59
i;-rJs .--crrMrf^v coK'^tf^n CA ••;-' • tlCr •""{ •*'*: CO"?:.; W..' '-'^ //f*:'.U>R:--«S::.c.',F^rh *>!-. ."^ -'C- 1.. 'i' ^, ^i^ HHPsriY mfORNkmtoiN MnAOnnCMMWEWmiP^ •«b*7'«>'«>iMBi^'V*>rfT«V L iir%iiP*iV«L vr,n,jfurjs iV»«'jn3Bi n^ i^'# •> i-- i "* 'alt 3! ?' MaRaywHiiBwiMWHiHHiiwiiuft..^ j i i ^ r - m r - v m >c»^ «; f* nQMnnrvor-wk'^^- s v . ^ ^ m i ^ r ^ ^ ' w ^ t ^-Mf^.^ »'r -*.!, A T O M K ^ M r R G Y V ,'-:;:.. -.; &; r^ ^ /? *,./ - r/- •• - M O R T K A M K ?? i : a ^} ^ • ' f.. 1 : ij fl •• • •

f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

i;-rJs .--crrMrf^v coK'^tf^n CA ••;-' • tlCr •""{ •*'*: C O " ? : . ; W..' '-'^

//f*:'.U>R:--«S::.c.',F^rh *>!-. ." -'C- 1 . . ' i '

^ , ^ i ^ HHPsriY mfORNkmtoiN

MnAOnnCMMWEWmiP^ •«b*7'«>'«>iMBi^'V*>rfT«V L iir%iiP*iV«L vr,n,jfurjs iV»«'jn3Bi n i^'# •> i - - i

"* ' a l t

3!

?' MaRaywHiiBwiMWHiHHiiwiiuft..^ j i i ^ r - m r - v m >c»^ «; f* nQMnnrvor-wk'^^- sv .^^mi^r^^'w^t ^-Mf^.^ » ' r

-*.!,

A T O M K ^ M r R G Y V , ' - : ; : . . - . ; &; r ^ /? *,./ - r/- •• -

M O R T K A M K ?? i : a } ^ • ' f.. 1 : ij fl

•• • • • •

Page 2: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 3: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• « c s

« « • « • » *

ar c

UNCCft' SBfiS N A A - S R - - I 3 4 PAGE ! OF 59

SECURITY II HFORMATION

IMVESTIGATION OF A SODIUM VAPOR

COMPRESSOR JET FOR NUCLEAR

PROPULSION OF AIRCRAFT

WRITTEN 8V .

H. SCHWARTZ

WORK DONE 8V *.

J. BAIRD R. BALENT J. BROWN G. COGSWELL A. DEAN K. DeGHETTO S. ELHA! R. ELLIOTT m. HE!SL£R

D. J ELI NEK W. KNOLL J. MALONE S. NAKAZATO C. RODERICK T. SHIMAZAKI R. STALLARD R. STOKER A. THOMPSON

ATOMIC ENERGY RESEARCH DEPARTMENT

N O R T H A M E R I C A N A V I A T I O N , I N C . p. O. B O X 3 0 9 D O W N E Y , C A L I F O R N I A

SUBMITTED MAY I, 1953 ISSUE DAT!

JUNE 25,1953

CONTKACT AT-40-I-GEM-I064 l j N C L A S S l f c | & ly.

• •

Page 5: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • • «

THM

» » » • NAA-SR-134

Page 2

REPORT APPROVED BY:

S. SIEGEL, Associate Director C. STARR, Director

DISTRIBUTION

Category: REACTORS-RESEARC AND POWER

y Standard Distribution

AF Plant Representat ive, Burbank AF Plant Representat ive, Seattle ANP Project Office, For t Worth Argonne National Laboratory Armed Forces Special Weapons Project (Sandia) Atomic Energy Commission, Washington Battelle Memorial Institute Bechtel Corporation Brookhaven National Laboratory Bureau of Ships California Research and Development Company Carbide and Carbon Chemicals Company (ORNL) Carbide and Carbon Chemicals Company ( Y - 1 2 Plant) Chicago Patent Group Chief of Naval Research Commonwealth Edison Company Department of the Navy - Op-362 Detroit Edison Company duPont Company, Augusta duPont Company, Wilmington Fos te r Wheeler Corporation General Electr ic Company (ANFP) General Electr ic Company, Richland Hanford Operations Office Idaho Operations Office Iowa State College Knolls Atomic Power Laboratory Los Alamos Scientific Laboratory Massachuset ts Institute of Technology (Kaufmann) Monsanto Chemical Company Mound Laboratory National Advisory Committee for Aeronautics, Cleveland National Advisory Committee for Aeronautics, Washington Naval Research Laboratory New York Operations Office Nuclear Development Associates, Inc. Patent Branch, Washington Pioneer Service & Engineering Company Powerplant Laboratory (WADC) Rand Corporation San Franc isco Operations Office Savannah River Operations Office, Augusta USAF Resident, East Hartford U. S. Naval Radiological Defense Laboratory University of California Radiation Laboratory, Berkeley University of California Radiation Laboratory, L ivermore Vitro Corporation of America Walter Kidde Nuclear Labora tor ies , Inc. Westinghouse Electr ic Corporation Technical Information Service, Oak Ridge Fi le

Copy No.

1 2 3 4-14

15 16-20 21 22 23-25 26 27-28 29-36 37-42 43 44 45 46 47 48-51 52 53 54-56 57-60 61 62-68 69 70-73 74-75 76 77 78 79 80 81 82-83 84 85 86 87 88 89 90 91 92 93-94 95-96 97 98 99-104

105-119 1.20-145

UNCLASSiE^ »VT » 9 • •

Page 6: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • • • •

• • • • • ••

• » • • • A

H \ \

N A A - S R - 1 3 4 P a g e 3

T A B L E O F C O N T E N T S

II.

III.

A b s t r a c t .

S u m m a r y of V iews R e l a t i v e to the A t t a i n m e n t of S u p e r s o n i c F l i g h t wi th N u c l e a r P o w e r e d A i r c r a f t

A. D i s c u s s i o n of T e c h n i c a l A s s u m p t i o n s

B. Effect of A i r p l a n e and P o w e r P l a n t P e r f o r m a n c e on G r o s s Weight

C. High T e m p e r a t u r e A p p r o a c h .

D. The C o m p r e s s o r - J e t P o w e r P l a n t

E. P r e s e n t S ta tus of C o m p r e s s o r J e t .

R e c o m m e n d a t i o n s . . . .

Sod ium Vapor C o m p r e s s o r J e t

A. G e n e r a l . . . .

B. D e s i g n C o n s i d e r a t i o n s

C. D e t a i l e d D e s c r i p t i o n

R e f e r e n c e s

age No

5

6

8

9

10

10

11

12

12

13

19

21

59

LIST O F T A B L E S

I. P o s s i b l e R e a c t o r C o o l a n t s for High T e m p e r a t u r e App l i ca t ion .

II. P o s s i b l e P o w e r P l a n t W o r k i n g F l u i d s for High T e m p e r a t u r e

A p p l i c a t i o n

III. A i r p l a n e D e s i g n Cond i t i ons

IV. A i r p l a n e Weight B r e a k d o w n .

V. A e r o d y n a m i c A n a l y s i s .

VI. N e u t r o n Cyc le F ronn E p i t h e r m a l C a l c u l a t i o n s . . . .

VII. F a t e of 100 F i s s i o n N e u t r o n s in R e a c t o r . . . . . .

VIII. R e a c t o r Cool ing C h a r a c t e r i s t i c s and Weight . . . .

IX. P o w e r P l a n t P e r f o r m a n c e C h a r a c t e r i s t i c s . . . . .

14

16

22

23

23

33

34

35

40

m

Page 7: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

NAA-SR-134 Page 4

rii'^?iciFO LIST OF FIGURES

Page No.

1. Effect of L / D Ratio on Airplane Gross Weight 43

2. Schematic Diagram of C o m p r e s s o r - J e t System 44

3. Tempera tu r e -En t ropy Diagram for Sodium . . . . . . . . 45

4. Enthalpy-Entropy Diagram for Sodium. . . . . . . . . . 4^

5. Three Views of Airplane 47

6. Inboard Profi le Pe r spec t ive of Airplane 48

7. Engine Thrus t and Airplane Drag vs Mach Number. . . . . . 49

8. Thrus t Horsepower vs True Air Speed. . . . . . . . . . 50

9. Rate of Climb and Climb Speed vs Altitude . . . . . . . . 51

10. Reactor Perspec t ive . . 52

11. Reac to r -Power Plant Installation 53

12. Tempera tu re Entropy Diagram for Sodium Compres so r J e t . . . 54

13. Sodium Vapor Genera tor . 55

14. Compres so r and Turbine Assembly . 56

15. Sodium-Air Radiator Assembly 57

16. Sodium-Air Radiator Pe r spec t ive 58

imm

Page 8: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

^ r»!iiee

N A A - S R - 1 3 4 P a g e 5

ABSTRACT

A n a l y s i s i n d i c a t e s that , in o r d e r to a c h i e v e s u p e r s o n i c f l ight wi th n u c l e a r

p o w e r e d a i r c r a f t , a r e a c t o r - p o w e r p l a n t c o m b i n a t i o n c a p a b l e of o p e r a t i n g at t e m ­

p e r a t u r e s c o n s i d e r a b l y in e x c e s s of c u r r e n t p r a c t i c e m u s t be deve loped .

It i s po in ted out that t h e r e e x i s t two g e n e r a l a v e n u e s of a p p r o a c h t o w a r d the

goal of a t t a i n i n g h igh t e m p e r a t u r e r e a c t o r s and p o w e r p l a n t s . The f i r s t a p p r o a c h

i nvo lves the con t inua t ion and a u g m e n t a t i o n of r e s e a r c h a long the l i n e s p u r s u e d by

the conven t iona l t u r b o - j e t engine n n a n u f a c t u r e r , n a m e l y a s e a r c h for m a t e r i a l

c o a t i n g s o r m a t e r i a l s tha t wi l l r e t a i n s t r u c t u r a l s t r e n g t h in h igh t e m p e r a t u r e o x i ­

d iz ing a t m o s p h e r e s . The second a p p r o a c h s e e k s to t a k e a d v a n t a g e of the p e c u l i a r

c h a r a c t e r i s t i c s of the c o m p r e s s o r - j e t engine tha t p e r m i t the o p e r a t i o n of the h igh

t e m p e r a t u r e c o m p o n e n t s in a n o n - o x i d i z i n g a t m o s p h e r e .

The r e s u l t s of a p r e l i m i n a r y d e s i g n s tudy of a s u p e r s o n i c a i r c r a f t p o w e r e d

by a h igh t e m p e r a t u r e s o d i u m , l iqu id v a p o r c o m p r e s s o r - j e t eng ine a r e s u m m a r i z e d .

The a n a l y s i s c o n s i d e r e d , in a s m u c h d e t a i l a s w a s w a r r a n t e d by the l i m i t e d e x p e r -

innental i n f o r m a t i o n a v a i l a b l e , the c h a r a c t e r i s t i c s of the r e a c t o r , p o w e r p l an t

and a i r f r a m e invo lved in d e t e r m i n i n g p e r f o r m a n c e . T h i s s tudy h a s b e e n conduc ted

for the p u r p o s e of guiding f u t u r e , l o n g - t e r m , r e s e a r c h w o r k a long the l i n e s of

high t e m p e r a t u r e r e a c t o r s and p o w e r p l a n t s for a i r c r a f t p r o p u l s i o n . The s o d i u m

v a p o r c o m p r e s s o r - j e t i s not p r e s e n t e d as an engine tha t i s p r e s e n t l y c o n s i d e r e d

f e a s i b l e no r is any a t t e m p t m a d e to e s t a b l i s h a t i m e t ab l e for i t s d e v e l o p m e n t .

The p r e s e n t s t a t u s of r e a c t o r - p o w e r p l a n t c o m b i n a t i o n s of the type d i s c u s ­

sed in t h i s r e p o r t i s such that the c o n f i g u r a t i o n s p r e s e n t e d and the t h e r m o d y n a m i c

r e q u i r e m e n t s s e t fo r th a r e h igh ly c o n j e c t u r a l . H o w e v e r , in l ight of the p r o m ­

i s i n g r e s u l t s thus far ob ta ined f r o m v e r y l i m i t e d e x p e r i m e n t a t i o n in the f ie ld of

high t e m p e r a t u r e m a t e r i a l s not sub j ec t to ox id iz ing a t m o s p h e r e s , it a p p e a r s

w o r t h w h i l e to con t inue a r e s e a r c h ef for t a long t h e s e l i n e s in the e x p e c t a t i o n of

m a k i n g h igh t e m p e r a t u r e , h igh p e r f o r m a n c e a i r c r a f t a r e a l i t y .

T h i s r e p o r t i s b a s e d upon s t u d i e s conduc t ed for the A t o m i c E n e r g y C o m ­

m i s s i o n u n d e r C o n t r a c t A T - 4 0 - 1 - G E N - 1 0 6 4 . T h e s e s t u d i e s w e r e conc luded on

S e p t e m b e r 1, 1951 , and w e r e i n f o r m a l l y m a d e ava i l ab l e to the A i r c r a f t N u c l e a r

P r o p u l s i o n G r o u p at ORNL at tha t t i m e .

Page 9: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • • « * • « « • • • •

/ N \

NAA-SR-134 Page 6

H i?eip

I. SUMMARY OF VIEWS RELATIVE TO THE ATTAINMENT OF

SUPERSONIC FLIGHT WITH NUCLEAR POWERED AIRCRAFT

Before d iscuss ing in detail the sodium-vapor compresso r jet, it seems

worthwhile to d i scuss briefly the reasons for the in te res t in compres so r jets in

genera l and the sodium-vapor compresso r jet in pa r t i cu la r . These arguments

have to do with assumptions which are made in connection with the feasibility of

obtaining any des i red per formance of a i rcraf t , including engine per formance

(component efficiency and t empera tu re l imitat ions on ma te r i a l s ) , a i rcraf t cha r ­

ac t e r i s t i c s such as the ra t io of lift to drag , and reac tor per formance in t e r m s

of weight.

It is now public knowledge that nuclear powered a i rplanes a r e considered

feasible and that specific cont rac ts are being negotiated with turbo- je t engine and

a i rcraf t companies , for the design and construct ion of the neces sa ry appara tus .

The technical decisions which culminated in the above mentioned actions

a re many and d ive r se , but perhaps the ones of g rea tes t weight were those reached

by the Technical Advisory Board as recorded in the repor t i ssued as a summary

of the work done at ORNL in the s u m m e r of 1950.

The m e m b e r s of the Technical Advisory Board recomm.ended immediate

action on the engineering phases of subsonic a i rplanes on the grounds that such

ai rplanes a re reasonably cer ta in of success , and that such a successful subsonic

airplane is a des i rab le and n e c e s s a r y p re requ i s i t e to a high per formance super ­

sonic a i rplane; and, fur ther , that the r e a c t o r s and turbo-jet engines which can

propel a subsonic airplane at a maximum reac to r t empera tu re of 1500° F can

also by further development ( largely one of attaining higher operating t e m p e r a ­

tures of about 1800° F) reach a level of pe r formance required by a supersonic

a i rplane.

As to the feasibili ty of the subsonic nuclear energy propelled a i rplane and

the need for building such a subsonic airplane as quickly as possible , there should

be l i t t le further d iscuss ion because there can be few doubts of a technical nature

concerning the soundness of the decis ions.

Page 10: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • • • « • • • • • « • • • •

NAA-SR-134

K — — — I^IJVf ^fi'f'in^r^.

However, the question of whether or not a 300° F inc rease in r eac to r wall

t empera tu re can be accomplished and if so, would it provide sufficient i m p r o v e ­

ment in per formance to propel supersonic a i rp lanes , is one which is still open.

In the language of the Technical Advisory Board,

"Obtaining supersonic per formance la ter may be expected as the resu l t of

further development. It depends on the solution of c ruc ia l p rob lems with respec t

to m a t e r i a l s , fabrication, and the airplane and engine developments . The t ime

scale for solution of these problems cannot now be predicted.

"The gaps in our knowledge of the p roper t i e s of m a t e r i a l s at high t e m p e r ­

a tu res a re so wide, and the bas is for predict ing the r a t e of p r o g r e s s in this field

so uncertain, that there a re wide differences between the e s t ima te s of exper ts as

to what ul t imate working t empera tu re s the var ious r e a c t o r s a re likely to attain.

Consequently, the success of the whole project , at least for Phase II, may con­

ceivably depend on the development of a propulsion sys tem with somewhat reduced

r equ i remen t s for specific impulse and t empera tu re . Such a development, though

not insuperably difficult in pr inciple , p r e sen t s a major undertaking in view of the

extent of the engine and airplane development r e s o u r c e s now available.

"The liquid meta l cycle has a fair chance of operating in the range of m a x ­

imum wall t empe ra tu r e s between 1500° F and 1800° F . P re sen t ly available naa-

t e r i a l s could probably be used near the lower end of this range and feasibil i ty

could be es tabl ished within a short t ime. Tempera tu re s in the upper pa r t of this

range would requ i re r e s e a r c h of indeterminate durat ion and unknown chances of

success . This cycle may be expected to operate a plane sat isfactor i ly , with

p rospec t s for high ultimate perfora iance if r e a c t o r s operating near the upper end

of the above range can be developed. "

While the Technical Advisory Board felt itself unable to make any es t ima tes

as to the time involved in the attainment of a supersonic a i rp lane , a s imi la r de ­

gree of caution did not pervade the technical field where assumptions were made

and calculations gone through which resul ted in es t imates of a i rplane and power

plant weights and per formance . Such es t imates a re , of course , only as good as

these technical assumptions which were made in fields where the exper t s a r e

probably of as d iverse views as those in the field of high t empera tu re m a t e r i a l s .

Thus, it may be pointed out that the feasibili ty of the nuclear powered supersonic

airplane is by no means as well establ ished as that of the subsonic a i rp lane .

« # • • • • » • • •

Page 11: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

% '

NAA-SR-134 Page 8

i,jpf\h 'laf^^PPCp;

Therefore , it is of impor tance to the whole p r o g r a m to a r r ive at a thorough

understanding of those airplane and power plant cha rac t e r i s t i c s which indicate

that the Technical Advisory Board ' s 312, 000 pound, 1800° F reac to r t empera tu re ,

turbo-je t powered supersonic airplane for Mach 1. 5 at 45, 000 feet is of marg ina l

feasibil i ty.

A. Discussion of Technical Assumptions

The cautious opt imism of the Technical Advisory Board (TAB) repor t on

supersonic feasibili ty as compared to the more doubtful attitude of the Lexington

repor t was la rge ly due to the reduction in airplane gross weights which resul ted

from the more optimist ic assumptions that:

1. Airplane c ru i se L / D ra t io would be around 6 at Mach 1. 5 and

45,000 feet instead of the 3 obtained by the X - 1 .

2.

3.

By use of the split shield, the shield weight could be mater ia l ly

reduced.

Turbo- je t engines can develop enough thrust with a maximum

reac to r t empera tu re of 1800° F and s t i l l be of low weight.

Analyses made for this r epor t indicate that there a re technical reasons

which make some of this opt imism difficult to justify.

1. Li f t /Drag Ratios - Detailed analyses of p re l imina ry designs of la rge

supersonic a i rplanes (300, 000 pounds to 500, 000 pounds gross weight) with all

the nuclear power plant in the fuselage, thereby eliminating nacelle drag, has

so far indicated that the best cruise L / D ra t io for Mach 1. 5 at 45, 000 feet is

about 5, and that there is nothing presen t ly known aerodynamical ly to justify a

more optimist ic figure for large a i rplanes at this flight condition.

2. Power Plant - Power plant analyses based on TAB data indicate that

turbo-je t engines to power a 300, 000 pound supersonic a irplane having a r e a l ­

izable L / D of 5 at Mach 1. 5 and 45, 000 feet will requi re r eac to r t e m p e r a t u r e s

of about 2200° F, some 400 degrees higher than the 1800° F mentioned by the

TAB. This resu l t s from the fact that turbine inlet t empera tu re s seve ra l hun­

dred degrees higher than the 1500° F figure cur rent ly attained in operat ional

turbo-je t engines a re n e c e s s a r y to get the additional power requi red from en-

gines of a weight compatable with that of the airplane.

• E.«« • • • • • • • • • • • • • • • • •

• • 9 • • • • • • • • • • • •

Page 12: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

J,, *,' ; *," *,, ' , . ; J,, I ; , . j . * N A A - b x i - 1 3 4

A Pag^ 9

The di f f icul ty of a t t a i n i n g e v e n 1800° F in the r e a c t o r l ed the T A B to th ink

that p e r h a p s the p r o b l e m of c o m i n g up wi th new d e s i g n s for h igh p e r f o r m a n c e

f r o m l o w e r t e m p e r a t u r e s should be p a s s e d to the a i r c r a f t and eng ine b u i l d e r s .

In o t h e r w o r d s ". . . the s u c c e s s of the whole p r o j e c t , at l e a s t for P h a s e II, m a y

c o n c e i v a b l y depend on the d e v e l o p m e n t of a p r o p u l s i o n s y s t e m wi th s o m e w h a t

r e d u c e d r e q u i r e m e n t s for spec i f i c i m p u l s e and t e m p e r a t u r e . " It s e e m s d o u b t ­

ful tha t h i g h e r p e r f o r m a n c e a i r p l a n e s can depend for s u c c e s s on l o w e r p e r f o r m ­

ance p o w e r p l a n t s . Up to now, at l e a s t , th i s h a s not b e e n the t r e n d in a i r p l a n e

and p o w e r p l a n t d e v e l o p m e n t .

It d o e s not a p p e a r , h o w e v e r , tha t full r e a l i z a t i o n e x i s t s of the effect on

a i r p l a n e g r o s s we igh t of the u s e of l o w e r t e m p e r a t u r e , l o w e r p e r f o r m a n c e e n g i n e s .

Such r e a l i z a t i o n h a s been o b s c u r e d by the o p t i m i s t i c a s s u m p t i o n s of c r u i s e L / D

r a t i o s wh ich in t u r n p r o d u c e o p t i m i s t i c a i r p l a n e g r o s s w e i g h t s . Of c o u r s e , if

e x t r e m e l y l a r g e a i r p l a n e s of a g r o s s we igh t of about 500, 000 pounds and u p w a r d

a r e a c c e p t a b l e , t hen the ob j ec t i ons to low p e r f o r m a n c e p o w e r p l a n t s a r e of l e s s

i m p o r t a n c e .

B. Effect of A i r p l a n e and P o w e r P l a n t P e r f o r m a n c e on G r o s s Weight

The e f fec t s of c r u i s e L / D r a t i o and r e a c t o r t e m p e r a t u r e upon a i r p l a n e

g r o s s we igh t a r e shown in F i g . 1. T h e s e c u r v e s a r e b a s e d on T A B d a t a . It i s

a p p a r e n t tha t , if g r o s s w e i g h t s a r e to be kep t be low 400, 000 p o u n d s , h i g h e r t e m ­

p e r a t u r e s and h i g h e r p e r f o r m a n c e e n g i n e s m u s t be u sed , e v e n upon the T A B

a s s u m p t i o n s , at the l o w e r L / D ' S tha t wi l l a c tua l l y be r e a l i z e d in p r a c t i c e . As a

d e m o n s t r a t i o n of the effect of L / D on mc ix imum r e a c t o r w a i l t e m p e r a t u r e , c o n s i d e r

the T A B po in t shown on F i g . 1 and a s s u m e i t is d e s i r e d to m a i n t a i n the s a m e a i r ­

p l a n e g r o s s we igh t a t an L / D r a t i o of 5 i n s t e a d of 5. 67, In t h i s c a s e , the m a x i m u m

r e a c t o r w a l l t e m p e r a t u r e c h a n g e s f r o m 1800° F to 2200° F to m a i n t a i n M a c h = 1. 5

at 45 , 000 feet . It shou ld be po in t ed out tha t N o r t h A m e r i c a n Av ia t i on s t u d i e s

i n d i c a t e tha t , e v e n for a v e r y c l e a n a i r p l a n e ( eng ines in the f u s e l a g e ) , the a t t a i n ­

m e n t of an L / D r a t i o of 5 i s q u e s t i o n a b l e . M a i n t a i n i n g the m a x i m u m r e a c t o r

w a l l t e m p e r a t u r e at 1800° F wi th L / D r a t i o of 5, an a i r p l a n e g r o s s we igh t of

420, 000 pounds is r e q u i r e d for M a c h = 1. 5 at 45 , 000 fee t . F o r L / D = 4. 5, wh ich

m a y be a m o r e r e a s o n a b l e v a l u e , m a i n t a i n i n g c o n s t a n t g r o s s we igh t r e q u i r e s a

m a x i m u m t e m p e r a t u r e of 2600° F , wh i l e m a i n t a i n i n g 1800° F r e q u i r e s a g r o s s

we igh t of 62 0, 000 p o u n d s .

Page 13: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

k N A A - S R - 1 3 4 P a g e 10

jH/^. Ar^nr-^

On the s a m e g r a p h a r e p lo t t ed po in t s r e p r e s e n t i n g N E P A and RAND d a t a

for a i r p l a n e g r o s s weight . The a t t a i n m e n t of s u p e r s o n i c f l ight b a s e d on t h e s e

d a t a i s p r e d i c a t e d on a c h i e v e m e n t of L / D r a t i o s of 6. 46 and 7. 0 r e s p e c t i v e l y .

T h i s i n d i c a t e s the g e n e r a l opt imisnn of T A B ' s a s s u m p t i o n s c o n c e r n i n g c o m p o n e n t

w e i g h t s and e f f i c i enc ie s a s c o m p a r e d wi th o t h e r s in the f ie ld. It i s p r o b a b l e

tha t t h o s e c h a r g e d wi th even tua l c o n s t r u c t i o n of a i r c r a f t and e n g i n e s m a y find

T A B a s s u m p t i o n s of conaporient e f f i c i enc ie s and we igh t s u n a t t a i n a b l e .

C. High T e m p e r a t u r e A p p r o a c h

C e r t a i n c o n c l u s i o n s can be d r a w n f r o m F i g . 1. T h e r e a r e s e v e r a l d i r e c ­

t i ons for o p t i m i s m wh ich c a n be, and h a v e been , c h o s e n by w o r k e r s i n t e r e s t e d

in the a t t a i n m e n t of s u p e r s o n i c f l ight , e i t h e r s e p a r a t e l y o r t o g e t h e r . It i s p o s ­

s i b l e to load the whole b u r d e n on the a t t a i n m e n t of h igh L / D r a t i o s . It i s p o s ­

s i b l e to a s s u m e h igh c o m p o n e n t e f f i c i enc ie s and low c o m p o n e n t w e i g h t s for the

p o w e r p l an t . Or i t i s p o s s i b l e to a s s u m e tha t m a t e r i a l s wi l l be found which wi l l

enab le one to a c h i e v e h i g h e r t e n a p e r a t u r e s of o p e r a t i o n for the p o w e r p l a n t and,

h e n c e , h i g h e r p e r f o r m a n c e . The d i s a g r e e m e n t a m o n g e x p e r t s in t h e s e f ie lds

i n d i c a t e s aga in that , a t b e s t , the f e a s i b i l i t y of the s u p e r s o n i c a i r p l a n e i s not

d e m o n s t r a t e d .

The p r e s e n t s tudy i n d i c a t e s tha t a s u p e r s o n i c a i r p l a n e of r e a s o n a b l e

we igh t can only be a c h i e v e d by the u t i l i z a t i o n of h igh t e m p e r a t u r e s for the fo l ­

lowing r e a s o n s :

1. A e r o d y n a m i c c a l c u l a t i o n s on l a r g e a i r c r a f t (3 00, 000 to 400, 000 p o u n d s )

i n d i c a t e tha t the a t t a i n m e n t of an L / D r a t i o in e x c e s s of 5. 0 canno t be

r e a l i z e d in the f o r e s e e a b l e fu tu r e .

2. F u r t h e r , the T A B o p t i m i s m wi th r e g a r d to c o m p o n e n t e f f i c i enc i e s

and w e i g h t s cannot be jus t i f i ed by s t u d i e s m a d e for th is r e p o r t .

D. The C o m p r e s s o r - J e t P o w e r P l a n t

The s o d i u m v a p o r c o m p r e s s o r - j e t for the a t t a i n m e n t of the n e c e s s a r y h igh

t e m p e r a t u r e h a s b e e n c h o s e n for i n v e s t i g a t i o n . The r e a s o n s for th i s a r e :

1. C e r t a i n e x p e r i m e n t s conduc ted at N o r t h A m e r i c a n , and e l s e w h e r e ,

i n d i c a t e tha t s o m e u n u s u a l m a t e r i a l s not c o n s i d e r e d p r e v i o u s l y for

Page 14: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

2.

• • « • » • fe« « • • * • • • • : . ' : . . • . ' » % • • . . • , . : ? . . : : . . : . • N A A - S R - 1 3 4

_ _ _ _ _ _ _ _ _ _ _ A . „ _ _ , P^g« ^1

t h i s a p p l i c a t i o n m a y be a v a i l a b l e for the a t t a i n m e n t of h igh t e m ­

p e r a t u r e in an o x y g e n - f r e e a t m o s p h e r e .

A c o n s i d e r a b l e ef for t i s a l r e a d y be ing expended , by m a n u f a c t u r e r s

of conven t iona l t u r b o - j e t e n g i n e s , on ex tend ing the t e m p e r a t u r e

l i m i t a t i o n s on m a t e r i a l s in an ox id iz ing a t m o s p h e r e .

A c o n s i d e r a b l e i n t e r e s t in the c o m p r e s s o r - j e t e x i s t s e l s e w h e r e in

the A N P effor t due p r i m a r i l y to the e f for t s of the L e x i n g t o n G r o u p .

E, P r e s e n t S ta tus of C o m p r e s s o r - J e t

It shou ld be s t a t e d at the o u t s e t tha t the f e a s i b i l i t y of t h i s c o m p r e s s o r - j e t

p o w e r p l an t canno t be d e m o n s t r a t e d at th is t i m e . The s i t u a t i o n i s r a t h e r tha t

no def in i te i n f o r m a t i o n e x i s t s which p r e c l u d e s the p o s s i b i l i t y of h igh t e m p e r a t u r e

o p e r a t i o n in an o x y g e n - f r e e a t m o s p h e r e . Al though p r e l i m i n a r y e x p e r i m e n t s h a v e

been r u n which i nd i ca t e tha t c e r t a i n m a t e r i a l s h a v e suf f ic ient s t r e n g t h , c r e e p

and c o r r o s i o n r e s i s t a n c e in the h igh t e m p e r a t u r e r a n g e to be of i n t e r e s t , the

r e s e a r c h w o r k r e q u i r e d is s t i l l l a r g e l y to be done .

A d e s c r i p t i o n of a s u p e r s o n i c n u c l e a r p o w e r e d a i r c r a f t u t i l i z ing a s o d i u m ,

l i q u i d - v a p o r c o m p r e s s o r - j e t engine is p r e s e n t e d in the fo l lowing s e c t i o n s of

t h i s r e p o r t . P r i m a r i l y b e c a u s e of i n c r e a s e d c o m p l e x i t y , the c o m p r e s s o r - j e t ,

even if it can be m a d e to o p e r a t e , wi l l r e q u i r e f r o m 2 00 to 400° F h i g h e r r e a c ­

to r t e m p e r a t u r e than a t u r b o - j e t for the s a m e t h r u s t - t o - w e i g h t r a t i o . P r e s e n t

i n d i c a t i o n s a r e tha t the r e a c t o r w a l l t e m p e r a t u r e for the c o m p r e s s o r - j e t m a y

have to be a s high as 3000° F , for M a c h := 1, 5 at 45 , 000 foot a l t i t u d e . T h i s f ig ­

u r e r e p r e s e n t s our b e s t e s t i m a t e on the b a s i s of the l i m i t e d e x p e r i m e n t a l and

d e v e l o p m e n t a l i n f o r m a t i o n now a v a i l a b l e and should be r e v i e w e d at a l a t e r d a t e

when suff ic ient new da t a a r e a v a i l a b l e to just i fy a c o m p l e t e r e - a n a l y s i s of the

a i r c r a f t and p o w e r p l a n t .

The c o m p r e s s o r - j e t for h igh t e m p e r a t u r e o p e r a t i o n i s not at p r e s e n t f e a s i b l e .

H o w e v e r , in v iew of the m a r g i n a l s t a t u s of s u p e r s o n i c f l ight by low t e m p e r a t u r e

n u c l e a r p o w e r e d a i r c r a f t , i t i s fel t tha t a p r o g r a m a i m e d at the d e v e l o p m e n t of

h igh t e m p e r a t u r e p o w e r p l a n t s i s a n e c e s s a r y c o n c o m i t a n t to any p r o g r a m a i m e d

at s u p e r s o n i c f l ight . The c o m p r e s s o r - j e t is m e r e l y one p o s s i b i l i t y for the

a t t a i n m e n t of high t e m p e r a t u r e in a f ield w h e r e no a l t e r n a t i v e h a s been s u r e l y

d e m o n s t r a t e d . || iffJf *| 'i.kH}^""''''"^

I f Lhi.Kl!

Page 15: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

o^Cfii^

m • • • • • « » • •

, . I

; :•- r. t • • • N A A - S R - 1 3 4

P a g e 12

;j|n; ».;.!fpj ! ' i <' '•

II. RECOMMENDATIONS

The fo l lowing r e c o m m e n d a t i o n s a r e m a d e :

1. I n t e n s i v e ef for t should be expended by an e x p e r i e n c e d a i r f r a m e

o r g a n i z a t i o n to e s t a b l i s h the a i r c r a f t con f igu ra t i on and d e t e r m i n e

i t s a e r o d y n a m i c c h a r a c t e r i s t i c s by e x p e r i m e n t a l m e a n s .

2. In add i t ion to e x p e r i m e n t a l w o r k now being done to o b t a i n h igh t e m ­

p e r a t u r e m a t e r i a l s for ox id iz ing a t m o s p h e r e s , s o m e e x p e r i m e n t a l

w o r k , wi th the r e q u i r e d s u p p o r t i n g a n a l y t i c a l w o r k , should be done

to d e t e r m i n e the l i m i t a t i o n s on m a t e r i a l s o p e r a t i n g in a n o n - o x i d i z i n g

a t m o s p h e r e at t e m p e r a t u r e s up to 3000° F .

3. D e s i g n s t u d i e s and c o m p o n e n t d e v e l o p m e n t of a p r e l i m i n a r y n a t u r e

shou ld be done to d e t e r m i n e the f e a s i b i l i t y of o p e r a t i o n of a n u c l e a r

p o w e r p l an t for a i r c r a f t u s i n g any m a t e r i a l s w h i c h show p r o m i s e for

o p e r a t i o n in a n o n - o x i d i z i n g a t m o s p h e r e .

III. SODIUM VAPOR C O M P R E S S O R J E T

As w a s m e n t i o n e d p r e v i o u s l y , the ob j ec t i ve of t h i s d e s i g n s tudy h a s b e e n

(a) to d e t e r m i n e the p l a u s i b i l i t y of c o n s t r u c t i n g a h igh p e r f o r m a n c e n u c l e a r a i r ­

c r a f t p o w e r e d by s o d i u m v a p o r c o m p r e s s o r jet eng ine and (b) to gu ide the r e ­

s e a r c h ef for t r e q u i r e d to r e d u c e th i s s y s t e m to r e a l i t y . In o r d e r to a c h i e v e

t h i s end, it h a s been n e c e s s a r y to c^arry out in c o n s i d e r a b l e d e t a i l an i n t e g r a t e d

a i r f r a r h e , r e a c t o r and p o w e r p l a n t s tudy. In t h i s s tudy c e r t a i n l i t t l e known

m a t e r i a l s tha t a r e p r e s e n t l y c o n s i d e r e d p r o m i s i n g for t h i s h igh t e m p e r a t u r e

a p p l i c a t i o n h a v e b e e n spec i f i ed . The e x i s t i n g knowledge on p r o p e r t i e s of t h e s e

m a t e r i a l s and t h e i r m e t h o d s of f a b r i c a t i o n i s e x t r e m e l y l i m i t e d at t h i s t i m e .

H o w e v e r , in o r d e r to d e s i g n the v a r i o u s c o m p o n e n t s of t h i s c o m p r e s s o r j e t

s y s t e m , the r e l a t i v e l y s m a l l n u c l e u s of e x p e r i m e n t a l i n f o r m a t i o n a v a i l a b l e

h a s been expanded by e x t r a p o l a t i o n and a s s u m p t i o n to f o r m a b a s i c s e t of g r o u n d

r u l e s for t h e s e s t u d i e s . Now i t i s obv ious tha t the d e s i g n p r e s e n t e d h e r e i s only

of c o n c e p t u a l n a t u r e and tha t the e s t i m a t e s of p o w e r p l a n t w e i g h t s and a i r c r a f t

p e r f o r m a n c e a r e only a s good as the i n i t i a l a s s u m p t i o n s m a d e . F u t u r e e x p e r i ­

m e n t a l w o r k m a y change the p r e s e n t c o n c e p t r a d i c a l l y . >?-,-.._ „„..,./.-.

•>m »cn)'::ssh mmm • • t * • • • • • • • • • • • •

Page 16: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

* «

A t". • * • • * « • N A A - S R - 1 3 4

P a g e 13

M l ,., fJ f \ ' ^ . .!•

In the fol lowing s e c t i o n s , a de t a i l ed d e s c r i p t i o n of the s o d i u m v a p o r c o m ­

p r e s s o r jet engine which w a s d e s i g n e d to p r o p e l a 400, 000 pound a i r c r a f t at

M a c h 1. 5 at 45 , 000 feet is p r e s e n t e d . The b a s i s for s e l e c t i o n of m a t e r i a l s ,

c o o l a n t s , w o r k i n g f luids and g e n e r a l c o m p o n e n t c o n f i g u r a t i o n and d e s i g n wi l l

be d e s c r i b e d .

A. G e n e r a l

1. P o w e r Cyc le - In o r d e r to o r i e n t the r e a d e r to the g e n e r a l p r o b l e m

at hand , the p o w e r c y c l e u n d e r c o n s i d e r a t i o n , shown in F i g . 2 s c h e m a t i c a l l y ,

i s d e s c r i b e d br ie f ly . We a r e i n t e r e s t e d in a s y s t e m which c o n t a i n s a h igh t e m ­

p e r a t u r e , l iqu id m e t a l coo led r e a c t o r wh ich s e r v e s a s the p o w e r s o u r c e for the

p r o p u l s i o n s y s t e m . Hea t i s t r a n s f e r r e d f r o m the r e a c t o r v i a the coo lan t to a

l iquid m e t a l v a p o r g e n e r a t o r . The v a p o r g e n e r a t e d i s expanded t h r o u g h a t u r b i n e

which d r i v e s an a i r c o m p r e s s o r l o c a t e d in a p r o p u l s i o n duc t . After e x p a n s i o n

the v a p o r is c o n d e n s e d in a l iquid m e t a l to a i r r a d i a t o r wh ich i s l o c a t e d in the

p r o p u l s i o n duc t aft of the a i r c o m p r e s s o r . The a i r wh ich h a s t hus been c o m ­

p r e s s e d and h e a t e d i s then expanded t h rough a n o z z l e p r o v i d i n g the r e q u i r e d

p r o p u l s i v e t h r u s t . T h i s type of cyc le is r e f e r r e d to a s a c o m p r e s s o r je t c y c l e

and h a s been s tud ied in the p a s t by m a n y g r o u p s in the A N P p r o g r a m .

T h i s cyc le h a s been c o n s i d e r e d in the p r e s e n t s tudy a s m o s t p r o m i s i n g

for the a t t a i n m e n t of the n e c e s s a r y h igh t e m p e r a t u r e s r e q u i r e d for h igh p e r f o r m ­

ance a i r c r a f t . The r e a s o n s for th is have to do wi th the fac t tha t the e n e r g y for

a i r c o m p r e s s i o n i s p r o v i d e d f r o m an a u x i l i a r y cyc l e ( the l iquid v a p o r t u r b i n e

s y s t e m ) which p e r m i t s the h igh t e m p e r a t u r e connponents to o p e r a t e in a n o n -

ox id iz ing a t m o s p h e r e . In th i s s y s t e m , the r e a c t o r , the v a p o r g e n e r a t o r and

the t u r b i n e wh ich a r e the h igh t e m p e r a t u r e c o m p o n e n t s a r e not in the a i r s t r e a m .

It i s only at the r a d i a t o r ( c o n d e n s e r ) tha t the a u x i l i a r y c y c l e i s exposed to the

a i r s t r e a m , and it i s p o s s i b l e to o p e r a t e wi th t e m p e r a t u r e s at th i s po in t w h i c h

a r e we l l wi th in the l i m i t s of t h o s e c u r r e n t l y a t t a i n a b l e in ox id iz ing a t m o s p h e r e s .

The t e m p e r a t u r e s in the s y s t e m that e s s e n t i a l l y define the t h e r m o d y n a m i c p e r ­

f o r m a n c e of the p o w e r p l a n t a r e the r e a c t o r w a l l t e m p e r a t u r e and the r a d i a t o r

w a l l t e m p e r a t u r e . In the a n a l y s e s m a d e , t h e s e t e m p e r a t u r e s w e r e v a r i e d up

to an u p p e r l i m i t of 3000° F and 1800° F , r e s p e c t i v e l y . The 3000° F r e a c t o r

w a l l t e m p e r a t u r e w a s p o s t u l a t e d on the b a s i s of a g r a p h i t e r e a c t o r . E x p e r i m e n t a l

IK\ «^ffl pT^P^

Page 17: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

mm • v c

^ f a

NAA-SR-134 P a g e 14

m information indicates graphite has sa t is factory s t ruc tu ra l p roper t i e s up to

4000° F in non-oxidizing a tmospheres . The 1800° F t empera tu re on the rad ia tor

wall r e p r e s e n t s the upper l imit of what is cur rent ly attainable with meta l s in

oxidizing a tmospheres .

2. Choice of Reactor Coolant - The'choice of liquid tin for the reac tor

coolant was made on the basis of data indicated in Table I. Reactor t empe ra tu r e s

of the order of 3000° F are of in te res t in this study, and seven metal l ic e lements

and one eutectic having boiling points in excess of this t empera tu re a re l is ted.

P r e s s u r i z a t i o n of coolants with lower melting points has been ruled out due to

the porosi ty of graphi te , the proposed cooling channel ma te r i a l , to liquid meta ls

at p r e s s u r e s in excess of 100 psi . Of the e lements l is ted, three can be eliminated

immediate ly for obvious reasons ; these a re gold, si lver and indium. Gallium and

aluminum a re not considered because of their ability to dissolve most known m a ­

t e r i a l s . Lead and lead-bismuth may be applicable, but tin with i ts higher boiling

point and bet ter heat t ransfer cha rac t e r i s t i c s has the advantage over them.

TABLE I

POSSIBLE REACTOR COOLANTS FOR HIGH TEMPERATURE APPLICATION

Coolant

Aluminum

Gallium

Gold

Indium

Lead

Silver

Tin

Lead-Bisnauth

Melting Point

°F

1220

86

1945

313

621

1761

449

257

Boiling Point

°F

4442

3601

5371

3789

3159

4013

4118

3038

^ c Barns

0.21

2 . 2

95

194

0 .2

60

0. 55

0. 17

Rel. Pump Power

17. 8

3. 5

15. 0

nm¥'

Page 18: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

•• • « • • • • • • « • • • • • • •

N A A - S R - 1 3 4 P a g e 15

^1^

3. P o w e r P l a n t Work ing M e d i u m - The g e n e r a l t h e r m o d y n a m i c r e q u i r e ­

m e n t s for the p o w e r cyc l e w o r k i n g m e d i u m a r e tha t i t have a c r i t i c a l t e m p e r a ­

t u r e of a p p r o x i m a t e l y 3000° F and a r e a s o n a b l y a t t a i n a b l e v a p o r p r e s s u r e at

1800° F , the p r o p o s e d m a x i m u m c o n d e n s e r t e m p e r a t u r e . M e t a l s wi th n o r m a l

boi l ing p o i n t s o u t s i d e of a f a i r l y n a r r o w r a n g e of t e m p e r a t u r e s a r o u n d 1800° F

a r e not of i n t e r e s t . H i g h e r n o r m a l boi l ing p o i n t s r e q u i r e tha t the c o n d e n s e r

o p e r a t e at r e d u c e d p r e s s u r e s t ha t m a y not be p r a c t i c a l l y a c h i e v a b l e and at the

sanae t i m e involve bulky h e a t t r a n s f e r e q u i p m e n t to a c c o m m o d a t e the a t t e n d a n t

h igh spec i f i c v o l u m e s . On the o t h e r hand , l o w e r n o r m a l boi l ing po in t s i m p l y

high c o n d e n s e r p r e s s u r e s w h i c h r e s u l t s in h e a v y h e a t e x c h a n g e r e q u i p m e n t . In

Tab le II i s l i s t e d a g r o u p of l iquid m e t a l s tha t have n o r m a l bo i l ing p o i n t s w h i c h

r a n g e f r o m 1400° F to 2000° F . E x c e p t in the c a s e of s o d i u m , no c r i t i c a l t e m ­

p e r a t u r e d a t a w e r e found. H o w e v e r , one m i g h t expec t a r u l e of c o r r e s p o n d i n g

t e m p e r a t u r e s to give a r e a s o n a b l e e s t i m a t e of c r i t i c a l t e m p e r a t u r e s . Us ing

s o d i u m a s a b a s e and a s s u m i n g a c o n s t a n t r a t i o of n o r m a l boi l ing t e m p e r a t u r e

to c r i t i c a l t e m p e r a t u r e , the c r i t i c a l po in t s w e r e c a l c u l a t e d for the o t h e r f lu ids .

Sodium w a s s e l e c t e d as the work i ng m e d i u m for th i s s tudy l a r g e l y on the

b a s i s of e l i m i n a t i o n . F r o m the s t andpo in t of a v a i l a b i l i t y and c o s t , c a d m i u m

and p o t a s s i u m can be e l i m i n a t e d . Z inc i s e x t r e m e l y c o r r o s i v e to the h igh t e m ­

p e r a t u r e s t e e l s tha t m u s t be u s e d in the c o n d e n s e r which o p e r a t e s in the p r o ­

p u l s i o n a i r s t r e a m . M a g n e s i u m , though not qui te a s c o r r o s i v e a s z i n c , h a s a

r e l a t i v e l y high m e l t i n g po in t wh ich d e t r a c t s f r o m i t s u s e f u l n e s s . T h e s e r e a s o n s ,

in c o m b i n a t i o n wi th the fac t tha t t h e r e e x i s t s a w e l l - d e f i n e d t echno logy for h a n ­

d l ing l iqu id s o d i u m at t e m p e r a t u r e s up to 1800° F , m a k e s o d i u m the l o g i c a l

cho ice at t h i s t i m e .

In o r d e r to i n v e s t i g a t e cyc l e p e r f o r n a a n c e and c o m p o n e n t d e s i g n f e a s i ­

bi l i ty , a c o m p l e t e s e t of t h e r m o d y n a m i c p r o p e r t i e s of s o d i u m f r o m the m e l t i n g

po in t to the c r i t i c a l po in t w a s r e q u i r e d . T h e s e d a t a w e r e p r e p a r e d by N o r t h

A m e r i c a n by a q u a s i - t h e o r e t i c a l m e t h o d d e s c r i b e d in Ref. 2 . The d a t a a r e s u m ­

m a r i z e d in t e m p e r a t u r e - e n t r o p y and e n t h a l p y - e n t r o p y d i a g r a m s p r e s e n t e d in t h i s

r e f e r e n c e . The d a t a and a s s u n a p t i o n s f r o m which t h e s e c h a r t s w e r e c o n s t r u c t e d

c o n s i s t e d of

•• • • • • • « • • • • • • • « • • • 1 • • • < • • • t

<- '*=»

• « • • •

Page 19: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • • • • • • • • • • • • » •• • • •

NAA-SR~134 P a g e 16

Ifm^^^^nm /V.?v ' i

1. Specif ic h e a t of l iqu id a s a funct ion of t e m p e r a t u r e to 1800° F .

2. V a p o r p r e s s u r e a s a funct ion of t e m p e r a t u r e to 1800° F .

3 . C r i t i c a l t e m p e r a t u r e .

4. L a t e n t h e a t of v a p o r i z a t i o n a t a t m o s p h e r i c p r e s s u r e .

5. The v a p o r p h a s e w a s a s s u m e d to obey the p e r f e c t gas law.

A c o r r e c t i o n of t h e r m o d y n a m i c p r o p e r t i e s for the f o r m a t i o n of the s o d i u m

d i m e r w a s c o n s i d e r e d . Two s e t s of c h a r t s a r e p r e s e n t e d in Ref. 2, one wh ich

a s s u m e s the d i m e r i z a t i o n r e a c t i o n to go to c o m p l e t i o n , and the o t h e r wh ich

a s s u m e s a neg l ig ib l e r e a c t i o n . The cyc le a n a l y s i s m a d e in th i s r e p o r t i s b a s e d

on the l a t t e r a s s u m p t i o n , and the c h a r t s u s e d a r e r e p r o d u c e d in F i g s . 3 and 4.

T A B L E II

POSSIBLE P O W E R P L A N T WORKING FLUIDS

F O R HIGH T E M P E R A T U R E A P P L I C A T I O N

F l u i d

Cadnaium

M a g n e s i u m

P o t a s s i u m

Sodium

Zinc

M e l t i n g Po in t

°F

609

1204

147

208

787

Boi l ing Po in t

°F

1409

2017

1400

1621

1663

C r i t i c a l T e m p . ° F

3230*

443 0*

3200*

3 6 3 l t

3700*

LH c a l / g m

286

1337

496

1005

42 0

P o t e n t i a l P r o d u c t i o n

4500 tons

1 2 3 , 0 0 0 tons

5000 tons

2 0 , 0 0 0 tons

910, 3 54 tons

C o s t $

2. 5 5 / l b

0. 2 4 5 / l b

2. 5 0 / l b

0. 1 6 / l b

0. 1 8 / l b

* E s t i m a t e d

t H a c h s Chena ica l D i c t i o n a r y

4. M a t e r i a l s - The w o r k on the d e v e l o p m e n t of m a t e r i a l s s u i t a b l e for t h i s

a p p l i c a t i o n i s s t i l l l a r g e l y to be done . The d e s i g n of the h igh t e m p e r a t u r e c o m ­

p o n e n t s for th i s c o m p r e s s o r j e t s y s t e m i s b a s e d on a few s c a t t e r e d p i e c e s of e x ­

p e r i m e n t a l da t a . The s y s t e m is d e s i g n e d a r o u n d four m a t e r i a l s wh ich a t p r e s e n t

a p p e a r to offer the b e s t p o s s i b i l i t y of m e e t i n g r e q u i r e m e n t s for a d e q u a t e s t r e n g t h

and c o r r o s i o n r e s i s t a n c e to l iquid m e t a l s at h igh t e m p e r a t u r e . The m a t e r i a l s

which a r e c o n s i d e r e d a r e g r a p h i t e , m o l y b d e n u m , t i t a n i u m c a r b i d e and L - 6 0 5 .

» • « • • » ® « » • * » « * • •

Page 20: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

SfeCRST

• • * • • • • • c • • • • • • •• • » •

^K

I'll ' *.' 1 '

The r eac to r core is essent ia l ly an a l l -graphi te s t ruc tu re composed of uranium

impregnated graphite fuel, a graphite modera tor and graphite cooling channels

which handle the liquid tin. An a l ternate scheme involving the use of a g raph i te -

beryll ium carbide compact has also been considered in an effort to reduce the

reac to r fuel inventory. The m a t e r i a l used in the sodium vapor genera tor is

molybdenum which is p resumed to be res i s t an t to corros ion at high t empera tu re

by both tin and sodiuna. Design of the sodiuna turbine is based on util ization of

titanium, carbide. L-605 is the m a t e r i a l used in the a i r - l iquid meta l rad ia tor .

In so far as graphite is concerned, North Amer ican Aviation has conducted

a fair ly extensive r e s e a r c h p rog ram in an attempt to de termine the utility of this

naaterial . Strength, c reep , fatigue and co r ros ion tes ts at t empe ra tu r e s up to

4000° F have been repor ted in the North Amer ican l i t e ra tu re . In addition, naeas-

u rements of var ious physical p roper t i e s of the ma te r i a l such as modulus of e l a s ­

ticity, modulus of r igidity and thermal conductivity at elevated t empera tu re s have

been repor ted . More recent ly , a t tempts have been naade to develop fabricat ion

techniques and useful engineering components have been made utilizing graphite .

Very briefly, these exper iments add up to the following:

1. Graphite has a s t rength-weight ra t io and creep p rope r t i e s at 4000° F

comparable to high t empera tu re s tee ls at 1600° F (Refs. 3, 4, 5, 6,

7, 8 and 9).

2. The co r ros ion r e s i s t ance of graphite to liquid tin at t empera tu re s up

to 3600° F is excellent; however, liquid sodium attacks graphite s e ­

ve re ly at 1800° F (Ref. 10). This explains the necess i ty for depart ing

frona an a l l -graphi te sys tem.

3. Dense graphite shapes (up to 1. 8 gms/cna ) can be formed easily by

molding and extrusion and can readi ly be machined into complex fo rms .

4. Mechanical joints have been made with graphite that have held liquid

tin and liquid bismuth at p r e s s u r e s of 100 ps i and at t e m p e r a t u r e s of

2750° F (Refs. 11 and 12). Several m a t e r i a l s have been found that wet

graphite and can be used to join graphite to graphite with a s t rong

impervious bond (Ref. 12).

5. Some m e a s u r e of success has been gained in a t tempts to reduce the

poros i ty of graphite by carbon irnpregnation techniques descr ibed in

Ref. 13.

Page 21: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • • • NAA-SR-134 Page 18

m-'^mi 6. Graphite i s , of course an ex t remely bri t t le ma te r i a l , and ex t reme

ca re must be taken to avoid inapact loadings during fabrication and

operat ion of p a r t s . However, con t ra ry to the genera l concept, g r aph ­

i te , although quite br i t t le , is under uniform loading capable of r e l a ­

tively l a rge elast ic deformations before fai lure.

The pract icabi l i ty of utilizing this m a t e r i a l in a full scale engineering

sys tem has not as yet been demonst ra ted; however, s eve ra l l abora tory scale

a l l -graphi te sys tems have been constructed and operated sat isfactor i ly . A g raph ­

ite the rmal harp constructed for co r ros ion studies has been operated for 279 hours

(Ref. 11). A graphi te centrifugal pump (20 ps i , 4 -1 /2 gallons p e r minute) and

graphite pump test loop has been fabricated and operated for 40 hours with liquid

tin at t e m p e r a t u r e s up to 1850° F (Ref. 12). This la t ter loop has been dismant led

and the pump incorporated in an a l l -graphi te heat t ransfer tes t loop. This loop

is a smal l scale mock-up of a complete liquid tin cooled reac to r cooling sys tem

and is designed to operate at t empera tu re s up to 3600° F .

With r ega rd to molybdenum and titanium carbide, re la t ively l i t t le expe r i ­

menta l information is available. Some p re l imina ry co r ros ion studies at approx­

imately 1800° F in liquid sodium and at 2 750° F in sodium vapor have been con­

ducted. In addition, exploratory high t empera tu re tensi le s t rength tes t s have been

made on these m a t e r i a l s . The re su l t s of the cor ros ion studies a re repor ted in

Refs. 14 and 15. On the basis of tes ts so far conducted, it appears that molyb-

denum has excellent co r ros ion r e s i s t ance to sodium under the conditions mentioned

above. No noticeable co r ros ion was detected after a period of 1 month in a stat ic

co r ros ion capsule. The titaniuna carbide specimens in these tes t s showed some

smal l amount of cor ros ion , but r a t e s of at tack were well within the l imits r e ­

quired for this application. As a resu l t of the high t empera tu re s t rength tes t s

conducted, it appears that the allowable design s t r e s s for molybdenum and t i ta ­

nium carbide at 2 500° F might be approximately 5000 psi .

In r ega rd to the fabricat ion of components with molybdenum, the l i t e r a t u r e

from the vendors of this ma te r i a l indicates that there is considerable p r o g r e s s

being made toward the development of fabricat ion techniques. Molybdenum is

available in sheet , tube and bar stock form and relat ively complex machining

operat ions have been per formed by this l abora tory without undue difficulty. The

making of leak-t ight joints has not been at tempted. However, there is r ea son

Page 22: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• 3 • « • • • • • • • « • •• • •• *• • #

: . ' s . . v ; '.''I'll::.:::.:,' NAA-SR-134 A _ „ Page 19

to believe that techniques s imi la r to those used in graphite sys t ems might also be

sat isfactory for molybdenum. There is stil l , of course , some hope that welding

techniques will be developed, perhaps by the use of alloying e lements , that will

r e t a rd grain growth and embri t t lement .

Fabr ica t ion for titanium carbide involves the hot p ress ing p r o c e s s or s in ­

ter ing p r o c e s s . Relatively complex shapes such as turbine blades have been fab­

r icated by this method.

L-605 which is utilized in this application in the radia tor (condenser) is a

re la t ively new but well-known mate r i a l . Doubt as to its use in this sys tem s tems

only from the possibi l i ty of liquid sodium corros ion . Tes ts conducted to date at

t empera tu re s around 1800° F indicate that the anaount of co r ros ion is negligible,

and this naaterial appears highly sat isfactory.

B. Design Considerat ions

The mos t important p a r a m e t e r s which entered into the p re l imina ry design

investigations of the nuclear supersonic airplane consisted of the following:

1. Power plant and reac tor weight

2. L i f t /d rag rat io of the a i rp lane

3. Aircraf t g ross weight

These three i tems were found to be in te r re la ted in an ex t remely conaplex manner .

In order to a r r ive at a f i rs t approximation of the configuration, it was decided to

fix a rb i t r a r i l y the design point l i f t /drag ra t io and the a i rcraf t gross weigh t

The quotient of the a i rc raf t gross weight divided by the l i f t /drag ra t io is

the thrust requ i red for level, unaccelera ted flight. This es tabl ishes the design

thrus t requ i rement for the power plant. Power plant, r eac to r and a i r f rame

designs were made on the basis of this requ i rement and weights es t imated. If

the combined weights agreed fairly closely to the es t imated a i rcraf t g ross weight,

an aerodynanaic analysis was made to check the assumed l i f t /drag ra t io . If the

l i f t /drag ra t io did not agree with the init ial assumpt ions , g ross weight and

l i f t /drag ra t io were adjusted in the following rounds of i tera t ion, and the p r o c e s s

was repeated until a conapatible set of p a r a m e t e r values was establ ished.

Starting with a t r i a l thrust as determined above, the power plant des igner

is guided by two basic r equ i r emen t s . These a r e ( l ) h e mus t design for the

M&'m3 k • » « • ht!

Page 23: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • * « > • • • • * • « •« • • • « • m m m •• » • » • « N A A - S R - 1 3 4

P a g e 20

'i!if'":r^"i,i.i.. mw^'^'mai m i n i m u m weigh t eng ine to p r o d u c e the r e q u i r e d t h r u s t , and (2) he m u s t d e s i g n an

eng ine of m i n i m u m p h y s i c a l s i z e tha t wi l l s a t i s fy the t h r u s t r e q u i r e m e n t . The

r e a s o n s for the f i r s t r e q u i r e m e n t a r e o b v i o u s , and the r e a s o n s for the s e c o n d

h a v e to do wi th m i n i m i z i n g the effect of eng ine d r a g on o v e r a l l a e r o d y n a m i c p e r ­

f o r m a n c e . F o r s u p e r s o n i c a i r c r a f t it i s e s p e c i a l l y c r i t i c a l tha t eng ine c r o s s

s e c t i o n be m i n i m i z e d in o r d e r to ob ta in r e a s o n a b l y good l i f t / d r a g r a t i o s . The

two r e q u i r e m e n t s above a r e not a lways as c o m p a t i b l e a s it m a y s e e m at f i r s t

g l a n c e . The i n c o m p a t i b i l i t y i s e s p e c i a l l y acu te in the c a s e of the n u c l e a r p o w e r e d

v e h i c l e , due to the n e c e s s i t y tha t s o m e w h e r e in the s y s t e m h e a t m u s t be t r a n s ­

f e r r e d to a i r t h r o u g h a r a d i a t o r (in t h i s c a s e a condens ing s o d i u m - t o - a i r uni t ) .

The c r o s s s e c t i o n a l a r e a of t h i s h e a t e x c h a n g e r is the m o s t diff icult d i m e n s i o n to

m i n i m i z e in the p r o p u l s i o n s y s t e m . S e v e r e p e n a l t i e s a r e pa id in a i r p r e s s u r e

d r o p and s u b s e q u e n t engine t h r u s t for r e d u c t i o n in h e a t e x c h a n g e r c r o s s s e c t i o n

and m a y r e s u l t in i n c r e a s e d engine we igh t to a t t a in the r e q u i r e d t o t a l t h r u s t . The

opt imuna d e s i g n of the r e a c t o r - p o w e r p l a n t c o m b i n a t i o n then i n v o l v e s the d e t e r ­

m i n a t i o n of t hose cond i t i ons wh ich y ie ld the bes t c o m p r o m i s e b e t w e e n the m i n i ­

m u m weigh t and m i n i m u m engine d r a g .

The r e a c t o r - p o w e r p l an t d e s i g n a n a l y s i s for e a c h e s t i m a t e d to ta l t h r u s t

condi t ion t h e r e f o r e invo lved c o n s i d e r a t i o n of s e v e r a l s e t s of sodiuna c o m p r e s s o r -

je t e n g i n e s , e a c h s e t being c h a r a c t e r i z e d by a c o m m o n m a x i m u m a l l owab le c r o s s

s e c t i o n at the r a d i a t o r . F o r each c h a r a c t e r i s t i c d i m e n s i o n ( c r o s s s e c t i o n ) the

t h e r m o d y n a m i c cond i t i ons and a r r a n g e m e n t of c o m p o n e n t s tha t y i e lded the m i n i ­

m u m weigh t r e a c t o r - p o w e r p l an t c o m b i n a t i o n w a s sought . Around the m i n i m u m

we igh t eng ine of e a c h se t , an a i r f r a m e w a s f i t ted and a n a l y s i s m a d e to d e t e r m i n e

if the i n i t i a l g r o s s we igh t and l i f t /<irag r a t i o a s sunap t ions could be s a t i s f i e d by

any of t h e s e a i r f r a m e - r e a c t o r p o w e r p l an t c o m b i n a t i o n s . If, a s p r e v i o u s l y i n d i ­

ca t ed , the m a t c h could not be m a d e , a d j u s t m e n t s in a s s u m p t i o n s w e r e m a d e , and

the p r o c e s s w a s r e p e a t e d .

In d e t e r m i n i n g the l i g h t e s t r e a c t o r - p o w e r p lan t c o m b i n a t i o n for a g iven

to t a l t h r u s t r e q u i r e m e n t and c h a r a c t e r i s t i c eng ine d i m e n s i o n , c o n s i d e r a t i o n

h a s been given to v a r i a t i o n s in the fo l lowing p a r a n a e t e r s and e f f ec t s : ( l ) m a x ­

i m u m r e a c t o r wa l l t e m p e r a t u r e , (2) r e a c t o r coo lan t t e m p e r a t u r e s , (3) s o d i u m

v a p o r t e m p e r a t u r e and p r e s s u r e , (4) s o d i u m c o n d e n s e r t e m p e r a t u r e , (5) e f f e c ­

t i v e n e s s of r a d i a t o r ( s o d i u m c o n d e n s e r ) , (6) effect of s u p e r h e a t and r e h e a t in the

i

• • • •

Page 24: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • • • • m « « « • • • • • • « • • « « • •• » » « • « • • •

• • ••• • • • * • • * * • i « • * tt • •

NAA-SR-134 Page 21

VHP ^'^^^'f:^ sodium system, (7) re la t ive advantages of location of engines in fuselage and

nacel les , (8) number and size of engines, (9) split shield vs unit shield and

(lO) r eac to r crew separa t ion dis tance.

The configuration finally selected for this application was investigated for

off-design per formance c h a r a c t e r i s t i c s , and a flight prograna was es tabl ished

from take-off to c ru i se conditions.

Thrus t r equ i rements for all speeds at severa l alt i tudes between sea level

and 45, 000 feet were established by aerodynamic analysis . Similarly, the avai l ­

able power plant thrust was est imated. It was possible to maintain reac tor power

and cooling conditions constant at all al t i tudes and speeds considered; however,

due to changing ram conditions, the thermodynamic conditions in the renaainder

of the sys tem changed considerably. The thrus t , drag and p r o g r a m curves a r e

presen ted in the following section.

C. Detailed Descr ipt ion

1. The Airplane - The design point of the airplane was given by the con­

tract ing agency to be Mach 1. 50 at 45, 000 feet altitude. No take-off or landing

specifications were given, but it was assumed that a landing speed of approxi-

naately 175 knots would be acceptable. The payload was assumed to be

20, 000 pounds.

It was decided to adhere to a conventional wing-fuselage-tai l configuration

if weight and balance considerat ions made this feasible. A wing planform was

assunaed which would be a compronaise between subsonic (take-off and landing)

and supersonic requ i rements . A p re l iminary analysis indicated that a

4-1/2 per cent thickness ra t io was a nainimum from a weight standpoint for

the assumed planform.

Fig. 5 shows the a i r f rame configuration selected and Fig. 6 is a cutaway

section of the a i rcraf t i l lus t ra t ing the location of the crew compartnaent, r e a c t o r

and power plant components.

The design conditions for the a i rc ra f t a r e summar ized in Table III:

Page 25: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

•m • • « •

^ f e

NAA-SR-134 P a g e 22

TABLE III

AIRPLANE DESIGN CONDITIONS

Cruise Mach number

Cru ise altitude (ft)

Cruise L / D

Maxinaum L / D

Design g ross weight (lb)

Landing weight (lb)

Payload (lb)

Landing speed (flaps and L. E. s la t s ) (knots)

Wing a r ea (ft^)

Horizontal stab, a r e a (ft ) 2

Vert ical stab, a r ea (ft )

Airfoil

Wing loading (ib/ft^)

Thrus t (lb)

C^

1. 50

45, 000

4.92

4.96

400, 000

380, 000

20, 000

177 (204 M N)

3,200

600

520

NACA 65-0045

125

81, 200

2. 42

Page 26: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• * « • • • » • • »

• «

Wl'l^W^lpi)^

and the weight breakdown for the sys tem is shown in Table IV:

TABLE IV

AIRPLANE WEIGHT BREAKDOWN

Item

Wing

Empennage

Body

Ducts

Landing gear

Fixed equipnaent

Reactor and shield

Crew shield

Power plant

Piping

Crew (7)

Landing Weight

Payload

Design Gross Weight

Weight (lb)

41, 000

9, 000

30, 000

8, 000

22, 300

7, 500

91, 100

34, 800

125, 100

9,450

1, 750

380, 000

20, 000

400, 000

Arna (inches)

1.277

2,200

1,400

1,400

1,250

450

1, 120

470

1, 600

1,300

440

1,298

950

1,280

Moment in. / l b

523.9 X 10^

198. 0

420. 0

112. 0

279. 0

34. 8

1020. 0

163. 6

2000. 0

122. 9

7. 7

4925. 0

190. 0

5115. 0

The aerodynamic analysis is summar ized in the following:

'D

TABLE V

AERODYNAMIC ANALYSIS

Skin friction

Bleed drag

Wing

Enapennage

Scoop

Boat tai l + base d rag

Body

D m^^mi

0. 0120

0. 0023

0. 0060

0. 0029

0. 0015

0. 0016

0. 0015

0. 0278

Page 27: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• « « » * N A A - S R - 1 3 4 P a g e 24

ini/M f r^nip|q^

"a Wing

Body

Scoop

0. 04500

0. 00175

0. 00037

La^ 0. 04712

Ac D = K = 0 .3698

L / D

T h r u s t

L / D naax

' L ^ . C r u i s e

CD

C r ui s e

C r u i s e

= 0 . 5 T

0. 3698 X 0. 0278 = 4. 96

- _ - 4 0 0 , m Q „ - 0 257 3200 X 486 " ^-^^^

0. 0278 + (0. 3698 X 0. 257 ) = 0.0522

0.257/0. 0522 = 4.92

400, 000 Q, .,„„ , .,_ J . — - 8 1 , 2 00 pounds

S u r f a c e A r e a

Body, ft

Scoops , ft

Wing, ft^

H o r i z o n t a l , ft

V e r t i c a l , ft

R. N.

R . N .

MAC

wing

C .

• T o t a l

= 3. 62 X 10^ / f ee t

= 36 fee t

= 36 X 3 . 62 X 10^

= 0. 002

5 ,353

816

4 , 9 2 0

1,2 00

1, 000

13 ,289

= 1. 3 X 10

Page 28: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • • • • • • •• • » • • • • ••• • • • • • • • • « • • « • • • • •

• • « • • « « • •• • ••• « ••

NAA-SR-134 Page 25

Assuming a maximum t r immed lift coefficient of 1. 1, the take-off speed at

sea level for NACA standard a tmospher ic conditions is 183 knots. Based on this

take-off speed and a groun.d friction coefficient of 0. 02, the ground rol l during the

take-off is found to be 7500 feet. Using a reasonable approximation for t ransi t ion,

a total distance of 8000 feet is requi red lo c lear a 50-foot obstacle .

The ra te of cl imb at sea - leve l is 3600 f t /min, at a best cl imb speed of

400 knots. At a 30, 000 foot alt i tude, the ra te of cl imb is 6600 f t /min at 540 knots

t rue speed. Due to the engine cha rac t e r i s t i c s , as affected by heat t ransfer l i ra -

i tat ions, the ra te of cl imb dec r ea se s for al t i tudes above 30, 000 feet and the best

cl imb speed shifts to the supersonic region. The ceiling is approximately

46, 000 feet at a Mach number of approximately 1. 25. See F igs . 7, 8 and 9 for

cl imb per formance data and flight p rog ram.

Est imated t ime to reach Mach number 1. 45 at 45, 000 feet altitude from take­

off speed at sea - leve l is 30 minutes . The approach to the des i red c ru i se Mach

number of 1. 5 while cruis ing at 45, 000 feet will take a grea t deal of t ime. Most

of the c ru i se will have to be nnade ei ther slightly below M = 1. 5 or slightly below

45, 000 feet altitude - the des i red conditions being approached asymtot ical ly as

t ime p a s s e s .

Landing dis tance, including a i r dis tance, over a 50 foot obstacle based on a

landing speed of 177 knots, is 13, 800 feet.

2. Reactor - A d iscuss ion of specific r equ i rements of a nuclear r eac to r

heat source to power the contemplated a i rcraf t at a speed corresponding to a

Mach number of 1. 5 at 45, 000 feet altitude is summar ized as follows:

1. Heat developed by reac tor to be approximately 600 megawatts .

2. Inside d iameter of r eac to r shield not to exceed 4 feet.

3. Reactor coolant outlet t empera tu re to be 3400° R,

4. Reactor coolant inlet t empera tu re to be 2978° R,

5. Maximum reac to r t empera tu re not to exceed 3600° R.

An exploratory study has been made, and a plausible r eac to r that mee t s

these r equ i rement s has been determined to a f i rs t approximation.

Needless to say, the high t empera tu re charac te r iz ing this r eac to r p laces

exceedingly severe damands on the m a t e r i a l s with which the reac to r might be

constructed. In the f i rs t p lace , the number of solid s t ruc tu ra l ma te r i a l s which

Page 29: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

» • • • • 9 • • • • • • • • » • • • • • • • • « • •• N A A - S R - 1 3 4

P a g e 26

]Vlr^.^n^}lf^l^

would r e t a i n useful s t r u c t u r a l p r o p e r t i e s at t h e s e t e m p e r a t u r e s i s i ndeed l i m i t e d .

A s i m i l a r s i t u a t i o n e x i s t s in r e g a r d to a cho ice of m o d e r a t o r s . A l s o , u n l e s s

p r e s s u r i z a t i o n i s e m p l o y e d , t h e r e a r e only two or t h r e e of the n o r m a l l y def ined

l iquid m e t a l coo lan t s tha t would r e m a i n in the l iqu id p h a s e wi th s o m e m a r g i n to

s p a r e . The d e s i r a b i l i t y of avoid ing add i t i ona l s t r u c t u r a l load ing due to a p r e s ­

s u r i z e d cool ing s y s t e m is e a s i l y a p p r e c i a t e d in v iew of the s t r i n g e n t s t r u c t u r a l

d e m a n d s a l r e a d y i m p o s e d by the h igh t e m p e r a t u r e . It w a s l a r g e l y for th i s r e a s o n

tha t t in w a s the l i q u i d - m e t a l r e a c t o r coo lan t e m p h a s i z e d .

A n u m b e r of r e a c t o r types and c o n f i g u r a t i o n s , such a s c i r c u l a t i n g fuel ,

c i r c u l a t i n g m o d e r a t o r and f i x e d - b e d , e m p l o y i n g r e f r a c t o r y m e t a l s as s t r u c t u r a l

m a t e r i a l s , w e r e c o n s i d e r e d in con junc t ion wi th l iquid m e t a l s a s c o o l a n t s o r fuel

v e h i c l e s . S e v e r a l of t h e s e s c h e m e s a p p e a r e d p r o m i s i n g in so far as t h e i r n u c l e a r

and hea t t r a n s f e r c h a r a c t e r i s t i c s w e r e c o n c e r n e d . H o w e v e r , at the e l e v a t e d t e m ­

p e r a t u r e s r e q u i r e d in the r e a c t o r , it i s doubtful if any of t h e s e o t h e r w i s e a t t r a c ­

t ive l i q u i d - m e t a l coo l an t s and r e f r a c t o r y m e t a l s t r u c t u r e c o m b i n a t i o n s would be

connpat ib le f r o m the s t andpo in t of c o r r o s i o n . It w a s thus d e c i d e d tha t m a t e r i a l s

o t h e r than t h e s e would be r e q u i r e d in the r e a c t o r in q u e s t i o n .

B e c a u s e of the n u m b e r of known d e s i r a b l e p r o p e r t i e s of g r a p h i t e at e l e v a t e d 235

t e m p e r a t u r e s , a t t en t io r | w a s g iven to a r e a c t o r c o n s i s t i n g of a U innp regna t ed

g r a p h i t e c o r e wi th in a g r a p h i t e c a s e and e m p l o y i n g g r a p h i t e p ip ing . In sp i t e of

s e v e r a l a t t r a c t i v e p r o p e r t i e s p o s s e s s e d by g r a p h i t e , a n u m b e r of q u e s t i o n s n e v e r ­

t h e l e s s c a n be r a i s e d c o n c e r n i n g i t s a p p l i c a b i l i t y to the p a r t i c u l a r r e q u i r e m e n t s

at hand . Mos t of t h e s e q u e s t i o n s can be a n s w e r e d r e l i a b l y only t h r o u g h d e v e l o p ­

m e n t and e x p e r i m e n t a l s t u d i e s tha t , as ye t , have not been m a d e . Unti l s u c h

w o r k h a s been done , the f e a s i b i l i t y of the c o n s i d e r e d r e a c t o r can not be e s t a b ­

l i shed . None the l e s s , a g r a p h i t e r e a c t o r tha t would sa t i s fy the above r e q u i r e ­

m e n t s a p p e a r e d suf f ic ien t ly p r o m i s i n g to Justify th i s e x p l o r a t o r y i n v e s t i g a t i o n .

In c o m p l y i n g wi th the i m p o s e d 4 foot i n s i d e d i a m e t e r of the r e a c t o r s h i e l d ,

i t w a s n e c e s s a r y to l i m i t the s i z e of the a c t i v e b a r e c o r e of the r e a c t o r to a d i a m ­

e t e r of 3 - 1 / 2 fee t in o r d e r to p r o v i d e a d e q u a t e s p a c e for the r e a c t o r c a s e w a l l

and a h e a t t r a n s f e r b a r r i e r be tween the c o r e and the sh i e ld . Not only i s the

r e s u l t i n g p o w e r d e n s i t y in t h i s r e a c t o r n e c e s s a r i l y v e r y high, thus c o m p l i c a t i n g

the r e a c t o r cool ing c o n s i d e r a b l y but n u c l e a r a n a l y s e s showed tha t t h i s s m a l l

s i z e i s not a t t a i n a b l e wi th g r a p h i t e m o d e r a t i o n a lone u n l e s s s e v e r a l h u n d r e d

mj:M^

Page 30: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• «« • •

, « V r i '''''S^\

pounds of U are used. To alleviate this objectionable feature , analytical con­

s idera t ion was given to a homogeneous moderat ing mat r ix consist ing of Be-,C and

graphite . The analyses showed that a cyl indrical l ea s t - c r i t i ca l -vo lume bare core

r eac to r 3-1/2 feet in d iameter cooled with molten tin could meet the r equ i r emen t s , 235 including pe rmi s s ib l e t he rma l s t r e s s , with l ess than 100 pounds of U provided

the impregnated moderat ing ma t r i x were formed from equal volumes of Be^C and

graphi te to give a core of 80 per cent solidity. (That i s , the liquid tin coolant

holes would compr i se 20 per cent of the bare cOre volume. ) According to

NEPA-1653, a ma t r ix of this composition of Be~C and graphi te can be formed,

and such is known to have a high r e s i s t ance to the rmal s t r e s s . The la t ter p roper ty

is par t i cu la r ly important in a r eac to r of high power density where steep t e m p e r ­

a ture gradients exist.

Molten tin appeared to be a preferable coolant for this r eac to r from seve ra l

cons idera t ions . As a l ready mentioned, the boiling point of tin is sufficiently high

that p r e s su r i za t i on is not n e c e s s a r y for maintaining it in the liquid phase at the

p r e s c r i b e d t e m p e r a t u r e s . Tin also mel ts at a reasonably low t empera tu re which

is valuable at the t ime of s t a r t - u p . The capture of neutrons by tin i s somewhat

g rea te r than by lead, bismuth or their eutectic, but this is not a ser ious l iabil i ty

he re since neither breeding nor converting was thought to be war ran ted in this

application. The disadvantage of p r e s su r i za t i on if lead or bismuth were used

would overshadow the slightly improved neutron economy and c r i t i ca l m a s s saving.

A much l a rge r saving in cjritical mass would resu l t if a ref lector could be used,

but this could not be done without exceeding the maximum allowable size imposed

by the p e r m i s s i b l e shield weight. Thus, the bare core configuration was chosen

he re because it could be made to satisfy the smal l inside shield d iameter r e q u i r e ­

ment without an excess ive amount of fuel. Attention is called to the fact that,

although the graphite r eac to r case , lampblack heat t ransfer . insula t ion, and the

lead of the shield all surround the bare core , producing a smal l ref lector saving,

this saving was not taken into account in these explora tory analyses . The amount

of excess react ivi ty n e c e s s a r y to meet the demands of f ission product poisons ,

fuel burn-up, and slight t empera tu re effect have been es t imated to be l e s s than

8 per cent. It is contemplated that this var ia t ion in react ivi ty could be provided

with eight 1 inch d iameter boron carbide control rods .

The cooling analyses showed that for the average power density in the r e ­

actor the heat removal could be accomplished at 80 pe r cent solidity and 0. 22 inch

ufl^SfB

Page 31: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

NAA-SR-134 Page 28

d iameter cooling holes containing molten tin flowing at 22 f t / sec . In the case of

a bare core homogeneous reac to r such as this, the power dis tr ibut ion is not uni­

form but is g rea tes t in the center and leas t at the surface with the average power

density occurr ing somewhere in between. Hence, in a m o r e complete study, a l ­

lowance for this non-uniform power density mus t be provided. One way that this

might be handled is to employ an appropria te var ia t ion in solidity in the core .

Another t rea tment might util ize a suitable var ia t ion in fuel density within the

reac to r . However, it can be safely stated that the power dis t r ibut ion problem

is technically solvable. Such adjustments of solidity or fuel concentrat ions need

not naaterial ly al ter the overal l cr i t ica l i ty conditions, but the influence of these

a l tera t ions should cer ta inly be investigated for a pa r t i cu la r design under devel ­

opment.

A detailed analysis of the shield for this r eac to r was not made, but use was

made of r e su l t s that have been repor ted by the ANP Advisory Board on split

shields for a i rcraf t application. In line with the ANP re su l t s , the shield s u r ­

rounding the reac tor is composed of a 5-inch thickness of lead followed by a

3-1/4 foot thick layer of water . Owing to the t empera tu re s existing for the ove r ­

all power plant it was decided to employ molten lead in the shield surrounding

the bare core .

After a c u r s o r y examination of the control p roblems associa ted with this

reac to r , it appeared that i ts control would be difficult, but it is not believed to

be insurmountable . Analysis of the distr ibution of fissions with energy indicated

the reac to r to be appreciably ep i thermal with a mean generat ion time of the

(spontaneously emit ted) fission neutrons equal to about l / lO mil l isecond. This

will make it imprac t i ca l to utilize more than possibly one-half of the control

band afforded by the delayed neutrons. It was also noted that the react ivi ty

of the reac tor would be re la t ively insensi t ive to t empera tu re . This la t ter r e ­

sults from the fact that the thermal diffusion a r ea and slowing down a r ea va ry

with t empera tu re such that their sum is fair ly constant. Also, k is essent ia l ly

independent of t empera tu re .

A summary of the nuclear and thermodynamic cha rac t e r i s t i c s of the r e ­

actor is presented in the following tabulat ions.

m, i^}m

Page 32: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

NAA-SR-134 Page 29

The reac to r composit ion used in the nuclear calculations is as follows:

Be2C

C

Sn ^235

% Vol.

40

39

20

0. 175

N X 10"^^

4.976 X 10"^

3. 696 X 10"^

7. 402 X 10"^

8. 3825 X 10"^

The cr i t ica l i ty calculations were based on a homogeneous bare core and

accounted for ep i thermal captures and fissioning. The theory used followed the

method outlined in Ref. 17. The essent ia l equations a re given below. For the

assumed volume fract ions of carbon, beryl l ium carbide and tin, a 3. 5 foot right 235 c i r cu la r cylinder requi red 28. 9 k i lograms of U for cr i t ica l i ty . The values

given are for a bare , clean core at an average reac to r t empera tu re of 3500° F .

^th tn

and:

Hh

^th

dlnE th InE th

= 1. 69 + 0. 67 = 2. 3 6 - ^

Above values a r e t rue iorSt = 0. 00305**""

s o :

V = 3 1 . 2 f t ^ * - o r V = 88. 3 X lO^cm^*-o o

D = 3. 50 feet (for right c i r cu la r cylinder of leas t volume)

Weight of U^^^ = 28. 9 k i lograms

Weight of Be^C ~ 1, 800 pounds

Weight of C ~ 1,200 pounds

Page 33: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• « c •

where :

< . . . t NAA-SR-134 Page 30

!iei?^^iREP q = slowing down density at neutron energy, E

q = slowing down density at f ission energy, E

q , = slowing down density at t he rmal energy, E ,

f = average loss in the logar i thm of the energy p e r coll ision

during slowing down for par t i cu la r r eac to r

2,, = macroscopic loss c ro s s sect ion for pa r t i cu la r r eac to r

= E. ^ 3(2 tr + K^ 2 = macroscopic absorption c ross section for pa r t i cu la r

r eac to r composit ion

E. = macroscopic t ranspor t c r o s s section for pa r t i cu la r

reac to r composit ion

( 2 e \ ^ = 2 , ( 1 + 1^ '^ ' )

2r = macroscopic fission c r o s s section for pa r t i cu la r r eac to r

composit ion

S = macroscopic sca t te r c ros s section for pa r t i cu la r r eac to r

composition

P = neutrons produced per fission

^ = Lapiacian

V = bare core volume for right c i rcu lar cylinder of l eas t

c r i t i ca l volume

D = bare core dianneter for right c i rcu la r cylinder of leas t

c r i t i ca l volume

A simplified F e r m i Age calculation was made in o rder to de te rmine the

difference between this method and the epi thermal method. The re su l t s of the

F e r m i Age calculations a r e given below, and it i s seen that age theory gives a

higher c r i t ica l m a s s and l a r g e r c r i t i ca l d iamete r .

dt'

T = 192 c m

2 L = 43 . 4 cmL

= 1.91

0. 0 0 2 7 6 - ^

wi krn^

Page 34: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

Weight of

where :

^2

D < 35

" j f e

= 3.68 ft * -

= 33. 2 k i lograms

= slowing down diffusion a r ea

= the rmal diffusion a r ea

• • • ••• NAA-SR-i34 Page 31

m.^"sm

kga = neutron mult ipl icat ion factor

The neutron life cycle from the ep i thermal calculat ions is shown in d ia ­

g rammat ica l form in Table VI. The detailed procedure for obtaining the neutron

life cycle is indicated in Ref. 18. Table VII gives the total absorption, non­

productive absorption, fission absorption and leakage for each of the 20 energy

groups considered in the ep i thermal cr i t ica l i ty calculation.

The average time between fissions is given below:

1. Average t ime for a neutron s tar t ing at fission energy to get to the rmal

energy is 1. 698 x 10~ seconds (see Table VII).

2. Average t ime for a neutron at t he rma l energy to cause a fission:

th average distance t raveled before fission

thermal velocity v f 5

= 13. 18 X 10 seconds.

3. Average t ime for an epithernnal neutron to cause a fission:

(all 2_, No. of neutrons undergoing fission

energy)Labsorption in each energy band rTotal number of neutrons und

Time to reach energy band

. -5 epi thermal fission

ergomg

= 0. 45 X 10 " second.

4. Average fission life t ime:

(ave)

(ave)

40 L 0. 45 X 10

-5

-5" + ^T^ [ l .698 X 10"^ 40 + 13. 18 X 1 °-1

= 10. 7 X 10 seconds.

Fig . 10 is a cutaway perspect ive of the reac tor core and shield. The

3. 5 foot d iameter core is composed of a stack of 7, 550 hexagonally shaped

Be^C-C e lements . Each element is 3. 5 feet long with seven 0. 22 inchdiam.-

e ter cooling holes running the full length. The element is impregnated with 235 U and se rves as modera to r , fuel and coolant container. The core container

is graphite which is approximately 2 inches thick. The container i s surrounded

Page 35: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

•• • • • • • • • • «•

^ f e

NAA-SR-134 P a g e 32

HtlWflT by approximately 4 inches of powdered graphite which is designed to c rea te a

reasonable t empera tu re environment for the s ta in less s teel shield channels . The

s ta in less channels wrap around the core and contain the molten lead which acts as

a t he rma l shield and also se rves to c a r r y away the heat which is generated in the

shield and the heat which is conducted away from the core . , Outside the the rmal

shield is another graphite layer of approximately 4 inches to act as a t he rma l

b a r r i e r between the water of the neutron shield and the molten lead. The water

is approximately 3.25 feet thick and is contained in 10 compar tmen t s . Each

compar tment has an inlet and outlet duct to an external heat exchanger which

removes the heat generated by neutron and gamma attenuation and heat conducted

through the powdered graphite from the molten lead. There is suitable baffling

in each water compar tment to prevent stagnation a r e a s .

mm

Page 36: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

42. 2 neutrons leak from the reactor in the slowing down

*••••* range • «

• •• • » • _ ™ _ _ _ ™ _ _ _ —

' " . " » 4. 9 neutrons leak from the

.** .* ' J^^ reactor at thermal '•• ' • -iS^ energies

• * * ^ „^

• r"', ^ Total leakage

^ • ^ 47. 1 neutrons S ^3

I

TABLE VI

NEUTRON CYCLE FROM EPITHERMAL CALCULATIONS

f -100 neutrons

100 neutrons at E^ = 2. 15 Mev

T 4. 2 neutrons are absorbed nonproductively in slowing down range

I 11.4 neutrons are absorbed productively in slowing down range and produce 11. 4 X 2. 5 = 28. 5 neutr

o

II

in

00

+ in

ons

42. 2 neutrons get down to E = 0. 19 ev

8. 8 neutrons are absorbed non­productively at thermal energies

2 8. 5 neutrons are absorbed productively at thermal energies and produce 28. 5 X 2. 5 = 71. 5 neutr ons-

Total nonproductive absorption

13. 0 neutrons

Total productive absorption

39. 9 neutrons

100 neutrons

#>i • • •

• • • ••• •

*

• • • • • • » « •

• #

• •

ft •

Page 37: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

T A B L E VII

F A T E O F 100 FISSION N E U T R O N S IN R E A C T O R

E n e r g y (ev)

2 . 15 X 10^ to 1 X 10^

1 X 10 to 4 . 6 X 10^

4. 6 X 10^ to 2. 15 X 10^

2. 15 X 10^ to 1 X 10^

1 X 10^ to 4 . 6 X lO"*

4 . 6 X 10^ to 2. 15 X 10*

2 . 15 X 10^ to 1 X 10**

1 X lo"* to 4 . 6 X 10^

4. 6 X 10 to 2 . 15 X 10^

2. 15 X 10^ to 1 X 10-^

1000 to 460

460 to 215

215 to 100

100 to 46

46 to 2 1 . 5

2 1 . 5 to 10

10 to 4. 6

4 . 6 to 2. 15

2 . 15 to 1

1 to 0 T h e r m a l *

T o t a l A b s o r p ­

t i o n

0 . 2 9 5

0 . 2 7 3

0

0

0

0

0

0

0

0

0

1

1

1

157

141

151

167

194

225

293

434

704

013

274

802

2 . 039

1 .995

1.679

1. 181

1. 562

3 7 . 3 3

N o n p r o d ­u c t i v e

A b s o r p ­t ion

0. 043

0. 037

0. 020

0. 016

0. 015

0. 014

0. 014

0. 014

0. 023

0. 071

0. 169

0 .262

0 . 3 6 1

0. 349

0. 316

0. 446

0. 871

0. 617

0. 552

8. 83

F i s s i o n A b s o r p ­

t ion

0 .2 52

0. 236

0. 137

0. 124

0. 136

0. 153

0. 179

0 .212

0 .269

0. 363

0. 534

0. 750

0 .913

1.453

1. 723

1. 548

0. 808

0. 564

1. 010

2 8 . 5

F i s s i o n N e u t r o n s P r o d u c e d

0. 630

0. 589

0. 343

0. 312

0. 341

0. 381

0. 449

0. 531

0. 673

0. 098

1. 337

1. 875

2. 282

3. 632

4. 306

3. 872

2. 021

1. 409

2. 526

7 1 . 300

L e a k a g e N e u t r o n s

11 .878

4. 817

3. 103

2. 223

1. 985

1. 837

1. 779

1.645

1.555

1.476

1.386

1.298

1.227

1. 149

1.068

1. 003

0 .960

0 . 9 1 3

0. 867

4. 870

A v e r a g e T i m e for a N e u t r o n to R e a c h and C r o s s E n e r g y Band ( s e c )

1 .43 X 1 0 ' ^

2 . 7 9 X 10"^

4 . 5 2 X 10"^

6 . 5 4 X 1 0 ' ^

9 . 4 0 X 10"^

13. 69 X 1 0 " ^

19. 58 X 1 0 " ^

2 7 . 9 6 X l O " ^

40. 95 X 10""®

58. 49 X lO"®

83. 73 X 10"®

1 2 2 . 9 X 10"®

176. 1 X 10"®

2 5 3 . 0 X 10'®

3 7 3 . 4 X 10 -8

538 X 10"®

781 X 10"®

1167 X 10"®

1698 X 10"®

0. 0001

100

* All n e u t r o n s of e n e r g y be low 1 ev -were c o n s i d e r e d to h a v e a Maxwe l l i an d i s t r i b u t i o n that p e a k s at

E = 0. 19 ev (3500° F c o r r e s p o n d s to 0. 019 ev).

Page 38: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• « • • • • • • ft • • ft B • « • • • « • * • » « » ft « « ft » ft

^P.' NAA-SR-134 Page 35

f|PiAf ftnf.jPPI^P

The eight pipes which c a r r y the tin to and from the core a r e made of graph­

i te . The graphite sect ions a r e surrounded by powdered graphite which i s encased

in a s ta in less pipe. The cooling conditions and weight of the r eac to r and shield

a r e shown below.

TABLE VIII

REACTOR COOLING CHARACTERISTICS AND WEIGHT

Coolant

Flow ra te

Velocity

P r e s s u r e in

P r e s s u r e out

Tempera tu re in

T e m p e r a t u r e out

Reactor wall t empera tu re

Maximum reac to r t empera tu re

Reactor power

Weight, r eac to r and shield

Weight, crew shield

Total weight

tin

15,030 l b s / s e c

22 ft/ sec

66 psia

16.6 psia

2978° R

3400° R

3416" R

3566* R

570,000 kw

91 , 100 lbs

34,800 lbs

125,900 lbs

It should be emphasized that this r eac to r study was of an exploratory na ­

tu re only and does not imply the feasibili ty of the reac tor descr ibed . Fo r

example, if radiat ion damage in the impregnated miatrix did not anneal out dur ­

ing operat ion, the thermal res i s t iv i ty might be high enough to make it impos ­

sible to remove heat at the requi red r a t e . If the eros ive action of flowing tin

against the ma t r i x were excessive and could not be sat isfactori ly remedied with­

out reducing the flow velocity mater ia l ly , this could also prevent the reac tor

from doing the des i red job. The reac to r scheme presented r equ i r e s ce r ta in

graphite s t ruc tu res such as the piping and reac to r case to be impervious to the

molten tin, and at p resen t it is not known to what extent this is r ea l i zab le .

These a r e examples of unknown factors that need be evaluated before the descr ibed

reac tor could be considered as feasible . If sufficiently adverse to the pe r fo rm­

ance, any one of the th ree factors could render the reac tor unsat isfactory. How-

\ wimm •• • •••

Page 39: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

* * ft • * « • ft • « • • • » • • • • • • ! > • « « « f t f t f t f t « * «

^ f e

NAA-SR-134 Page 36

ii^l ?,pwqcp ever , it is believed that a r eac to r of the sor t he re considered is at l eas t plausible

in an engineering sense .

3. Power Plant - The power plant consis ts basical ly of the following: (1) a

liquid tin heated sodium vapor genera tor , (2) five sodium vapor turbines which

provide shaft power to dr ive , (3) five a i r c o m p r e s s o r s , (4) a sodium-ai r rad ia tor

which se rves as a condenser for the turbines and provides a means for heating

the compressed air and (5) a nozzle through which the compressed and heated air

i s expanded to provide the propulsive th rus t for the a i rc ra f t . F i g s . 6 and 11 in­

dicate the general a r r angement of the components .

The design point thermodynamic conditions of the power plant a r e shown

schematical ly on t empe ra tu r e entropy coordinates in F ig . 12 and summar ized

in Table IX.

The source of heat for the power plant is of course the liquid tin cooled

r e a c t o r . The sodium vapor generator or boiler is close coupled to the r eac to r

by eight graphite liquid tin supply and r e tu rn l ines . The tin flows at a ra te of

15,030 l b s / s e c , en te r s the boiler at 3400®R and leaves at 2978°R. Liquid tin

makes a single cross- f low pass a c r o s s a bank of 3/4 inch OD by 0.0625 inch

wall , 4 foot long tubes which a r e spaced at the co rne r s of an equi la teral t r i ­

angle with a cen te r - to -cen te r spacing of 0.95 inch. The sodium makes a single

pass ver t ica l ly upward through the tubes and has a circulat ion ra te equal to

5 t imes the evaporation r a t e . A sodium liquid level i s maintained above the

tubes to pe rmi t vapor separat ion at the surface, and a mechanical scrubber i s

also employed to insure high quality. Sodium feed enters the boiler at a t e m p e r ­

a tu re of 2260° R and mixes with the rec i rcu la t ion , thereby providing a l a rge po r ­

tion of the sensible heat . The remainder of the sensible heat is supplied by the

tin in the f i rs t few inches of the boiler tubes , and the sodium is then evaporated

to 20per cent quality at 290 ps ia , 3000" R (20 per cent quality cor responds to a

c i rculat ion ra t e equal to 5 t imes the evaporation r a t e ) . The sodium vapor bubbles

a r e separa ted from the wet mix ture by pass ing through the liquid level above the

tubes and by the sc rubber . The overal l a r r angement of the tubes is of a square

bundle inscr ibed in the c i rcu la r c r o s s section of the shel l . The shell cons is t s of

the cyl indrical center port ion subjected to tin p r e s s u r e , a domed head on each

end subject to sodium p r e s s u r e and an additional domed head at the bottom that

se rves as a tin t rap for any leakage incur red around the expansion joint . F ig . 13

Page 40: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • • • t l « «

« ft c

ft* • • ft* ft • »

• « *• ft ft NAA-SR-134

Page 37

^}^l)mrir.^

shows the essent ia l design fea tures of the type of boi ler considered in this analy­

s i s . The a im h e r e was to establ ish a simple configuration that would provide a

bas i s for a reasonable boiler weight es t imate to be used in optimizing the power

plant, and no at tempt has been made at a r igorous design. It is felt that the ex­

tent to which the weight es t imates were ca r r i ed out is adequate for this plausibi l ­

ity study.

The ma te r i a l used as the boiler meta l is inolybdenum, and the following

p roper t i e s were used in the design;

k = 40 B / h r - f t - ^ F

design

= 637 I b s / f f

= 5000 psi

Welded joints and mechanical joints a r e indicated in the drawing, and it r ecog­

nized that such fabrication techniques have yet to be developed.

The five sodium turbines a r e mounted c i rcumferent ia l ly in the fuselage as

indicated in F ig . 11. Dry saturated sodium vapor at 290 psia and 3000° R is made

available to each unit. The flow ra te per unit is 54.2 l b s / s e c , and the turbines

operate without extract ion exhausting to 29 psia p r e s s u r e (2260° R) in the con­

dense r . The las t stage of the turbine opera tes approximately 9 per cent wet.

P r e l i m i n a r y design of severa l turbines were considered which led to the s e l ec ­

tion of the min imum weight unit descr ibed by the following c h a r a c t e r i s t i c s :

Outer d iameter

Tip d iameter (exit)

Hub d iameter (exit)

Overal l length

No stages

"hub ^^^''^ Rotative speed

Power

Blade s t r e s s inlet

Blade s t r e s s exit

Disc , s t r e s s inlet

Disc , s t r e s s exit

Mater ia l

Weight (each)

50 inches

48 inches

40. 6 inches

65 inches

11 impulse

635 f t / sec

3600 rpm

27, 600 horsepower

<2500 psi

<5000 psi

<10, 000 psi

<20, 000 ps i

TiC and steel

5986 pounds

IPD 5^ ;FFf-

">\#l- " ^ V ^ M

Page 41: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

« • • »

T U R B I N E : (Cont inued)

R o t a t i v e speed

H o r s e p o w e r

W E I G H T / U N I T :

RADIATOR OR CONDENSER:

^ f e

N A A - S R - 1 3 4 P a g e 41

3 , 600 r p m

2 7 , 6 0 0

5 ,986 l b s

Conf igu ra t ion :

Type

P i t c h

Tubing

M a t e r i a l

T o t a l X - s e c t .

' O v e r a l l l e n g t h

Cond i t i ons a t D e s i g n :

A i r flow r a t e ( to ta l )

P r e s s u r e in

P r e s s u r e out

T e m p e r a t u r e in

T e m p e r a t u r e out

H e a t l o a d ( total)

Sod ium flow ( tota l )

S u r f a c e

U

D I F F U S E R : (2 un i t s )

N o r m a l shock s ide i n l e t s

Weight : t a k e n a s p a r t of a i r f r a m e we igh t

Cond i t i ons a t d e s i g n :

A i r flow r a t e ( to ta l )

A m b i e n t p r e s s u r e

A m b i e n t t e m p e r a t u r e

P r e s s u r e out

T e m p e r a t u r e out

C O M P R E S S O R : (5 un i t s )

Seven s t a g e a x i a l flow

C o n d i t i o n s a t d e s i g n :

A i r flow r a t e

In l i ne tube bank

x^ = 5 : x = 1 . 2 5 t e

0. 25 in . X 0. 010 in . wa l l

L - 6 0 5

110 ft 4 ft

1515 l b s / s e c

23 . 2 psia

15,6 psia

835° R

1961° R 4

44 X 10 B t u / s e c

271 l b s / s e c

4 5 , 6 0 0 ft^

39 B t u / h r - ° F - f t ^

1515 l b s / s e c

2 . 146 p s i a

392° R

7. 30 p s i a

568° R

mimm 303 l b s / s e c

Page 42: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

w 7.30

568°

23.2

835*

psia

R

psia

R

27,600 hp

3600 rpm

COMPRESSOR: (Continued)

P r e s s u r e in

Tempera tu re in

P r e s s u r e out

Tempera tu re out

Horsepower

Rotative speed

Weight:

NOZZLE: (1 unit)

DeLaval

Full expansion to a tmospher ic p r e s s u r e

Weight taken as par t of a i r f rame weight

Conditions at design:

P r e s s u r e in 15.6 psia

T e m p e r a t u r e in 1921° R

P r e s s u r e out 2. 146 psia

Tempera tu re out 1168° R

Air flow ra te 1515 l b s / s e c

Specific thrus t 52.9 sec

TOTAL WEIGHT OF POWER PLANT, REACTOR AND SHIELDING

C o m p r e s s o r s 5 x 8 8 5 0 = 44,250

Turbines 5 x 5 9 8 6 = 29,911

Condensers 5 x 2 9 2 0 = 14,600

Boiler and r ece ive r = 36, 228

Reactor and shielding = 125, 900

250,889

rj mm

Page 43: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

ft ftftft

• ft

900

800

to

3 u. o en o

< to O

700

soot

500

X o ?

(O o a: o

•z.

<

400

300

200

100

NAA-SR-134 Page 43

MACH NO. 1.5 ALTITUDE 45 ,000 FT/ W„,W<. =0.3 ;|,r6 >Y LOAD = 20,000 LBS/

RAND 1800* F l«IACH 1.5, 35,000 FT DIVIDED SHIELD

NEPA 1800* C It LF 15 AIRCRAFT -~^a,__ MACH 1.5, 45 ,000 FT ® PAY LOAD 10,000 LB

CURVES CALCULATED FROM TAB DATA

I 4.0 4.5 5.0 5.5 6.0

AIRPLANE L/D CRUISE

6.5 7.0

Figure 1. Effect of L /D Ratio on Airplane Gross Weight

• f t • • • •• • • • • ft ••• ft •••

Page 44: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

m N ^yjQi

NA VAPOR

INLET DIFFUSER

LIQUID TIN COOLED

NOZZLE

AIR COMPRESSOR

NA TURBINE

RADIATOR- CONDENSER

Figure 2. Schematic Diagram of C o m p r e s s o r - J e t System

iiif'ofOTP

Page 45: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

ft ••• ft • • « » • ft* •• ft ft ft « • • • « ft* ft ft ••• • ftftft • « « • • • • f t • « • • • « ftft ft 9 * ft •

• • » • ft • ft •• •• ft ••• • « • • ft*

^ ^ f e

4500

4 0 0 0

3500

3000

2500

y 2 0 0 0

1500

1000

500

iii?'t'^«^gppp

0.50 ' ' 0 0

ENTROPXS (Btu/ lb<»R) 1.50

Figu re 3. Tempera tu re Entropy Diagram for Sodium

Page 46: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

60.0

5S.0

50.0

£

£ — 45.0 'P O

>- 40.0 Q. _J <£ I t-Z IxJ

35.0

30.0

ft • « « ft • ft ft ft * NAA-SR-134 Page 46

25.0

j /

/

/

I '

rl / 7

-CRITIC

/>

/

/If iJ 1 iK ln> / / /

' 1 ' ///

' / /

'/

/ /

AL PO

. * > Q.

S° 8 .*^

^ / )

NT

A <n

/ \ ^ / \ ^

y < /

/7 /

^~~~

/

/

69

0

is

^

/

y /

Or"

-^7 /

8 0 '

\v r

V /

, ',' ,

r\ '

»p.' [ i |

SATURATED

9 0 % QL

% QUALITY

AUTY

fs ^ j

VAPOR

15.0 20.0 25.0 30.0 35.0 ENTROPY, S (Btu/lb-mole °R)

40.0

Figu re 4. Enthalpy-Entropy Diagram for Sodium

Note: Complete d imer iza t ion assumed

im mmi • f t ft • • ft * ft • * ••• ft •••

•• ft • » ft • ft

Page 47: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• ••• ft • ft ft

• ft ft ft ft ft • *

• ft* • ft ft • ftft

^^s^^^^r'-i

I

6EWERAL DATA

CRUISE HACH NO I 3 OiWSE OESIWI ALT ( fT ) 48 000 DE3I6H eROSa «B«HT ( L B l 400 000 THRUST { 4 8 000 r t HLB) SI 200

9 200 WIM WSEA iSQ FT) A»>ECT RATIO 3 0 AIRroiL NACA 64 0049

CHEW-SCACTC« SEPAB«TI0« (FT}

I

• • • * « »

, T 1

Figure 5. Three Views of Airplane

• • ft ft •• • • ft ft ft ft ft ft « « • • • •

132 p &>

1

1—* 0 0

!*».

Page 48: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • • f t • • • f t • • • • • • • • ••• • • • ft

• ••••

ft • • • • • • • ft • • • • • • • • • . . . . . . ^ - ^

...:.: S c#^

rr%

Figure 6. Inboard Prof i le P erspect ive of Airplane

I

I

• 3

00 fO

00

Page 49: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

100

« • •

» •

« •

• • ft

• • m

I 0.6 0.8 1.0

MACH NUMBER

Figu re 7. Engine Thrus t and Airplane Drag vs Mach Number

4S.0OO r r

Page 50: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • ft • • • • f t *

• • • •

• • « ft « ft •

ft « » ft • ft* •

I

240

too 200 300 400 500 600 700 TRUE AIR SPEED - KNOTS

Figure 8. Thrust Horsepower vs True Air Speed

I

4>'

". s

800 900

ftftftft • ft • • • *•• ft ft *

*• ft ft ft • ft

ft • • ft • ft ft

• • ft ft ft •

« ft ft ft •

^ 2

n 7

o ^ I

1—'

Page 51: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

^ i

• •*• « • • • • • f t

• • • • • •• ft « ft •

• • ft • •

ft ft • ™ ^ ^ "U

.ft . f-"j^i:^^

• • • f t f t f t - ^ . f w " ^ * c - ' ^ ^ . . ^

• • • • • _ _ - ~ T j f f i !

o o o

UJ a

Q

2 4 6

RATE OF CL IMB-1000 FT/MIN

50

40

' 30

<

o

< O

z

20

y> 10

SL /

. v * ^

^

1 SPEED

/

/ CL 1MB

/ '

/

/

SPEED

7 MAXIMUM

SPEED

# : ; =

100 200 400 600 800

TRUE A!R SPEED-KNOTS

1000 »-'"3

F i g u r e 9. Rate of Climb and Climb Speed vs Altitude

13!^ OP u^

I 1—< 00

Page 52: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

^y. ' , * i ' ' / ; . ' " •.:

,/ri^ :; Sf - • • • - ' M ,

.«' . V uM

>^^'S,- ;^-'

^m

• ft • • * • ft ft

• ••• • ft •••

-•-V£ivv'

l*^^

Figure 10. Reactor Pe rspec t ive

s v -g2s^^

IH' • • • • f t • * ft ft ft* ft ft •

• « * • ft • ft • ft • ft

^ 2 P

in to

> >

ffi }S { » <

U> M

Page 53: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

-SHIELD tvAT£f^aerafiN PUMP

ELD WATER HAD ATOP

» • • ••

• • • « • • •••

^ DtJCJ FNTMNCE

Figu re 11 . Reac to r -Power Plant Installation

f

W.

l a

t ) 2 P

tn w

i> I

w 5« 1

Page 54: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

jlfsipmnrr!

hg '. 740 B / # B

H •• ^92 B/:sf

h = 2 4 S 0 B/J»

hg = .2134 B/^

hji = 2015 B/£

P^- 15.6 PSIA

T^s 1961 *R

Pg » 23.15 PSIA

T^ = 835 "R

COMPRESSOR

R A D ^

^^.coHS?^§S5-

HOl^^^

DIFFUSER

Tg s 392 «R

P s 2 14 PSIA o

ENTHROPY

F i g u r e 12. T e m p e r a t u r e E n t r o p y Diagrami for Sod ium C o m p r e s s o r J e t

J . . . . . . : : •• • * : Z i T • • •• :.. *.- . . .

* • ••

l%u • • •• • • • • • • • • • •

•• • •• «

Page 55: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

* •

» »

« »

«

sfe N

AA

-SR

-13

4 P

ag

e 55

(||f f ,|e|pipp

•*• • <

<<

Page 56: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

OIL LINE ffiOW-OIL PUMP

OIL PEaRCULATHG-GMNEcnms TO

OIL COOLER

'^--•^las^'®^

I

SODIUM VAPOR INLEl

\ODIUM VAPOR TURBINE

THERMAL INZ'JL AVON

-SODIUM VAPOR EXHAUST OUTLETS

• «•»

1 ^ J ^ s . « « » • »

- 0 / ^ PECIPCULATING CONNECTION TO OIL COOLER

W^

-OIL REOimULATINC CONNECTION TO OIL COOL £ «

Figu re 14. Compresso r and Turbine Assembly

^ 2

ON JX) I

1 * ^

Page 57: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

• • •

t •

• •

A

• • • •

e•

• •

NA

A-S

Il-13

4 P

ag

e 57

A

J

» • • • •

• • • •

• • •••

••• ••

• • » •

• »

Page 58: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

I

\RE.A se"^ w r k N A ^ OL^C"*" A -J" t o u a s

OrviP-^E S

OfUPRC^SED j r •* i>r?c

I"URBINe I < A-U

f F i g u r e 16. Sodium-Air Radiator Pe r spec t ive

C~>

I

Page 59: f*:'.U>R:--«S::.c.',F^rh *>!-.1. .. 'i^' -'C- HHPsriY mfORNkmtoiN/67531/metadc929305/... · DISTRIBUTION Category: REACTORS-RESEARC AND POWER y Standard Distribution ... Commonwealth

NAA-SR-134 ^ ^ g e 59

REFERENCES

1. Schwartz, H. , "An Analysis of Iner t Gas-Cooled Reac to r s for Application to Supersonic Nuclear A i r c r a f t , " NAA-SR~111, September 8, 1952.

2. Inatomi, T. H. , and W. C. P a r r i s h , "Thermodynamic Diagrams for Sodium, " NAA-SR-62, July 13, 1950.

3 . Ma lms t rom, C. , "Tens i le Strength and Creep of Graphite up to the Sublima­tion Point , " NAA-SR-2, December 1, 1947.

4. Ma lms t rom, C , and A. F . Gorton, "Tens i l e Strength of Grades EGA and SA-25 Graphite up to the Sublimation Po in t , " NAA-SR-32, July 11, 1949.

5. Gorton, A. F . , and C. Malms t rom, "Tens i le Strength of Type EBP Graphite at Elevated Tempera tu re s and Its Relation to Apparent Density at Room T e m ­p e r a t u r e , " NAA-SR-67, March 13, 1950.

6. Green, L. , "The Behavior of Graphite Under Alternat ing S t r e s s e s , " NAA-SR-115, May 4, 1951.

7. Green, L. , "High Tempera tu re Compress ion Tes t s on Graph i t e , " NAA-SR-165, January 7, 1952.

8. Jewell , W. R. , "A Creep of Metals Apparatus for Use with the Berke ley Cyclo t ron ," NAA-SR-49, December 21 , 1949.

9. Keen, R. D. , "The Creep Cha rac t e r i s t i c s of EGA Graphi te , " NAA-SR-51, January 26, 1950.

10. Coultas , T. , "Cor ros ion of Ref rac tor ies by Tin and Bismuth, " NAA-SR-192, September 15, 1952.

11. Hallett , W. , "Dynamic Corros ion of Graphite by Liquid B i smuth , " NAA-SR-188, September 22, 1952.

12. "High Tempera tu re Mater ia l s - Semi-Annual P r o g r e s s Repor t , " NAA-SR-231, May 25, 1953.

13. Bennett, G. , and H. P e a r l m a n , "Exper iments on Graphites of High Density and Low P e r m e a b i l i t y , " NAA-SR-222, April 13, 1953.

14. Loftness, R, L, , W, C. Ruebsamen, and T. A. Coultas , "The Corros ion of Refractory Mater ia l s in Sodium," NAA-SR-126, November 20, 1951.

15. Cygan, R. , and E . Reed, "Molybdenum Corros ion by Sodium, " NAA-SR-161, November 20, 1951.

a

16. "Repor t of the ANP Shielding Board for the Aircraf t Nuclear Propuls ion P r o ­g ram, " ANP-53 , October 16, 1950.

17. S ta r r , C. , "E lementa ry Theory of Homogeneous Epi thermal Nuclear Reac to r s , " NAA-SR-8, March 1, 1948.

18. Balent, R. , and C. Roderick, "E lementa ry Study of the Neutron Cycle in Homogeneous Epi thermal R e a c t o r s , " NAA-SR-150, November 12, 1951.

si\0 as ^ « s ^ r ' " - ^""^ '''-