

first kick

Maximum of <cosθ> after thesecond

kick

Train of kicks: the strategy

1st kick

2 kick

Train of kicks: the result

0.89

0.2

Efficiency = 0.89 Duration = 0.2 rotTfor LiCl 2 ps, for NaI 20 ps

D. Sugny, A.Keller, O.Atabek, D.Daems, C.Dion, S.Guérin, H.Jauslin, Phys. Rev. A 69, 033402 (2004)

Robustness

Robustness shifting timedelays by ±1% of the rotational period

Robustness varying thepulse energy by ±10%

Geometrical accuracy: 0.2 µ, corresponding to 0.6 fsec, as compared to Trot of the order of 10 psec.

BACK TO OPTIMIZATION

• Well defined target state

• Optimize the amplitudes and delays betweenthe HCP’s to reach the target state

Efficient, long-duration orientation with only 2 pulses

C. Dion, A. Keller and O. Atabek, Phys. Rev. Lett. (submitted)

Conclusions

No single solution arising from optimal control schemes (criteria, parameters,…)

Investigate basic mechanisms of laser-molecule dynamics(ω+2ω, kick,…)

Restricting the parameters sampling space, force optimal control to take advantage of these mechanisms

From the knowledge of the most relevant basic mechanisms, appropriately shape the laser pulse (train of kicks)

Perspectives: transposition to a generic system

Control objectives

Free dynamics under

Control of an observable

( upper or lower bounded, target: maximize or minimize )

0H( . . cos )e gO θ

2( . . )e g BJ

[ ]0, 0,H O O≠( )O t

Control strategy

Perturb the system with unitary

with:

the optimal target state is an eigenfunction of both

The optimum corresponds to a fixed point of the sequence

times where reaches its maximum under free evolution

cos( . . )iAAU e g U e θ=

[ ] 1, 0O U O U OU−= ⇒ =

O and U( )i iO O t=

it ( )O t

GENERIC STRATEGIES

0 1)) ((H H v Htt = +Pure state

0( 0) ;t Hαψ α α α α= = =

Example: 0j mα = = =

( )U Nunitaryα χ⎯⎯ ⎯→

Strategy : fixed point of convergent series

a) Robustness, experimental feasibility;

b) Optimal control with well-defined targets;

c) Other control objectives : logical gates;

d) Mathematical study of the fixed points

GENERIC STRATEGIES

0 1)) ((H H v Htt = +Mixed state

( ) ( ) ( )k k kk

t w t tρ ψ ψ= ∑ [ ]1( ) ,t i Ht

ρ ρ−∂= −

∂h

( 1) /1(0) , ,Bj j kT

j m

j m e j mZ

ρ − += ∑∑Example

Strategy :

( )( 0) ( )U Nunitaryt tρ ρ= ⎯⎯ ⎯→

[ ] [ ]( ) ( ) ; , 0O t Tr O t Oρ ρ= =specific ordering of the commoneigenvectors of andρ O

Use of different polarization schemes(elliptical); application to polyatomics

GENERIC STRATEGIES

0 1)) ((H H v Htt = +Molecular system interacting with an environment

Examples : collisions in a gas, frictions in a liquid

Strategy : Artificial reservoir against decoherence

( )( 0) ( )U Nnon unitaryt tρ ρ−= ⎯⎯ ⎯ ⎯→

E

As

What are the targets? Are they attainable?