26
Technologie des Equipements et des Supports / Olivier Marot [email protected] Le Microphone Un microphone ou plus simplement micro est un dispositif de conversion des ondes sonores acoustiques d'un milieu compressible en impulsions électriques. C'est donc un capteur analogique. Le signal électrique a l'avantage de pouvoir être facilement traité (voir sonorisation et enregistrement sonore). Le terme microphone désigne tantôt l'appareil complet utilisé en audio, tantôt le capteur nu en tant que composant. Le micro dynamique Shure SM58 (à gauche) et sa version hypercardioïde, le BETA58 (à droite). Le Shure SM-58 est un microphone dynamique cardioïde unidirectionnel pour voix. Le SM-58 est considéré comme le micro chant de référence pour la sonorisation live. Il est robuste et bon marché. Utilisé à travers le monde, il est l'un des micros les plus répandus dans les concerts, mais peu aussi faire un très bon travail en studio dans certaines situations bien précises. Caractéristiques techniques Bande passante : 50 Hz à 15 000 Hz. Niveau de sortie (à 1000 Hz) : -54.5 dBV/Pa (1.85 mV) 1 Pa = 94 dB SPL Impédance : L'impédance nominale est de 150 Ohm (300 Ohm réelle) pour connexion aux entrées de micros basse impédance. Phase : Une pression positive sur le diaphragme produit une tension positive sur la broche 2 par rapport à la broche 3. Connecteur : XLR mâle Corps : Acier moulé avec grille sphérique en acier Poids net : 298 grammes Caractéristiques d’un signal Hz, dB, dBvu, dBV, dB SPL, Ohms, A, V, mV, etc… Rappel sur l’électricité L’électricité est l'interaction de particules chargées sous l'action de la force électromagnétique. Ce phénomène physique est présent dans de nombreux contextes : l'électricité constitue aussi bien l'influx nerveux des êtres vivants, que les éclairs d'un orage. Elle est largement utilisée dans les sociétés développées pour transporter de grandes quantités d'énergie facilement utilisable. Les propriétés de l'électricité ont été découvertes au cours du XVIII e siècle. La maîtrise du courant électrique a permis l'avènement de la seconde révolution industrielle. Aujourd'hui, l'énergie électrique est omniprésente dans les pays industrialisés : à partir de différentes sources d'énergie, principalement hydraulique, thermique et nucléaire, l'électricité est un vecteur énergétique employé à de très nombreux usages domestiques ou industriels. deux charges de nature opposée s'attirent deux charges de même nature, par exemple deux charges positives, se repoussent

Le Microphone - 09balance.com09balance.com/TRDi/Cours/CLCF/Ex/Le Microphone.pdf · Le SM-58 est considéré comme le micro chant de référence pour la sonorisation live. Il est robuste

  • Upload
    vongoc

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Technologie des Equipements et des Supports / Olivier Marot [email protected]

Le Microphone Un microphone ou plus simplement micro est un dispositif de conversion des ondes sonores acoustiques d'un

milieu compressible en impulsions électriques. C'est donc un capteur analogique. Le signal électrique a l'avantage

de pouvoir être facilement traité (voir sonorisation et enregistrement sonore).

Le terme microphone désigne tantôt l'appareil complet utilisé en audio, tantôt le capteur nu en tant que

composant.

Le micro dynamique Shure SM58 (à gauche) et sa version hypercardioïde, le

BETA58 (à droite). Le Shure SM-58 est un microphone dynamique

cardioïde unidirectionnel pour voix. Le SM-58 est considéré comme le micro

chant de référence pour la sonorisation live. Il est robuste et bon marché.

Utilisé à travers le monde, il est l'un des micros les plus répandus dans les

concerts, mais peu aussi faire un très bon travail en studio dans certaines

situations bien précises.

Caractéristiques techniques Bande passante : 50 Hz à 15 000 Hz.

Niveau de sortie (à 1000 Hz) : -54.5 dBV/Pa (1.85 mV)

1 Pa = 94 dB SPL

Impédance : L'impédance nominale est de 150 Ohm (300 Ohm réelle) pour connexion aux entrées de

micros basse impédance.

Phase : Une pression positive sur le diaphragme produit une tension positive sur la broche 2 par rapport à

la broche 3.

Connecteur : XLR mâle

Corps : Acier moulé avec grille sphérique en acier

Poids net : 298 grammes

Caractéristiques d’un signal

Hz, dB, dBvu, dBV, dB SPL, Ohms, A, V, mV, etc…

Rappel sur l’électricité

L’électricité est l'interaction de particules chargées sous l'action de la force électromagnétique. Ce phénomène

physique est présent dans de nombreux contextes : l'électricité constitue aussi bien l'influx nerveux des êtres

vivants, que les éclairs d'un orage. Elle est largement utilisée dans les sociétés développées pour transporter de grandes quantités d'énergie facilement utilisable.

Les propriétés de l'électricité ont été découvertes au cours du XVIIIe siècle. La maîtrise du courant électrique a

permis l'avènement de la seconde révolution industrielle. Aujourd'hui, l'énergie électrique est omniprésente dans

les pays industrialisés : à partir de différentes sources d'énergie, principalement hydraulique, thermique et

nucléaire, l'électricité est un vecteur énergétique employé à de très nombreux usages domestiques ou industriels.

deux charges de nature opposée s'attirent deux charges de même nature, par exemple deux

charges positives, se repoussent

Des phénomènes tels que l'induction montrent en effet que les champs électrique et magnétique sont liés : un

champ magnétique variable engendre un champ électrique, et réciproquement un champ électrique variable est

source d'un champ magnétique. Cet effet de couplage entre les deux champs n'existe pas en électrostatique et en

magnétostatique. Lorsque les distributions de charge et de courant sont statiques, les champs électriques et

magnétiques leur sont en effet directement reliés, de sorte que les champs ne sont pas des variables dynamiques

indépendantes1. En revanche, le couplage entre les deux champs est la source d'une dynamique complexe (retard,

propagation, ...), qui élève le concept de champ électromagnétique au rang de véritable système physique doté

d'une énergie et d'une impulsion ainsi que d'une dynamique propre.

En électromagnétisme :

1. Les charges sont immobiles : on est alors en électrostatique avec des champs électriques statiques.

2. La densité de charge est nulle et les courants sont constants dans le temps : on est en

magnétostatique avec un champ magnétique statique.

3. Lorsque les courants sont relativement faibles, variables et se déplacent dans des conducteurs isolés

dits fils électriques, les champs magnétiques produits sont très localisés dans des éléments dits

bobines d'auto-inductance, self, transformateurs ou générateurs et les densités de charges non

nulles dans des condensateurs ou batteries génératrices de courants : on est alors en

électrocinétique ; on y distingue les courants faibles (électronique) et les courants forts

(électrotechnique). Il n'y a pas de champ à l'extérieur du circuit. On étudie des circuits électriques

et l'on y distingue les basses fréquences et les hautes fréquences. L'électronique a fait des progrès

énormes à partir du développement des semi-conducteurs qui sont maintenant utilisés pour faire

des circuits intégrés de plus en plus miniaturisés et comportant des puces électroniques ou

microprocesseurs.

4. Les hautes fréquences atteintes par les circuits résonnants électriques ont permis, à l'aide

d'antennes, de créer des ondes électromagnétiques éliminant ainsi les fils de connexions. L'émission,

la propagation et la réception de ces ondes qui sont régies par les équations de Maxwell constituent

l'électromagnétisme.

L'électricité statique Dans la nature, les électrons sont des porteurs de charges négatives et les protons des porteurs de charges

positives. Les atomes qui composent la matière ordinaire comprennent des électrons qui se déplacent autour d'un

noyau composé de protons et de neutrons, ces derniers étant électriquement neutres. Le nombre d'électrons étant

égal au nombre de protons, l'ensemble est électriquement neutre.

Quand on frotte certains matériaux entre eux, les électrons superficiels des atomes de l'un sont arrachés et

récupérés par les atomes de l'autre. Par exemple, une tige de verre frottée sur un tissu de soie se charge

positivement, car ses atomes perdent des électrons au bénéfice de la soie ; si on frotte un ballon de baudruche sur

des cheveux secs, on le charge négativement, car il capte des électrons des cheveux.

Une règle en plastique frottée sur le tissu d'un vêtement possède une charge négative, elle peut alors attirer des

petits morceaux de papier. La règle modifie, par influence électrostatique, la répartition des charges dans le

papier : les charges négatives de la règle repoussent les charges négatives à l'autre extrémité du morceau de

papier et attirent les charges positives des atomes de papier.

On parle d'électricité statique lorsqu'il n'y a pas de circulation des charges électriques. Expérimentalement cela est

généralement obtenu en utilisant des matériaux dans lesquels les charges sont « piégées », des matériaux isolants

comme le plastique, le verre, le papier... qui résistent à la circulation des charges1.

Le courant électrique Il existe aussi des matériaux conducteurs, comme les métaux, l'eau salée, le corps humain ou le graphite, qui

permettent aux charges électriques de se déplacer facilement.

Lorsqu'on marche sur une moquette, le frottement des pieds sur le sol arrache des électrons et le corps se charge

d'électricité statique. Quand on touche une poignée de porte métallique, on ressent alors une petite décharge

électrique accompagnée d'une étincelle, causée par le déplacement brutal des charges électriques s'écoulant vers

le sol à travers les matériaux conducteurs de la porte.

Cet écoulement est dû au fait qu'il y avait plus de charges dans le corps que dans le sol : comme deux charges de

même nature ont tendance à se repousser, dans un conducteur elles vont chercher à se déplacer vers le point le

moins chargé. Cette différence de charges entre le corps et le sol est appelée une différence de potentiel.

Pour créer un courant électrique, il faut donc un circuit de matériaux conducteurs qui permettra aux charges

électriques de se déplacer et, un système capable de créer une différence de potentiel entre les deux extrémités du

circuit. Ce système est appelé un générateur : ce peut être par exemple une pile ou une dynamo.

Le sens du courant

Dans un circuit électrique on dit que le courant électrique, noté I, circule entre les électrodes depuis le pôle positif

vers le pôle négatif du générateur. Ce sens est purement conventionnel puisque le courant peut aussi bien être

causé par des charges positives qui seront attirées par le pôle négatif du générateur, que par des charges négatives

qui se déplaceront en sens inverse, vers le pôle positif.

Dans certains cas, des charges positives et négatives se déplacent en même temps et ce double déplacement est

responsable du courant électrique global. C'est le cas dans les solutions ioniques, où les cations et les anions se

déplacent dans des sens opposés, et dans les semi-conducteurs comme une diode, où électrons et « trous » font de

même. Les charges ne peuvent pas toutes se déplacer sous l'action du champ électrique et c'est ainsi que dans un

fil électrique, les charges positives (les noyaux des atomes) restent fixes dans la structure du métal et ne peuvent

constituer aucun courant électrique ; le courant électrique dans un métal est créé uniquement par le déplacement

des charges négatives (les électrons libres) vers le pôle positif du générateur : c'est un courant électronique,

cependant on utilise dans tous les cas le sens conventionnel I du courant, institué avant la découverte de la charge

négative de l'électron.

On parle de courant continu quand le sens reste constant et, de courant alternatif quand il change périodiquement.

La fréquence d'un courant alternatif est le nombre de périodes par seconde. Elle s'exprime en hertz (Hz), par

exemple le courant distribué dans les installations électriques est à une fréquence : de 50 Hz en Europe et, de

60 Hz aux États-Unis.

Analogie hydraulique

Pour comprendre certaines propriétés du courant électrique, il est intéressant de le comparer à de l'eau s'écoulant

dans un circuit de tuyaux. Le générateur peut alors être vu comme une pompe chargée de mettre sous pression le

liquide dans les tuyaux.

La différence de potentiel, ou tension, ressemble alors à la différence de pression entre deux points du circuit

d'eau. Elle est notée U, et exprimée en volts (V).

L'intensité du courant électrique peut être assimilée au débit d'eau dans le tuyau. Elle rend compte du nombre de

charges qui passent à chaque seconde dans un point du circuit ; elle est souvent notée I, et mesurée en ampères

(A).

La résistance d'un circuit électrique serait alors l'analogue du diamètre des tuyaux. Plus les tuyaux sont petits,

plus il faut de pression pour obtenir un même débit ; de façon analogue, plus la résistance d'un circuit est élevée,

plus il faut une différence de potentiel élevée pour avoir une même intensité. La résistance électrique rend compte

de la faculté d'un matériau de freiner plus ou moins le passage du courant. Elle est notée R et, elle est exprimée

en ohms (Ω).

Il est possible de pousser cette analogie beaucoup plus loin2 mais il est important de garder à l'esprit qu'elle a ses

limites et que certaines propriétés du courant électrique s'écartent sensiblement de ce modèle basé sur du fluide,

des tuyaux, et des pompes.

L'électricité dans la nature Les échanges électriques sont omniprésents dans la nature. En général, il s’agit de phénomènes peu visibles, mais

ils sont fondamentaux : les forces électromagnétiques et électrofaibles font partie des quatre interactions

fondamentales qui structurent tout l’Univers.

La foudre

La friction de nombreux matériaux naturels ou artificiels produit de la triboélectricité. La foudre est une énorme

décharge électrique due à l'accumulation d'électricité statique dans les nuages. En temps normal l'air est un

isolant, qui bloque le passage de l'électricité. Lorsque la charge électrique dans les nuages d'orage arrive à une

valeur certaine, la différence de potentiel, des différentes charges accumulées, est tel qu'elle parvient à modifier la

structure des gaz qui composent l'air, les transformant localement en un plasma ionisé, qui conduit lui

parfaitement l'électricité. Des arcs électriques géants se forment alors, entre deux nuages ou, un nuage et la terre :

les éclairs, permettant le rééquilibre des charges électriques.

L'électrisation de l'air peut donner lieu à d'autres phénomènes, comme le feu de Saint-Elme.

Au cœur de la matière La circulation des charges électriques intervient dans de nombreux phénomènes naturels, et notamment dans les

réactions chimiques d’oxydo-réduction comme la combustion.

Le champ électromagnétique terrestre est lui aussi créé par des courants électriques circulant dans le noyau de

notre planète.

Les poissons électriques

Torpille du Pacifique

Les poissons électriques sont capables de tirer parti du courant électrique pour s'orienter,

pour se protéger ou bien pour communiquer. Il existe des espèces capables de produire

de véritables décharges électriques : 620 V pour l'anguille électrique ; cela lui permet

d'assommer ses proies avant de les consommer. Ils produisent de telles décharges

électriques grâce à leurs organes électriques, qui ont une structure interne semblable aux muscles du corps

humain.

L'influx nerveux Tous les êtres vivants produisent de l'électricité pour animer les muscles ou pour transmettre de

l’information par l'influx nerveux dans les nerfs. C'est ainsi que les médecins utilisent l'électrocardiographie et

l'électro-encéphalographie pour diagnostiquer le fonctionnement du cœur ou du cerveau. La science qui étudie la

production d'électricité chez les êtres vivants est l'électrophysiologie.

Histoire Électricité est un mot provenant du grec ἤλεκτρον, êlektron, signifiant ambre jaune. Les Grecs anciens avaient

découvert qu’en frottant l’ambre jaune, il produisait une attirance sur d’autres objets et, parfois des étincelles. Ils

ont donc appelé cette force électricité.

William Gilbert, le premier, dans son De Magnete (1600), a fait la distinction entre corps électriques (il a

introduit ce terme) et magnétiques. Il a assimilé la Terre à un aimant, noté les lois de répulsion et d'attraction des

aimants par leur pôle, et l'influence de la chaleur sur le magnétisme du fer. Il a établi aussi les premières notions

sur l'électricité, dont une liste des corps électrisables par frottement.

Une période d'observation commença au XVIIIe siècle où l'on apprit à créer de l'électricité statique. En 1733,

Monsieur Du Fay, dit Charles-François de Cisternay, découvrit les charges positives et négatives et observa les

interactions entre ces charges. Mais c'est Coulomb qui en énonça les premières lois physiques.

En 1799, Alessandro Volta inventa la pile électrique, et en 1868 le Belge Zénobe Gramme réalisa la première

dynamo. En 1879, Thomas Edison présenta sa première ampoule électrique à incandescence. Une centrale

hydraulique de 7 kW fut construite la même année à Saint-Moritz, puis, en 1883, Lucien Gaulard et John Dixon

Gibbs créèrent la première ligne électrique. En 1889, une ligne de 14 km fut construite dans la Creuse, entre la

Cascade des Jarrauds, lieu de production, et la ville de Bourganeuf.

L'électricité se développa alors progressivement pendant le XXe siècle, d'abord dans l'industrie, l'éclairage public

et le chemin de fer avant d'entrer dans les foyers. Différents moyens de production de l'électricité se

développèrent : centrales hydrauliques, thermiques, éoliennes, puis nucléaires...

Production L'électricité représente environ un tiers de

l'énergie consommée dans le monde.

L'électrotechnique est la science des

applications domestiques et industrielles

(production, transformation, transport,

distribution et utilisation) de l'électricité.

La méthode la plus courante pour produire

de grandes quantités d'électricité est

d'utiliser un générateur, convertissant une

énergie mécanique en une tension

alternative. Cette énergie d'origine

mécanique est la plupart du temps obtenue

à partir d'une source de chaleur, issue elle-

même d'une énergie primaire, telle l'énergies fossiles, pétrole, nucléaires ou une énergie renouvelable, l'énergie

solaire. On peut également directement utiliser une énergie mécanique, comme l'énergie hydraulique ou l'énergie

éolienne.

Bien évidement la source n'est pas forcément mécanique, exemple les piles ou les panneaux solaires.

Transport et distribution Le courant qui circule sur réseau électrique est le plus souvent alternatif et triphasé, car il est le plus économique

à produire et à transporter. Alors que le consommateur final a besoin de courant à basse tension, moins dangereux

Sources de l'électricité mondiale en 20003

a : charbon 39 %

b : hydroélectrique 17 %

c : nucléaire 17 %

d : gaz 17 %

e : pétrole 8 %

f : éolienne, géothermique... 2 %

à utiliser, il est plus économique pour le transport du courant sur de longues distances, d'utiliser une très haute

tension.

En effet, à puissance constante, si l'on augmente la tension, on réduit l'intensité du courant

( en monophasé) et donc, les pertes par effet Joule ou pertes thermiques

( ), ainsi que l'effet de peau qui limite la circulation des forts courants à la surface extérieure des conducteurs : ceci obligerait l'utilisation de câbles de cuivre de plus grosse section. On utilise donc des

transformateurs élévateurs de tension, de manière à réduire l'intensité du courant pour le transport, et des

transformateurs abaisseurs de tension pour la distribution (en basse tension) aux usagers.

Conversion transformation Les tensions électriques peuvent être transformées et converties.

En règle générale pour les grosses puissances, les tensions sont alternatives, et passent par des transformateurs

pour convertir le courant en flux magnétique, lui-même reconverti en courant dans des bobines. Ce principe

permet de changer le niveau de tension tout en conservant la fréquence et une isolation galvanique entre le réseau

primaire et secondaire du transformateur. Pour les puissances le permettant technologiquement, on utilise des

convertisseurs à semi-conducteurs (transistors, thyristors) :

des redresseurs pour convertir une tension alternative en tension continue ;

des onduleurs pour convertir les tensions continues en alternatives ;

des convertisseurs permettent la conversion directe de tension continue en tension continue par découpage

à haute fréquence.

Stockage Pour l'électricité transportée et distribuée au moyen de conducteurs, il est nécessaire d'équilibrer à tout moment la

production et la consommation. Les centrales thermiques au gaz, au pétrole ou au charbon, sont généralement

mises en service pour répondre à des pics de demande. On utilise aussi des stations de pompage-turbinage entre

deux retenues d’eau : pendant les heures creuses, l'eau est pompée vers le bassin supérieur, et pendant les heures

de pointe, l'eau passe dans une turbine qui produit un appoint d'électricité sur le réseau.

Il est aussi possible de stocker l'électricité à petite échelle au moyen de batteries d'accumulateurs, de

condensateurs ou de bobines d'inductances.

Les batteries d'accumulateurs sont très répandues pour l'utilisation des équipements et systèmes

autonomes fixes ou mobiles.

Les condensateurs sont utilisés depuis longtemps en électricité et électronique, mais sont apparus

récemment des supercondensateurs permettant de disposer de plus de puissance instantanée qu'avec des

batteries d'accumulateurs classiques de taille plus grande, mais pendant des temps très courts. Une

utilisation possible peut trouver sa place dans la traction électrique automobile pour les phases transitoires

d'accélération, d'autant plus que la recharge des condensateurs est presque instantanée.

Le stockage de l'énergie électrique dans des selfs ou bobines d'inductances n'offre d'intérêt qu'avec des

matériaux supraconducteurs, ce qui n'est encore que du domaine expérimental en matière de stockage.

Les métiers de l’électricité L'électrotechnique est un ensemble de technologies qui peuvent être pratiquées par : un ingénieur, un

électrotechnicien, un dessinateur-projeteur...

le bobineur est un technicien qui réalise les circuits magnétiques comme ceux des moteurs ou des

générateurs ;

le monteur-câbleur réalise les armoires de commande et il procède au raccordement ;

les électriciens câblent les réseaux basse tension et haute tension, dans le bâtiment, l'industrie, le tertiaire,

la marine, l'aéronautique et les moyens de transport terrestre, (automobile) ;

les techniciens de maintenance, entretiennent et dépannent les machines électriques ;

les automaticiens, électroniciens, électrotechniciens créent les automatismes et systèmes de régulation

électrique pour commander les machines automatisées...

Ainsi qu'une multitude de métiers liés à l'industrie de l'électricité (pour les plus courants : chimiste, calorifugeur,

thermicien, robinetier, chaudronnier, mécanicien...).

Utile BTS : compréhension du signal, la Fréquence La bande passante est la largeur, mesurée en hertz, d'une plage de

fréquence f2 - f1. Elle peut aussi être utilisée pour décrire un signal,

dans ce cas le terme désigne la différence entre la plus haute et la plus

basse fréquence du signal (ce que l'on appelle aussi l'encombrement

spectral). Elle est habituellement notée B ou BP.

La bande passante à -3 dB (décibel) d'un amplificateur est la gamme

de fréquences où le gain en tension de l'amplificateur est supérieur au

gain maximum moins trois décibels1. Si on ne raisonne pas en décibel,

cela correspond à la gamme de fréquences où le gain en tension est

supérieur au gain maximum divisé par racine de deux2, ce qui correspond à une division de la puissance fournie à

la charge par deux3,4. Occasionnellement on rencontre des bandes passantes plus larges, par exemple la bande

passante à -6 dB, gamme de fréquences où le gain en tension est supérieur à la moitié du gain maximum.

De manière plus générale, la bande passante à -x dB est la gamme de fréquences où le gain du filtre est

supérieur au gain maximum divisé par 10x/20

, par exemple pour -3dB : 100,15

= (≈0,7071)

Les points extrêmes de la bande passante sont appelés pulsations de coupure.

En physique Dans le domaine de la physique ondulatoire on parlera d'une fréquence :

d'oscillation mécanique (ressort, corde vibrante, vibration du réseau cristallin, vibration de molécules, etc

d'oscillation acoustique dans le domaine audible (sonore) ou inaudible (infrasons, ultrasons, hypersons ...)

d'oscillation électromagnétique (lumière visible, infrarouge, ultraviolet, etc...).

La fréquence est également utilisée pour quantifier la vitesse de fonctionnement d'un microprocesseur (voir

Fréquence du processeur). Dans ce cas, la fréquence permet de connaître le nombre d'opérations par seconde que

peut effectuer le composant (exemple : un processeur d'horloge 2Ghz peut traiter 2 000 000 000 d'opérations

élémentaires par seconde).

En musique [modifier] Articles connexes : Hauteur (musique) et Gamme naturelle.

En musique, la fréquence est reliée à la hauteur des sons entendus. La fréquence est exprimée en Hz, comme ci-

dessus. Le spectre de fréquence entendu par l'oreille humaine s'étend environ de 20 à 20 000 Hz. La fréquence du

«la» 440 a été établie comme fréquence de référence.

Mathématiquement, il est possible de faire plusieurs calculs entre les notes musicales et leurs fréquences. Une

fréquence doublée donne une octave, tandis qu'une fréquence additionnée de son octave inférieure donne une

quinte. Ensuite, l'addition d'une fréquence de 2 octaves inférieures donne une tierce. Par exemple :

Fréquence Note Intervalle Calcul

110 La1 Octave 440/4

220 La2 Octave 440/2

440 La3 Octave (référence)

550 Do# Tierce Majeure 440 + 110

660 Mi Quinte juste 440 + 220

990 Si Quinte juste (Mi-Si) 660 + 330

En revanche, ces intervalles sont purs et non-tempérés; par conséquent, ils sonnent légèrement faux à une oreille

conditionnée au tempérament égal.

Informatique et autre : Dans le domaine de l'informatique, la bande passante indique — par abus de langage — un débit d'informations.

Le terme exact est le débit binaire.

L'origine du terme est une analogie avec la bande passante en électronique. La bande passante d'un câble

mesurant le nombre maximal d'oscillations par seconde qu'un signal peut y prendre sans être trop atténué, si le

signal est celui d'une liaison informatique comme une liaison série, le nombre d'oscillations va refléter le nombre

d'informations que l'on peut transférer durant une seconde.

La bande passante peut concerner le débit d'un périphérique (tel qu'une mémoire, un disque dur, etc.) ou d'un

medium de communication (réseau, bus, etc.) ou de manière générale n'importe quel débit d'information, comme

entre le processeur et la mémoire cache.

On mesure généralement cette bande passante en octets (byte en anglais) par seconde (o/s, ou en anglais « Byte

per second », B/s) ou en bits par secondes (bit/s ou bps), plus généralement utilisée par les fournisseurs d'accès

internet pour donner le débit maximum d'un abonnement.

La bande passante "utile" (visualisée par l'utilisateur) peut être différente de celle délivrée par le fournisseur. En

effet de nombreux facteurs influent sur les performances applicatives. Ainsi, la latence (délai de transmission)

associée à la taille des fenêtres TCP de la machine réceptrice limite le débit utilisable par une session applicative

selon la formule suivante : Débit Max = Taille de la fenêtre TCP / Latence.

Exemple: Débit max "Toulouse-Dubai" = 65535 Bytes / 0.220 s = 297886.36 Bytes/s = (8 * 297886.36 )/ (1024 *

1024) = 2.27 Mbit/s.

Le débit ressenti par un utilisateur n'est donc pas uniquement fonction de la bande passante souscrite auprès d'un

opérateur.

Exemples de bandes passantes [modifier] Signal téléphonique : 300 Hz - 3 400 Hz

Signal de télévision PAL pour 1 canal : 6 MHz

Signal de télévision SECAM pour 1 canal : 8 MHz

Sons audibles par l’oreille humaine : 20 Hz - 20 kHz (ressentis : 10 Hz - 48 kHz …)

Sons qualité Radio Fm : 40 Hz - 15 kHz

Sons qualité RNIS (Téléphonie numérique) : 40 Hz - 7 kHz

Voix : 50 Hz - 3 kHz / Harmoniques aussi à 4 8 12 et 16 kHz,

Onomatopées et pratique :

Compréhension des fréquences par analogie aux onomatopées : voici un repère très important !

Sur un même son enregistré on applique un équaliseur qui surélève de +15dB une fréquence (pente Q : 10 env.) :

Hz : 20 30 40 50 80 100 150 500 1kHz 1.2 1.5 2 2.5 3 4 6 7 8 10 12 16 20

extra graves Graves Voyelles Harmoniques suraigües

Bourdonnements « MM » « OM » ON Au Oh Ah Eh I U fff chhh ss sifflements

infra basse Basse guit / instru Caisse claire Flutes

Contre basse Basse Baryton Ténor Mezzo Soprano Sopranino Fifre Cymbales

Décibel Le décibel (dB) est un sous-multiple du bel, correspondant à 1 dixième de bel. Nommé en l’honneur de

l'inventeur Alexandre Graham Bell, le bel est unité de mesure logarithmique du rapport entre deux puissances,

connue pour exprimer la puissance du son. Grandeur sans dimension en dehors du système international1, le bel

n'est pas l'unité la plus fréquente. Le décibel est plus couramment employé.

Équivalent à 1/10 de bel, le décibel comme le bel, peut être utilisé dans les domaines de l’acoustique, de la

physique, de l’électronique et est largement répandue dans l’ensemble des champs de l’ingénierie (fiabilité,

inférence bayésienne, etc.).

Cette unité est particulièrement pertinente dans les domaines où la perception humaine est mise en jeu. En effet,

la loi de Weber-Fechner stipule que la sensation ressentie varie comme le logarithme de l’excitation.

Histoire des bels et décibels Le bel (symbole B) est utilisé dans les télécommunications, l’électronique, l’acoustique ainsi que les

mathématiques. Inventé par des ingénieurs des Laboratoires Bell pour mesurer l’atténuation du signal audio sur

une distance d’un mile (1,6 km), longueur standard d’un câble de téléphone, il était appelé unité de

« transmission » à l’origine, ou TU ((en)Transmission unit), mais fut renommé en 1923 ou 1924 en l’honneur

du fondateur du laboratoire et pionnier des télécoms, Alexander Graham Bell.

Définition Si on appelle X le rapport de deux puissances P1 et P0, la valeur de X en bel (B) s’écrit :

On peut également exprimer X dans un sous multiple du bel, le décibel (dB) :

un décibel étant égal à un dixième de bel.

Si le rapport entre les deux puissances est de : 102 = 100, cela correspond à 2 bels ou 20 dB. À titre d’exemple la

puissance double environ tous les 3 décibels et 130 décibels correspondent à une puissance 1 000 fois plus

importante que 100 décibels.

Dans certaines situations les puissances sont proportionnelles au carré d’une autre grandeur, généralement une

amplitude. En électronique linéaire et sinusoïdale la puissance est proportionnelle au carré de l’amplitude de la

tension ; en acoustique, la puissance acoustique est proportionnelle au carré de l’amplitude de la pression

acoustique. Si les amplitudes sont plus facilement accessible au calcul ou à l’expérience, il est souvent choisi

d’exprimer le rapport de puissance en termes d’amplitude. En revanche, si l’on considère deux tensions efficaces

U1 et U0, on conviendra d’écrire que leur rapport, exprimé en décibels, est celui des puissances absorbés par une

même résistance R, aux bornes de laquelle ces tensions auraient été appliquées. Aussi on a :

P1 étant la puissance étudiée et P0 la puissance de référence.

Le logarithme du carré d’une grandeur étant égal à deux fois le logarithme de la grandeur on obtient la formule

suivante :

Le décibel comme unité de mesure absolue Le décibel est utilisé comme mesure du rapport entre deux puissances dans certains domaines, comme les

télécommunications ou le radar pour décrire des gains ou des amplifications (dB positifs) ou des pertes ou des

atténuations (dB négatifs). On parle alors d’une atténuation de 15 dB compensée par un amplificateur avec 15 dB

de gain. Une atténuation de 15 dB est équivalente à un gain de -15 dB.

Le décibel a donné naissance à un certain nombre d’unités (sans dimensions) utilisées pour mesurer des

puissances ou des intensités de façon absolue. Ceci se fait en utilisant comme puissance de référence (dans le

dénominateur de la définition précédente) une valeur de puissance prédéfinie. Dans ce cas, on ajoute une lettre à

« dB » pour savoir de quoi on parle.

Voici quelques exemples :

dBSPL décibel en acoustique (voir plus bas) ;

dB(A) décibel pondéré en acoustique à 40 dB au-dessus du seuil d’audibilité (voir plus bas) ;

dB(B) décibel pondéré en acoustique à 70 dB par rapport au seuil d’audibilité ;

dB(C) pareillement que la référence dB(B) mais cette fois-ci à 90 dB par rapport au seuil d’audibilité, il

ne doit pas être confondu avec le dBc (voir plus bas) ;

dBFS échelle de mesure en numérique, le niveau maximum mesuré est le Zéro Fullscale, voir :

(en)dBFS

dBW décibels au-dessus d’un watt. La puissance de référence est 1 W ;

dBm décibels au-dessus d’un milliwatt. La puissance de référence est 1 mW ;

dBV décibels mesurant la tension par rapport à une référence de 1 volt RMS. Le matériel audio grand-

public travaille généralement au niveau électrique de -10 dBV, soit 0,3162 V (ou -7,78 dBu) ;

dBμV décibels mesurant la tension par rapport à une référence de 1 μvolt RMS ;

dBu décibels mesurant la tension par rapport à une référence de 0,775 volts RMS. Cette valeur de

référence correspond à la tension d’une charge de 600 ohms soumise à 1 mW. Le matériel audio

professionnel travaille généralement au niveau électrique de +4 dBu, soit 1,228 V (ou 1,78 dBV) ;

dBi utilisé pour parler du gain des antennes. Le gain de référence est celle d’une antenne isotrope ;

dBd : pareillement que le dBi mais le gain de référence est celle d’une antenne dipole ;

dBFs : amplitude d’un signal comparativement à son niveau maximum avant saturation ;

dBc: mesure du rapport de puissance entre un signal (le bruit, souvent) et la porteuse sur laquelle il

transite (c pour "carrier") ;

dBZ : mesure du rapport entre la réflectivité (Z) revenant de la précipitation sondée par un radar

météorologique par mètre cube (qui est proportionnelle au diamètre à la sixième puissance des gouttes) et

la réflectivité qu’on aurait si ce volume était rempli de 1 mm6 / m3 de gouttes.

Unité acoustique dBSPL Le décibel, de symbole dB, est une unité relative de l’intensité acoustique. Le dBSPL (Sound Pressure Level) est

défini par le rapport de la puissance par unité de surface du son que l’on mesure et une puissance par unité de

surface de référence :

A la pratique on se sert d’un dB mètre, et on mesure à 1W à 1 mètre le signal émis par un HP afin de

connaitre ses performances, ou par exemple, afin de relever la pression maxi de 103dB autorisée dans une

salle de concert !

La puissance par unité de surface de référence est 10-12

W·m-2

(un picowatt par mètre carré).

La puissance par unité de surface transportée par une onde sonore est reliée à la pression acoustique par la

formule :

où : est la puissance par unité de surface ou intensité acoustique(en W·m-2

).

p est la pression acoustique efficace (en pascal).

ρ est la masse volumique du milieu (en kg·m-3

).

v est la vitesse du son dans le milieu (en m·s-1

).

Si, dans la formule de la première définition, on remplace la puissance par unité de surface par la formule en

fonction de la pression acoustique, la densité et la vitesse se simplifient et on obtient :

Si on sort le carré du logarithme on obtient la seconde version de la définition de dBSPL :

p est le niveau de pression du son (en valeur efficace) et est la pression de référence que l’on accepte comme

le niveau à partir duquel l’oreille humaine commence à percevoir un son pur de 1 kHz. Celui-ci est de 20 µPa

(valeur efficace). Les deux valeurs de référence (1 picowatt par mètre carré et 20 µPa efficaces) sont équivalentes

pour l’air à la température et pression ambiante.

Par ailleurs, pour un même niveau acoustique à différentes fréquences, l’homme ne perçoit pas le même niveau

d’intensité. Pour un même niveau d’intensité acoustique de 20 dBSPL, un son pur de 1 kHz paraîtra plus fort

qu’un son de 10 kHz tandis qu’un son de 100 Hz ne sera pas perçu. Pour avoir le même niveau perçu, le son de

10 kHz devra être à 30 dBSPL et le son de 100 Hz à 50 dBSPL. Les courbes isosoniques représentent les courbes

de même intensité perçue qu’un son pur de 1 kHz à un niveau acoustique donné.

dBHL Intensité perçue par l’oreille humaine normale.

dBSL Intensité perçue par un individu donné.

Le seuil de perception auditive Le niveau de 0 phone ou 0 dB SPL est un niveau vraiment bas. Pour s’en rendre compte, voici à quoi ce niveau

de 0 dB SPL correspond :

en puissance par mètre carré : à 0,5 watts repartis sur toute la surface de la France métropolitaine ;

en pression : à la pression due au poids d’une couche de 2×10-9

m d’eau (environ 20 atomes d’épaisseur) ;

en déplacement des molécules dans l’air : à une oscillation (crête à crête) de 2×10-11

m, c’est-à-dire deux

dixièmes de l’épaisseur d’un atome.

dB pondéré Il existe plusieurs courbes de pondération : A, B, et C. La courbe de pondération (A) correspond de près à la

correction de l’oreille humaine. Moins sensible aux BF (basses fréquences) et plus sensibles aux HF (hautes

fréquences). Cependant, ce n’est pas exactement ce que déchiffre notre cerveau. Pour cela, il faut additionner les

niveaux sonores pondérés relevés en fonction des fréquences. Attention, 80 dB (A) + 80 dB (A) n’est pas égal à

160 dB(A) mais à 83 dB(A). Plus la différence entre deux sons est élevée moins on majore. Le bruit d’un avion

120 dB (A) + le bruit d’une voiture 80 dB(A) = 120 dB(A). L’avion couvre complètement le bruit de la voiture.

Pour bien comprendre Le dB(A) est un niveau sonore global (son perçu par l’oreille) et le dB est un niveau

sonore qui n’a de sens que lorsqu’il est noté pour une fréquence donnée.

Pour prendre en compte cette sensibilité de l’oreille par rapport aux fréquences, le dB(A) est utilisé. Une courbe

isosonique a été définie correspondant à un niveau perçu de 40 dB pour un son pur de 1 kHz. L’inverse de cette

courbe pondère le signal et l’on obtient le niveau en dB(A) par intégration sur toutes les fréquences. Cette unité

est très fréquemment utilisée dans les indicateurs acoustiques du bruit.

Divers exemples sur l'échelle du bruit pour une fréquence de 1 000 Hz 0 dB : seuil d’audibilité

De 0 à 10 dB : désert

De 10 à 20 dB : cabine de prise de son

De 20 à 30 dB : conversation à voix basses, chuchotement

De 30 à 40 dB : forêt

De 40 à 50 dB : bibliothèque, lave-vaisselle

De 50 à 60 dB : lave-linge

De 60 à 70 dB : sèche-linge, sonnerie de téléphone, téléviseur, conversation courante

De 70 à 80 dB : aspirateur, restaurant bruyant, passage d’un train à 80 km/h

De 80 à 90 dB : tondeuse à gazon, klaxon de voiture

De 90 à 100 dB : route à circulation dense, tronçonneuse, atelier de forgeage, TGV à 300 km/h à 25 m

De 100 à 110 dB : marteau-piqueur à moins de 5 mètres dans une rue, discothèque

De 110 à 120 dB : tonnerre, atelier de chaudronnerie, vuvuzela à 2 mètres

De 120 à 130 dB : sirène d’un véhicule de pompier, avion au décollage (à 300 mètres), concert amplifié

130 dB : seuil de la douleur

De 140 à 150 dB : course de Formule 1, avion au décollage

170 dB : fusil d’assaut

180 dB : décollage de la fusée Ariane, lancement d’une roquette

194 dB : son le plus bruyant possible dans l’air à la pression atmosphérique du niveau de la mer. La

différence de pression dans une onde sonore de ce niveau est d’une atmosphère et correspond à

l’apparition d’une pression nulle sur le front de dépression de l’onde. Toute onde au-delà de cette frontière

ne s’appelle plus onde sonore mais onde de choc.

Au-dessous de 20 dB, le son est pratiquement inaudible pour l’oreille humaine. Il commence à devenir

douloureux au-delà de 80 dB, dangereux à partir de 100 dB et insupportable dès 120 dB. Le seuil de douleur n’est

pas un absolu, il dépend de la fréquence. Le seuil de douleur peut être atteint à un niveau sonore de 110 dB pour

une fréquence de 20 000 Hz et à 120 dB pour une fréquence inférieure à 10 000 Hz. Ces valeurs (80 dB, 100 dB,

120 dB) sont les valeurs courantes de la littérature[réf. nécessaire]

.

Des tests psycho-acoustiques ont montré qu’un dépassement du volume sonore est perceptible par l’oreille

humaine à partir de 1 dB2.

Impédance (électricité)

L'impédance électrique mesure l'opposition d'un circuit électrique au passage d'un courant alternatif sinusoïdal.

La définition d'impédance est une généralisation de la loi d'Ohm dans l'étude des circuits en courant alternatif.

Le mot impédance fut inventé par Oliver Heaviside en juillet 1886. Il vient du verbe anglais to impede signifiant

"retenir", "faire obstacle à" ; verbe qui dérive lui-même du latin impedire qui veut dire "entraver".

Dans un circuit formé par des résistances, condensateurs et bobines, toutes les tensions et les courants sont

solutions d'équations différentielles.

En mathématiques, une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et

leurs dérivées. L'ordre d'une équation différentielle correspond au degré maximal de différentiation auquel l'une

des fonctions inconnues a été soumise.

Les équations différentielles sont utilisées pour construire des modèles mathématiques de phénomènes physiques

et biologiques, par exemple pour l'étude de la radioactivité ou la mécanique céleste. Par conséquent, les équations

différentielles représentent un vaste champ d'étude, aussi bien en mathématiques pures qu'en mathématiques

appliquées.

La loi d'Ohm est une loi physique permettant de relier l'intensité du courant électrique traversant un dipôle

électrique à la tension à ses bornes (elle permet de déterminer la valeur d'une résistance). La loi d'Ohm a été

nommée ainsi en l'honneur du physicien allemand Georg Simon Ohm

Résistivité La résistivité d'un matériau, généralement symbolisée par la lettre grecque rho (ρ), représente sa capacité à

s'opposer à la circulation du courant électrique. Elle correspond à la résistance d'un tronçon de matériau de 1 m de

longueur et de 1 m2 de section ; elle est exprimée en ohm·mètre (Ω·m). On utilise aussi :

le Ω·mm2/m = 10

-6 Ω·m ;

le μΩ·cm = 10-8

Ω·m.

La résistivité est la grandeur inverse de la conductivité (symbole : σ).

La résistance R (en ohms) d'une pièce rectiligne d'un matériau de résistivité ρ, de longueur L (en mètres) et de

section droite d'aire S (en mètres carrés) vaut donc : .

La résistance est la grandeur inverse de la conductance électrique (symbole : G).

La résistivité des matériaux dépend de la température :

Pour les métaux, à la température ambiante, elle croit linéairement avec la température. Cet effet est

utilisé pour la mesure de température (sonde Pt 100)

Pour les semi-conducteurs, elle décroît fortement avec la

température, la résistivité peut aussi dépendre de la quantité de

rayonnement (lumière visible, infrarouge, etc.), absorbé par le

composant.

Conductivité

La conductivité électrique est l'aptitude d'un matériau à laisser les charges électriques se déplacer librement,

autrement dit à permettre le passage du courant électrique.

Unité S.m

-1 (siemens par mètre)

Le plus souvent la mesure avec un conductimètre donne le résultat en mS.cm-1

(millisiemens par centimètre).

Attention : 1 mS.cm-1

= 0,1 S.m-1

Dimension : [σ] = I2T

3L

-3M

-1

Revenons à l’impédance

Mais, si toutes les sources délivrent des courants et des tensions fonctions sinusoïdales du temps de même

fréquence et d'amplitude constante, les solutions, à l'état stationnaire (quand tous les phénomènes transitoires se

sont estompés), sont également des fonctions sinusoïdales de même fréquence que les sources et dont l'amplitude

et la phase à l'origine du temps sont constantes.

Le formalisme des impédances établit quelques règles de calculs des potentiels et des intensités du courant en tout

point d'un circuit alimenté par diverses sources et comportant des éléments inductifs et capacitifs. Les méthodes

de calcul sont alors similaires à celles utilisées pour les circuits en courant continu. Ce qui montre l'avantage

d'employer les impédances.

Ces règles ne sont valables que :

En régime sinusoïdal établi, c’est-à-dire avec des sources de tension et de courant sinusoïdales et une fois

les phénomènes transitoires de départ disparus.

Avec des composants linéaires, c’est-à-dire des composants dont l'équation caractéristique (relation entre

la tension à leurs bornes et l'intensité du courant qui les traverse) est une équation différentielle à

coefficients constants. Des composants non linéaires comme les diodes sont exclus. Les bobines à noyau

ferromagnétique donneront seulement des résultats approchés et ce, à condition de ne pas dépasser les

valeurs d'intensité au-dessus de laquelle leur fonctionnement ne peut plus être considéré comme linéaire

suite à la saturation qui intervient dans ces matériaux.

Si toutes les sources n'ont pas la même fréquence ou si les signaux ne sont pas sinusoïdaux, on peut décomposer

le calcul en plusieurs étapes à chacune desquelles on pourra utiliser le formalisme d'impédances. Voir plus loin

dans cet article.

Définitions Impédance Soit un composant électrique ou un circuit alimenté par un courant sinusoïdal . Si la tension à ses

bornes est , l'impédance du circuit ou du composant est définie comme un nombre complexe Z,

dont le module est égal au rapport et dont l'argument est égal à .

soit

Comme les tensions et les courants sont sinusoïdaux, on peut utiliser aussi bien des valeurs crête (des

amplitudes), des valeurs efficaces ou des valeurs crête à crête. Mais il faut faire bien attention à rester uniforme et

de ne pas les mélanger. Les résultats des calculs seront du même type que celui utilisé pour les sources.

L'impédance est homogène à une résistance et se mesure en ohms.

Module de l'impédance [modifier] Remarque : souvent, par abus de langage on désigne par le terme impédance ce qui, en toute rigueur, devrait

s'appeler module de l'impédance.

Le module de l'impédance se mesure en ohms.

Impédance des composants de base [modifier] Composants parfaits :

Résistance : l'impédance d'une résistance R est égale à R : .

C'est le seul composant à avoir une impédance réelle.

Bobine : L'impédance d'une bobine d'inductance L est : . Ici est la pulsation, F la fréquence et j² = -1.

Condensateur : L'impédance d'un condensateur de capacité C est :

Les composants réels ont des impédances d'expression complexe qui dépend généralement de la fréquence du

courant qui les traverse. Ils sont alors modélisés par des circuits constitués de composants idéaux. Par exemple,

une résistance réelle présente, en général, une inductance en série avec sa résistance. Une résistance bobinée

ressemble à s'y méprendre à une inductance et elle présente une valeur d'inductance significative. En haute

fréquence, il est nécessaire d'adjoindre à ce modèle un condensateur en parallèle pour tenir compte des effets

capacitifs existants entre deux spires contigües.

De même, un condensateur et une bobine réels peuvent être modélisés en ajoutant une résistance en série ou en

parallèle avec la capacité ou l'inductance pour tenir compte des défauts et pertes. Il faut même parfois ajouter des

inductances au modèle du condensateur et des capacités au modèle d'inductance. Ces composantes parasites de

l'impédance influent significativement sur l'impédance basique au-delà d'une fréquence qui peut varier de

quelques kiloHertz à quelques gigaHertz.

Réactance Une impédance peut être représentée comme la somme d'une partie réelle plus une partie imaginaire :

est la partie résistive et est la partie réactive ou réactance.

Admittance Voir article principal admittance. L'admittance est l'inverse de l'impédance :

La conductance est la partie réelle de l'admittance et la susceptance est la partie imaginaire de l'admittance.

L'admittance, la conductance et la susceptance se mesurent en siemens. Un siemens est l'inverse d'un ohm.

Sources de tension ou de courant déphasées Si, dans un circuit, on a plusieurs sources de tension ou de courant, on choisit une d'entre elles comme source de

référence de phase. Par exemple, si la source prise comme référence est de la forme , on écrira sa

tension comme . Si la tension d'une autre source est en avance de phase d'un angle par rapport à la source de

référence, on écrira cette tension comme . L'argument des tensions ou courants calculés donnera leur avance de phase par rapport à la source de référence. Ainsi, par exemple une source de courant est s'écrira

sous la forme .

Diagramme de Fresnel On peut représenter les tensions des sources et les tensions aux bornes des composants d'un circuit comme des

vecteurs dans le plan complexe. Avec un peu d'habitude et un minimum de connaissances de géométrie, ces

dessins sont beaucoup plus explicites que les valeurs ou des formules. Évidemment ces représentations ne sont

pas un moyen de calcul, mais un moyen de « voir » comment les tensions s'additionnent. Ils peuvent être aussi un

moyen d'écrire les formules finales en partant des propriétés géométriques. Vous trouverez deux exemples de

diagrammes de Fresnel dans les exemples plus bas.

Calcul de circuits avec les impédances Avec ce qui vient d'être dit, on peut calculer des circuits comprenant des impédances de manière similaire a celle

utilisée pour le calcul avec des résistances en courant continu.

Lois de Kirchhoff Les lois de Kirchhoff s'appliquent de la même manière: « la somme des courants arrivant sur un nœud est nulle »

et « la somme des tensions autour d'une maille est nulle ». Cette fois, aussi bien les courants que les tensions sont

représentés par des nombres complexes. (Voir transformation complexe).

Généralisation de la loi d'Ohm La tension aux bornes d'une impédance est égale au produit de l'impédance par le courant :

Aussi bien l'impédance que le courant et la tension sont, en général, complexes.

Impédances en série ou en parallèle Les impédances en série ou en parallèle se traitent comme les résistances avec la loi d'Ohm. L'impédance de

plusieurs impédances en série est égale à leur somme :

L'impédance de plusieurs impédances en parallèle est égale à l'inverse de la somme de leurs inverses :

Interprétation des résultats Le résultat du calcul d'une tension ou d'un courant est, en général, un nombre complexe. Ce nombre complexe

s'interprète de la façon suivante :

Le module indique la valeur de la tension ou du courant calculé. Si les valeurs utilisées pour les sources

étaient des valeurs crête, le résultat sera aussi une valeur crête. Si les valeurs utilisées étaient des valeurs

efficaces, le résultat sera aussi une valeur efficace.

L'argument de ce nombre complexe donne le déphasage par rapport à la source utilisée comme référence

de phase. Si l'argument est positif, la tension ou le courant calculés seront en avance de phase.

Exemples Une seule source

Inductance et résistance en série alimentées par une source sinusoïdale.

Dans le diagramme de droite nous avons une source sinusoïdale

de 10 volts d'amplitude et de 10 kHz de fréquence. En série

nous avons une inductance de 10 mH et une résistance de 1,2 k .

Calculons le courant qui circule dans le circuit :

Le module de ce courant sera :

Comme la tension était en valeur crête (amplitude), le courant obtenu l'est aussi. Le courant efficace est

La phase du courant est l'argument du nombre complexe : :

. Le courant est en retard de phase par rapport à la tension d'alimentation. Ceci est logique puisque le circuit est

inductif.

Diagramme de Fresnel d'une bobine et une résistance en série. Le cercle en gris ne sert que comme aide au dessin

de l'angle droit entre la tension sur la résistance et l'inductance.

Seule la résistance dissipe de la puissance :

Le apparaît parce que la valeur du courant utilisée est la valeur crête. La tension aux bornes de la résistance est :

La tension efficace que l'on lirait sur un voltmètre serait le module de cette tension, divisé par racine de 2 :

La tension aux bornes de l'inductance est :

La tension efficace lue avec un voltmètre serait :

On peut constater que l'addition de deux tensions « complexes » donne bien (aux arrondis près) la tension

d'alimentation. Par contre, l'addition de deux tensions lues avec le voltmètre donne une tension plus élevée que

celle de l'alimentation ( ). C'est le résultat typique des mesures faites avec un voltmètre sur des circuits

dont les tensions ne sont pas en phase.

Deux sources déphasées

Condensateur et résistance en série entre deux sources sinusoïdales

déphasées.

Dans le circuit de droite, un condensateur de et une résistance en

série, sont branchés entre deux sources sinusoïdales. Nous prenons comme

sources deux phases du réseau triphasé. La source de gauche sera notre

source de référence. . celle de droite est en avance de

phase de . Donc . Avec le formalisme d'impédances, la source de gauche s'écrira et la source de droite

s'écrira .

Commençons par calculer la différence de tension entre les deux sources :

Le module de cette tension est , et elle est en retard de 0,5236 radians (30°) par rapport à la tension de

référence.

Diagramme de Fresnel correspondant au deuxième exemple. Le premier cercle sert de guide pour les tensions de

deux sources. Le second pour l'angle droit entre la tension du condensateur et celle de la résistance.

Le courant qui circule est :

Comme les valeurs de départ étaient des valeurs efficaces, le courant aussi est une valeur efficace de 91 mA et en

avance de phase de 16,71° par rapport à la tension de référence.

La tension aux bornes de la résistance est :

La tension aux bornes du condensateur est :

. La tension aux bornes du condensateur est en retard de phase de 73,3° par rapport à la tension de référence.

Comme précédemment, l'addition des modules des tensions (celles que l'on mesurerait avec un voltmètre) sur la

résistance et le condensateur (563 V) est supérieure à la tension appliquée (398 V).

La tension au point A du circuit sera :

La tension au point A est plus élevée que la tension de chacune des sources.

Quand les impédances ne sont pas directement utilisables Si toutes les sources n'ont pas la même fréquence, le formalisme des impédances n'est pas directement utilisable.

Dans ce cas on peut utiliser le théorème de superposition et faire un calcul séparé pour chacune des fréquences

(en remplaçant chaque source de tension de fréquence différente par un court-circuit et chaque source de courant

de fréquence différente par un circuit ouvert). Chacune des tensions et courants totales du circuit sera la somme

de chacune des tensions ou courants obtenus pour chacune des fréquences. Pour faire ces dernières sommes, il

faut exprimer chacune des tensions obtenus avec leur dépendance avec le temps et leur déphasage :

pour les tensions et des formules similaires pour les courants.

Si les signaux ne sont pas sinusoïdaux mais qu'ils sont périodiques et continus, on peut décomposer les signaux

en série de Fourier et utiliser le théorème de superposition et faire un calcul séparé pour chacune des fréquences

du développement. Le résultat final sera la somme des résultats obtenus pour chacune des fréquences (avec leur

dépendance temporelle et leur déphasage).

Origine des impédances Quiconque a, un jour, reçu une décharge électrique, peut affirmer qu'elle était bien réelle et qu'elle n'avait rien

d'imaginaire. Alors, d'où sort le j des formules d'impédances? Nous allons essayer de l'illustrer en calculant, sans

utiliser le formalisme des impédances, le courant qui circule par un circuit formé par une résistance, une

inductance et un condensateur en série.

Le circuit sera alimenté par une tension sinusoïdale et nous avons attendu assez longtemps pour que tous les

phénomènes transitoires du début se soient estompés. Nous sommes en régime permanent. Comme le système est

linéaire, le courant du régime permanent sera aussi sinusoïdal et aura la même fréquence que la source originale.

La seule chose que nous ignorons est son amplitude et le déphasage que le courant peut avoir par rapport à la

tension d'alimentation. Ainsi, si la tension d'alimentation est le courant sera de la forme

, où est le déphasage que nous ne connaissons pas. L'équation à résoudre sera :

où , et sont les tensions aux bornes de la résistance, l'inductance et le condensateur.

est égale à La définition d'inductance nous dit que :

.

La définition de condensateur nous dit que . On peut vérifier (en intégrant l'expression) que :

. Ainsi, l'équation à resoudre est :

C’est-à-dire, il faut trouver les valeurs de et de qui satisfont cette unique équation pour toutes les valeurs du

temps .

Imaginons maintenant que nous alimentons un circuit identique avec une autre source de tension sinusoïdale dont

la seule différence est qu'elle commence avec un quart de période de retard. C’est-à-dire délivrant une tension

égale à . La solution sera la même sauf qu'elle aura aussi le même retard. Le courant

sera : . L'équation de ce second circuit retardé sera :

Il y a des signes qui ont changé car le cosinus retardé se transforme en sinus, mais le sinus retardé se transforme

en cosinus.

Maintenant nous allons additionner les deux équations après avoir multiplié la seconde par j. L'idée est de

pouvoir transformer les expressions de la forme en , utilisant les formules d'Euler. Le résultat est:

Comme est différent de zéro,on peut diviser toute l'équation par ce facteur:

on déduit:

Le terme de gauche comprend les deux inconnues que nous voulions calculer: l'amplitude et la phase du courant.

Son amplitude sera égale au module du nombre complexe de droite et sa phase sera égale à l'argument du nombre

complexe de droite.

Mais le terme de droite est la formule habituelle à laquelle nous arrivons quand nous traitons les impédances des

résistances, inductances et condensateurs de la même façon que l'on traite les résistances dans la loi d'Ohm. La

formule est exactement celle que nous écrivons quand nous utilisons le formalisme de impédances. On reconnaît

au dénominateur les impédances de la résistance, l'inductance et le condensateur. Ce n'est pas inutile de repeter

que quand nous écrivons:

nous supposons que la personne qui lit cette formule sait l'interpréter et ne va pas croire que le courant puisse être

complexe ou imaginaire. La même supposition est implicite quand nous retrouvons des expressions comme "nous

alimentons avec une tension " ou o "le courant est complexe".

Historique du micro L'invention du microphone a été déterminante dans le développement des premiers systèmes téléphoniques.

Émile Berliner a inventé le premier microphone le 4 mars 1877, mais c'est à Alexander Graham Bell que revient

l'invention du premier microphone réellement utilisable qui fut créé en 1920. Une grande partie des premiers

développements des microphones a été menée par les Laboratoires Bell. je kiff le kuduro

Conception et caractéristiques Microphone électrostatique de studio et son filtre anti-pop

Le microphone est un transducteur électroacoustique, tout comme l'oreille

animale et humaine: il traduit une onde sonore en signal électrique à l'aide

d'une partie mobile, le diaphragme ou membrane, que les ondes sonores

viennent exciter (l'équivalent dans l'oreille est le tympan). Par un dispositif

qui dépend de la technologie du microphone, ces oscillations mécaniques

sont converties en une tension électrique variable (comparable au signal du

nerf auditif). Cette tension électrique est acheminée vers le système

d'amplification, de pré-amplification ou d'enregistrement auquel le micro est

branché.

Un tissu ou une grille protège généralement la partie mobile du microphone,

afin d'éviter qu'elle ne soit abîmée par un contact direct. On peut également

avoir une protection supplémentaire contre le vent, notamment sous forme d'une bonnette (mousse en matière

plastique) ou d'un filtre anti-pop pour atténuer les consonnes explosives « p », « b », « t » et « d ».

Il n'existe pas un microphone capable de faire un enregistrement optimal dans toutes les situations : à chaque

situation de prise de son correspond un microphone, dont les constructeurs spécialisés proposent de nombreux

modèles. Les caractéristiques principales d'un microphone sont donc :

Son type

Sa technologie

Sa directivité

Ses caractéristiques électro-acoustiques (sensibilité, pression acoustique maximale, ...)

Les types de microphones Différents types de microphones

Selon le type d'utilisation pour lequel le micro est destiné

(ambiance sonore, chant, instrument de percussion,

instrument à vent, sons aquatiques...) et selon les

conditions d'utilisation (studio, scène, en extérieur...):

Le microphone à main

Le microphone de studio

Le microphone cravate

Le microphone de surface

Le microphone canon

Le microphone pour instrument

Le microphone cigare

La directivité La directivité est une caractéristique essentielle du microphone, elle caractérise sa sensibilité en fonction de la

provenance du son, selon son axe central. Tous les microphones ne captent pas le son de la même façon. Suivant

les tâches à accomplir, le rendement optimal provient de la directivité. Certains perçoivent les sons de tout

l'environnement et d'autres s'appliquent à cerner des sources sonores éloignées. Les principales directivités sont

omnidirectionnelle, cardioïde ou supercardioïde et bidirectionnelle.

Le diagramme polaire d'un microphone représente les limites de la sensibilité du microphone dans l'espace. Un

cercle gradué en degrés de 360 unités et une ordonnée exprimée en décibels vous indiqueront l'espace perçu par

le microphone suivant différentes fréquences. En analysant le diagramme directionnel, on s'aperçoit que la prise

de son peut être pré-égalisée sans recourir à la console de mixage, suivant la disposition du microphone face à la

source sonore. En général, la directivité s'applique au mieux lorsque le diaphragme est perpendiculaire à la source

sonore. Dans le tableau suivant le micro est placé verticalement, son extrémité étant représentée par le point

rouge, et on trace les lignes qui créent le même niveau de signal en sortie du micro si l'on y déplace une source

sonore d'intensité constante.

Omnidirectionnel Cardioïde

large Cardioïde Hypercardioïde Canon

Bi-directionnel ou

figure en 8

Omnidirectionnel : aucune source sonore n'est privilégiée. Le micro capte le son de façon uniforme,

dans une sphère théoriquement parfaite. Utilisé pour enregistrer des sons d'ambiance, le microphone

omnidirectionnel perçoit les sons sur 360°, c’est-à-dire qu'il capte tout l'environnement. Il reçoit toutes les

sources sonores et les résonances de celle-ci. Il est donc souhaitable que l'acoustique de la salle se prête à

l'enregistrement. Il est cependant moins sensible aux hautes fréquences provenant par ses côtés et sa base

arrière qu'en attaque frontale. S'il est équipé d'une large capsule, on pourrait dire qu'il est pratiquement

directionnel dans les hautes fréquences. Il offre de très bons enregistrements sur des ensembles de chœur,

ou sur un instrument soliste au son réaliste.

Cardioïde : directivité vers l'avant, privilégie les sources sonores placées devant le micro. Utilisé pour le

chant, la prise d'instruments, le microphone unidirectionnel est le plus répandu. L'apparence de son

diagramme directionnel le fait appeler cardioïde (en forme de cœur). Bien que les sons provenant des

côtés soient toujours moins captés que les frontaux, sa conception est basée sur des différences de

pression acoustique entre les faces avant et arrière. Par ce calcul, il perçoit les sons devant la membrane et

rejette ceux provenant de derrière. Ainsi le son est légèrement moins réaliste que l'omnidirectionnel. De

plus, ils sont sensibles à la pression acoustique. L'effet engendré est celui d'un sentiment de proximité. Il

accroît aussi les moyennes et basses fréquences à mesure que la distance entre la source et la capsule

diminue. On l'utilise lorsque des sons hors axe sont à éviter, cas de réverbération ou de proximité d'autres

instruments. De ce fait, les micros cardioïdes sont couramment utilisés en sonorisation.

Hypercardioïde : similaire au cardioïde, avec une zone avant un peu plus étroite et un petit lobe arrière.

Canon : forte directivité vers l'avant, directivité ultra cardioïde permettant de resserrer le faisceau

sonore capté. Utilisé pour enregistrer des dialogues à la télévision ou au cinéma, et pour capter des sons

particuliers dans un environnement naturel. La directivité est ici ultra cardioïde et présente un champ de

sensibilité encore plus étroit. La capsule est placée au fond d'une structure tubulaire complexe faisant

office de réseaux d'interférences. Par leur aspect, on les appelle aussi micros fusils ou canons. Les

microphones ultra cardioïdes ne répondent cependant pas aux basses fréquences.

Bi-directionnel ou directivité en 8 : deux sphères identiques, à l'avant et à l'arrière. Caractéristique des

microphones à ruban. Le microphone bidirectionnel est utilisé le plus souvent en combinaison avec un

microphone de directivité cardioïde ou omnidirectionnelle afin de créer un couple MS (Mid pour l'avant et

Side via la directivité bidirectionnelle pour les côtés). Les angles de réjection des microphones

bidirectionnels permettent d'optimiser les problèmes de diaphonie lors de l'enregistrement d'instruments

complexes comme la batterie par exemple. Ce microphone possède deux capsules montées en opposition

de phase.sex and the city

Les différentes technologies Les principales technologies de microphones sont présentées ici. Il en existe d'autres, comme par exemple le

microphone à ruban, relativement rare.

Microphone dynamique à bobine mobile

Schéma du microphone dynamique: 1.Onde sonore, 2.Membrane,

3.Bobine mobile, 4.Aimant, 5.Signal électrique

Il comporte un diaphragme fixé à une bobine mobile aimantée.

Cette dernière va devenir le siège d'un courant induit en se

déplaçant par rapport à un aimant fixe, ses oscillations étant égales

à celle du diaphragme. Le signal émis par inductance sera le signal

sonore. Les professionnels du son ont tendance à préférer les

microphones statiques aux dynamiques en studio, en raison de leur

reproduction sonore jugée trop ronde et terne par ces derniers, et

ce malgré l'apparition dans les années 80 d'aimants au néodyme fidélisant davantage la bande passante.

Cependant, dans certains cas, cette rondeur et cette chaleur de son peuvent être recherchés, notamment en rock

(reprise d'ampli, voix rock ou métal). Le micro dynamique est également très intéressant pour les prises de

percussion (grosse caisse entre autres) et cuivres, de par leur capacité à encaisser de fortes pressions acoustiques.

Ils sont par contre très utilisés sur scène, où leur solidité est très intéressante et leur manque de sensibilité est un

atout: il évite que le son des « retours » voire de la façade ne passent dans les micros et engendrent un Larsen.

Avantages : robustesse, passivité (pas d'alimentation externe ni d'électronique), capacité à gérer de fortes

pressions acoustiques, prix en général nettement inférieur à un microphone statique de gamme

équivalente.

Inconvénients : manque de finesse dans les aigus le rendant inapte à prendre le son de timbre complexes :

cordes, guitare acoustique, cymbales, etc.

Quelques modèles de références : Les micros broadcast Shure SM7b, Electrovoice RE20 et RE27N/D très

utilisés aux États-Unis et dans certaines radios nationales et locales françaises ; Shure SM-57, un standard

pour la reprise d'instrument (notamment la caisse claire et la guitare électrique) et Shure SM-58 pour la

voix (Micro utilisé entre autres par Kennedy lors des meetings, Mick Jagger sur Voodoo Lounge, Kurt

Cobain sur Bleach etc.). Il est intéressant de savoir que ces deux micros sont identiques au niveau de la

construction et que ce n'est qu'une courbe différente d'équalisation (due au filtre anti-pop qui n'existe pas

sur le SM57) qui les différencient[réf. nécessaire]

. Leurs versions hypercardioïdes, le BETA57 et BETA58,

jouissent d'une notoriété moindre, malgré une qualité de fabrication nettement supérieure. Citons encore

le Sennheiser MD-421 très réputé pour les reprises de certains instruments acoustiques (dont les cuivres)

et d'amplis de guitare ou de basse.

Microphone électrostatique à condensateur

Schéma d'un microphone à condensateur. 1.Onde sonore, 2.Membrane

avant, 3.Armature arrière, 4.Générateur, 5.Résistance, 6.Signal

électrique

Les microphones électrostatiques, bien qu'ayant le défaut d'être

sensibles aux manipulations et de saturer à des niveaux de pression

acoustique inférieurs à ceux supportés par les microphones

dynamiques, sont largement plébiscités par les professionnels en raison

de leur fidélité de reproduction. Cette fidélité n'est atteinte que si le

microphone est étalonné ; le pistonphone est un appareil couramment utilisé à cette fin.

La membrane n'est pas fixée à un bobinage, mais est flottante, séparée d'une plaquette électriquement chargée par

un isolant (air, vide...). La face intérieure de la membrane étant saupoudrée d'une fine couche d'or, métal très

conducteur, ou rendue conductrice par tout autre moyen (ex. membrane en Mylar, polyester aluminisé), cela

forme un condensateur. Les vibrations de la membrane font varier l'épaisseur d'isolant entre les armatures du

condensateur, sa capacité varie d'autant, ce qui provoque un mouvement de charges, c'est-à-dire un courant

électrique qui, une fois passé dans une résistance calibrée, va fournir une tension électrique image du signal. La

technologie du microphone électrostatique présente l'avantage d'excellentes réponse transitoire et bande passante,

entre autres grâce à la légèreté de la partie mobile (uniquement une membrane conductrice, à comparer avec la

masse de la bobine d'un microphone dynamique). De telles caractéristiques nécessitent une alimentation fantôme,

à pourvoir en duplex, allant de 11 à 52 Vcc (standardisée à 48 Vcc), ainsi nommée car la tension générée est

véhiculée via le même canal que le signal sonore en connectique XLR. En outre, les microphones électrostatiques

sont équipés de préamplificateurs électroniques à étages de condensateurs, de transistors ou de lampes, car leur

signal de sortie est assez faible. Ils comportent souvent des options de traitement du signal telles un modulateur

de directivité, un atténuateur de basses fréquences, ou encore un limiteur de volume (Pad).

Avantages : sensibilité, définition.

Inconvénients : fragilité, nécessité d'une alimentation externe, contraintes d'emploi, inapte à reprendre des

pressions acoustiques trop élevées. Sensible aux manipulations, il est généralement fixé sur une monture à

suspension faite de fils élastiques, généralement en zigzag, destinée à absorber les chocs et les vibrations.

Il est très rare qu'il soit utilisé comme microphone à main, sauf certains modèles qui incorporent une

suspension interne.

Ces caractéristiques font qu'ils sont en général plus utilisés en studio que sur scène.

Quelques modèles de référence : Neumann U87ai, U89i et KM 184 (souvent en paire pour une prise

stéréo), Shure SM81 et KSM44, AKG C3000 et C414.

Microphone électrostatique à électret

Le microphone à électret est dans son principe voisin du microphone à condensateur

mais présente la particularité de disposer d'un composant à polarisation permanente :

l'électret. Le problème, c'est que la charge de polarisation diminue dans le temps, ce

qui se traduit par une perte de sensibilité du micro au fil des années.

D'une façon générale, une alimentation à piles du microphone à électret est

nécessaire pour l'alimentation d'un transistor à effet de champ adaptateur

d'impédance logé immédiatement derrière la capsule. En effet l'impédance très

élevée de celle-ci est incompatible avec l'entrée basse ou moyenne impédance (200

Ohms ou 47kohms) des appareils transistorisés actuels. De plus cette liaison directe

serait sujette à de nombreuses inductions parasites et à une chute d'aigus très forte sur

câble long.

Certains modèles semi-professionnels actuels utilisent indifféremment une pile

interne (1.5 volt) ou l'alimentation fantôme normalement prévue pour les micros à

condensateur (48 volts sur les tables de mixage) grâce à un commutateur. Ceci ajoute

au risque de confusion entre les 2 technologies « électret » et « électrostatique pur ».

Facilement miniaturisable, le micro à electret est très utilisé dans le domaine audiovisuel (micro cravate, micro

casque, etc.) où on l'apprécie pour son rapport taille/sensibilité. Les meilleurs modèles parviennent même à

rivaliser avec certains micros électrostatiques en termes de sensibilité.

Les électrets actuels bénéficient d'une construction palliant cette fâcheuse espérance de vie limitée que l'électret

connaît depuis les années 1970.

Avantages : possibilité de miniaturisation extrême, sensibilité.

Inconvénients : amoindrissement de la sensibilité au fil du temps.

Quelques modèles de références : AKG C1000, Shure KSM32, Rode Videomic, Sony ECM.

Microphone magnétique

Un humbucker et deux micros simples

Il est utilisé principalement sur les guitares électriques, les basses les pianos

électriques ou encore les violons électriques, pour capter la vibration des

cordes métalliques. Il existe plusieurs types de micros guitare (voir guitare).

Ces derniers sont choisis en fonction de l'instrument, du style de musique

jouée, et de la coloration sonore que l'on souhaite avoir.

Le premier micro magnétique est apparu en 1931 sur une guitare hawaïenne

de Rickenbacker (la "Frying Pan" modèle A-22), il fallu attendre 1935 pour

voir apparaitre une version adaptée aux guitares traditionnelles; le P-90 de

Gibson. En 1944, Fender inventa (pour la K&F compagny) un autre type de micro à simple bobinage mais dont

les aimants sont séparés. À l'origine, le micro était à simple bobinage, dit single coil, se composant d'un aimant

entouré d'une bobine. Le champ magnétique de l'aimant traverse notamment la bobine, laquelle est soumise aux

variations de ce champ induites par les cordes en mouvement – elles jouent le rôle d'un diaphragme mobile qui

fait varier la force contre-électromotrice parcourant la bobine. À la bobine sont en général raccordés deux fils

électriques : celui qui va véhiculer le son sous la forme de signaux électriques est appelé le « point chaud »,

l'autre est tout simplement relié à la masse.

Le problème des micros simples est qu'il génère des sons parasites. Ce problème fut résolu en 1955 par un

ingénieur de chez Gibson, Seth E. Lover, en utilisant deux micros simples dont les polarités ont été inversées :

c'est le micro double aussi appelé humbucker. Toutefois, ce micros ne fut pas installé avant 1956 sur des guitares

hawaïennes et 1957 sur des guitares électriques.

Les micros doubles peuvent être :

splittés (on n'utilise qu'un seul des deux bobinages pour donner une sonorité de micro simple) sur

certaines guitares.

appairés, en série ou en parallèle, en phase ou en opposition de phase, selon le montage électrique installé

sur la guitare, créant ainsi des combinaisons de sonorités supplémentaires.

Il existe aussi les micros guitare « actifs » principalement de la marque EMG, Inc qui ont de nombreux avantages

notamment sur scène et en studio.

Depuis quelques années, des chevalets intégrant des capteurs piézo-électriques (ceux des guitares

électroacoustiques) ont fait leur apparition, que l'on peut combiner aux micros déjà présents sur la guitare.

Microphone à charbon

Les microphones à charbon étaient autrefois utilisés dans les combinés téléphoniques ; ils sont moins voire plus

du tout utilisés de nos jours. Ce sont aussi les premiers microphones des stations radios telles que la BBC.

Ils sont composés d'une capsule contenant des granulés de carbone entre deux plaques métalliques servant

d'électrodes. La vibration due à l'onde sonore vient comprimer les granules de carbone. Le changement de

géométrie des granules et de leur surface de contact induit une modification de la résistance électrique, produisant

ainsi le signal. Ces microphones fonctionnent sur une plage de fréquence limitée et produisent un son de basse

qualité mais sont cependant très robustes.

Quelques photos de microphones

Vieux micro Grundig (à charbon)

Vieux micro Grundig (à charbon)

Microphone dynamique pour

karaoké

Shure SM57 et son successeur Beta57 (dynamique)

Sennheiser 845 (dynamique)

Micro AKG C414 (voix, chant,

à condensateur)

Neumann U89i (universel, à

condensateur)

Neumann U87 (universel, à condensateur)

Oktava 319 (instruments, à condensateur)

Membrane d'un Oktava 319

Suspension contre les

vibrations

Courbes d'un micro à condensateur (Oktava

319) et d'un micro dynamique (SM58)

Schéma du préampli d'un microphone à électret

Microphone magnétique pour

guitare

Schéma d'un micro dynamique

Schéma d'un micro à condensateur

Autres catégories Il existe d'autres catégories de micro :

L'hydrophone : il existe aussi des micros pour écouter les sons dans l'eau. Ces micros ont deux principales

utilisations : la prise de son pour les reportages aquatiques et la navigation dans les sous-marins.

Le microphone de contact, qui capte les vibrations d'un solide.

Principaux systèmes d'enregistrements stéréophoniques La stéréophonie mixte et les couples équivalents ORTF, DIN, NOS

Système stéréo composé de deux cardioïdes, avec un angle entre les micros de 110° et des espacements de

capsules de 17cm. Ce système, inventé par les techniciens de l'ORTF, est le meilleur couple équivalent

avec un angle d'enregistrement utile de 90°.

Un angle entre les micros de 90° et des espacements de capsules de 20cm pour le DIN (allemand), qui

donne une prédominance aux différences temporelles avec un angle d'enregistrement utile de 100°.

Un angle entre les micros de 90° et des espacements de capsules de 30cm pour le NOS, qui donne des

différences temporelles encore plus présentes avec un angle d'enregistrement utile de 80°.

La stéréophonie d'intensité et les couples coïncidents Le système XY

Composé de: Deux microphones cardioïdes, avec un angle de 90° et des capsules coïncidentes, c'est-à-dire au

même endroit. Ce système est mono-compatible. Angle utile de prise de son 170°. À noter que l'angle sur le

couple XY est modulable selon la restitution voulue. C'est un couple jouant sur les différences d'intensités,

donnant des sources sonores mal localisées dans l'espace à cause de l'absence des différences temporelles. La

localisation spatiale de l'oreille humaine les utilise énormément. Elle est moins sensible aux différences

d'intensité.

Le système MS

D'origine allemande, MS signifie: (de)Mitte Seite et en Anglais: (en)Mide-

Side.

Ce procédé est, en principe, composé d'un microphone à deux capsules. la

première capsule est cardioïde ou omnidirectionnel, pointée vers la source, la

deuxième capsule est bidirectionnelle (dite figure en 8). Celle-ci est placé

perpendiculairement à la source. L'effet stéréophonique est obtenu par un

matricage:

Cette technique de prise de son a été abandonnée pour la musique à la fin des

années mille neuf cent soixante pour sa mauvaise compatibilité avec la gravure

dite compatible mono/stéréo.

Elle réapparaît dans les années mille neuf cent quatre-vingt, en Europe au début

du cinéma stéréo.

La stéréophonie de phase et son couple AB Le système AB : deux omnidirectionnels espacés. La sommation peut donner des problèmes de

phase, en particulier si les microphones sont très espacés. les distances sont 25 à 50cm pour

respectivement 180°à 130° d'angle de prise de son. Plus les micros sont espacés, plus l'angle de prise

de son diminue. Lorsque les microphones sont trop espacés, un trou apparaît au centre de l'image.

Le Decca tree

Les distances entre les trois micro du Decca tree sont ajustables.

Résistance et conductivité des matériaux : compléments

Nom du métal Résistivité à 300 K

(Ω·m)

Argent 16·10-9

Cuivre 17·10-9

Or 22·10-9

Aluminium 27·10-9

Magnésium 46·10-9

Bronze 50·10-9

Zinc 60·10-9

Nickel 70·10-9

Laiton 70·10-9

Cadmium 76·10-9

Platine 94·10-9

Fer 104·10-9

Étain 142·10-9

Plomb 207·10-9

Germanium 460·10-9

Constantan 500·10-9

Mercure 960·10-9

Nichrome 1000·10-9

Carbone 35 000·10-9

L'argent métallique est le corps pur simple qui est le meilleur conducteur d'électricité à température ambiante.

Isolants

nom du matériau résistivité (Ω·m)

eau distillée 1,8 105

verre 1017

air variable

polystyrène 1020

Résistivité électrique des métaux purs pour des températures entre 273 et 300K (10-8

Ω·m)1 :

H

He

Li

9,55

Be

3,76 B C N O F Ne

Na

4,93

Mg

4,51

Al

2,733 Si P S Cl Ar

K

7,47

Ca

3,45

Sc

56,2

Ti

39

V

20,2

Cr

12,7

Mn

144

Fe

9,98

Co

5,6

Ni

7,2

Cu

1,725

Zn

6,06

Ga

13,6 Ge As Se Br Kr

Rb

13,3

Sr

13,5

Y

59,6

Zr

43,3

Nb

15,2

Mo

5,52 Tc

Ru

7,1

Rh

4,3

Pd

10,8

Ag

1,629

Cd

6,8

In

8

Sn

11,5

Sb

39 Te I Xe

Cs

21

Ba

34,3 *

Hf

34

Ta

13,5

W

5,44

Re

17,2

Os

8,1

Ir

4,7

Pt

10,8

Au

2,271

Hg

96,1

Tl

15

Pb

21,3

Bi

107

Po

40 At Rn

Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Uuq Uup Uuh Uus Uuo

* La

4,7 Ce

Pr

70

Nd

64,3

Pm

75

Sm

94

Eu

90

Gd

131

Tb

115

Dy

92,6

Ho

81,4

Er

86

Tm

67,6

Yb

25

Lu

58,2

** Ac

Th

14,7

Pa

17,7

U

28 Np Pu Am Cm Bk Cf Es Fm Md No Lr

Calcul de la résistivité des cristaux

Dans le cas d'un cristal parfait, on peut calculer la résistivité en fonction des paramètres fondamentaux2.

Cristaux covalents Les cristaux covalents sont des isolants, la bande interdite est large. Avec l'élévation de température, des électrons

peuvent être suffisamment excités pour franchir le gap. La conductivité suit donc une loi en

T3/2

·exp(-Eg/kT) où

T est la température absolue ;

Eg est la largeur de la bande interdite ;

k est la constante de Boltzmann.

Cristaux ioniques Dans les cristaux ioniques, la conduction se fait par migration de défauts. Le nombre et la mobilité des défauts

suivent une loi d'Arrhénius, la conductivité suit donc une loi similaire, en

exp(-Q/RT) où

Q est l'énergie de formation ou de migration des défauts ;

R est la constante des gaz parfaits ;

T est la température absolue. Article détaillé : Conduction électrique dans les oxydes cristallins.

Cristaux métalliques Dans le cas des cristaux métalliques, la résistivité augmente avec la température ; la conductivité augmente

linéairement avec T. Cela est dû à l'interaction entre les électrons et les phonons.

Le premier modèle utilisé considère que les électrons se comportent comme un gaz, le libre parcours moyen des

électrons étant déterminé par les chocs avec les ions (atomes du réseau sans leurs électrons libres, réseau appelé

« gellium »). On trouve une résistivité valant

avec m : masse d'un électron ;

N : nombre d'électrons par unité de volume, de l'ordre de 1028

m-3

;

e : charge élémentaire ;

τ : temps de relaxation, c'est-à-dire durée moyenne séparant deux collisions.

Mais ce modèle ne prend pas en compte l'effet de la température ni des impuretés.

Selon la relation de Matthiessen, la conductivité comprend trois composantes :

ρ = ρT + ρi + ρD

avec ρT : contribution de l'agitation thermique ;

ρi : contribution des impuretés, de l'ordre du μΩ⋅cm/% d'impureté ; ρD : contribution des défauts atomiques.

Le modèle de Drude prend en compte l'effet Joule, c'est-à-dire l'énergie cinétique que les électrons cèdent au

réseau à chaque collision. Comme les autres modèles, c'est un modèle non quantique, qui permet également de

prévoir la conductivité thermique, mais décrit mal ce qui se passe pour les températures très basses.

La résistivité d'un métal à une température proche de l'ambiante est en général donnée par :

ρ = ρ0(1 + αθ)

avec

ρ0 : résistivité à 0 °C ;

α : coefficient de température (K-1

) ;

θ : température en degrés Celsius.

Coefficients de température de quelques métaux

Métal α (10-3

K-1

)

Argent 3,85

Cuivre 3,93

Aluminium 4,03

Plomb 4,2

Nickel 5,37

Fer 6,5

Tungstène 45

Mesure de la résistivité Résistivité des sols Article détaillé : Terre (électricité).

On utilise un telluromètre et la méthode de Wenner : (on écrit tellurohmmètre (qui mesure la résistance de ce qui

est tellurique)) On plante 4 piquets alignés et équidistants notés 1, 2, 3 et 4. Le courant de mesure est injecté entre

les piquets 1 et 4 et la résistance est mesurée entre 2 et 3. Si la distance entre 2 piquets est égale à D, la résistivité

du sol se calcule avec la formule :

ρ = 2π⋅D⋅R23.

Résistivité des couches minces La méthode 4 pointes ou méthode de Van der Pauw est utilisable pour mesurer la résistivité d’une couche mince.

Il faut placer les 4 pointes près des bords de la couche à caractériser.

Soit un rectangle dont les côtés sont numérotés de 1 à 4 en partant du bord supérieur, et en comptant dans le sens

des aiguilles d'une montre. On injecte le courant entre deux points du bord 1 et on mesure la tension entre les

deux points du bord opposé (bord 3). Le rectangle pouvant ne pas être strictement un carré nous effectuons une

deuxième mesure en injectant cette fois ci le courant entre les deux points du bord 4, et comme précédemment

nous mesurons ensuite la tension entre les deux points du bord opposé (bord 2). Il suffit ensuite de calculer à

l’aide de la loi d'Ohm, le rapport V/I pour chaque configuration de mesures.

Nous obtenons ainsi RAB,CD et RAC,BD.

La résistivité ρ est la solution de l'équation dite équation de Van der Pauw :

. où e est l'épaisseur de la couche.

Une méthode de résolution consiste à calculer la résistance équivalente par la formule suivante :

ƒ étant le facteur de forme obtenu d’après la relation :

Nous calculons ensuite la résistivité avec :

ρ = Req⋅e.