50
Imagerie SAR multi-modale pour la télédétection d'environnements Laurent Ferro-Famil Institut d’Electronique et de Télécommunications de Rennes – IETR UMR 6164 Université de Rennes 1 [email protected]

Imagerie SAR multi-modale pour la télédétection d ... · PDF fileImagerie SAR multi-modale pour la télédétection d'environnements Laurent Ferro-Famil Institut d’Electronique

  • Upload
    trannhi

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Imagerie SAR multi-modale pour la télédétection d'environnements

Laurent Ferro-Famil

Institut d’Electronique et de Télécommunications de Rennes – IETRUMR 6164

Université de Rennes 1

[email protected]

Synthetic Aperture Radar imaging

ESA ENVISAT

ASAR MERIS

Active coherent device

Quasi-independent of weather conditions

High-resolution & large coverage

Moderate revisiting time (improving)

Signal related to EM scattering physics

Wave penetration through volumes

Side-looking geometry

Speckle effect

Very high EM information content

Complex signal handling

Multi-modalCoherent Imaging

M-D Signal & InfoProcessing

QuantitativeRemote sensing

M-D EM & StatisticalModeling/Analysis

Multi-modal SAR remote sensing

POLSARPRO

PolSAR data

Spatial diversity

Spectral diversityTemporal diversity

PolSAR diversity modes

angular : incidence & aspect angles baseline : interferometry (topo,vol) multiple baselines : tomography (3-D)

Change monitoring Slow effects monitoring (DinSAR, PS) Seasonal/cyclic evolution

Multi-carrier (band) Internal SAR spatial frequencies:

- rg & doppler- links with SAR physics

3 channels Scattering mechanisms Physical interpretation

• Single channel SAR applications: cartography, (moving) object detection

• Multi-channel SAR: …

Multi-modal SAR data statistics

R PolSAR acquisitions along a diversity axis

2nd (or higher) order statistics: structured tensor

Multi-modal SAR data statistics

• R PolSAR covariance matrices

• A few looks are required

• Easy to handle

• Covariance & X-correlation matrices

• Large L value required

• More complex processing

• Much more information

Incoherent processing Coherent processing

Incoherent vs Coherent

• Based on expected EM & statistical properties

• Application and data driven

Deformation monitoring: M-Pol-DinSAR

Coherent SAR Time-Frequency analysis

Vsar

Hqo

Ro

O

XR

Y

Coherent T-F analysis

0azaz

rg0rg

Angular behavior

Frequency sensitivity

Local spectral estimation

SAR image Spectrum

Local spectrumT-F SAR image

TF SAR response: highly related to the scene EM and statistical properties

T-F SAR signal characterization

Varying T-F signal model

: varying composite signal

: quasi-deterministic, slowly varying component highly coherent

: random component, potentially non-stationary incoherent scattering

Canonical T-F behaviorsstationarity

coherencelow high

low

highnatural mediaisotropic

strong scatterers

anisotropic artificial structures

numerous anisotropic responses

Full-pol response sampled at R spectral positions:

where

T-F behavior characterization

Stationarity Coherence

Tools: MLRT hypothesis testing, canonical correlation

T-F SAR signal characterization

H A

a a1

0

0

1

p/2

T11 T22 T33

H A

a1a

Complex urban area: PolSAR features

DLR/ESAR L bandcoarse resolutionDresden data set

Non-stationarity

Facing buildings: non-stationary SB, DB components

Oriented buildings: stationary trend

Coherent objects: building edges, point-like scatterers

TF adaptation: non-stationary but coherent behaviour

Coherence

Complex urban area: PolSAR T-F features

POLSAR data

POLinSAR data

TF analysis

Complex urban area: T-F classification

TF detection of ships from spaceRS2 pol-scansar images: - small az aperture- small BW

- Unavoidable target-like artefacts - Energetic sidelobes- Mixed natural-urban environment

H

a

RS2 pol-scansar images: - small az aperture- small BW

- Unavoidable target-like artefacts: solved- Energetic sidelobes : solved- Mixed natural-urban environment : globally solved

2-D (rg & az) analysisTF pol coherence

TF detection of ships from space

rTF-Pol

rTF-PolGoogle T11 T22 T33

Wild vs. built-up island discrimination

ALOS/PALSAR L band stripmap image San-Francisco bay

TF detection of ships from space

C. Hu, L. Ferro-Famil, C. Brekke, S. N. Anfinsen, "Ship detection using polarimetric RadarSat-2 data and multi-dimensional coherent Time-Frequency analysis" Proc. POLINSAR 2013

Norwegian coast-guard icebreaker

RadarSat 2 PolSAR stripmap images

Svalbard sea-ice test site

TF detection of ships in sea-ice

Where is the ship ?

T11 T22 T33

TF detection of ships in sea-ice

April 11

T11 T22 T33

TF detection of ships in sea-ice

April 11

TF detection of ships in sea-ice

The ship is in A !

T11 T22 T33

TF detection of ships in sea-ice

Polarimetric SAR Tomography principles

Polarimetric SAR Tomography principles

Cloude, S. & Papathanassiou, K. "Polarimetric SAR interferometry" IEEE TGRS, 1998Papathanassiou, K. & Cloude, S, "Single-baseline polarimetric SAR interferometry," IEEE TGRS 2001Cloude, S. & Papathanassiou, K. "Three-stage inversion process for polarimetric SAR interferometry", IEE RSN, 2003

Polarimetric SAR Tomography principles

Polarimetric SAR Tomography principles

Leading research centers in PolTomSAR: DLR (Ger.), PoliMi (It), IETR (Fra)

Tebaldini, S. "Algebraic Synthesis of Forest Scenarios From Multibaseline PolInSAR Data", IEEE TGRS 2009Tebaldini, S. "Single and Multipolarimetric SAR Tomography of Forested Areas: A Parametric Approach" IEEE TGRS 2010L. Ferro-Famil, Y. Huang, E. Pottier, “Principles and applications of polarimetric SAR tomography for the characterization of complex environments”, IAGS proceedings, 2014

Polarimetric SAR Tomography principles

Polarimetric SAR Tomography principles

Polarimetric SAR Tomography principles

, algebraic tensor decompositions

PolTomSAR imaging of a tropical forest

PolTomSAR imaging of a tropical forest

PolTomSAR imaging of a tropical forest

PolTomSAR imaging of a tropical forest

PolTomSAR imaging of a tropical forest

Huang, Y.; Ferro-Famil, L. & Reigber, A. "Under-Foliage Object Imaging Using SAR Tomography and Polarimetric Spectral Estimators", IEEE TGRS 2011

PolTomSAR imaging of concealed objects

PolTomSAR imaging of concealed objects

PolTomSAR imaging of concealed objects

IETR SAR sensors: the PoSAR project

PoSAR-GB (Ground-Based) PoSAR-FX (Fixed)

PoSAR-MC (Multi-Channel), airborne

o VNA basedo frequency bands: 3 GHz to 18 GHz

(C,X,Ku) o Short range (meters)o Very High spatial Resolution (cms) o Box + VNA = 40 Kg

Objectives3-D HR characterization of volumeso Local & structural propertieso Model development and

(un)validationo Space-borne mission concepts

PoSAR-GB: VHR 3-D SAR imager

o Collecting along parallel vertical passes 3D resolution capabilities

3D Imaging

Image Stack

Ground range [m]

Hei

ght

[m]

Intensity

1 2 3 4 5 6 7 8

-1.5

-1

-0.5

0

0.5

Tomogram

PoSAR-GB: VHR 3-D SAR imager

o ESA campaign, (ESA,ENVEO (A), UR1 (Fra), PoliMi (It)): Feb. 2013, Austrian Alps• Snowpit data, GPR, Airborne SAR, GBSAR

o X-Band: 4 GHz @ 10 GHzo Ku-Band: 4 GHz @ 14 GHzo VV Polarizationo dz ≈ 10 cm (Ku-band), 15 cm (X-Band) o dr ≈ 4 cm, dx ≈ 4 cm

LeutaschoNorth of Innsbrucko≈ 1150 m a.s.l.o70 cm snowpack

Rotmoos valleyoItalian bordero≈ 2300 m a.s.l. o140 cm snowpack

The ALPSAR campaign

y [m]

z [m

]

0 1 2 3 4 5 6 7-2

-1.5

-1

-0.5

0

0.5

y [m]

z [m

]

0 1 2 3 4 5 6 7-2

-1.5

-1

-0.5

0

0.5

Averaged vertical section – X-Band [dB]

Averaged vertical section – Ku-Band [dB]

• Visible interfaces• Low volume

contribution • Strongest returns:

bottom layers

Snowpit data:Snow depth= 140 cm !!

Rotmoos X & Ku bands

Real scenario

0 1 2 3 4 5 6 7 8 9-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

ground range [m]

heig

ht [

m]

apparent surface height

c

Resulting vertical section

Apparent surface height for a three-layered scenario

c

Propagation effects

y [m]

z [m

]

0 1 2 3 4 5 6 7-2

-1.5

-1

-0.5

0

0.5

n = 1

0 m

-0.54 m

-1.03 m

-1.40 m

n = 1.25

n = 1.25

n = 1.25

Averaged vertical section – X-Band [dB]

Rotmoos

y [m]

z [m

]

0 1 2 3 4 5 6 7-1.5

-1

-0.5

0

0.5

n = 1

0 m

-0.31 m-0.46 m

-0.70 m

n = 1.5

n = 1.5

n = 1.5

Averaged vertical section – X-Band [dB]

Leutasch

Propagation effects

• Vertical structure : consistent with hand-hardness

new parameter not yet handled by EM scattering models

Characterization

• Vertical structure : consistent with hand-hardness

teta [deg]

dept

h [m

]

Rotmoos Ku Normalized backscattered power [dB] - teta-depth

30 35 40 45 50 55

0

0.5

1

1.5

new parameter not yet handled by EM scattering models

Characterization

Sea ice campaign (with U. Tromso, Nor.)

Kattfjord, Norway, 2013

VHR GB tomography of sea ice

VHR GB tomography of sea ice

Sea-ice : large air bubbles embedded in ice

Ice-sea interface: rough surface

Brewster effect at large q : coherent sea response

VHR GB tomography of sea ice

- Null snow response : spherical grain hypothesis verified

- Strong sea-ice return: non spherical air bubbles embedded in ice

- Coherent ice-sea interface response: faceted rough interface

Conclusions

Modern SAR remote sensing is multi-modal

Signal diversity:Application or medium adapted (a priori)Enhanced separationMost useful: space & time

Statistical signal processing:High dimensionalUses data structure (tensors)May use sparsity

EM model validation/correction: important potential