3

Click here to load reader

Etude d’un pendule élastique vertical Détermination de … · Etude d’un pendule élastique vertical Détermination de la constante de raideur d’un ressort (correction) Objectif:

  • Upload
    lamlien

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Etude d’un pendule élastique vertical Détermination de … · Etude d’un pendule élastique vertical Détermination de la constante de raideur d’un ressort (correction) Objectif:

Etude d’un pendule élastique verticalDétermination de la constante de raideur d’un ressort (correction)

Objectif : utiliser deux méthodes expérimentales pour déterminer la constante de raideur k d’un ressort.

On considère un pendule élastique constitué d’un solide de masse m et d’un ressort de constante k (exprimée en N.m–1), de longueur à vide Lo et de masse négligeable devant m.La raideur d’un ressort traduit sa réponse à la déformation ; dans la suite, on se place dans le cadre de la loi de Hooke1 pour laquelle k ne dépend pas de la

charge m : la force de rappel F

du ressort est alors proportionnelle à son élongation.

1 – Méthode statiqueOn suspend une masse m au ressort de raideur k. Le ressort, de longueur à vide Lo, s’allonge d’une longueur ΔL = Lo – Lc où Lc est la longueur du ressort à l’équilibre après la charge. A l’équilibre, le

poids P m g

et la force de rappel élastique F k L i

se compensent, ce qui conduit à l’égalitém g k L

avec g = 9,81 m.s–2 l’intensité du champ de pesanteur terrestre. Cette relation n’est vérifiée que dans le domaine d’élasticité du ressort, où la loi de linéarité de Hooke s’applique : c’est pourquoi, dans notre cas, il ne faudra pas dépasser mmax = 300 g.Pour m = mmax, on relève une élongation ΔLmax = 7,4 cm.

1. En déduire une valeur de la constante de raideur k du ressort : 12

0,300 9,8140 .

7, 4.10

m gk N m

L

2. Donner une méthode simple permettant d’augmenter la précision obtenue sur k.

L’utilisation de plusieurs masses marquées, inférieures à 300 g, permettrait d’obtenir plusieurs valeurs de k dont on pourrait faire la moyenne…

2 – Méthode dynamiqueOn réalise le montage de la figure suivante (document 1). La masse de l’aiguille est m1 = 8,0 g ; la masse marquée m2 variable peut osciller librement et sans frottement notable dans l’éprouvette remplie d’une solution aqueuse de sulfate de cuivre (II). Initialement, la pointe de l’aiguille est centrée entre les deux électrodes en cuivre.Lorsque le système oscille verticalement, la tension u(t) mesurée entre la masse et la pointe de l’aiguille est proportionnelle à x(t), écart du centre d’inertie de la masse marquée par rapport à la position d’équilibre.On notera M = m1 + m2.L’équation différentielle du mouvement est donnée par l’application de la 2ème loi de Newton à l’ensemble {masse marquée + aiguille} de masse M,

1 Du nom du britannique Robert Hooke (1635-1703) qui fut l’un des plus grands expérimentateurs du XVIIème siècle. En 1660, il énonce la loi d’élasticité qui porte aujourd’hui son nom : « ut tension sic vis », telle extension, telle force.

F k L

où L x i

d’après les conventions ci-contre. Ecarté de sa position d’équilibre, le système oscille entre les positions symétriques –xm et xm.

Terminale S – TP de Physique n°12bMécanique

Page 2: Etude d’un pendule élastique vertical Détermination de … · Etude d’un pendule élastique vertical Détermination de la constante de raideur d’un ressort (correction) Objectif:

2

extF P F M a

En projetant ici sur l’axe (Ox) dirigé par i

, il vient

M g i k x i M xi

et l’équation différentielle sur la position x(t),k

x x gM

On reconnaît la forme générale 2ox x cte

avec o

k

M la pulsation propre de

l’oscillateur. Les solutions sont des fonctions sinusoïdales plus ou moins amorties (en fonction des frottements) dont l’expression théorique de la période propre est

22o

o

MT

K

En faisant varier m2, on peut relever différentes valeurs de période To par acquisition, comme indiqué sur le document n°2 :

m2 (kg) 0,100 0,150 0,200 0,250 0,300

M (kg) 0,108 0,158 0,208 0,258 0,308

5 To (s) 1,635 1,965 2,245 2,490 2,715

To (s) 0,327 0,393 0,449 0,498 0,543

To2 (s2) 0,107 0,154 0,202 0,248 0,295

1. Remplir le tableau.2. Tracer les variations de To

2 en fonction de M. Quelle est l’allure du graphe ? Conclure.

Document n°1

5 To

Page 3: Etude d’un pendule élastique vertical Détermination de … · Etude d’un pendule élastique vertical Détermination de la constante de raideur d’un ressort (correction) Objectif:

3Les points se répartissent visiblement suivant une droite passant par l’origine. En effet, en utilisant l’expression théorique de To, il vient

22o

o

MT

K

2 24o

MT

K

22 4

oT MK

3. Proposer une modélisation par régression de To2 = f(M).

Cf. graphe précédent.4. En utilisant l’expression théorique de To, donner l’expression de la constante de raideur k en

fonction de To et de M. En déduire une valeur de k.

22o

o

MT

K

2 24o

MT

K

22

4o

MK

T

A.N. : 2

2 140,965 .s kg

K

conduit à 2

1440,9 .

0,965K N m

5. Comparer les résultats des deux méthodes, statique et dynamiqueLes résultats obtenus sont tout à fait comparables, à condition de tenir compte d’un ensemble statistique de mesures.

To² = f(M)

To² = 0,9645 x MR2 = 0,9992

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35

M (kg)

To² (s²)