34
IV) Mécanique ondulatoire 1) Fonction d’onde. A tout système quantique, on peut associer une fonction d’onde, , qui décrit l’état de ce système en respectant les contraintes imposée par les relations d’Heisenberg. Cette fonction peut être complexe et on l’exprime généralement en fonction des coordonnées d’espace et du temps. Dans ce cas, le module au carré de la fonction représente la densité de probabilité de trouver le système dans un volume dv de l’espace au temps t lorsqu’il se trouve dans l’état . é probabilit de densité * 2

IV) Mécanique ondulatoire

  • Upload
    talon

  • View
    34

  • Download
    1

Embed Size (px)

DESCRIPTION

IV) Mécanique ondulatoire. Fonction d’onde. A tout système quantique, on peut associer une fonction d’onde, y , qui décrit l’état de ce système en respectant les contraintes imposée par les relations d’Heisenberg. - PowerPoint PPT Presentation

Citation preview

Page 1: IV) Mécanique ondulatoire

IV) Mécanique ondulatoire

1) Fonction d’onde.A tout système quantique, on peut associer une fonction d’onde, , qui décrit l’état de ce système en respectant les contraintes imposée par les relations d’Heisenberg.Cette fonction peut être complexe et on l’exprime généralement en fonction des coordonnées d’espace et du temps.

Dans ce cas, le module au carré de la fonction représente la densité de probabilité de trouver le système dans un volume dv de l’espace au temps t lorsqu’il se trouve dans l’état .

Ou est la fonction complexe conjuguée de .

éprobabilitdedensité *2

Page 2: IV) Mécanique ondulatoire

Attention à l’élément de volume. Sa forme dépend du système de coordonnées.

Coordonnées sphériques

Exemples de fonctions d’onde : Fonction unidimensionnelle

Orbitale 1s de l’Hydrogène (fonction radiale)

Page 3: IV) Mécanique ondulatoire

Exemples de fonctions d’onde : Fonction bidimensionnelle

Densité de proba

Page 5: IV) Mécanique ondulatoire

Les coordonnées peuvent aussi être définies par le système étudié. Dans cette molécule triatomique, les trois coordonnées (dites internes de valence) : rij, rik et décrivent une géométrie donnée de la molécule.

La fonction d’onde exprimée dans ces coordonnées permet d’étudier la déformation de la molécule (au cours d’une réaction par exemple)

Page 6: IV) Mécanique ondulatoire

À partir de la densité de probabilité, on peut calculer la probabilité de trouver le système dans un volume, V, donné :

V

V dvP *

Comme le système existe quelque part dans l’espace représenté par les coordonnées, sa probabilité de présence doit être égale à 1 si on intègre sur tout l’espace.

1'

* espaceltoutV

V dvP

Cette relation porte le nom de relation de normalisation des fonctions d’ondes

Page 7: IV) Mécanique ondulatoire

On dira que deux fonctions d’ondes, 1et 2, exprimées dans le même système de coordonnées, sont orthogonales si la relation suivante est vérifiée :

0'

1*

2

'

2*

1 espaceltoutespaceltout

dvdv

Si ces fonctions sont normalisées on a donc :

ij

espaceltout

ji dv '

*

(delta de kronecker)

Notons que cette relation est semblable à la relation que vérifient deux vecteurs unitaires,i et j, d’une base orthonormée :

ijji

Page 8: IV) Mécanique ondulatoire

Principe de superposition

Soient 1, 2, .., n, n fonctions d’ondes orthonormées représentant n états possibles d’un système.Toute fonction , combinaison linéaire des n fonctions précédentes est aussi une fonction d’onde possible du système.

nnaaa ...2211

Les ai sont des constantes qui peuvent être complexes .

doit être une fonction normalisée et l’on montre que l’on doit avoir la relation suivante :

1*2

n n

nnn aaa

Page 9: IV) Mécanique ondulatoire

2) Observables et opérateurs

Toute l’information sur le système est compris dans la fonction d’onde ! On utilise des opérateurs pour extraire cette information.

Opérateur : Objet mathématique agissant sur une fonction pour donner une autre fonction : exemple

)(')( xfxfdx

d

opérateur

A chaque grandeur mesurable (appelée observable), on associe un opérateur différent. En général, la fonction créée par l’opérateur est différente de la fonction initiale :

Exemple : xxdx

d2)( 2

Page 10: IV) Mécanique ondulatoire

Cependant certaines fonctions sont invariantes à une constante près :

Exemple :

Ces fonctions particulières sont appelées fonctions propres de l’opérateur. Le coefficient constant est appelé valeur propre de l’opérateur, associé à la fonction propre correspondante.

xx eedx

d

Les seules valeurs mesurables d’une observable sont données par les valeurs propres de son opérateur associé. Ces valeurs propres sont réelles.

Rem 1 : On peut néanmoins définir des opérateurs qui ne sont pas des observables et qui ont des valeurs propres complexes.

Rem 2 : Les fonctions propres d’un opérateur sont des fonction orthonormées

Page 11: IV) Mécanique ondulatoire

Si l’on connaît toutes les fonctions propres, i i=1…n, d’un opérateur, on pourra toujours écrire la fonction d’onde, , décrivant le système par :

nnaaa ...2211

Le module au carré de chaque coefficient, ai, représente la probabilité de trouver le système dans l’état i et donc, la probabilité de mesurer une valeur égale à la valeur propre associée à i.

2

ia Probabilité de trouver le système dans l’état i.

Et la somme des probabilités est bien égale à un par normalisation de la fonction

ai : coeff complexe

Page 12: IV) Mécanique ondulatoire

EXEMPLE ! Le dé quantique

Page 13: IV) Mécanique ondulatoire

Imaginons un dé quantique (microscopique) posé à la surface d’un cristal. Supposons qu’une des mesures possibles sur ce système consiste à lire le numéro inscrit sur la face supérieure du dé.

Il y a 6 mesures possibles.

On mesure « 1 » et le système est dans l’état normalisé « Face1 »On mesure « 2 » et le système est dans l’état normalisé « Face2 »On mesure « 3 » et le système est dans l’état normalisé « Face3 »On mesure « 4 » et le système est dans l’état normalisé « Face4 »On mesure « 5 » et le système est dans l’état normalisé « Face5 »On mesure « 6 » et le système est dans l’état normalisé « Face6 »

Tant que la mesure n’a pas été faite, il FAUT considérer tous les résultats possibles. Si chaque face a une proba 1/6 d’être mesurée, l’état du système est alors :

66

15

6

14

6

13

6

12

6

11

6

1sup_ FaceFaceFaceFaceFaceFaceFace

Page 14: IV) Mécanique ondulatoire

La mesure donne un résultat et un seul. Après la mesure, le système se trouve dans un des états propres associés à cette mesure, avec un coefficient 1 (car on a déterminé le résultat de la mesure) et toute mesure ultérieure de la face supérieure donnera toujours le même résultat.

Si on a vu la face 5 alors

Face_sup=Face5

C’est ce que l’on appelle « la réduction du paquet d’ondes »

En mécanique quantique toute mesure a un effet potentiel sur le système mesuré car elle modifie la forme mathématique de la fonction d’onde.

Page 15: IV) Mécanique ondulatoire

Le chat de Schrödinger !

Dans une pièce fermée se trouve un chat, une fiole de cyanure, un marteau retenu par un fil et un détecteur quantique (un compteur Geiger). On y dépose un élément radioactif dont la période est de 60 minutes (c'est-à-dire qu'au bout d'une heure, l'atome a 50% de chance de se désintégrer).

Si la mécanique quantique s'applique dans ce cas, non seulement à la particule mais à tout ce qui coexiste dans la pièce, selon les lois statistiques des probabilités, lorsque l'heure est écoulée le chat doit se trouver dans un état indéterminé, ayant 50% de chance d'être vivant et 50% de chance d'être mort. Le chat doit donc être à la fois vivant et mort, la fiole étant à la fois entière et brisée !

Page 16: IV) Mécanique ondulatoire

Détermination des coefficients ai

Soit une fonction d’onde représentant l’état d’un système. Soit A un opérateur dont les fonctions propres i sont connues.La projection de sur i permet de déterminer le coefficient ai de la décomposition de sur les fonctions i.

nnaaa ...2211

dva iespace

i *

projection de sur i

Page 17: IV) Mécanique ondulatoire

Analogie géométrique

2211 aa jaiav

21

Fonctions orthonorméesd’un espace des états (espace de Hilbert)

Vecteurs orthonormésd’un espace vectoriel

i

j

a1

a2 v

iva1

jva

2

dvaespace

11*

dvaespace

22*

L’intégrale sur l’espace du produit d’une fonction par le complexe conjugué d’une autre tient le rôle du produit scalaire dans un espace vectoriel.

Page 18: IV) Mécanique ondulatoire

opérateurs et analogie géométrique

Page 19: IV) Mécanique ondulatoire

Valeur moyenne d’une observable

La mesure d’une observable représentée par l’opérateur A lorsque le système est dans l’état pourra donner différentes valeurs avec des probabilités différentes. La valeur moyenne des résultats mesurables est donnée par :

espace

dvAA *

NB : La valeur moyenne n’est pas nécessairement une valeur mesurable (la valeur moyenne apparaissant sur les faces d’un dé est 3,5 !)

Si est une fonction propre de l’opérateur A avec la valeur propre , on a :

espace

espaceespace

dv

dvdvAA

*

** A donc

Page 20: IV) Mécanique ondulatoire

Incertitude sur la mesure d’une observable :

L’incertitude, A, sur la mesure d’une observable A pour un système dans un état donné, , est obtenue par la formule :

22 AAA

Si est un état propre de A avec la valeur propre , on a :

2

*2

*

*2

22

espace

espace

espace

dv

dvA

dvAAA

A

D’où 0A

Page 21: IV) Mécanique ondulatoire

2) Opérateurs courants.

Opérateur position : X

Les fonctions propres de cet opérateurs décrivent une particule dont la position est parfaitement connue. Elles doivent donc être de la forme :

x

x0

(x-x0)

20x 20

x

Cette fonction est la fonction « delta » de Dirac. On la note(x-x0). x0 est la valeur propre associée à ce delta de Dirac.Il y a une infinité de valeurs de x0 possibles. Cette grandeur n’est pas quantifiée.

X (x-x0)=x0 (x-x0)

Page 22: IV) Mécanique ondulatoire

Une propriété des fonctions delta est que l’on a :

)()()()( 000 xxxfxxxf

Fonction de x Valeur de la fonction au point x0

On peut en déduire la forme analytique de l’opérateur position X :

xXExemple d’utilisation : on pourra calculer la valeur moyenne de la position d’une particule décrite par une fonction d’onde (x) en calculant :

dxxx xx )()(*

xx

0

(x-x0)

20x 20

x x0

f(x)=xy

f(x0)

Page 23: IV) Mécanique ondulatoire

Opérateur quantité de mouvement : p

Nous avons déjà montré que la quantité de mouvement d’une particule, p0, était liée au vecteur d’onde k0 de l’onde associée à la particule par 00 kp Cette onde est donc associée à une quantité de mouvement donnée et c’est donc une fonction propre de l’opérateur quantité de mouvement et on doit donc avoir :

epee xipxipxik /0

/ 000 pp

L’expression de l’opérateur p est donc :

dxdip

epepiiedx

di xipxipxip

/0

/0/ 000 )()( En effet :

(c’est un opérateur différentiel)

Page 24: IV) Mécanique ondulatoire

Opérateur énergie (Hamiltonien) :H

L’hamiltonien est un opérateur très important. Il permet de déterminer l’énergie totale du système. Il est composé de la somme de plusieurs termes correspondant chacun à une énergie d’origine différente (énergie cinétique, énergie potentielle, énergie de rotation, énergie électrostatique etc …)

* L’opérateur énergie cinétique, T, d’une particule se déplaçant le long de la direction x peut se déduire de la forme classique de l’énergie cinétique :

mp

vmEc22

12

2 Où m est la masse de la particule

On a alors

xdd

m 2

22

2T

Page 25: IV) Mécanique ondulatoire

Dans un espace tridimensionnel, l’opérateur prend la forme

22

2

2

2

2

2

22

22 mzdd

ydd

xdd

mT

Opérateur Laplacien

Un ensemble de n particules en mouvement (par exemple les noyaux des atomes d’une molécule se déformant) aura un opérateur énergie cinétique de la forme :

)(21

22

i

n

i ir

m

T

Où ri représente les coordonnées de chaque particule.

Page 26: IV) Mécanique ondulatoire

*L’opérateur énergie potentielle : V

L’énergie potentielle est liée aux forces agissant sur le système par la relation (ici en 3D):

kzVj

yVi

xVVgradF

V est généralement une fonction des coordonnées géométriques du système et ne comporte pas d’opérateurs différentiels. C’est un opérateur multiplicatif.

Page 27: IV) Mécanique ondulatoire

Exemples d’opérateurs énergie potentielle 1D :

Potentiel harmonique : )(21

02rrkV

Potentiel du ressort, très important dans de nombreux modèles physiques (liaison chimique).

Marche de potentiel :V=V0 si x >x0

V=0 sinonx0

Puit de potentiel

x

Barrière de potentiel

Page 28: IV) Mécanique ondulatoire

Exemples d’opérateurs énergie potentielle : coupes 2D

Les « chemins de réaction » utilisés en réactivité sont en fait des « trajectoires » sur les hypersurfaces de potentiels, menant des réactifs aux produits.

Page 29: IV) Mécanique ondulatoire

Recherche des énergies d’un système :

La même équation que précédemment permet de déterminer les états propres, i et les énergies possibles, Ei,

iii E HCette équation porte le nom d’équation de Schrödinger indépendante du temps

Hamiltonien

L’énergie d’un système quantique est très souvent quantifiée. Elle ne peut prendre que certaines valeurs. C’est souvent la forme du potentiel qui impose cette quantification (cf exemples plus loin)

Page 30: IV) Mécanique ondulatoire

Exemple de traitement classique d’un problème :

x

y

0

Données numériquesMasse de la bille : mRaideur du ressort : k

x

Densité de Probabilité

0

A un temps t fixé, la particule est entièrement localisée. Ici, la position du centre de masse est : x=0

2

2

( )( )

d x tF kx t m

dt L’équation de Newton

permet de déterminer x(t)2

1 ( )

2cin

dx tE m

dt

Energie cinétique

21( )

2V k x tEnergie potentielle

Quantité de mouvement( )dx t

p mdt

Page 31: IV) Mécanique ondulatoire

Exemple de traitement quantique d’un problème :

x

y

0

Données numériquesMasse de la particule : mRaideur du ressort (liaison chimique ?) : k

x

Densité de Probabilité

0

2( )x

Si (x) est la fonction d’onde du système à un temps t.La probabilité de trouver la particule entre x et x+dx est :

*( ) ( )x dx

x

P x x dx

Valeur moyenne de la position *( ) ( )x x x x dx

Opérateur position : X

Valeur moyenne de l’énergie cinétique2 2

*2

( ) ( )2cin

dE x x dx

m dx

Valeur moyenne de l’énergie potentielle* 21( ) ( )

2V x kx x dx

Opérateur énergie potentielle : V

Opérateur énergie cinétique : T

Valeur moyenne de la quantité de mouvement

*( ) ( )d

p x i x dxdx

Opérateur quantité de mouvement : p

Page 32: IV) Mécanique ondulatoire

Probabilité de mesurer une valeur donnée d’un opérateur (par exemple énergie) :

On cherche les valeurs propres et états propres de cet opérateur (indépendants de (x))En résolvant l’équation aux valeurs propres qui admet en général plusieurs solutions indicées par n:

( ) ( ) ( ) ( )n n n n

H x T V x E x

La probabilité de mesurer En lorsque le système est décrit par (x) est alors :

22*( ) ( ) ( )

n n nP E x x dx a

Et (x) peut se développer sous la forme :

( ) ( )n n

n

x a x

Page 33: IV) Mécanique ondulatoire

3) Observables indépendantes

Si deux observables représentées par deux opérateurs A et B sont indépendantes, la mesure de B, puis de A sur le système représenté par la fonction notée (AB)donnera le même résultat que la mesure de A, puis de B notée (BA)

)()( BAAB ou

0)( BAAB

Commutateur de AB, noté AB

Lorsque 0AB Les variables sont indépendantes

0AB Les variables sont conjuguées

Page 34: IV) Mécanique ondulatoire

Le produit des incertitudes sur les mesures de A et B sera :

espace

dvABBA *21

Exemple :

))(( xdxd

dxdxi xpX,

idxdx

dxdxi )(

donc ixpX,

Et espace

dvi *21xpX D’où

2 xpX (Heisenberg)