44
JOURNEE DES DOCTORANTS EN CHIMIE 2017 Vendredi, 10 novembre 2017 Programme et Résumés Collège Doctoral Européen Campus de l’Esplanade http://ed.chimie.unistra.fr/

JOURNEE DES DOCTORANTS EN CHIMIE 2017ed.chimie.unistra.fr/uploads/media/JDD_2017_Programme_complet.pdf · b Institut de Chimie et Procédés pour l'Energie, ... 1 Laboratoire d'Innovation

Embed Size (px)

Citation preview

JOURNEE DES DOCTORANTS EN CHIMIE 2017

Vendredi, 10 novembre 2017

Programme et Résumés

Collège Doctoral Européen Campus de l’Esplanade

http://ed.chimie.unistra.fr/

AVANT-PROPOS

La Journée des doctorants en chimie en est à sa 11ème

édition. Pour les doctorants déjà engagés dans le cursus doctoral, cette journée leur permet d’exposer leurs travaux de recherche. Pour les doctorants de 1ère année, elle fait office de journée de rentrée et leur donne l’occasion :

- D’avoir un aperçu des recherches menées dans les laboratoires de chimie de l’Université de Strasbourg et du CNRS,

- De nouer des contacts avec les doctorants plus anciens, notamment ceux d’autres

équipes et d’autres campus,

- De poser toutes les questions concernant le déroulement de la formation doctorale en chimie ainsi que l’après-thèse.

Je tiens à remercier toutes les personnes qui ont accepté de présenter leurs travaux de recherche lors de cette journée ainsi que celles qui ont fait des Journées précédentes un succès. Mes remerciements vont tout particulièrement à Nathalie Kostmann pour sa contribution centrale dans l’organisation de la JDC 2017.

Jean-Serge REMY Directeur de l’EDSC

Communications orales

Amphithéâtre du CDE

Communications orales

Auditorium du CDE

8 h 00 - 8 h 50

8 h 50 - 9 h 00

9 h 00 - 10 h 00

10 h 00 - 10 h 30

10 h 30 - 10 h 50 1A STOECKEL Marc-Antoine 1B RUNSER Anne

10 h 50 - 11 h 10 2A ZAITCEVA Olesia 2B MARGUERITE Laure

11 h 10 - 11 h 30 3A WOJCIECHOWSKI Joanna 3B ESTEOULLE Lucie

11h30 - 11 h 50 4A SENJEAN Bruno 4B CHAZARIN Blandine

11 h 50 - 12 h 10 5A MAZOUIN Laurent 5B BOTZANOWSKI Thomas

12 h 10 - 12 h 30 6A JIMENEZ CALVO Pablo Isai 6B BOURGUET Maxime

12 h 30 - 14 h 00

Communications orales

Amphithéâtre du CDE

Communications orales

Auditorium du CDE

14 h 00 - 14 h 207A SARANTI KARAMESINI

Dionysia7B ALOISI Adriano

14 h 20 - 14 h 40 8A DJEMILI Ryan 8B TANG Shuang-Qi

14 h 40 - 15 h 00 9A CARVALHO Mary-Ambre 9B DE PINA CARDOSO Bernardo

15 h 00 - 15 h 20 10A CORSO Romain 10B PETIT Benoît

15 h 20 - 15 h 50 11A TUFENKJAN Elsa 11B BELTRAN Frédéric

15 h 50 - 16 h 10

16 h 10 - 16 h 30 12A VUKOVIC Vuk 12B SIRINDIL Fatih

16 h 30 - 16 h 50 13A COLARD-ITTE Jean-Rémy 13B DDUNGU John

16 h 50 - 17 h 10 14A BESSI Matteo 14B HLAVAC Matus

17 h 10 - 17 h 30 15A CAVALLO Gianni 15B EHKIRCH Anthony

17 h 30 - 17 h 50 16A BATISSE Chloé 16B RETE Cristian-Victor

Journée des Doctorants en Chimie 2017 - 10 novembre 2017

PROGRAMME

Pause - Boissons

OuvertureExposé de rentrée de Jean-Serge REMY, directeur de l'EDSC

Discussion avec les doctorants ; présence de Mme Lrhezzioui (Espace Avenir)

Pause - Boissons

Buffet - Jardin intérieur du Collège Doctoral Européen

(pour ceux qui se sont inscrits)

Conférence - Amphithéâtre du CDE

" Advancing synthetic chemistry in biological media "

Alain WAGNER

Présentation de la Société Chimique de France (SCF)Angélique SIMON-MASSERON

TITRES DES

COMMUNICATIONS ORALES

LISTE DES COMMUNICATIONS ORALES

AMPHITHEATRE, COLLEGE DOCTORAL EUROPEEN

(1A) Organo-metallic hybrid perovskite for oxygen sensing M.-A. Stoeckel, M. Gobbi, S. Bonacchi , F. Liscio, L. Ferlauto, E. Orgiu, P. Samorì Institut de Science et d’Ingénierie Supramoléculaires (I.S.I.S.), 8 allée Gaspard Monge, 67083 Strasbourg, France

(2A) New methods for the synthesis of coumarin and thiocoumarin from acetylene compounds catalyzed by plantinium or H-zeolite catalysts O. Zaitceva*, D. Ryabukhin**, B. Louis*, V. Bénéteau*, P. Pale*, A. Vasilyev** *Laboratoire de Synthèse, Réactivité Organiques et Catalyse, UMR 7177, Université de Strasbourg, Institut le Bel, 4 rue Blaise Pascal, 67000 Strasbourg, France **Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia

(3A) Light-driven synthesis of sub-nanometric metallic Ru catalysts on TiO2

Joanna Wojciechowskaa,b, Elisa Gitzhoferb, Nicolas Kellerb, Jacek Gramsa, Agnieszka M. Rupperta a Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, ul. Żeromskiego

116, 90-924, Łódź, Poland b Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France

(4A) Site-Occupation Embedding Theory Bruno Senjean1, Naoki Nakatani2, Masahisa Tsuchiizu3, Emmanuel Fromager1 1Laboratoire de Chimie Quantique, Institut de Chimie, CNRS / Université de Strasbourg,1 rue Blaise Pascal, F-67000 Strasbourg, France 2 Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan 3 Department of Physics, Nara Women’s University, Nara 630-8506, Japan

(5A) Green’s function-based density-functional theory for lattice Hamiltonians Laurent Mazouin, Emmanuel Fromager Laboratoire de Chimie quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg, France

(6A) Synthesis, characterization and reactivity of photocatalytic Au-gC3N4 nanocomposites for Hydrogen production from water under solar-light P. Jiménez-Calvo1*, T. Cottineau1, V. Caps1, V. Keller1 1 ICPEES, Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé, CNRS/Université de Strasbourg, UMR 7515 (CNRS), 25 rue Becquerel 67087 Strasbourg Cedex, France

(7A) Sequence-coded polymers and their use as molecular barcodes for materials labelling Denise Karamessini1, Benoit. E. Petit1, Michel Bouquey1, Laurence Charles2, Jean-François Lutz1*

1 Precision Macromolecular Chemistry, Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France, E-mail: [email protected] 2 Aix-Marseille Université – CNRS, UMR 7273, Institute of Radical Chemistry, 13397 Marseille Cedex 20, France

(8A) Mouvements moléculaires contrôlés dans des rotaxanes porphyriniques Ryan Djemili, Stéphanie Durot, Valérie Heitz Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnelles, Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, 67070 Strasbourg

(9A) Porphyrin assemblies on hopg M.-A. Carvalho, H. Dekkiche, L. Kamarzin, B. Vincent, R. Ruppert, M. Kanesato, Y. Kikkawa UMR 7177 CNRS-Institut de Chimie, Université de Strasbourg, rue Blaise Pascal, F-67000 STRASBOURG National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, TSUKUBA, Ibaraki 305-8562 (Japan)

(10A) Molecular tectonics: gas adsorption and chiral uptake of (L)- and (D)- tryptophan by homochiral porous coordination polymers Romain Corsob, Donata Asnaghia, Patrick Larpentb, Irene Bassanettia, Abdelaziz Jouaitib, Nathalie Kyritsakasb, Angiolina Comotti*a, Piero Sozzania and Mir Wais Hosseinib a Department of Materials Science, University of Milano Bicocco, via R. Cozzi 55, Milan, Italy b Laboratoire de Chimie de Coordination Organique (UMR-CNRS 7140, Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, 67000 Strasbourg, France

(11A) Molecular tectonics based on pyridine and terpyridine bearing nucleobases Elsa Tufenkjian, Veronique Bulach, Aziz Jouaiti, Nathalie Kyritsakas, Mir Wais Hosseini Laboratory of Molecular Tectonics, UMR UDS-CNRS 7140, Univeristy of Strasbourg, Institut Le Bel, F-67000, Strasbourg, France

(12A) Exploiting Higher Order Aggregation Phenomena in Brønsted Acid Catalysis Vuk D. Vuković, Edward Richmond, Eléna Wolf, Florent Noёl, Jing Yi, Pavle Kravljanac, Joseph Moran1 1 Institut de Science et d’Ingénierie Supramoléculaires - UMR 7006, Strasbourg, France

(13A) Rheological studies of contractile gels based on light-driven rotary molecular motors Jean-Rémy Colard-Itté1, Quan Li12, Dominique Collin3, Gad Fuks1, Emilie Moulin1, Giacomo Mariani4, Eric Buhler4, Nicolas Giuseppone1* 1 SAMS research group, Institut Charles Sadron, University of Strasbourg, CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France 2 Current address: Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA 3 SYCOMMOR research group, Institut Charles Sadron, University of Strasbourg, CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France 4 MSC research group, UMR 7057 CNRS, University Paris 7 Diderot, 75205 Paris Cedex 13, France

(14A) Development of stimuli-responsive polyamidoamine-based hydrogels Matteo Bessi, Dr. Simone Silvestrini, Prof. Luisa De Cola Laboratoire de Chimie et des Biomatériaux Supramoléculaires (ISIS) - Université de Strasbourg, 8 Allée Gaspard Monge, 67083 Strasbourg Cedex

(15A) Synthesis of monodisperse sequence encoded copolymers using fast orthogonal chemistry Gianni Cavallo1, Abdelaziz Al Ouahabi1, Laurence Oswald1, Laurence Charles2, Jean-François Lutz1 1 Precision Macromolecular Chemistry, Institut Charles Sadron, UPR-22 CNRS, BP 84047, 23 rue du Loess 67034 Strasbourg Cedex 2, France 2 Aix-Marseille Universitė, CNRS, Institute of Radical Chemistry UMR 7273, Marseille, France

(16A) Towards the enantioselective C(sp3) difluoromethylation Chloé Batisse, Armen Panossian, Gilles Hanquet, Frédéric R. Leroux Université de Strasbourg, CNRS, LCM UMR 7509, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France

AUDITORIUM, COLLEGE DOCTORAL EUROPEEN

(1B) Luminescent lanthanide-loaded polymer nanoparticles as bright probes for cellular imaging Anne Runser1, Andreas Reisch1, Marcelina Cardoso Dos Santos2, Aline Nonat3, Loïc Charbonnière3, Andrey Klymchenko1, Niko Hildebrandt2 1 Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch France 2 NanoBioPhotonics, Institut d’Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud, CNRS, Orsay, France 3 Laboratoire d’Ingénierie Moléculaire Appliquée à L’Analyse, IPHC, UMR 7178

(2B) Development of a pharmacophoric deconvolution method to accelerate the discovery of antiplasmodial molecules from Rhodophyta Laure Margueritte1, Mélanie Bourjot1, Petar Markov2, Guillaume Bret1, Marc-André Delsuc2, Didier Rognan1, Catherine Vonthron-Sénécheau1 1 Laboratoire d'Innovation Thérapeutique UMR CNRS 7200 et 2 Institut de Génétique et de Biologie

(3B) Fluorocarbon Conjugates: New Concept to Increase the Metabolic Stability of Peptides Targeting GPCRs Lucie Esteoulle

(4B) Compared effects of beta-hydroxybutyrate and bear serum on the proteome of human muscle cells Blandine Chazarin1, Stéphanie Chanon2, Guillemette GAuquelin-Koch3, Stéphane Blanc1, Etienne Lefai2, Fabrice Bertile1 1 CNRS, Université de Strasbourg, IPHC-Laboratoire de Spectrométrie de Masse BioOrganique, 67087 Strasbourg, France 2 Laboratoire CarMeN, INSERM U1060 / INRA 1397, Université de Lyon, 69921 OULLINS, France 3 Centre National d’études Spatiales, CNES, 75001 Paris, France

(5B) Caractérisation d’anticorps immunoconjugués site spécifiques par spectrométrie de masse couplée à la mobilité ionique Thomas Botnawski1, Oscar Hernandez Alba1, Stéphane Erb1, Anthony Ehkirch1, David Rabuka2, Alain Beck3, Penelope Drake2, Sarah Cianferani1 1 Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France 2 Catalent Biologics West, 5703 Hollis Street, Emeryville, California 94530, United States 3 Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France

(6B) Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrometry and surface plasmon resonance approaches Maxime Bourguet1, Guillaume Terral1, Thierry Champion2, François Debaene1, Olivier Colas2, Elsa Wagner-Rousset2, Nathalie Corvaia2, Alain Beck2, Sarah Cianférani1 1 Laboratoire de Spectrométrie de Masse BioOrganique(LSMBO), IPHC, DSA, CNRS UMR7178, UdS, Strasbourg, France - [email protected] 2 Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France

(7B) Foldamers based on adamantane Adriano Aloisia, Kasper K. Sørensenb, Niels J. Christensenb, Knud J. Jensenb, Alberto Biancoa a University of Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique, Strasbourg, France b University of Copenhagen, Department of Chemistry, Thoarvaldsensvej 40, 1871 Frederksberg (Denmark)

(8B) Synthesis of 6- or 7-membered N-O heterocycles and their applications in medicinal chemistry Shuang-Qi Tang, Martine Schmitt, Frédéric Bihel* Laboratoire d’Innovation Thérapeutique, UMR 7200

(9B) Insight to the structure of cationic CNHC,Calkyl-nickelacycles and study as azole C–H functionalization catalysts B. de P. Cardoso, S. Shahane, J.-M. Bernard-Schaaf, M. J. Chetcuti, V. Ritleng Université de Strasbourg, UMR 7509, 25 rue Becquerel, 67087 Strasbourg, France

(10B) Chemoselective Synthesis Of Readable Sequence-Coded Polyurethanes

Benoît Petit

(11B) Spirocyclization from keto-ynamides: toward the synthesis of azacycles Frédéric Beltrana, Indira Fabreb, Ilaria Cionfinib, Laurence Miescha* a Laboratoire de Chimie Organique Synthétique, Institut de Chimie, CNRS-UdS UMR 7177, 4, rue Blaise Pascal CS 90032, 67081 Strasbourg, France b Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 75005 Paris, France

(12B) Gold and palladium catalyzed cascade reactions towards the synthesis of natural products Fatih Sirindil1, Patrick Pale1, Aurélien Blanc1 1 Laboratoire de Synthèse, Réactivité Organique et Catalyse, Institut de Chimie, UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France

(13B) Synthesis and characterisation of silicon-based nanoparticles for multi-modal in vivo imaging applications John Ddungu†*, Luisa De Cola†* † Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg * Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Germany

(14B) Synthesis and biological activity of predicted ALR2 inhibitors Matúš Hlaváčac, Lucia Kováčikováb, Gilles Hanquetc, Magdaléna Majekováb, Milan Štefekb, Andrej Boháčad* a Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15, Bratislava, Slovakia, [email protected] bInstitute of Experimental Pharmacology and Toxicology, SAS, Dúbravská cesta 6, 841 04, Bratislava, Slovakia c Université de Strasbourg, Ecole Européenne de Chimie, Polyméres et Metériaux (ECPM), Laboratoire de Synthése et Catalyse (UMR CNRS 7509), 25 rue Becquerel, 67087 Strasbourg cedex 2, France d Biomagi, Ldt., Mamateyova 26, 851 04, Bratislava, Slovakia

(15B) An online four-dimensional HICxSEC-IMxMS methodology for in-depth characterization of antibody drug conjugates Anthony Ehkircha, Valentina D’Atrib, Florent Rouvièrec, Oscar Hernandez-Albaa, Alexandre Goyonb, Olivier Colasd, Morgan Sarrutc, Alain Beckd, Davy Guillarmeb, Sabine Heinischc, Sarah Cianférania a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CRNS, IPHC UMR 7178, 67000 Strasbourg, France b School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet, 1, 1206 Geneva – Switzerland c Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR 5280, 69100 VILLEURBANNE, France d Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France

(16B) Reversible Native Chemical Ligation : A Facile Method to Identify Peptide Ligands for Protein Targets Cristian-Victor Rețea, Manickasundaram Samiappana, Valentina Garavinia, Yves Ruffa, Stéphane Erbb, Jean-Marc Strubb, Sarah Cianferanib, Daniel Funeriua, Nicolas Giusepponea a SAMS Research Group, Institut Charles Sadron (CNRS), Université de Strasbourg – 23 rue du Loess, 67034 Strasbourg Cedex 2, France b Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (CNRS) – 23 rue du Loess, 67037 Strasbourg Cedex 2, France

RESUME DE LA CONFERENCE

Advancing synthetic chemistry in biological media

Alain WAGNER, Directeur de Recherche

Université de Strasbourg, Conception et Application de Molécules Bioactives (CAMB) – UMR 7199,

74 Route du Rhin, 67401 Illkirch Cedex

E-Mail : [email protected]

Our research focuses on the development of chemical reactions that are compatible with complex

biological media. They are qualified as bioorthogonal when they can take place in a complex biological

medium without distorting it, or as bio-specific when they touch only a precise part of it.

Taking advantage of imaging and bioanalytical methods, we have developed chemometric

methodologies to picture the bio-reactivity profile of bond-forming and bond-breaking chemical

reactions. By applying this methodology, we were able to characterize novel functional groups and

reagents that exhibit a precise activation profile and to uncover unexpected biospecificity.

Applications to bioconjugation, in vivo drug neutralization and chemoselective metabolomic

approaches will be presented.

RESUMES DES

COMMUNICATIONS ORALES

SESSION A

Organo-metallic hybrid perovskite for oxygen sensing

M.-A. Stoeckel, M. Gobbi, S. Bonacchi , F. Liscio, L. Ferlauto, E. Orgiu, P. Samorì

Institut de Science et d’Ingénierie Supramoléculaires (I.S.I.S.), 8 allée Gaspard Monge, 67083,

Strasbourg, France

CNR - IMM Sezione di Bologna Via P. Gobetti 101 40129 Bologna Italy

Since its popularisation due to a power conversion efficiency increasing at an unprecedented rate in

solar cells applications[1], organo-metallic hybrid perovskite materials are continually under

investigation to find new applications for low-cost and up-scalable devices production.

Devices based on methylammonium lead iodide (MAPbI3) already proved the capability of that

compound to be used as resistive sensor to ammonia or optical one for humidity[2,3]. It is also

reported that MAPbI3 can strongly interact with oxygen gas, leading to a peculiar increase of its

photoluminescence[4]. It has been suggested that Pb-O bond formation could be responsible for that

enhancement[5].

Using various electrical measurements, we present here the electrical characterization of MAPbI3 in

controlled atmospheres containing different quantities of oxygen. It was found that the electrical

resistance of the perovskite is strongly related to the gas composition of its environment.

That effect was attributed to a fully reversible vacancies passivation of the perovskite, leading to a

less trapped material. The two-terminal device exhibit strong oxygen sensitivity with fast response

time and high detection range.

Finally, MAPbI3 oxygen sensitivity was found to be highly related to the morphology adopted in the

thin film, through the deposition process used to prepare devices.[6]

[1] X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016,

aaf8060.

[2] C. Bao, J. Yang, W. Zhu, X. Zhou, H. Gao, F. Li, G. Fu, T. Yu, Z. Zou, Chem Commun 2015, 51,

15426.

[3] L. Hu, G. Shao, T. Jiang, D. Li, X. Lv, H. Wang, X. Liu, H. Song, J. Tang, H. Liu, ACS Appl. Mater.

Interfaces 2015, 7, 25113.

[4] J. F. Galisteo-López, M. Anaya, M. E. Calvo, H. Míguez, J. Phys. Chem. Lett. 2015, 6, 2200.

[5] W. Kong, A. Rahimi-Iman, G. Bi, X. Dai, H. Wu, J. Phys. Chem. C 2016, 120, 7606.

[6] M.-A. Stoeckel, M. Gobbi, S. Bonacchi, F. Liscio, L. Ferlauto, E. Orgiu, P. Samorì, Adv. Mater. 2017,

29, DOI 10.1002/adma.201702469.

New methods for the synthesis of coumarin and thiocoumarin from acetylene

compounds catalyzed by platinum or H-zeolite catalysts

O. Zaitceva*, D. Ryabukhin**, B. Louis*, V. Bénéteau*, P. Pale*, A. Vasilyev**.

*Laboratoire de Synthèse, Réactivité Organiques et Catalyse, UMR 7177, Université de Strasbourg, Institut le Bel, 4 rue Blaise Pascal, 67000 Strasbourg, France. **Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia.

The first separation of coumarin was made in 1820, since then scientists extracted more than 1,400 natural

coumarins and came up with many ways to synthesize them. Coumarinic compounds are key fragments of a large

number of biologically active natural and synthetic compounds1. They found surprising properties with a large

number of anti-antibacterial2, antimalarial3, anticoagulation, antipsoriasis, anti-HIV4, antitumor agent5, cytotoxic6

(4-phenylfuranocoumarins), and also widely used as an intermediate product in organic synthesis7. Coumarins are

also used as ultraviolet absorbents8.

The main goal of our study relies on the development of new methods for preparing coumarin and

thiocoumarin derivatives 2 starting from acetylenic compounds 1.

Y zeolite USY zeolite

Vasilyev et al. have developed a

sophisticated platinum catalyst working together

with a silver co-catalyst. A nearly full conversion

of the acetylenic compounds could be achieved,

along with a good selectivity in corresponding

coumarins

Y zeolite - classical FAU Y zeolite synthesized by the method of the book:

H. Robson et al, Verified syntheses of zeolitic material, Elsevier, 2001

Zeolite USY CBV-720 produced by Zeolyst company

We tested a large number of different types of zeolites (mordenite, faujasite, beta, ferrierite and ZSM-5),

inorganic catalysts, superacids and several models of platinum catalysts, developed in the group of the professor A.

Vasilyev.We managed to achieve very good results and identify patterns. The results of the work will be presented

in the oral presentation at the conference.

1D. S. Ryabukhin, A.V. Vasilyev, Russian Chemical Reviews, 85(6), 637-665, (2016) 2 L. Verotta, Е. Lovaglio, G. Vidari, P.V. Finzi, M. G. Neri, A. Raimondi, S. Parapini,D. Taramelli, A. Riva,E. Bombardelli, Phytochemistry, 65, 2867–2879, (2004) 3 K. Kirandeep, J. Meenakshi, K. Tarandeep, J. Rahul, Bioorganic & Medicinal Chemistry, 17 (9), 3229-3256, (2009) 4 A. D Patil, A. J. Freyer, D. S. Eggleston, R. C. Haltiwanger, M. F. Bean, P. B. Taylor, M. J. Caranfa, A. L. Breen, H. R. Bartus, et al. Journal of Medicinal

Chemistry 36(26), 4131-4138, (1993) 5 R. D. H. Murray, Prog. Chem. Org. Nat. Prod., 58, 83 (1991) 6 D. Guilet, J.-J Helesbeux, D. Seraphin, T. Sevenet, P. Richomme, J. Bruneton, J. Nat. Prod., 64, 563–568, (2001) 7 M. E. Riveiro, N. De Kimpe, A. Moglioni, R. Vazquez, F. Monczor, C. Shayo, C. Davio, Curr. Med. Chem., 17, 1325 (2010). 8 A. M Asiri, Pigment & Resin Technology, 32(5), 326-330, (2003)

Two strategies

Heterogeneous catalysis over acidic zeolitesHomogeneous catalysis with Pt

complexes

Light-driven synthesis of sub-nanometric metallic Ru catalysts on TiO2

Joanna Wojciechowskaa,b

, Elisa Gitzhoferb, Nicolas Keller

b, Jacek Grams

a, and

Agnieszka M. Rupperta

a Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, ul.

Żeromskiego 116, 90-924, Łódź, Poland b Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS/University of Strasbourg, 25

rue Becquerel, 67087 Strasbourg, France

Heterogeneous catalysis plays a crucial role in various industrial processes and

requires in most of the cases the design of tailored supported metal nanoparticles as catalysts.

In this frame, the implementation of sustainable preparation methods with fine control in

terms of size distribution is of high interest.

We focused on the synthesis of Ru/TiO2 catalysts that are promising heterogeneous

catalysts in several key-reactions involved in the catalytic conversion of biomass towards

biofuels, fuel additives or more generally biochemicals. We report on an elegant method for

synthesizing metallic Ru nanoparticles on a TiO2 support carrier. The strategy was to use the

redox photo-activity of TiO2 for developing a low-temperature one-step photo-assisted

synthesis method as a sustainable alternative to classical wet impregnation of the support,

with no use of thermal treatment and external hydrogen, or any chemical reductant.

Ru/TiO2 catalysts were successfully synthetized at room temperature under solar light

with sub-nanometric, sharp and finely tunable Ru particle

size distribution (Fig 1. e.g. with 1 wt.% of Ru) using both

Ru(acac)3 and RuCl3 metallic salt precursors in water or in

water/methanol solutions.

The presence of metallic Ru was proved by means

of Transmission Electron Microscopy (TEM) and X-ray

Photoelectron Spectroscopy (XPS). The reaction

parameters were optimized for both metallic Ru precursors

with no differences in terms of Ru particle size

distribution and of surface properties. However, the

apparent kinetic constant for the metallic Ru nanoparticle

synthesis were much lower in the case of Ru(acac)3 vs.

RuCl3 salt, so that Ru(acac)3 was not suitable for preparing

highly loaded catalysts.

Depending on the precursor salt used and on the

photoactivity of the host TiO2 supports, we will highlight

the similarities and the differences in terms of particle size

distribution, synthesis kinetic, surface properties as well as

reaction mechanisms, so that hypothesis relative to the

role of the photogenerated electrons and holes in the

synthesis of metallic Ru from the corresponding

precursors salts will be proposed.

Additionally, we evidenced that a fine monitoring of the metal Ru particle size was

possible via a controlled growth of Ru nanoclusters under irradiation, by tuning important

reaction parameters such as pH or by extending the duration of the irradiation.

The French Embassy in Poland is thanked for supporting the PhD work of J.W via a French Government Grant.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

10

20

30

40

50

60

Fre

qu

en

cy

, %

Particle diameter, nm

d = 0.6 nm

Fig. 1 TEM image of the Ru/TiO2 catalyst and

Ru particle size distribution

Journée des doctorants, Communication

Site-Occupation Embedding Theory

Bruno Senjean1, Naoki Nakatani2, Masahisa Tsuchiizu3, and Emmanuel Fromager1

1Laboratoire de Chimie Quantique, Institut de Chimie, CNRS / Université de Strasbourg,1 rue Blaise Pascal, F-67000Strasbourg, France

2 Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa,Hachioji, Tokyo 192-0397, Japan 3 Department of Physics, Nara Women’s University, Nara 630-8506, Japan

keywords : Density functional theory, electron correlation, Hubbard Hamiltonian.

Modelling strongly correlated systems is still challenging for both quantum chemical and conden-sed matter physics communities. Such systems are for instance transition metal oxides, which depictmetal-insulator transitions or have interesting properties such as high-Tc superconductivity in cu-prates. In those cases, mean-field approaches (Hückel, Hartree Fock) give a wrong description of theproperties of the system. One needs to go beyond the mean field approximation :

• On the one hand, post-Hartree Fock theories (called Wave Function Theory (WFT)) have beendeveloped and perform with a good accuracy, but they are computationally expensive.• On the other hand, Kohn-Sham Density Functional Theory (KS-DFT) is a computationally low costmethod with a relatively good accuracy. However, the approximations made for the density functionaloften fail to describe strongly correlated systems.

To make the best compromise between computa-tion cost and accuracy, the Site-Occupation Em-bedding Theory (SOET)1,2 has been proposed.The SOET is an in-principle exact embeddingtheory which relies on the mapping of the fully-interacting system onto an impurity-interactingone, in contrast to the standard KS-DFT wherethe mapping is done onto a noninteracting system.

t t

t t t t t t t t

t t

t

t t

t

t t

t t

t

t t t

t t t t t t t

t t

t t

t t t t t t t t

t t

t t

t

t t

t t

t

t t t

t t t t t t t

t

U

U

t t

t t t t t t t t

t

t t

t t

t

t t

t t

t

t t t

t t t t t t t

t t

t t

t t t t t t t t

t t

t t

t

t t

t t

t

t t t

t t t t t t t

t

t t

t t t t t t t t

t

t t

t t

t

t t

t t

t

t t t

t t t t t t t

t t

t t

t t t t t t t t

t t

t t

t

t t

t t

t

t t t

t t t t t t t

t

For a proof of concept, model Hamiltonians are used because of their simplicity combined withtheir physical richness. In this communication I will present the general context of the method andthe usefulness of model Hamiltonians, followed by the results obtained using impurity correlationenergies (functional of the density) based on those models.3

[1] E. Fromager, Mol. Phys., 2015, 113, 419.[2] B. Senjean, M. Tsuchiizu, V. Robert and E. Fromager, Mol.

Phys., 2017, 115, 48–62.[3] B. Senjean, N. Nakatani, M. Tsuchiizu and E. Fromager,

arXiv preprint arXiv :1710.03125, 2017.

!

Green’s function-based density-functional theory for lattice Hamiltonians

Laurent Mazouin and Emmanuel Fromager

Laboratoire de Chimie quantique, Institut de Chimie, CNRS/Université de Strasbourg,

4 rue Blaise Pascal, Strasbourg, France

For decades density-functional theory (DFT) has been the method of choice for treating

infinite systems such as molecules between electrodes, semi-conductors or graphene. The

success of DFT is due to the fact that, in theory, it is possible to recover the real electronic

density from a non-interacting reference system and incorporate all the effects of electron

repulsion into an effective local, potential. This approach transforms a many-body problem into

a one-body problem and reduces the computational cost considerably. However, all practical

calculations rely on approximations and perform poorly for strongly correlated materials.

In this work, we describe a more advanced form of DFT for lattice Hamiltonians, site-

occupation embedding theory (SOET)1,2,3

, which corrects the flaws of traditional DFT. The

methodology of SOET consists in including some electron repulsion effects into the reference

system by switching on the Coulomb repulsion on one site (embedded impurity) while the other

sites (bath) remain non-interacting. The impurity can in principle be treated exactly and the

effects of electron repulsion in the bath are included into the self-energy, a frequency-

dependent, non-local potential. This self-energy yields a new Green’s function that gives access

to the exact electronic density and a whole range of other properties of the system such as the

ground-state energy, the conductivity or the ionization potential. Unfortunately, the exact self-

energy of the bath is not known explicitly and calculating it numerically is computationally

very demanding. So, one of the major challenges in SOET consists in developing a density-

functional self-energy of the bath that leads to a hybrid DFT combined with Green’s functions.

In a first step, we present approximate self-energies which are based on second-order

perturbation theory (SOPT), GW4,5

and the T-matrix4,6

and illustrate the performance of these

methods by applying them to the two-site Hubbard model.

References

1. E. Fromager, Mol. Phys. 113, 419 (2015).

2. B. Senjean, M. Tsuchiizu, V. Robert, and E. Fromager, Mol. Phys. 115, 48 (2017).

3. B. Senjean, N. Nakatani, M. Tsuchiizu, and E. Fromager, ArXiv:1710.03125 (2017).

4. R.M. Martin, L. Reining, and D.M. Ceperley, Interacting Electrons (Cambridge University Press, 2016).

5. P. Romaniello, F. Bechstedt, and L. Reining, Phys. Rev. B, 85, 155131 (2012).

6. P. Romaniello, S. Guyot, and L. Reining, J. Chem. Phys., 131, 154111 (2009).

The different ways of connecting the non-interacting, the embedded impurity and the physical system through the

self-energy.

Synthesis, characterization and reactivity of photocatalytic Au-gC3N4

nanocomposites for Hydrogen production from water under solar-light P. Jiménez-Calvo

1*, T. Cottineau

1, V. Caps

1, V. Keller

1 1 ICPEES, Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé, CNRS/Université de Strasbourg, UMR 7515 (CNRS), 25

rue Becquerel 67087 Strasbourg Cedex, France

*[email protected]

Photocatalysis is an innovative and promising technology due to its facility to directly

harvest solar energy to induce chemical transformation and generate solar fuels that stored

the energy. Indeed, the water dissociation (water-splitting) highlighted by Fujishima and

Honda in a photoelectrocatalytic cell opened a promising way to produce hydrogen using

light energy1.

In our study, we will focus on photocatalytic graphitic carbon nitride (g-C3N4)

semiconductors synthesized in Air, H2, NH3, N2 and Argon atmospheres under continuous

flow and decorated with gold nanoparticles (Au NPs). g-C3N4 is obtained by thermal

polycondensation reaction using N2-rich precursors2. Gold nanoparticles were deposited

directly onto the g-C3N4 support by chemical reduction at room temperature3.

Even if the main characterizations revealed the fingerprints of g-C3N4, the use of different

synthesis atmospheres led to specific characteristics in terms of light absorption, stability,

structural, morphological and surface properties. After optimization of Au NPs deposition,

performances were evaluated

towards photocatalytic H2

production from water using very

low amount of sacrificial agent (1

vol.%). All the Au/g-C3N4

composites loaded with 0,3wt%

Au NPs achieved H2 production

under artificial solar-light

irradiation at room temperature.

The best photocatalytic activity

performance was found for g-C3N4

material synthesized under NH3

atmosphere which exhibited H2

formation rate of 324μmol*h-1

*g-

1. The structure-activity correlation

of the different g-C3N4

photocatalysts will be discussed

depending on the synthesis used.

References 1

A. Fujishima, K. Honda, Nature 238, 1972, 37 2

Y. Wang, X. Wang and M. Antonietti, Angew. Chem., Int. Ed., 2012, 51, 68–89.

3 V. Caps et al, Catalysis Today, 235, 2014, 90-97

Sequence-coded polymers and their use as molecular barcodes for

materials labelling

Denise Karamessini1, Benoit. E. Petit1, Michel Bouquey1, Laurence Charles2, Jean-François Lutz1*

1Precision Macromolecular Chemistry, Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, 67034 Strasbourg

Cedex 2, France, E-mail: [email protected].

2 Aix-Marseil le Université – CNRS, UMR 7273, Institute of Radical Chemistry, 13397 Marseille Cedex 20, France

Anti-counterfeit technologies have become very important during the last decades, for example in the

domains of food and pharmaceutical packaging, paper currency, luxury products and high-value

artworks. These technologies require novel techniques for tracing commercial products that are

extremely difficult to be copied but very efficient for discriminating original products from fraud ones. In

this context, sequence-coded polymer barcodes have recently been proposed as an interesting new

option. In the present work, digitally-encoded polyurethanes, synthesized by orthogonal solid-phase

synthesis, were tested as molecular barcodes. The inclusion of these sequence-coded labels into

commodity plastics,such as polystyrene films, photopolymerized 3D methacrylate prints and intraocular

implants, was studied and their extraction was investigated by mass spectrometry and NMR. In all cases,

the labels were efficiently extracted from the plastic materials and their coded sequences were easily

deciphered by tandem mass spectrometry. These results indicate that sequence-coded polyurethane

tags represent a promising class of polymers for product labeling and traceability.

References

1. J.-F. Lutz, M. Ouchi, D. R. Liu, M. Sawamoto, Science 2013, 341,

2. H. Colquhoun, J.-F. Lutz, Nat. Chem. 2014, 6, 455.

3 H. Mutlu, J.-F. Lutz, Angew. Chem., Int. Ed. 2014, 53, 13010.

4 U. S. Gunay, B. E. Petit, D. Karamessini, A. Al Ouahabi, J.-A. Amalian, C. Chendo, M. Bouquey, D. Gigmes, L.

Charles, J.-F. Lutz, Chem 2016, 1, 114-126.

5 D. Karamessini, B. E. Petit,Michel Bouquey,L. Charles, J.-F. Lutz, Adv. Funct. Mater2017, 27, 1604595

Mouvements moléculaires contrôlés dans des rotaxanes

porphyriniques

Djemili Ryan

Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnelles

Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, 67070 Strasbourg

Directrice de thèse : Pr. Valérie Heitz

Co-encadrante : Dr. Stéphanie Durot

Les molécules imbriquées mécaniquement (MIM) sont des assemblages de plusieurs sous-unités covalentes liées entre

elles non pas par des liaisons covalentes, mais par l’incapacité qu’ont ces sous-unités à se désentrelacer. Il existe deux

grands archétypes de MIM : les caténanes et les rotaxanes.1 Les rotaxanes sont composés, dans leur forme la plus

simple appelée [2]rotaxane, d’un axe linaire passant à travers un macrocycle et terminé par des bouchons volumineux

destinés à éviter le désenfilage.

La synthèse et l’étude des MIM, au départ considérées comme une curiosité ésotérique, ont connu depuis trois

décennies un essor considérable et ce, grâce à l’utilisation des MIM dans de nombreuses applications.2

L’objectif fixé est de synthétiser un [2]rotaxane dont l’anneau traditionnel sera remplacé par une cage moléculaire

synthétisée au laboratoire (Figure 1).3

Figure 1 : Schéma du [2]rotaxane.

Les cages moléculaires sont des architectures possédant une structure creuse. Un nouveau microenvironnement

chimique dont les propriétés diffèrent de celles de la solution est ainsi créé.4,5

L’originalité du rotaxane envisagé réside en l’utilisation d’une cage possédant une taille de cavité variable.

Dans cette optique, la recherche de molécules invitées encapsulées à l’intérieur de la cavité de la cage et la synthèse

des différents éléments composant le [2]rotaxane seront présentés.

Références

(1) J. F. Stoddart, Chem. Soc. Rev., 2009, 38, 1802.

(2) J. E. M. Lewis, M. Galli, S. M. Goldup, Chem. Commun., 2017, 53, 298.

(3) L. Schoepff, L. Kocher, S. Durot, V. Heitz, J. Org. Chem., 2017, 82, 5845.

(4) J. Kang, J. Rebek, Jr., Nature, 1997, 385, 50.

(5) Yoshizawa, M.; Tamura, M.; Fujita, M., Science, 2006, 312, 251.

(6) L. Kocher, S. Durot, V. Heitz, Chem. Commun., 2015, 51, 13181.

PORPHYRIN ASSEMBLIES ON HOPG

M.-A. CARVALHO, H. DEKKICHE, L. KARMAZIN, B. VINCENT, R. RUPPERT,

M. KANESATO, Y. KIKKAWA

UMR 7177 CNRS-Institut de Chimie, Université de Strasbourg, rue Blaise Pascal, F-67000 STRASBOURG National Institute

of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, TSUKUBA,

Ibaraki 305-8562 (Japan)

[email protected]

Porphyrins are extensively studied due to their exceptional electronic and optical properties.

Porphyrins bearing alkyl or alkoxy chains can be well organised on surfaces using Van der Waals

interactions,1 hydrogen bonds

2 or coordination bonds.

For example, coordination bonds have been used to

assemble porphyrins possessing two or more external coordination sites leading to wires or nanosheets.3

However, these wires do not present particular electronic properties because the external coordination

sites used prevented electronic interactions between the porphyrins.

Our group has designed various dimers and oligomers of porphyrins linked by metal ions through

external coordination sites.4 Strong electronic interactions between the subunits were demonstrated by

electronic spectroscopy, electrochemistry, energy transfer studies and DFT calculations.5 Adding alkyl or

alkoxy chains to our porphyrin dimers allowed their ordered assembly at the solid/liquid interface on

HOPG, as visualized by STM. Using an unusual method, transition metal-linked porphyrin oligomers

were obtained on HOPG by adding a metal cation to well-organized hydrogen bonded assemblies of

porphyrins bearing two external coordination sites. Electronic delocalization along these self-assembled

wires is expected, as demonstrated for dimers and finite oligomers in solution.

Porphyrin dimer and STM image of a dimer on HOPG.

1 J.Otsuki , E. Nagamine , T. Kondo , Iwasaki K., M. Asakawa , K. Miyake. J. Am. Chem. Soc. 2005, 127, 10400.

2 R. Sakamoto, K. Takada, T. Pal, H. Maeda, T. Kambe, H. Nishihara, Chem. Comm., 2017, 53, 5781.

3 M. E. Garah, N. Marets, M. Mauro, A. Aliprandi, S. Bonacchi, L. D. Cola, A. Ciesielski, V. Bulach, M. W. Hosseini, P.

Samori, J. Am. Chem. Soc., 2015, 137, 8450.

4 S. Richeter, C. Jeandon, J.-P. Gisselbrecht , R. Ruppert, H. J. Callot H. J. Am. Chem. Soc. 2002, 124, 6168-6179.

5 H. Dekkiche , A. Buisson, A. Langlois, P.-L. Karsenti, L. Ruhlmann, R. Ruppert, P. Harvey. Chem. Eur. J. 2016, 22, 10484.

N

N

N

N

Ni

X

NH

Ar

Ar

Ar N

N

N

N

Ni

X

HN

Ar

Ar

Ar

Pd

Ar =

Ar =

t-Bu

t-Bu

OC12H25

X = O, S

Spherical

cavity

Molecular tectonics: gas adsorption and chiral uptake of (L)- and (D)- tryptophan by homochiral

porous coordination polymers

Romain Corsob, Donata Asnaghi

a, Patrick Larpent

b, Irene Bassanetti

a, Abdelaziz Jouaiti

b, Nathalie Kyritsakas

b,

Angiolina Comotti*a, Piero Sozzani

a and Mir Wais Hosseini

b

a Department of Materials Science

University of Milano Bicocco, via R. Cozzi 55, Milan, Italy b Laboratoire de Chimie de Coordination Organique (UMR-CNRS 7140)

Université de Strasbourg, Institut Le Bel, 4 tue Blaise Pascal, 67000 Strasbourg, France

[email protected]

Since several years, the interest in coordination networks or metal-organic frameworks (MOFs)

increases due to their structural features (dimension, geometry, topology) and their properties.1,2

These

porous coordination networks are composed of organic tectons and metallic nodes. The design, formation

and description of such periodic architectures may be explored by the approach called Molecular Tectonic.3-5

Combinations of a series of enantiomerically pure organic tectons bearing four carboxylate moieties

(figure 1) with Zn(II) or Cu(II) cations lead to the formation of isostructural chiral porous crystals. The

crystalline materials have been characterized by X-ray diffraction on single crystals as well as by powder X-

ray diffraction.

Fig.1: Different tectons used

In all cases studied, the X-Ray diffraction investigations revealed their isostructural nature. The

porous crystals (figure 2) display two types of cavities differing by their volumes, one spherical (small

cavity) and the other of the ovaloid type (larger cavity).

Fig.2: DRX structure of the networks

Gas sorption of N2 and CO2 propensity of the porous crystalline materials was investigated by BET.

Uptake of (L)- and (D)-tryptophan in pores was also studied and a preference for (L)-tryptophan by RR-

alkyl-MoF has been observed.6

References

1. Chem. Rev. 2012, 112, MOFs special issue.

2. Chem. Soc. Rev. 2014, 43, themed issue on MOFs.

3. Mann, S. Nature 1993, 365, 499−505.

4. Simard, M.; Su, D.; Wuest, J. D., J. Am. Chem. Soc. 1991, 113, 4696−4698.

5. Hosseini, M. W. Acc. Chem. Res. 2005, 38, 313-323

6. Asnaghi, D.; Corso, R.; Larpent, P.; Bassanetti, I.; Jouaiti, A. ; Kyritsakas, N. ; Comotti, A. ; Sozzani, P,.

Hosseini, M. W., Chem. Comm., 2017, 53, 5740-5743

Ovaloïd cavity

Molecular tectonics based on pyridine and terpyridine bearing

nucleobases

Elsa Tufenkjian, Veronique Bulach, Aziz Jouaiti, Nathalie Kyritsakas, Mir Wais Hosseini Laboratory of Molecular Tectonics, UMR UDS-CNRS 7140, Univeristy of Strasbourg, Institut Le Bel, F-

67000, Strasbourg, France

Molecular tectonics is a domain of supramolecular chemistry dealing with the formation of one, two and

three-dimensional periodic architectures. These periodic architectures or Molecular Networks result from

self-assembly processes of building blocks referred to as tectons. Tectons offer complementary interaction

sites leading to a recognition pattern via specific interactions.(1) Coordination and H-bonds are among the

most widely used interactions in molecular tectonics due to their directionality that should in principle

allow a certain prediction of the topology of the final assembly. Coordination bonds take place between

organic tectons bearing coordinating sites and a metal center generating coordination networks.(2) H-

bonds, although less energetic, is directional and can thus be used as a secondary recognition site. (3) Our

interest is to use both types of intermolecular interactions for the design of tectons bearing both

coordination and hydrogen bond donor/acceptor sites. One of the most used Hydrogen bonding pattern

of the Watson-Crick type is based on complementary nucleobases (NBs).(4) Our aim is to connect

coordinating site such as pyridine or terpyridine to NBs and to use these tectons to build H-bonded

coordination networks of various topology in the presence of metal cations. During this talk, we will

present the synthesis of a library of new tectons based on pyridine or terpyridine moiety and nucleobases

as well as the generation of H-bonded coordination networks. (Figure 1)

Figure 1: Coordination networks obtained upon combining a thymine-terpyridine based tecton with Cd(NO3)2 (left) and

Cu(CH3OO)2(right)

(1) (a) J.M. Lehn, Pure Appl. Chem., 1978, 365,499, (b) S. Mann, Nature, 1993, 365, 499-505, (c) M. W. Hosseini, Chem. Comm., 2005, 5825.

(2) (a) B.F. Abrahams, B. F. Hoskins, R. Robson, J. Am. Chem. Soc., 1991, 113, 3606, (b) M. W. Hosseini, Acc. Chem. Res., 2005, 38, 313-323.

(3) (a) M. Simard, D. Su, J. D. Wuest, J. Am. Chem. SOC. 1991, 113, 4696-4698, (b) K. Fujimoto et al.,Materials Science and Engineering,

2007, 27,142-147, (c) Sargsyan, A. A. Schatz, J. Kubella, M. Balaz, Chem. Commun, 2013, 49, 1020-1022.

(4) a) J. D. Watson, F.H. C. Crick, Nature, 1953, 171, 737-738, (b) W. Saenger,principles of Nucleic Acid Structures, Springer-Verlag, New

York,1983, (c) J. L. Sessler, C.M. Lawrence, J. Jayawickramarajah, Chem. Soc. Rev.2007, 36, 314-325.

Exploiting Higher Order Aggregation Phenomena in Brønsted Acid Catalysis

Vuk D. Vuković, Edward Richmond, Eléna Wolf, Florent Noёl, Jing Yi, Pavle Kravljanac, Joseph Moran1

1Institut de Science et d’Ingénierie Supramoléculaires - UMR 7006, Strasbourg, France

Email: [email protected] and [email protected]

Abstract

The catalytic activation of alcohols towards dehydrative bond formation in the absence of pre-activation

has become a major research interest over the past two decades.[1,2,3]

In this communication, the

importance of aggregation in Brønsted acid catalyzed Friedel-Crafts reactions of highly electronically

deactivated primary benzylic alcohols is presented.[4]

A similar approach is described regarding the

activation of propargylic alcohols as a new route to selectively access CF3-substituted allenes and indenes

from the same starting compounds. Finally, we discuss catalytic Friedel-Crafts reactions of unactivated

and donor-acceptor cyclopropanes.

Figure 1. Chemical transformations achieved thanks to Brønsted acid induced aggregation in 1,1,1,3,3,3-

hexafluoroisopropanol (HFIP)

Acknowledgments

V. D. V. thanks the French Government for a PhD scholarship.

References

[1] For a recent review, see: Dryzhakov, M.; Richmond, E.; Moran, J. Synthesis 2016, 935.

[2] Constable D. et al. Green Chem. 2007, 9, 411.

[3] For selected recent examples, see: (a) Zheng H., Ghanbari S., Nakamura S., Hall D. G. Angew. Chem.

Int. Ed. 2012, 51, 6187; (b) Mo X., Yakiwchuk J., Danserau J., McCubbin J. A., Hall D. G. J. Am. Chem.

Soc. 2015, 137, 9694; (c) Dryzhakov, M.; Hellal, M.; Wolf, E.; Falk, F.; Moran, J. J. Am. Chem. Soc.

2015, 137, 9555.

[4] Vuković, V. D.; Richmond, E.; Wolf, E.; Moran, J. Angew. Chem. Int. Ed. 2017, 56, 3085.

Rheological studies of contractile gels based on

light-driven rotary molecular motors.

Jean-Rémy Colard-Itté1, Quan Li1,2, Dominique Collin3, Gad Fuks1, Emilie Moulin1, Giacomo

Mariani4, Eric Buhler4, Nicolas Giuseppone1*

1SAMS research group, Institut Charles Sadron, University of Strasbourg, CNRS, 23 rue du Loess, BP 84047,

67034, Strasbourg Cedex 2, France. 2Current address: Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA

3SYCOMMOR research group, Institut Charles Sadron, University of Strasbourg, CNRS, 23 rue du Loess, BP

84047, 67034, Strasbourg Cedex 2, France.

4MSC research group, UMR 7057 CNRS, University Paris 7 Diderot, 75205 Paris Cedex 13, France.

*E-mail address: [email protected]

The ability to create out-of-equilibrium collective molecular movements and to transfer them

up to a macroscopic scale is of particular interest to access a firmly new generation of active

materials. Recently, we have integrated rotary molecular motors as reticulation nodes in

polymer networks.1 By designing chemical connections with proper topologies, and upon light

activation, the rotation of the motors results in the winding of the polymer chains at the local

scale, and in the contraction of the material at higher length scales. The overall process produces

an effective mechanical work by converting light energy into elastic energy within polymer

entanglements. We have also shown that, by using additional molecular elements (e.g.

modulators), one can release the stored energy and reset the system to its expanded state which

can thus function as a muscle-like material driven out-of-equilibrium at all scales.2 We now

wish to present the first rheological and neutron scattering studies performed on these active

materials. We will describe shearing experiments achieved with a piezo-rheometer on two

different sets of gels. In the first set, we varied the length of the polymer chains between the

motors; and in the second set, we varied the polymer molar concentration for a given molecular

weight. For each set, the shear modulus of the gel was measured before and after light

irradiation. The experimental results show that the ratio of the modulus is directly correlated to

the ratio of volume before and after actuation of the material. In addition, the material presents

a maximum of efficiency for a given polymer mass concentration, which allows the prediction

of optimal systems based on their critical overlap concentration. Neutron scattering studies also

reveal the major importance of inhomogeneities in the macroscopic contraction process.

1- Li, Q., Fuks, G., Moulin, E., Maaloum, M., Rawiso, M., Kulic, I., Foy, J. T., Giuseppone N., Nature

Nanotech. 2015, 10, 161-165.

2- Foy, J. T., Li, Q., Goujon, A., Colard-Itté, J.-R., Fuks, G., Moulin, E., Schiffmann, O., Dattler, D.,

Funeriu, D. P., Giuseppone, N., Nature Nanotech. 2017, 12, 540-545.

[1] M.C. Koetting et al. Mater Sci Eng R Rep 2015, 93, 1–49

[2] F. Fiorini et al. Small 2016, 12, 4881–4893

[3] W. T. Tan et al. Electroanalysis 2008, 20, 2447–2453

Development of stimuli-responsive polyamidoamine-based hydrogels

Matteo Bessi, Dr. Simone Silvestrini, Prof. Luisa De Cola

Laboratoire de Chimie et des Biomatériaux Supramoléculaires

ISIS - Université de Strasbourg

8 Allée Gaspard Monge, 67083 Strasbourg Cedex

Hydrogels are hydrophilic, cross-linked molecular structures capable of storing huge

amounts of water and are considered promising systems for the development of new hybrid

materials. Stimuli-responsive hydrogels have unique features, in that their chemical and

mechanical properties can be tuned through external stimuli such as changes in temperature, pH

or irradiation with light. This has made them popular in the material science community and they

are being proposed for the development of sensors, drug delivery systems, and prostheses.[1]

Our group has recently reported the formulation of a biocompatible, non-stimuli-

responsive hydrogel. The polyamidoamine backbone shown in the figure, is formed without the

need for initiators through aza-Michael condensation of methylene-bis-acrylamide (MBA) and g-

aminobutyric acid (GABA), with pentaethylenehexamine (PEHA) serving as a cross-linker.

Interestingly, this hydrogel is able to release small molecules and allows cells proliferations.[2]

Figure 1: Synthesis scheme of the polyamidoamine hydrogel (left); Reaction scheme for the oxidation of methionine with C60-

hydrogel under light exposure (right).[3]

In this presentation, the preparation of new stimuli-responsive hydrogels will be outlined

starting from the general molecular structure described above, by substituting one or more of its

constituents. The new monomers designed to this end bear both the functional groups necessary

to the polymerization of the polyamidoamine chains and structures that can (i) generate singlet

oxygen upon light irradiation, (ii) disrupting or changing the wettability of the polymer matrix by

getting oxidized or (iii) allow for the transport of an electrical signal through the hydrogel.

Synthesis of monodisperse sequence encoded copolymers using fast orthogonal chemistry

Gianni Cavallo1, Abdelaziz Al Ouahabi

1, Laurence Oswald

1, Laurence Charles

2, Jean-François

Lutz1

1 Precision Macromolecular Chemistry, Institut Charles Sadron, UPR-22 CNRS, BP 84047, 23 rue du Loess 67034 Strasbourg Cedex 2, France,

2 Aix-Marseille Universitė, CNRS, Institute of Radical Chemistry UMR 7273, Marseille, France

Information containing polymers constitute a new class of molecules that enables data storage at the molecular

level.1 These linear macromolecules are built up using two comonomers, representing bit 0 and 1 respectively, thus

allowing binary coding. Several strategies for the efficient synthesis of information containing polymers have been

developed by J.-F. Lutz and coworkers2. For instance, polymers synthesized by phosphoramidite protocols

3 as well

as the new class of poly(alkoxy amine amide)s4 show interesting features. Here we present a new strategy for the

iterative synthesis of information-containing polymers based on two chemoselective steps, namely the

phosphoramidite coupling and a radical-radical coupling. This orthogonal strategy does not employ protecting

groups and utilizes two different types of building blocks: a spacer which contain nitroxide and hydroxy functions

and a coded monomer, defining the bits (0 and 1), that exhibit phosphoramidite and alkyl bromide functional

groups. Moreover, the encoded sequences can be easily analyzed by tandem mass spectrometry. Hence,

sequence-coded poly(alkoxyamine phosphodiester)s represent a promising new class of information containing

macromolecules

References

1. Jean-François Lutz, Jean-Marie Lehn, E.W. Meijer and Krzysztof Matyjaszewski, Nat. Rev. Mat. 24, 16024 (2016)

2. Jean-François Lutz, Macromolecules, 48, 4759-4767 (2015)

3. Abdelaziz Al Ouahabi, Laurence Charles, and Jean-François Lutz, J. Am. Chem. Soc. 137, 5629-5635 (2015) 4. Raj Kumar Roy, Anna Meszynska, Chloė Laure, Laurence Charles, Claire Verchin & Jean-François Lutz, Nat. Commun.6:7237 (2015)

Towards the enantioselective C(sp3) difluoromethylation

Chloé BATISSE, Armen PANOSSIAN, Gilles HANQUET and Frédéric R. LEROUX

Université de Strasbourg, CNRS, LCM UMR 7509, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France.

e-mail: [email protected], [email protected], [email protected]

Despite being largely absent from natural products and biological processes, fluorine plays an increasingly important role in numerous areas of our daily life. Decades of chemical research have shown that the fluorine atom and the fluorine-containing motifs profoundly impact the structure, reactivity and function of organic and inorganic molecules.1 Fluorine containing compounds are nowadays synthesized in pharmaceutical, agrochemical, polymer and electronic researches on a routine basis. A logical consequence of these highly desirable properties is that more than 200 pharmaceuticals and 155 agrochemicals (among the 920 registered) containing at least one fluorine atom are currently on the market, which accounts for approximately 25% of the bioactive compounds.2 The presence of fluorine atoms or fluoroalkyl groups in bioactive molecules can indeed deeply modify their physical, chemical and biological properties.3 For instance, it can enhance their metabolic stability, lipophilicity, bioavailability and membrane permeability as well as modify their acidity or basicity. In contrast to the enantioselective trifluoromethylation, the enantioselective introduction of a difluoromethyl group is in its infancy.4 We wish here to describe a new way to access enantioenriched difluoromethylated molecules using a chiral inductor. This inductor can perform central-to-central chirality transfer and can therefore lead to building-blocks of high added value.

Scheme: Strategy to access highly enantioenriched difluoromethylated alcohols

References 1. (a) J. P. Bégué, D. Bonnet-Delpon, Bioorganic and Medicinal Chemistry of Fluorine; John Wiley & Sons, Inc.: Hoboken, 2008; (b) Fluorine In Medicinal Chemistry And Chemical Biology (Ed.: I.Ojima), John Wiley & Sons Ltd., 2009. 2. Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A. and Liu, H

Chem. Rev. 2014, 114, 2432-2506. 3. (a) K. L. Kirk, J. Fluorine Chem. 2006, 127, 1013-1029; (b) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881; (c) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320-330. 4. (a) Shibata, N.; Mizuta, S.; Kawai, H. Tetrahedron: Asymmetry 2008, 19, 2633-2644; (b) C. Ni, F. Wang, J. Hu, Beilstein J. Org. Chem. 2008, 4, 21.

RESUMES DES

COMMUNICATIONS ORALES

SESSION B

Luminescent lanthanide-loaded polymer nanoparticles as bright probes for

cellular imaging

Anne Runser1, Andreas Reisch1, Marcelina Cardoso Dos Santos2, Aline Nonat3, Loïc

Charbonnière3, Andrey Klymchenko1 and Niko Hildebrandt2.

1 Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch France

2 NanoBioPhotonics, Institut d’Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud, CNRS, Orsay, France

3 Laboratoire d’Ingénierie Moléculaire Appliquée à L’Analyse, IPHC, UMR 7178 CNRS, Université de Strasbourg, 25 rue Becquerel, 67000 Strasbourg France

E-mail: [email protected]

Lanthanides have emerged over the last years as attractive probes for bioimaging.[1] Indeed the exceptionally long lifetime of lanthanides as well as their large Stokes shift can be used to overcome autofluorescence and light scattering issues in biological samples. However, they are strongly limited by their low extinction coefficients providing a limited brightness. Nevertheless, a superior brightness might be achieved by loading a large quantity of the emitters inside polymer nanoparticles (NPs).[2]

Here, we propose an approach to design bright luminescent probes by encapsulating a lanthanide complex inside a polymer matrix. We previously described a charge-controlled nanoprecipitation for making ultrasmall polymer NPs allowing an efficient encapsulation of high amounts of hydrophobic fluorescent dyes.[3,4] Using this approach, we assembled three series of poly(methyl methacrylate) (PMMA) based NPs with different sizes (10, 20 and 30 nm) encapsulating up to 40 wt% of an Eu complex (AMN-106). The resulting NPs were characterized with respect to their size, absorbance and luminescence properties. These lanthanide-loaded polymer NPs showed quantum yields up to 40% even at the highest loadings corresponding to more than 200 luminescent complexes per particle. These NPs are readily internalized by cells and show excellent stability and brightness for cellular imaging.

Funding: Agence National de Recherche JC/JC grant “supertrack” ANR-16-CE09-0007 and European Research Council (ERC) Consolidator Grant BrightSens 648528.

Acknowledgement: We thank Christine Ruhlmann for help with electron microscopy.

References:

[1] Sy, M.; Nonat, A.; Hildebrandt, N.; Charbonnière, L.J, Chem. Commun. 52, (2016), 5080-5095. [2] Reisch, A.; Klymchenko, A.S. Small 12, 15 (2016), 1968-1992. [3] Reisch, A.; Runser, A.; Arntz, Y.; Mély, Y.; Klymchenko, A.S. ACS Nano 9, 5 (2015), 5104-5116. [4] A. Reisch, P. Didier, L. Richert, S. Oncul, Y. Arntz, Y. Mély, A.S. Klymchenko, Nat Commun. 2014, 9, 4089.

Development of a pharmacophoric deconvolution method to accelerate the discovery of antiplasmodial molecules from Rhodophyta

Laure Margueritte1, Mélanie Bourjot

1, Petar Markov

2, Guillaume Bret

1, Marc-André Delsuc

2, Didier

Rognan1, Catherine Vonthron-Sénécheau

1

1 Laboratoire d'Innovation Thérapeutique UMR CNRS 7200 et

2 Institut de Génétique et de Biologie

Moléculaire et Cellulaire, INSERM U596, UMR CNRS 7104, Université de Strasbourg, Illkirch,

In natural-product research, the bioassay-guided isolation is usually used to find new bioactive

compounds. However, this strategy is time-consuming, onerous and sometimes leads to well-known

molecules1. We are developing a new method based on the Differential Analysis 2D-NMR Spectra

(DANS) and the use of the hyphenated method HPLC-SPE-NMR to solve these inconveniences2. This

method aims to do accelerate the discovery process of new bioactive products from complex natural

extracts. The DANS step enables us to detect a chemical fingerprint through the specific peaks

detection of the bioactive molecule. This step is computerizing by a software development called

Plasmodesma. This software is a tool for 2D-NMR data processing such as data bucketing. Other

processing stages are in writing for spectral cleaning and the differential analysis. In this way, we have

obtained the chemical fingerprint of bio-active molecules from algal extracts enriched with artemisinin

or chloroquine, two known anti-malarial compounds. This analytical strategy will indeed be used to

identify new anti-malarial molecules with an original mechanism of action from active red algae

extracts. Previously, it was shown that red algae are a source of anti-plasmodial products

3. The

parasite Plasmodium possesses a relict organelle, the apicoplast, which is a plastid from a secondary

endosymbiosis of a red alga4. Because of this particular evolutionary past, we hypothesized that red

algae molecules could interfere with apicoplastic biosynthesis pathways in Plasmodium and inhibit its

development.

[1] A.L. Harvey, R. Edrada-Ebel, R.J. Quinn, Nat. Rev. Drug. Discov. 2015, 14(2), 111–129

[2] M. Bourjot, L. Margueritte, P. Markov, F. Nardella, J. B. Galle, B. Schaeffer, J. M. P. Viéville, G. Bret, M-A. Delsuc, D.

Rognan, C. Vonthron-Sénécheau, Planta Med., 2016, 81, S1-S381.

[3] C. Vonthron-Sénécheau, M. Kaiser, I. Devambez, A. Vastel, I. Mussio, A. M. Rusig, Mar. Drugs 2011, 9, 922–933

[4] N. M. Fast, J. C. Kissinger, D.S. Roos, P.J. Keeling, Mol. Biol. Evol. 2001, 18, 418–426

[5] S. A. Ralph, G. G. van Dooren, R. F. Waller, M. J. Crawford, M. J. Fraunholz, B. J. Foth, C. J. Tonkin, D. S. Roos, G. I.

McFadden, Nat. Rev. Microbiol. 2004, 2, 203–216

Fluorocarbon Conjugates: New Concept to Increase the Metabolic

Stability of Peptides Targeting GPCRs

Over the past decade, peptides have shown an increasing interest for therapeutic applications. To

date, 60 therapeutic peptides have been already approved by the FDA, 140 are currently under

evaluation in clinical trials and 500 are in preclinical development1. In general, peptides are selective

and efficacious signaling molecules that bind to specific cell surface receptors, such as G protein-

coupled receptors (GPCRs). However, peptides are often not directly suitable for use as convenient

therapeutics because they have intrinsic weaknesses, including poor chemical and physical stability,

and a short in vivo half-life due to rapid enzymatic degradation2, 3

.

To enhance the metabolic stability of GPCR peptide ligands, we propose an unprecedented strategy

based on the grafting of fluorocarbon chains (F-chains) onto peptides of potential therapeutic

interest. The idea was to induce a self-organization of the fluoropeptide in aqueous solution resulting

in the subsequent protection of the native peptide from enzymatic degradation. To demonstrate the

efficacy of our approach the apelin peptide, a neuro-vasoactive peptide which presents a short

plasma half-life, was selected as model4, 5

. Different F-chains were then grafted onto apelin following

a solid-phase approach. The human plasma stability of the resulting fluoropeptides was carefully

investigated.

To gain insight into the mechanism leading to the increase of human plasma stability, original

fluorescent probes were designed and synthesized enabling the studies of the physicochemical and

plasma binding properties of fluoropeptides. Finally, the optimized construct was evaluated in

normotensive rat model highlighting the efficacy of our approach to greatly improve the in vivo

stability of apelin peptide. All together, these promising results should open the route to a

convenient, safe and general approach to greatly increase the metabolic stability of numerous native

peptides for their in vivo use as pharmacological tools and/or therapeutic agents.

1 Fosgerau, K.; Hoffmann. Drug Discovery Today 2015, 20, 122-128.

2 Hallberg, M. Med Res Rev 2015, 35, 464-519.

3 Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Drug Discovery Today 2010, 15, 40-56.

4 Tatemoto, K.; Hosoya, M.; Habata, Y.; Fujii, R.; Kakegawa, T.; Zou, M. X.; Kawamata, Y.; Fukusumi, S.; Hinuma, S.; Kitada, C.; Kurokawa, T.;

Onda, H.; Fujino, M. Biochem. Biophys. Res. Commun. 1998, 251, 471-6.

5 O'Carroll, A. M.; Lolait, S. J.; Harris, L. E.; Pope, G. R. J. Endocrinol. 2013, 219, 13-35.

Compared effects of beta-hydroxybutyrate and bear serum on the proteome of human muscle cells

Blandine Chazarin1, Stéphanie Chanon2, Guillemette GAuquelin-Koch3, Stéphane Blanc1, Etienne

Lefai2 and Fabrice Bertile1

1 CNRS, Université de Strasbourg, IPHC-Laboratoire de Spectrométrie de Masse BioOrganique, 67087

Strasbourg, France 2 Laboratoire CarMeN, INSERM U1060 / INRA 1397, Université de Lyon, 69921 OULLINS, France 3 Centre National d’études Spatiales, CNES, 75001 Paris, France

We recently showed that winter bear serum triggers changes in cultivated human myotubes that

mimics a hibernation-like state. The identification of the active components in the bear serum would

pave the way for innovative solutions to fight human muscle atrophy, one of the main deleterious

characteristics of human ageing and physical inactivity. Βeta-hydroxybutyrate (betaOH) could be a

good candidate as its concentration is markedly increased in winter bear serum and betaOH-

supplemented diets have positive effects on human muscle mass preservation. Hence, human

myotubes were incubated with either FCS or bear serum in the presence of various betaOH

concentrations (N=4/condition). After extraction, proteins were separated on SDS-PAGE gels (4

bands) and tryspin-digested. Tryptic peptides were analyzed using a quantitative label-free-based

method on a nanoUPLC-system (nanoAcquity, Waters) coupled to a Q-Exactive Plus (Thermo) before

data analysis using MaxQuant (Swissprot Homo sapiens database). Quality controls (spiked iRT

peptides and repeated analysis of a same sample pool) indicated very good reproducibility of

retention times (median CV of 0.71%) and quantitative data (median CV of 20.2%). 3780 proteins

(FDR 1%) were quantified, of which a hundredth exhibited a differential abundance across groups

(ANOVA+Tukey tests, p<0.05). As expected, the bear serum induced the main effects, in line with a

decreased protein turnover in human myotubes and possibly reflecting a pro-inflammatory status of

muscle cells. The effects of betaOH, which may favor protein synthesis, were more marked when

added in FCS, but remained limited. These data suggest that the known beneficial effects of betaOH

on muscle mass preservation could be indirect, and that they could be masked by the already potent

impact of the bear serum on human muscle cell protein balance.

Demande de communication orale

Caractérisation d’anticorps immunoconjugués site spécifiques par spectrométrie de masse couplée à la mobilité ionique

Thomas BOTZANOWSKI1, Oscar HERNANDEZ ALBA1, Stéphane ERB1, Anthony

EHKIRCH1, David RABUKA2, Alain BECK3, Penelope DRAKE2, Sarah CIANFERANI1

1Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR

7178, 67000 Strasbourg, France

2Catalent Biologics West, 5703 Hollis Street, Emeryville, California 94530, United States

3Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France

Les anticorps monoclonaux immunoconjugués (Antibody Drug Conjugates, ADCs)

constituent une nouvelle génération de protéines thérapeutiques pour traiter de nombreuses

maladies, dont les cancers. Ce sont des molécules tripartites constituées d’un agent

cytotoxique (drogue) lié de manière covalente à un anticorps monoclonal (mAb) via un linker.

Les chimies de couplage les plus classiquement utilisées ciblent les lysines ou cystéines,

engendrant ainsi une hétérogénéité de greffage au niveau de l’ADC. Afin de mieux contrôler

l’homogénéité des sites de fixation de la drogue sur le mAb, de nouvelles stratégies de

couplage chimique pour cibler spécifiquement certaines positions de l’anticorps et maîtriser

le nombre de molécules cytotoxiques greffées ont été développées. Ces nouvelles chimies

de couplage ont récemment permis de faire émerger une troisième génération d’anticorps

appelée site specific. Dans cette présentation, nous montrons l’intérêt de la mobilité ionique

couplée à la spectrométrie de masse native (IM-MS) pour la caractérisation d’un anticorps de

troisième génération site-spécifique. Dans un premier temps, l’intégrité de l’ADC ainsi que le

profil de greffage et le nombre de moyen de drogues greffées ont été déterminés par MS

native, permettant ainsi d’évaluer l’hétérogénéité de greffage et de valider l’efficacité de la.

nouvelle chimie de couplage utilisée. D’autre part, les expériences de mobilité ionique ont

permis de mesurer les sections efficaces de collision (CCS) du mAb non conjugué et de son

immunoconjugué associé. Pour la première fois, des expériences Collision Induced

Unfolding ont été réalisées sur un ADC et mettent en évidence des profils de déploiement

(unfolding) différents pour le mAb et l’ADC. L’ensemble des résultats obtenus est comparé

aux précédentes études réalisées sur deux anticorps immunoconjugués de référence à

lysine (T-DM1) et à cystéine (Brentuximab Vedotin). Cette étude démontre l’intérêt des

approches de spectrométrie de masse en conditions natives pour la caractérisation de

protéines thérapeutiques de dernière génération.

Etudiant : Maxime Bourguet (3A)

Abstract pour demande de communication orale lors de la JDD du 10/11/2017

---------------------------------------------------------------------------------------------

Epitope characterization of anti-JAM-A antibodies using orthogonal

mass spectrometry and surface plasmon resonance approaches

Maxime Bourguet1, Guillaume Terral1 , Thierry Champion2, François Debaene1, Olivier Colas2,

Elsa Wagner-Rousset2, Nathalie Corvaia2,Alain Beck2and Sarah Cianférani1

(1)Laboratoire de Spectrométrie de Masse BioOrganique(LSMBO), IPHC, DSA, CNRS UMR7178, UdS,

Strasbourg, France - [email protected]

(2) Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France - alain.beck@pierre-

fabre.com

Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed

by endothelial and epithelial cells and associated with cancer progression. We present here

the extensive characterization of immune complexes involving JAM-A antigen and three

monoclonal antibodies (mAbs), including hz6F4-2, a humanized version of anti-tumoral 6F4

mAb identified by a functional and proteomic approach in our laboratory. A specific workflow

that combines orthogonal approaches has been designed to determine binding

stoichiometries along with JAM-A epitope mapping determination at high resolution for these

three mAbs. Native mass spectrometry experiments revealed different binding

stoichiometries and affinities, with two molecules of JAM-A being able to bind to hz6F4-2 and

F11 Fab, while only one JAMA was bound to J10.4. Surface plasmon resonance indirect

competitive binding assays suggested epitopes located in close proximity for hz6F4-2 and F11.

Finally, hydrogen-deuterium exchange mass spectrometry was used to precisely identify

epitopes for all mAbs. The results obtained by orthogonal biophysical approaches showed a

clear correlation between the determined epitopes and JAM-A binding characteristics,

allowing the basis for molecular recognition of JAM-A by hz6F4-2 to be definitively established

for the first time. Taken together, our results highlight the power of MS-based structural

approaches for epitope mapping and mAb conformational characterization.

Foldamers based on adamantane

Adriano Aloisi,a Kasper K. Sørensen,

b Niels J. Christensen,

b Knud J. Jensen,

b Alberto

Biancoa!

aUniversity of Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire,

Immunopathologie et Chimie Thérapeutique, Strasbourg, France

bUniversity of Copenhagen, Department of Chemistry, Thoarvaldsensvej 40, 1871

Frederksberg (Denmark)

Adamantane is a hydrocarbon with the formula C10H16. This cycloalkane (four connected

cyclohexane rings arranged in the “armchair” configuration) was first identified from a

sample of petroleum in 1933. Today this molecule is generated in large quantities by thermal

cracking from crude oils and is very cheap. It is highly reactive compared to other

hydrocarbons and it is characterised by a rigid structure. Moreover, the hydrophobicity

combined with the well-define 3D conformation provide to adamantane derivatives

favourable biological properties (i.e. antiviral, anticancer, against neurodegenerative

diseases).

We have decided to use these properties together with the possibility of controlled

multifunctionalisation to obtain a γ-amino acid based on adamantane, which can be use in

solid-phase peptide synthesis (SPPS) to build new foldamers. We designed short peptide

sequences incorporating the adamantane amino acid, together with glycine and L- or D-

tyrosine. We previously observed by computer simulation that L- or D-tyrosine combined

with the well-defined structure of adamantane can induced a chirality in the secondary

structure of the peptides.

We first developed a multistep synthesis to prepare a non-natural amino acid based on

adamantane with two protected carboxylic groups (esterification), one free carboxylic

groupand a protected amine for the solid-phase peptide synthesis. Then we optimised a SPPS

protocol, by mixing Boc and Fmoc strategy, without affecting the stability of the resin, the

linkers and the protecting groups on the adamantane moiety. We build our sequences using

microwave heating to avoid the low nucleophilicty of the amine on adamantane. We also

developed a cleavage method to obtain the desire peptide without removing the protecting

group of the carboxylic functions on adamantane. Then, an appropriate hydrolysis strategy

allowed us to obtain fully-protected and fully-unprotected peptides. The peptides have been

characterised by HPLC and mass spectrometry. Circular dichroism allowed to elucidate the

conformation. In conclusion, adamantane characteristics offer the possibility to an ease

functionalisation to obtain a γ-amino acid which can be used in solid-phase peptide synthesis

to build foldamers.

JOURNEE DES DOCTORANTS EN CHIMIE 2017 – Université de Strasbourg

Insight to the structure of cationic CNHC,Calkyl-nickelacycles and study as azole C–H functionalization catalysts

B. de P. Cardoso, S. Shahane, J.-M. Bernard-Schaaf, M. J. Chetcuti, V. Ritleng

Université de Strasbourg, UMR 7509, 25 rue Becquerel, 67087 Strasbourg, France

[email protected]

The low toxicity, low cost and high abundance of nickel, as well as its intrinsic fascinating

reactivity[1] prompt chemists to pay more and more attention to this metal, and nickel N-

heterocyclic carbene (NHC) complexes are becoming an important class of pre-

catalysts.[2]

Noteworthy is the application of nickel catalysts in the functionalization of C–H bonds that

has experienced an explosion in the last few years.[3] A motif of high performing N,N or

P,P bidentate chelates was a clear opportunity to replace for chelating bidentate NHC

ligands. With this in mind, we recently reported the complex [(MeCN)nNi{Mes-NHC-

(CH2)2CH(CN)}]PF6 bearing a chelating CNHC,Calkyl scaffold and labile MeCN ligands.[4]

CN

N

N Ni

CN

N

N NiY

N+ I

Y

N

[Ni] (5 mol%)

LiOtBu (2 equiv.)

1,4-Dioxane

(0.12 M),140 °C, 36 h, Ar

or

N

N

N R

Y = O, SSquare planar T-shaped

Figure 1. The cation [(MeCN)nNi{Mes-NHC-(CH2)2CH(CN)}]+ at the crux of the structural puzzle – 1 or 2 MeCN ligands (left); Catalytic C–H bond functionalization of benzothiazole with iodobenzene (right).

However, the initial report left open the precise formula and structure of the nickel

complex; 2 MeCN ligands: a common square planar structure, or 1 MeCN ligand: possibly

a rare 14-electron trivalent Ni(II) species[5] (Figure 1, left). Improvement of the synthetic

methodology, extensive spectroscopic studies, and DFT calculations allowed us to better

determine the actual structure of this class of cationic nickel complexes. Transporting of

the chelation strategy to this C,C system proved to be successful in the coupling of azoles

and iodoarenes, for which a brief scope and mechanistic studies were explored (Figure 2,

right).

[1] S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature, 2014, 509, 299; V. P. Ananikov, ACS Catal., 2015,5, 1964 [2] V. Ritleng, M. Henrion, M. J. Chetcuti, ACS Catal., 2016, 6, 890; M. Henrion, V. Ritleng, M. J. Chetcuti, ACS Catal., 2015, 5, 1283 [3] G. Pototschnig, N. Maulide, M. Schnürch, Chem. - A Eur. J. 2017,23, 9206; J. Yamaguchi, K. Muto, K. Itami, Top. Curr. Chem. 2016, 374, 55; J. Yamaguchi, K. Muto, K. Itami, European J. Org. Chem. 2013, 19 [4] M. Henrion, A. M. Oertel, V. Ritleng, M. J. Chetcuti, Chem. Commun. 2013, 49, 6424 [5] S. Pelties, R. Wolf, Organometallics, 2016, 35, 2722; C. A. Laskowski, G. L Hillhouse, J. Am. Chem. Soc., 2008, 130, 13846.

������������� �������������������� ���������������������������

Polyurethanes constitute a class of plastic materials used on a large scale by industry for a wide

range of applications. However, they usually have a non-uniform primary structure, as they are

produced by step-growth polymerisation. Here we report a facile protective-group-free approach to

prepare sequence-defined polyurethanes. This method relies on the use of two chemoselective steps.

In a first step, a hydroxy group was reacted with N,N’- disuccinimidyl carbonate to afford an active

carbonate. In a second step, this carbonate was reacted with an amino alcohol to afford selectively a

hydroxyl-functional carbamate. The iterative repetition of these two steps on a Wang resin modified

with a hydroxy carboxylic acid linker led to the synthesis of a sequence-defined polyurethane.

Different sequence-coded polymers have been synthetized using two different amino alcohols,

defined as 0 and 1 bit. Thanks to the carboxylic function from the linker cleavage and the selective

fragmentation of the C-O carbamate bound, the sequence of this new type of polymers can be easily

read by tandem mass spectrometry in negative mode.

Spirocyclization from keto-ynamides: toward the synthesis of azacycles

Frédéric BELTRAN a, Indira FABRE b, Ilaria CIOFINI b, Laurence MIESCH a,*

a Laboratoire de Chimie Organique Synthétique, Institut de Chimie, CNRS-UdS UMR 7177,

4, rue Blaise Pascal CS 90032, 67081 Strasbourg, France

b Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche

de Chimie Paris (IRCP), 75005 Paris, France

[email protected] ; [email protected]

http://www-chimie.u-strasbg.fr/~lcos/

The chemistry of acetylenic ω-keto-esters is an important topic of research in our laboratory.

As one example, we have found that keto-2-alkynoates react in the presence of a catalytic amount of

silver triflimidate to lead to spirocyclic compounds.1 The fact that a wide range of natural products

possess at least one nitrogen-containing heterocycle in their structure led us to study ynamides as an

entry to these important ring systems. Recently, our group has focused on the reactivity of keto-

ynamides toward silver salts, leading to the formation of bridged enamides.2

In this context, we have undertaken a study of the reactivity of keto-ynamides for the formation

of nitrogen-containing spirocyclic compounds. These spirocyclic systems, incorporating azacyclic

substructures, are prominent in natural Aspidosperma type alkaloids and furthermore represent a

synthetic challenge. Using chemistry developed in our laboratory, good yields of spirocyclic

compounds are observed in reactions between alkynyl bromides and indanone or indolone type keto-

sulfonamides in the presence of an excess of cesium carbonate.3 The spirocyclization reaction

presented herein tolerates many acetylenic substituents and cycloalkanones. The obtained spiro-

enamides are generated with high E selectivity about the double bond. This reaction could therefore

be applied to the synthesis of natural products such as Jerantinine E.4

1 Schäfer, C.; Miesch, M.; Miesch, L., Chem. Eur. J. 2012, 18, 8028. 2 Heinrich, C.; Fabre, I.; Miesch, L. Angew. Chem. Int. Ed. 2016, 55, 5170–5174. 3 Beltran, F.; Fabre, I.; Ciofini, I; Miesch, L. Org. Lett. 2017, DOI: 10.1021/acs.orglett.7b02216.4 Frei, R.; Staedler, D.; Raja, A.; Franke, R.; Sasse, F.; Gerber-Lemaire, S.; Waser, J. Angew. Chem. Int. Ed. Engl.

2013, 52, 13373–13376.

GOLD AND PALLADIUM CATALYZED CASCADE REACTIONS

TOWARDS THE SYNTHESIS OF NATURAL PRODUCTS

Fatih SIRINDIL,1 Patrick PALE

1 and Aurélien BLANC

1

1Laboratoire de Synthèse, Réactivité Organique et Catalyse, Institut de Chimie, UMR 7177,

Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France.

[email protected]

Natural products have mostly an heterocyclic scaffold and retain particular attention from organic

chemists due to their biological activity and also their utility to provide an attractive platform to

establish the usefulness of novel synthetic pathways. Palladium catalyzed reactions and more

recently reactions involving gold catalyst are wide used to this aim given that, those metals offers

an abundance of possibilities of carbon-carbon and carbon-heteroatom bond formations [1]

.

Figure 1: Palladium catalyzed sulfonyl migration and cross-coupling reactions

We recently developed new methods using gold (I) and palladium (II) catalysts to obtain fused N-

heterocyclic compounds 2 from ynone substituted N-sulfonyl substrates 1 (Figure 1). The

unprecedented 1,5 migration of sulfonyl group from nitrogen to oxygen is occurring during the

cyclization catalyzed by gold (I) and also with palladium (II) [2]

. The palladium catalyzed tandem

1,5 migration – cross coupling reactions leads to bicyclic heterocycle 3. The resulting pyrrole,

dihydropyrrolizidine and indolizidine scaffolds 3 are founds in biologically active natural products

and especially antitumor alkaloids [3]

. The developed catalytic pathways are currently employed

for the total synthesis of rhazinal family natural products.

[1] Tsuji, Jiro (2004), Palladium Reagents and Catalysts New Perspectives for the 21st Century.

England : John Wiley & Sons Ltd

[2] Miaskiewicz, S. ; Gaillard, B. ; Kern, N. ; Weibel. J. M. ; Pale, P. ; Blanc, A. ; Angew. Chem.,

Int. Ed. 2016, 55, 1 [3] Bowie, A. L. ; Trauner, Jr. ; Trauner, D. J. Org. Chem. 2009, 74, 1581

Cross-CouplingRearrangement

Sulfonyl migration

1 2 3

RN

SO2Ar

O

R1 N

ArO2SO

R

R1 N

Ar

R

R1

Palladium

orGold Palladium

NR

HN

OR= CHO ; Rhazinal

R= CH2OH; Kopsiyunnanine C3

R= CH2OMe; Kopsiyunnanine C1

R= CH2OEt; Kopsiyunnanine C2

Synthesis and characterisation of silicon-based nanoparticles for multi-modal

in vivo imaging applications.

John Ddungu†* and Luisa De Cola†*

†Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg

*Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Germany

([email protected])

Nanoparticles have received growing attention over the past decades due to their potential as

effective nanoprobes in bio-imaging.[1] Within this field, those based on semiconductor materials,

such as II-VI or III-V quantum dots, in addition to carbon based quantum dots, have shown great

promise. This is due to their strong photophysical properties, high electro- and chemical stability, as

well as the ability to functionalise a single nanoparticle structure with multiple molecular or

macromolecular species. Through this, it is possible to image the engineered nanoparticles with

different diagnostic techniques simultaneously.[2]

The application of silicon-based nanoparticles (SiNPs) in particular has gained much research interest.

The ability to synthesise SiNPs of ultra-small sizes through wet chemistry techniques, their ease of

functionalisation, low toxicity and biodegradation over time makes them an ideal choice for multi-

modal nanoprobes for in vivo imaging applications.[3]

Challenges remain in the full charaterisation of prepared SiNPs and their multi-modal in vivo

performance must still be further explored. Our approach involves the use of SiNPs functionalized

with various moieties on the surface for in vitro and eventually in vivo applications. The synthesised

nanoparticles are characterised using a variety of techniques before and after functionalisation, with

the aim of developing a number of highly defined systems that can be applied to multi-modal

imaging of cancerous tumors in different parts of the body.

References:

[1] M. Montalti, A. Cantelli and G. Battistelli, Chem. Soc. Rev., 2015,44, 4853-4921

[2] J. Key and J. F. Leary, Int J Nanomedicine., 2014, 9, 711–726.

[3] L. Ruizendaal, S. Bhattacharjee, K. Pournazari, M. Rosso-Vasic, L. H. J. de Haan, G. M. Alink, A. T. M. Marcelis

and H. Zuilhof, Nanotoxicology., 2009, 3, 339–347

Schematic summary of the different multimodal SiNP systems currently being studied

Synthesis and biological activity of predicted ALR2 inhibitors

Matúš Hlaváč, a,c

Lucia Kováčiková, b

Gilles Hanquet, c

Magdaléna Majeková, b

Milan Štefek, b

and Andrej Boháč a,d,*

a Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in

Bratislava, Ilkovičova 6, Mlynská dolina, 842 15, Bratislava, Slovakia,

[email protected]

bInstitute of Experimental Pharmacology and Toxicology, SAS, Dúbravská cesta 6, 841 04,

Bratislava, Slovakia

c Université de Strasbourg, Ecole Européenne de Chimie, Polyméres et Metériaux (ECPM),

Laboratoire de Synthése et Catalyse (UMR CNRS 7509), 25 rue Becquerel, 67087 Strasbourg

cedex 2, France

d

Biomagi, Ldt., Mamateyova 26, 851 04, Bratislava, Slovakia

Inhibition of an aldose reductase (ALR2), the first enzyme of a polyol pathway, is a promising

approach in the treatment of diabetic complications. Most of ALR2 inhibitors contain

carboxylic group, which interacts to an anion binding pocket in an active site of ALR2. In a

recent study1 of carboxymethylated thioxotriazinoindoles, CMTI (cemtirestat) was identified

as a powerful ALR2 inhibitor possessing a good selectivity and drug-like properties. Based on

the structure drug design, several potential analogues of CMTI were proposed. Among them,

compound 1 (OCMTI, IC50 = 42 nM) showed almost 3-fold higher inhibitory activity than

CMTI in an in vitro ALR2 enzymatic assay and 8-fold higher selectivity relative to ALR1

(IC50 = >100 µM). Based on these results we can conclude, that isosteric replacement of

sulphur with oxygen plays an important role in the inhibition of ALR2 and its selectivity.

Figure 1. The structures of CMTI, its oxygen analogue derivatives 1-4 and obtained ALR2 inhibitory activities.

1Stefek, M., Soltesova Prnova, M., Majekova, M., Rechlin, C., Heine, A., Klebe, G.: Identification of novel

aldose reductase inhibitors based on carboxymethylated mercaptotriazinoindole scaffold. J. Med. Chem., 2015;

58(6): 2649-57.

An online four-dimensional HICxSEC-IMxMS methodology for in-

depth characterization of antibody drug conjugates

Anthony Ehkircha, Valentina D’Atrib, Florent Rouvièrec, Oscar Hernandez-Albaa,

Alexandre Goyonb, Olivier Colasd, Morgan Sarrutc, Alain Beckd, Davy Guillarmeb,

Sabine Heinischc, Sarah Cianférania

a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CRNS, IPHC UMR 7178,

67000 Strasbourg, France b School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel-Servet, 1,

1206 Geneva – Switzerland c Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Ens de Lyon, Institut des Sciences Analytiques, UMR

5280, 69100 VILLEURBANNE, France d Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France

Antibody Drug Conjugates (ADCs) are tripartite molecules consisting of a monoclonal

antibody (mAb) onto which highly cytotoxic small molecules are conjugated by

cleavable or non-cleavable linkers. They show better efficiency than canonical

unconjugated mAbs, due to the synergic effect of mAb specificity for its target and the

efficacy of the highly cytotoxic drug.1

There are currently two main techniques allowing the analytical characterization of

cysteine linked antibody drug conjugates under non denaturing conditions, namely

hydrophobic interaction chromatography (HIC) and native high resolution mass

spectrometry.

HIC is a chromatographic technique allowing the evaluation of drug load profile and

calculation of average drug to antibody ratio (DAR).2,3 High resolution mass

spectrometry (MS) offers a wealth of information on the biochemical and biophysical

properties of ADCs, thanks to accurate mass measurement.4 On-line coupling of both

techniques can potentially be of great interest, but the presence of large amounts of

non-volatile salts in HIC mobile phases make them non compatible with MS.

Here, we present an innovative multidimensional analytical approach combining

comprehensive on-line two dimensional chromatography (HICxSEC) to ion mobility

and mass spectrometry (IM-MS) for performing analytical characterization of ADCs

under non-denaturing conditions. Online hyphenation of non-denaturing 2D

chromatography to 2D IM-MS enabled comprehensive and streamlined

characterization of both native and stressed ADC samples.

1. Ornes, S. Proc. Natl. Acad. Sci. 2013, 110, 13695–13695

2. Rodriguez-Aller, M.; Guillarme, D.; Beck, A.; Fekete, S. J. Pharm. Biomed. Anal. 2016, 118, 393–403.

3. Cusumano, A.; Guillarme, D.; Beck, A.; Fekete, S. J. Pharm. Biomed. Anal. 2016, 121, 161–173.

4. Debaene, F.; Bœuf, A.; Wagner-Rousset, E.; Colas, O.; Ayoub, D.; Corvaïa, N.; Van Dorsselaer, A.;

Beck, A.; Cianférani, S. Anal. Chem. 2014, 86, 10674–10683.

Reversible Native Chemical Ligation :

A Facile Method to Identify Peptide Ligands for Protein Targets

Cristian-Victor Rețe,a Manickasundaram Samiappan,a Valentina Garavini,a Yves Ruff,a

Stéphane Erb,b Jean-Marc Strub,b Sarah Cianferani,b Daniel Funeriu,a Nicolas Giusepponea

a SAMS Research Group, Institut Charles Sadron (CNRS), Université de Strasbourg – 23 rue du Loess, 67034 Strasbourg Cedex 2, France b Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien (CNRS) – 23 rue du Loess, 67037 Strasbourg Cedex 2, France

The collection of dynamic combinatorial techniques that can be used to discover

ligands/inhibitors (ranging from organic to biomolecular fragments) for biological targets has

expanded substantially in the past decade.1 Each of these approaches allows various protein

targets to be addressed. The proper use of these techniques can lead to advances in biological

understanding, new protein-drug conjugates and targeted medical imaging agents.

Figure 1. Schematic representation of the concept behind the generation of dynamic combinatorial

peptide libraries under the selection pressure of a protein receptor

The dynamic exchange reactions in the current toolkit (e.g. disulphide bond exchange, imine

bond exchange, etc.) vary widely in their inherent biocompatibility and functional group

compatibility. We have considered of particular interest the use of newly adapted native

chemical ligation (NCL) methodologies2,3 for the generation of dynamic combinatorial libraries

(DCLs) in the presence of protein receptors. Herein we report the development of reversible

NCL for the selection of Affibody® ligands for the Fc region of immunoglobulin G from a

peptide DCL (Figure 1).

1 Mondal, M.; Hirsch, A. K. H. Chem. Soc. Rev. 2015, 44, 2455-2488. 2 Ruff, Y.; Garavini, V.; Giuseppone, N. J. Am. Chem. Soc. 2014, 136, 6333–6339. 3 Ollivier, N.; Blanpain, A.; Boll, E.; Raibaut, L.; Drobecq, H.; Melnyk, O. Org. Lett. 2014, 16, 4032-4035.