140
I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE Testing the hodogram method on the 1993 Souitz microseismic data C. Hulot A. Beauce juillet 1996 R 39025 BRGM DIRECTION DE LA RECHERCHE Géophysique et Imagerie Géologique B.P. 6009 - 45060 ORLEANS CEDEX 02 - FRANCE - Tél. (33)38.64.33.75

L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

IIIIIIIIIIIIIIIIIIIII

BRGML'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the1993 Souitz microseismic data

C. HulotA. Beauce

juillet 1996R 39025

BRGMDIRECTION DE LA RECHERCHE

Géophysique et Imagerie GéologiqueB.P. 6009 - 45060 ORLEANS CEDEX 02 - FRANCE - Tél. (33)38.64.33.75

Page 2: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Mots Clés : Induced Microseismicity, Locations, Hodogram, Soultz, Hot Dry Rocks.

En bibliographie, ce rapport sera cité de la façon suivante :

H U L O T C , B E A U C E A . (1996) .- Testing the hodogram method on the 1993 Soultz microseismic data - Rapport B R G M R 39025, 79 p. , 38 fig., 3 tab., 0 pi., 6 ann.

© BRGM, 1993, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM

Page 3: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

ABSTRACT

T h e initial objective of this study is to determine whether hodogram data combined with timings data could provide accurate microseismic event locations within the frame of the Soultz Hot Dry Rock project.

F r o m an instrumental point of view, 4-axis accelerometer probe was designed and deployed in the 3 outstation boreholes (4616, 4550 and 4601); this n e w tool allows therefore some redundancy on polarization information.

Calibration shots fired in borehole G P K 1 could not supply reliable information to orientate the probes. T o carry on, a subset of the 1993 located microseismic data is selected.

Generally, probe behaviours are rather erratic. However, during specific time periods, and taking into account various combinations of sensors for probes 4616 and 4550, P -wave polarisation results are consistent within about ±2°. O n the contrary, P-wave polarizations recorded on probe 4601 are exceptionally linear. Seismic signal characteristics, geological features, probes grouting cannot be invoked to explain these responses.

Orientation of the probes were attempted but large discrepancies on the results are observed.

A s this stage and in such a context, hodogram results are not enough accurate to improve the locations deduced from only P - and S-waves timings.

Nevertheless, this study demonstrates the advantage of a 4-component sonde over a standard 3-component probe: the redundancy of the information allows to appreciate the quality of the data and to detect eventual sensor failure; therefore, part of the information delivered by the probe for a specific combination could be used for orientation and location purposes.

Rapport BRGM R 39025 3

Page 4: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

CONTENTS

1 - INTRODUCTION 9

2 - GENERAL CONTEXT OF THE SOULTZ HDR PROJECT 11

2.1-THE SEISMIC NETWORK 11

2.2 - THE MICROSEISMICITY INDUCED DURING THE 1993 HYDRAULIC STIMULATIONS 13

3 - LOCATION PROGRAM USING P- AND S-WAVE TIMINGS AND P-

WAVE HODOGRAM DATA 19

3.1-INTRODUCTION 19

3.2 - PROBLEM SETTING AND TEST CARRIED OUT 20

3.3 - RESULTS AND DISCUSSION 20

3.4 - CONCLUSIONS 22

4 - HODOGRAM METHOD APPLIED ON 1993 MICROSEISMIC DATA 25

4.1-OVERVIEW 25

4.2 - P-WAVE POLARIZATION 26 4.2.1 -Introduction 26

4.2.2 - Hodogram parameters 27

4.3 - THE 4-COMPONENT PROBES 29

4.4-THE PROBE ORIENTATION PROBLEM 31

5-RESULTS 33

5.1-THE DATA 33

5.2 - SELECTION OF THE TIME WINDOW WIDTH 39

5.3-PROBE4616 41

5.4-PROBE 4550 52

5.5-PROBE4601 62

6 - CONCLUSIONS 73

REFERENCES 75

APPENDICES 79

Rapport BRGM R 39025 S

Page 5: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

LIST OF FIGURES

Figure 1 - Situation m a p of the project and the seismic borehole network. Figure 2 - Geometry of the boreholes and the seismic network at Soultz site. Figure 3 - Microseismic cloud induced during the September 1993 injection experiment. Figure 4 - Depth slices through the September 1993 microseismic cloud. Figure 5 - Location of the microseismic events induced during the 401/s and 501/s tests. Figure 6 - M e a n horizontal location errors at various depths. Figure 7 - Examples of intuitive quality of polarization. Figure 8 - A typical ellipsoid model for P-wave particle motion. Figure 9 - Schematic design of the 4-component probe. Figure 10 - Event and probe locations of the selected events. Figure 11 - Azimut distribution of the whole data set calculated using timings. Figure 12 - Dip distribution of the whole data set calculated using timings. Figure 13 - Peak to peak m a x i m u m amplitude and S / N ratio distributions of the P-waves on the

whole data set (vertical component). Figure 14 - Probe 4616: Peak to peak m a x i m u m amplitude distribution of the P-waves on the

whole data set versus chronological event numbers. Figure 15 - Probe 4616: S / N ratio distribution of the P-waves on the whole data set versus

chronological event numbers. Figure 16 - Probe 4616: Ellipticity histograms. Figure 17 - Probe 4616: Polarization coefficient histograms. Figure 18 - Probe 4616: M e a n standard deviation distribution for the azimuths and the dips

deduced from the 4 combinations versus chronological event numbers. Figure 19 - Probe 4616: Differences between azimuth calculated using timings and azimuth

calculated by hodogrametry for the 4 combinations. Figure 20 - Probe 4616: Differences between dip calculated using timings and dip calculated by

hodogrametry for the 4 configurations. Figure 21 - Probe 4616: Differences between azimuths (resp. dips) calculated using timings and

azimuths (resp. dips) calculated by hodogrametry of the selected data set. Figure 22 - Probe 4550: Peak to peak m a x i m u m amplitude distribution of the P-waves on the

whole data set versus chronological event numbers. Figure 23 - Probe 4550: S / N ratio distribution of the P-waves on the whole data set versus

chronological event numbers. Figure 24 - Probe 4550: Ellipticity histograms. Figure 25 - Probe 4550: Polarization coefficient histograms. Figure 26 - Probe 4550: M e a n standard deviation distribution for the azimuths and the dips

deduced from the 4 combinations versus chronological event numbers. Figure 27 - Probe 4550: Differences between azimuth calculated using timings and azimuth

calculated by hodogrametry for the 4 combinations. Figure 28 - Probe 4550: Differences between dip calculated using timings and dip calculated by

hodogrametry for the 4 configurations. Figure 29 - Differences between azimuth calculated using timings and azimuth calculated by

hodogrametry versus calculated azimuth. Figure 30 - Probe 4550: Differences between azimuths (resp. dips) calculated using timings and

azimuths (resp. dips) calculated by hodogrametry of the selected data set. Figure 31 - Probe 4601 : Peak to peak m a x i m u m amplitude distribution of the P-waves on the

whole data set versus chronological event numbers. Figure 32 - Probe 4601: S / N ratio distribution of the P-waves on the whole data set versus

chronological event numbers. Figure 33 - Probe 4601: Ellipticity histograms.

6 Rapport BRGM R 39025

Page 6: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

Figure 34 - Probe 4601: Polarization coefficient histograms. Figure 35 - Probe 4601: M e a n standard deviation distribution for the azimuths and the dips

deduced from the 4 combination versus chronological event numbers. Figure 36 - Probe 4601: Differences between azimuth calculated using timings and azimuth

calculated by hodogrametry for the 4 combinations. Figure 37 - Probe 4601: Differences between dip calculated using timings and dip calculated by

hodogrametry for the 4 combinations. Figure 38 - Probe 4601: Differences between azimuths (resp. dips) calculated using timings and

azimuths (resp. dips) calculated by hodogrametry of the selected data set.

LIST OF TABLES

Table 1 - Coordinates of the seismic probes referred to G P K 1 well head. Table 2 - Microseismic velocity structure. Table 3 - Number and date of analysed files with the total number of detected events and

injection flowrate.

LIST OF APPENDICES

List of events. Azimuths and dips deduced from hodogrametry. Theoretical locations of the events with their chronological number. List and theoretical locations of multiplets with their chronological numbers. Hodogram results deduced from various time window lengths on selected events. Polarization parameters for the whole data set. Examples of sismograms and associated P-wave polarization patterns.

Rapport BRGM R 39025 7

Appendix 1 -Appendix 2 -Appendix 3 -Appendix 4 -Appendix 5 -Appendix 6 -

Page 7: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

1 - INTRODUCTION

The aim of the european Soultz Hot Dry Rock ( H D R ) project is to develop a heat exhanger inside the granite overlayed by a 1400 m-thick sedimentary cover (Kappelmeyer et al, 1991; Garnish et al, 1994). In 1987, a first borehole ( G P K 1 ) was drilled till 2000 m depth; this borehole was deepened in 1993 downto a depth of 3600 m and measured bottom hole temperature was about 160°C. In 1991, the borehole EPS1 situated at about 500 m S S E from G P K 1 was drilled d o w n to a depth of 2200 m . Recently, in 1995, a third main well G P K 2 , located at 50 m S S W of EPS1 was drilled to reach a final depth of 3880 m in order to intersect the dominant fracture network created during previous hydraulic experiments undertaken in G P K 1 (Jung, 1991): this borehole did not exist for the experiments presented in this report.

Three other boreholes (N°4550, 4616 and 4601) were dedicated for seismic monitoring. All these boreholes used in the 50's for oil exploration purposes were re-opened in 1987 for this project.

Various hydraulic stimulations were undertaken since the beginning of the project and are discribed in Beauce et al, 1991; Beauce et al, 1995; Jung, 1991 and 1992; Jupe et al, 1994.

From the beginning of the project till 1992, 3-axis geophones or 3-axis accelerometers were deployed (respectively in 1988 and 1991) in the granite in the boreholes 4616, 4550, and 4601, at depths from about 1400 to 1600 m . Either one or two hydrophones were also deployed in EPS1 at about 2000 m depth. Hydraulic stimulation experiments were conducted in 1988 and 1991 in the open hole section of G P K 1 between 1960 m and 2000 m depths.

During the hydraulic experiments carried out after 1992, the seismic network geometry was still the same as before, but the open hole injection zone was situated deeper in G P K 1 , i.e. in between 2800 m downto 3600 m depth.

Locations of the induced microseismic events were deduced from least mean-squares algorithm based only on P- and S-wave timings, and showed a downward growth for both experiments. The P- and S-wave velocities were supposed to be constant in the granite and some delays were applied at the recording station data. These information were deduced from various calibration shots which were fired in G P K 1 .

For all these experiments, it has been pointed out various times that the number of seismic boreholes dedicated to the monitoring of the injections was too small, specially for location purposes (Jones, 1992). Moreover, as the hydraulic experiments are carried out deeper, this problem will be more and more significant. T o remediate this problem, and as no complementary seismic boreholes were scheduled, it was decided to study the usefulness of integrating the polarization information in the location process. T o allow some redundancy on this last type of information, n e w seismic probes (4-axis accelerometers) were manufactured by Camborne School of Mines Associates.

Rapport BRGM R 39025 9

Page 8: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

A F O R T R A N software based on a joint inversion of both P - and S-wave timings and P-wave hodogram data has been developed and tested on various synthetic cases to determine the accuracy of the locations (Hulot and Beauce, 1996).

The aim of the present study is to test this method. A subset of the microseismic data recorded during the 1993 hydraulic experiments undertaken in borehole G P K 1 was selected.

Firstly, the general context of the Soultz H D R project is presented. The next chapter summarizes the main conclusions of the previous study dealing with the joint inversion of hodogram data and P - and S-wave timings in order to specify the limits of its applications.

General principles of the hodogram method are explained in chapter 4. At last, quality of the hodograms, coherency of the probe responses and probe orientations are discussed in chapter 5.

10 Rapport BRGM R 39025

Page 9: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

2 - GENERAL CONTEXT OF THE STUDY

2.1 - THE SEISMIC NETWORK

In 1993, the configuration of the seismic borehole network at the Soultz site was as the following (figure 1):

- three outstation boreholes (N° 4616, 4550 and 4601); into each of these boreholes, a new 4 -axis accelerometer probe built by Camborne School of Mines was deployed at the bottom.

- one deeper borehole (EPSl), located at about 500 m from the injection well G P K l ; a hydrophone was installed in this borehole all over the experiment period.

Figure 1 - Situation m a p of the project and the seismic borehole network (Beauce et al., 1995).

Coordinates of the probes are presented in table 1, and figure 2 shows the geometry of drillings.

PROBE

GPKl EPSl 4550 4616 4601

X(m)

0.0 214.2 300.3 -16.6

-1178.1

Y(m)

0.0 -343.6 184.1 353.9 -782.6

Z(m)

3600.0 2075.7 1483.5 1376.0 1571.2

Table 1 - Coordinates of the seismic probes referred to G P K l well head (Jupe et al., 1994).

Rapport BRGM R 39025 11

Page 10: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

SURFACE

EPS I

Ë 0 0 1

4-component accelerometers

hydrophone * — •

ndes

ho

le s

o

DJ

o J3

Figure 2 - Geometry of the boreholes and the seismic network at Soultz site (Garnish et al, 1994).

12 Rapport BRGM R 39025

Page 11: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

The new 4-accelerometer probes should have to be cement grouted at the bottom of each outstation borehole to reduce tool resonance, to improve coupling and signal to noise ratio. Considerable difficulties were encountered in the grouting of these tools and problems with the deployment of cement (Nicholls, 1993), meant that only the grouting operations in boreholes 4616 and 4601 were successful. The 4-component probe 4550 was deployed in the thick sludge at the bottom of the borehole, with no grounting. However, this appeared to provide an effective coupling to the rock mass and the probe 4550.

The seismic monitoring was undertaken by the C S M A software, on a Venturon computer. The software allows simultaneously the acquisition of the data, the detection of the seismic events, as well as the data interpretation (P- and S-wave timings) and the location of the events.

2.2 - THE MICROSEISMICITY INDUCED DURING THE 1993 HYDRAULIC STIMULATIONS

T w o main hydraulic experiments were carried out in the G P K 1 openhole section. These experiments are related in detail in Jones, 1992; Jupe et al, 1994; Jones et al., 1995; and Jung, 1994. For the first open hole injection test, the main fault located at 3480 m was isolated, while the second included the fault.

The first test, started on 2 and ended on 17 September, was conducted between 2800 to 3400 m depth, at injection flowrates varying from 0.15 to 36 1/s. A total of about 25 000 m ^ of water was injected during the 2 weeks, and the m a x i m u m pressure observed at G P K 1 wellhead was 10.5 M P a .

For the second experiment, undertaken from 11 to 16 October, around 20 000 n P of water were injected between 2800 and 3800 m depths, at 2 injection flowrates (40 and 50 1/s).

Around 19 000 microseismic events were recorded during these experiments, 16 000 events were located using a least mean-squares algorithm based only on P - and S-wave timings.

The velocity model (table 2) was deduced from calibration shots fired in G P K 1 during this experimental phase and during earlier experiments (Beauce et al, 1992, Jupe et ai, 1994, Jones et ai, 1995).

SENSOR

hydrophone 4550 4616 4601

P-wave (km/s)

5.85 5.85 5.85 5.85

P-delays (ms)

-3.0 0.0 5.5 7.0

S-wave (km/s)

3.34 3.34 3.34 3.34

S-delays (ms)

0.0 0.0 7.0 19.0

Table 2 - Microseismic velocity structure (Jupe et ai, 1994).

Rapport BRGM R 39025 13

Page 12: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

<-aen.->

GPK1

I

B

w« :..:.\.J«;-á • : : *,*••"-•' J . • V - y . y •'• ".

v ; ' > § | Ç g | : \ j . . . . • $ ^ : ^ & ^ ^ •

•^S íiíWfe"- .:- '.* • "/*"• j'^-swA^fTfy *iy*ïi*'. * * - rVi''." •

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ' • ' * "

j0Em¡&¿ • • . \ * * . - . T « " ^ > ^ » « * . % . * •

*' * : ' " T V - . ' ' "'•"'"•

OTI ' -

: ssE

2400m-

•3000m-

• • x

O. Ul

. . C3

•3G00m-

Figure 3 - Microseismic cloud induced during the September 1993 injection experiment. A : Plan view, B : cross-section (Fabriol et ai, 1994).

14 Rapport BRGM R 39025

Page 13: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

During the first open hole injection experiment, microseismic activity was initiated at surface injection pressure around 6 M P a and was mainly located within 100 m around the wellbore at depths from 2800 to 3000 m , just below the casing shoe (Fabriol et al, 1994). Later, when flowrate was increased up to 18 1/s, microseismicity started to grow upward to reach depths as shallow as 2000 m .

T h e correlation between flow distribution along the openhole section and the occurrence of microseismicity with depth was suggesting a direct relationship between fluid flow and microseismicity. The predominant horizontal direction of seismicity (Figure 3 A ) showed a clear N N W - S S E pattern, which was consistent with the directions deduced through the 1988 and 1991 experiments. A further more detailed analysis of the microseismic cloud showed that more distinct structures exist within the data, with a more northerly growth in the 2700-2900 m depth section: this can be observed specially on figure 4 which presents horizontal depth slices taken through the microseismic cloud at various depths. The N150°E cross-section (Figure 3B) showed also that the seismic cloud is limited by linear features on the N N E and S S E sides and at the bottom.

For the second open hole experiment, despite 90% of the fluid flew in the upper part of the open hole, 10% was large enough to stimulate successfully the fracture situated at 3480 m depth and to create a large seismic cloud orientated again in a N N W - S S E direction, from 3350 to 3500 m depth with a trend to grow toward the south (figure 5).

For this experimental phase, the overall microseismic structure was elongated in the N N W - S S E direction with an overall horizontal extension of about 800 m on either side of the well at depth. Timing accuracy is about a millisecond to a few milliseconds and the relative location accuracy is modelled as being typically as of the order of a few tens of meters (Jones et al., 1995).

Rapport BRGM R 39025 15

Page 14: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

• * • > - E

• < • o « **. o « • • • * -<r

o o CM

+ •

» * • • • 1 * ; • * • • > „

• * $ • * • * * • »i * / * • *

o o CD

**t*¿.

*g>

• • •

<* Vi** *

Y'*'** ' " * * • * • • • * • * t J i " • * • i* • ti ^ . V • * *

* j^$w^*ÍP*í3r • ***** • §

-JES®:-' •*••**. • • & < # W ' ;

•H:

* *t** A * * * * • • V . / W * •***•*• v*

*

o o <o co

Figure 4 - Depth slices through the September 1993 microseismic cloud (Jupe et al., 1994).

16 Rapport BRGM R 39025

Page 15: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

200 m

4616 " : * » * • * ; " •

»«•£

#

GPK1 *%¡£?*ÍS

4550

.../

B

; 7 Sft# • v .* . . . .£. .- .«

N N W : X.¿ ..*•: : f* SSE 'y..t't ; . 1 : . : . . . . : . . . * : : . .

2400 m

-ff-:- <: • * * * / * * . A :

• * • : * * I G P K 1 * " • . :

^bt^'^ft'^^v [ .3000'T, „v»./•*£»;.

•t~V " +»'

« • » * » Ä » * +

-•.*ii» i--:.* 3600 1

Figure 5 - Location of the microseismic events induced during the 401/s (o) and 501/s (+) tests (Fabriol et a/., 1994). A : N60° cross-section view, B : map view, C : N150° cross-section.

Rapport BRGM R 39025 17

Page 16: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

3 - LOCATION PROGRAM USING P- AND S-WAVE TIMINGS AND P-WAVE HODOGRAM DATA

3.1 - INTRODUCTION

A s a matter of fact, and since the various stimulations tests carried out in G P K 1 borehole, it has been pointed out that the number of seismic boreholes dedicated to the monitoring of the injections was too small, in particular for location purposes. Moreover, there was no redundancy, and in case of failure of one of the probes, the accuracy of the results could decrease dramatically (Jones, 1992). During the two hydraulic injections conduced in G P K 1 in 1991 at 2000 m depth, this network consisted of 3 boreholes: 4616, 4550 and 4601. In each of these boreholes, 3-axis accelerometers were deployed in the granite between 1400 m to 1600 m depths. In order to complement this network, one or two hydrophones were deployed in E P S 1 at about 2000 m . Locations of the induced microseismic events were deduced from least mean-squares algorithm based only on P- and S-wave timings, and showed a downward growth (Beauce et al, 1992).

For the 1993 hydraulic tests, the network geometry was the same, but the injection zone was situated deeper in G P K 1 , i.e. in between 2800 m down to 3600 m . In such conditions, the aforementioned problems were more important. Various decisions could be made: to deepen the previous seismic boreholes, to drill new boreholes, to deploy more sensors in each of the existing wells and/or use more observation data than P - and S-wave timings.

It was decided to put the effort on the last two possibilities: to deploy more hydrophones in E P S 1 (from 3 up to 5) and to use not only the timings but also the polarization data of the P -waves. Moreover, instead of using classic 3-axis probes and to allow some redundancy on the polarization, 4-axis accelerometer tools were designed. These probes were cemented at the bottom of the outstation boreholes (except for probe 4550) and calibration shots were ñred at two depths in G P K 1 to orientate them properly.

T o locate the induced microseismicity in such a context, a F O R T R A N software based on a joint inversion of both P- and S-wave timings and P-wave hodogram data was developed (Hulot and Beauce, 1996). This code can be implemented in the general acquisition and processing software which is used at Soultz. In this chapter, the technique will be briefly presented and the contribution of hodogram data to the location accuracy in main synthetic tests will be discussed.

Rapport BRGM R 39025 19

Page 17: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

3.2 - PROBLEM SETTING AND TESTS CARRIED OUT

The problem that must be solved is a non-linear problem. O n one hand, the general relationship between the spatio-temporal coordinates of a source and arrival time pickings at various stations is driven by the propagation equation. O n the other hand, theoretically a P-wave arrival should be quasi-linearly polarized.

In fact, such a wave is very rarely linearly polarized and more commonly elliptically polarized. However, it is possible to compute the mean polarization axis over a time window; this axis will correspond to the major axis of the ellipsoid equivalent to the trajectory. So, it can be assumed that this polarization axis represents the local raypath direction and direction cosines of this axis projected on an oriented orthonormal reference mainframe can be used to supplement the time readings data.

The c o m m o n Marquardt-Levenberg iterative non-linear least-squares inversion algorithm has been used to solve this problem (Levenberg, 1944, Marquardt, 1963; Backus and Gilbert, 1967; Presserai., 1986).

Synthetic data were generated on the basis of the Soultz downhole seismic network, considering various hydrophones in E P S 1 . The theoretical sources were distributed on 125 nodes of a 3 D grid (1 k m * l k m * 3 . 5 k m ) centred around G P K 1 bottom (0, 0, -3600 m ) . In X and Y directions node spacing was 250 m ; 6 depth slices were selected between -4500 m and -2000 m depths with a 500 m spacing.

The theoretical data sets were contaminated with random errors both on the time readings and on the directional observations. Three perturbation cases were considered; respectively (±lms, ±1°), (±2ms, ±2°) and (±3ms, ±3°). The random process was applied 30 times in each case for each node, and error ellipses were calculated for 95% confidence limit. For each of these cases, various combinations of available sensors were taken into account.

3.3 - RESULTS AND DISCUSSION

The computed location errors are presented on figure 5. It was decided to present only the horizontal errors which are the most noticeable in the case of the Soultz network geometry. Each single bar on the chart synthetizes the horizontal average location error (only the major axis of the ellipse is considered) computed from these tests for the 6 selected depth ranges. A m o n g all the various presented tests, the use or no use of the directional data (marked with an asterisk in this last case) is considered. F r o m a more general point of view, the horizontal errors get worst, as expected, as depths are increasing in any case.

Vertically, this figure is divided into 4 parts named I, II, in and IV:

-part I studies the weight of the hydrophones, -parts II, HI, IV, show respectively the weight of the probes 4616,4550,4601.

20 Rapport BRGM R 39025

Page 18: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

Parti

The first part represents the horizontal errors when the overall network is available (test N°l), when 3 probes and only 2 hydrophones are available (N°2) and at the end when only the 3 probes are working (N°3). From the first test, it can be concluded that the horizontal location errors are quite similar when using the directional data or not. A s an example, at a depth of -4500 m , the error values are about ±15 m for the first random perturbation case. These errors begin to increase slightly w h e n only 2 hydrophones are available in E P S 1 .

For the third test, it can be emphasized that directional data strongly reduce the horizontal

location errors: these errors can be improved by a factor of 2 , i.e. at a depth of -4500 m and

considering the first perturbation case, from about ±70 m down to ±40 m ; at a depth of -3500

m , the values are respectivaly equal to ±40 m and ±30 m and the decreasing factor is smaller.

Part II, III and IV

The next 3 parts (noted H , HI, IV) reveal the relative weight of each of the existing boreholes on the location results. For each of these sections, one of the probes situated in the seismic boreholes, respectively 4601, 4550 and 4616, has been considered unoperational. In all these cases, three tests have been carried out, using in addition to the 2 selected wells, 5 hydrophones (4, 7 , 10), 2 hydrophones (5, 8, 11) , and no hydrophone at all (6, 9, 12) in E P S 1 . A s in preceding case, the use or no use of directional data have been also considered, excepted when the network is reduced to 2 probes: in this last case, the hodogram data are necessary to obtain a solution.

Comparing the 3 sections, it can be immediately observed that the error distributions are really more important when probe 4601 is not considered. The contribution of the hodogram data to the location accuracy is more important when probe 4601 is not operational than in the other 2 cases, reinforcing the preponderant weight of this probe.

Analysing the most critical tests, i.e. when only two probes are functioning (tests 6, 9 and 10), it can be pointed out that the error magnitudes are about those observed when only P - and S -wave timings on three probes are the only available observation data: in such a situation the usefulness of the hodogram data is clearly demonstrated, even if the absolute resulant errors are still not negligible (around ±60 m at 4500 m depth).

In order to summarize the preceding remarks, it can be pointed out that hodogram data do not improve very significantly the location results when the overall scheduled seismic network is considered. However, if some difficulties occurred on one or more of the probes, this type of data could be very useful.

These paragraphes do not claim to give an exhaustive view of the overall tests which have been undertaken, but it can give some general trends on the contribution of the hodogram data to the microseismic event locations (for more detail, see Hulot et al., 1996).

Rapport BRGM R 39025 21

Page 19: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing hodogram method on the 1993 Soultz microseismic data

lui -1OJJ3 •(_( (iui J O J J ^ •(-! (no JOJJ3 -|_|

Figure 6 - Average horizontal locations errors at various depths (Beauce and Hulot, 1993).

22 Rapport BRGM R 39025

Page 20: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

3.4 - CONCLUSIONS

The main conclusions obtained are the following (all given values consider error case í l m s

and ± Io on timings and direction cosines):

• Hodogram data do not improve very significatively the location results when considering 3 probes (available P - and S-wave timings) and a string of 2 up to 5 hydrophones (P-wave timings).

• If hydrophone data are not available, directional data improve the location accuracy (at the most 50%) compared with the calculated ones using only P- and S-wave timings; however, compared with the previous case, error values are twice.

• With only 3 probes, directional data decrease significatively horizontal location errors; from ±70 m downto ±40 m for events situated at -4500 m depth; from ±40 m downto ±30 m at -3500 m depth. However, compared with the first case error values have doubled.

• If the Soultz network is reduced to 2 probes, hodogram data decrease the location errors, but these errors still remain too high to give meaningful results. Trials which are not presented here, on the effect of a misorientation of the probes with values above ±1° yield to the conclusions that location bias occur, specially considering depths.

Rapport BRGM R 39025 23

Page 21: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

4 - HODOGRAM METHOD APPLIED ON 1993 MICROSEISMIC DATA

4.1 - OVERVIEW

In the literature, the polarization of seismic wave has been widely used to study seismic events recorded on various types of seismic networks. Detection and identification of various seismic waves, studies on local structural variations, or location of the events can be handle by this technique. However, it can be noticed that the method was m u c h more applied on downhole sensor data than on surface ones, above all for location purposes. Moreover, downhole measurements can yield a higher quality signal since the depth reduce free surface effects.

Applying the hodogram method on regional seismic events recorded on surface networks, various authors (Utsu, 1956; Kurihara et al., 1974; W a d a et al, 1971), analysed initial motions of P-waves attributing the deviation patterns of the incident vectors to local structural variations. A wide variety of algorithms have appeared in the literature for estimating angle parameters from the polarization of 3-component seismic data (Flynn, 1965; Simons, 1968; Furuzawa et al., 1970; Furuzawa, 1974; Samson, 1980; Christoffersson et ai, 1985; Magotra et al., 1987; Jurkevics, 1988; Ruud et al., 1988; Roberts et al., 1989; Suteau, 1990). These algorithms include both time and frequency domain algorithms and they were applied for distinguishing seismic phases and to locate regional or local events. Jurkevics mentioned with his algorithm applied on N O R E S S network standard deviations on the determinations of the azimuths of about 10° to 14° for events located at about 20° of epicentral distance.

Starting at the beginning of 80's, and because of the accelerated progress of underground exploitation and technical developments, 3-axis tools could be designed and deployed in boreholes to monitor very low magnitude events that could not be recorded with surface sensors. But, the main problem was that it was not economically possible to consider as m u c h sensors as needed to get accurate event locations applying the classic inversion techniques used for surface networks. In such a context, hodogram method and polarization analysis were the only methods which could allow the location of the microseismic events in various domains of applications; geothermal energy fields, radioactive waste disposal, oil and gas storage industry, and Hot Dry R o c k projects. Taking into account one or more triaxial sensors, and depending on the w a y to calculate the covariance matrix (time domain or spectral domain), basically this technique w a s applied to monitor natural seismicity (Matsumura, 1981) or induced microseismicity to assess reservoir behaviours; during geothermal production (Niitsuma et al., 1985, Niitsuma et ai, 1991, Moriya étal, 1994), oil production (Becquey etal., 1989; Becquey et al., 1990; Z h u et al., 1996), underground gas storage monitoring (Deflandre et al., 1992 a-b; Deflandre et al., 1995) or during hydraulic experiments such as stimulations, fracturations or fluid circulations (Albright et al., 1982; Moriya et al, 1996; Tezuka et al., 1995).

Usually, location errors are not well reported in the literature. W h e n using this technique, Moriya et al., 1994 estimated distance errors, for artificial sources located at 150 m from the receiver, of less than 1 m and direction errors of less than 3.8° in both azimuths and inclination. In 1996, for a hydraulic fracture treatment to optimize production from a petroleum reservoir and for a source located at 350 m from the downhole probe, Zhu et al. mentioned distance errors of about ±120 m and azimuth errors of about ± 7°.

Rapport BRGM R 39025 25

Page 22: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

4.2 - P - W A V E S POLARIZATION

4.2.1 - Introduction

A direct P-wave arrival should theoretically be quasi-linearly polarized. In fact, such a wave is very rarely linear polarized, but more often elliptically polarized. However, whether the direct arrival is linear or elliptically polarized, it is generally possible to compute its m e a n polarization axis over a time window; this axis corresponds to the major axis of the ellipsoid equivalent to the trajectory (Benhama et al, 1988; Cliet et al, 1988). It can be assume that this polarization axis corresponds to the local raypath direction.

Particle motions often have an elliptical appearance. This suggests that particle motion plots are equivalent to inertia ellipsoids. B y analogy, the sample points on the curve can be consider not as a trajectory (i.e. as a chronologically-ordered series) but as a cluster of points in space. This approach enables us to use covariance matrices.

The characteristics of particle motions can be represented by three sets of eigenvectors and eigenvalues corresponding to the principal axes of a trajectory ellipsoid, which are obtained by diagonalizing the covariance matrix of the particle motions.

Usually, the methods used the covariance matrix in a time window containing the first P-wave onset. But differences exist in the definition of the covariance matrix (Lefèvre, 1980; Matsumura, 1981; Jurkevics, 1988; Cliet et al, 1988; Deflandre et al, 1992). The covariance matrix used in this report is the one discribed by Lefèvre (1980).

Let us consider a time window of N samples, each sample defined by three coordinates x, y and z. The m e a n value for each coordinate can be defined over the time window (t\, t2).

with (N2-Nj)x =(t2-ti), where x is the sampling rate, N = N 2 - N i + 1 , then definition of the covariance matrix can be written as:

^(x-mx)2 ^(x-mx)(y-my) ^(x-m^z-mj ^

^(y-my)(x-mx) ^(y-my)2 ^(y-my)(z-mz) c N

K ^(z-mz)(x-mx) ^(z-mz)(y-my) ^(z-mj J

with ^ is replaced by ^ .

26 Rapport BRGM R 39025

Page 23: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

4.2.2 - Hodogram parameters

• Usual P - w a v e polarization parameters

B y visual examination of the trajectory of particle motion, w e can intuitively judge the quality of polarization and determine the direction of its polarization. But it is therefore important to investigate the possibility of automatically computing the direction of polarization and translating the concept of quality of polarization into a numerical form.

Theoretically, if the signal shows a linear polarization, the hodogram is reduced to a straight line; in practice, the hodogram is usually elliptic. The scheme on figure 7 presents various typical cases.

Very good polarization. G o o d polarization. Bad polarization.

Figure 7 - Examples of intuitive quality of polarization (Benhama et al., 1988).

In literature, the use of various parameters are proposed to evaluate the polarization of a wave. In this study, w e consider the parameters defined in Benhama et al, 1988. Diagonalizing the covariance matrix, w e obtained the three eigenvalues:

^1.^-2' -3 (X-| >>,2 Ä.3) .

Let us define the following parameters:

-the main ellipticity:

e2i =V(^"2Al) '

-the intermédiaire ellipticity:

£31 = 7 ^ 3 A l ) >

-the transverse ellipticity:

e3 2 = v(^3A2)>

Rapport BRGM R 39025 27

Page 24: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

Figure 8: A typical ellipsoid model for P-wave particle motion. T h e vectors Xjai, A,2a2 and

X-3a3 are the m a x i m u m , the intermediate and the m i n i m u m principal axes of the ellipsoid. The

m a x i m u m axis Xjaj points to the incident direction of the w a v e (Matsumura, 1981).

-a global polarization coefficient (Samson, 1977):

x = . 2(l + £21 + £3l)

This coefficient always lies between zero and 1. It is equal to zero when polarization is null (e.g. a sphere in space) and close to 1 when polarization approaches rectilinear behaviour.

-an oblateness coefficient:

_ T^i+7^-2 ~27^3 _.-[ 3e3-| T ^ + T ^ + T î" 1 + £21 + e3l"

The oblateness coefficient also lies between zero and one. It is equal to zero for a sphere and equal to one for any planar trajectory.

28 Rapport BRGM R 39025

Page 25: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

• Angular parameters

Assuming that the wave trains travel in the vertical plane containing the well and the source, two angular values can be defined: the azimuth, which is the angle between the vertical plane of local propagation (containing the principal axis of polarization) and the X Z vertical plane; the dip, which is the angle of principal direction of polarization and the vertical plane, i.e. the incident angle for a P-wave.

In this report, the azimuths lie between 0° and 360° anticlockwise, 0° corresponding to the East. Dips lie between 0° and 90°, 0° being the vertical axis.

4.3 - THE 4-COMPONENT PROBES

4-component grouted accelerometer tools were manufactured by C S M Associates (Jones, 1992). These accelerometers have a flat response in the frequency band 10 - 1000 H z , and a resonance frequency at 6.5 K H z (Twose, 1996). Seismic signals were anti-alias filtered at 1500 H z before sampling at 5063 samples/s per channel.

The 4 combinations of the probe are named (z-hl-h2), (z-hl-h3), (z-h2-h3), (hl-h2-h3).

The optimum arrangement for sensors is considered to be when the angle between sensors is as large as possible and therefore equal. For a 3-component sonde this leads to the usual configuration of all the sensors being at right-angles to each other.

The arrangement for a 4-component sonde is different. Each sensor lies along one of the vectors pointing from the centre of the tetrahedron to its vertices. Thus, if w e let the centre of the tetrahedron be the origin (0,0,0), and consider vectors of unit length from this origin to the four vertices this gives:

SENSOR

l=z 2=hl 3=h2 4=h3

X 0.0 0.0

V(6)/3 -V(6)/3

AXES Y 1.0

2V(2)/3 W(2)/3 W(2)/3

Z 1.0

-1/3 -1/3 -1/3

Sensor 1 has been chosen to be the vertical axis. The angle between each vector is 109.47°. W h e n viewed directly down any one of the components the other 3 components appear, by projection, to be separated by 120°.

Figure 9 is the schematic design of the 4-component sondes with the tetrahedral sensor configuration.

Rapport BRGM R 39025 29

Page 26: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Souttz microseismic data

Figure 9 - Schematic design of the 4-component probe.

The expression to convert die X Y Z trihedron (unit vectors: ¡, j, k ) into the probe trihedron is:

f 7 \ z

h2

Jhj

" 0 2V2/

/3

- ^

7rA

0 0

*¿ -*4

1 " -1/3

-1/3

-1/3

1

j 7.

[k)

D u e to the 4-component probe design, the first stage of processing is to convert the signals recorded by the components of the 4 trihedrons (z-hl-h2), (z-hl-h3), (z-h2-h3), (hl-h2-h3) into the reference X Y Z trihedron. The transformations are as follows:

z-hl-h2 trihedron:

(Xs)

Y =

À

"1/ _ /2V2

/2V6 1

'An °1 V r- Vr-/2V6 7V6 0 0

(Z) K

Jhj

z-hl-h3 trihedron:

Y

0 V r- V r-/2V2 /2V2 -3/ ^ - 3 / ^ -y /2V6 /2V6 /

1 0 0

V6

30 Rapport BRGM R 39025

Page 27: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

z-h2-h3 trihedron:

Y • ^ 1

0

1

2V2

0

hl-h2-h3 trihedron:

(X\

Y /2 /2V2 0

-1

4.4 - THE PROBE ORIENTATION PROBLEM

The probes used at Soultz site do not have any gyroscopic system to determine their orientations after deployment. Usual solutions to solve this problem are the following:

• to use calibration shots fire at the surface:

This method was used during the first phase of the Soultz project (1988 - 1989); various dynamite shots were fired at the surface (Chen, 1990). The complex geological context of the Soultz site (1400 m of sedimentary cover with various faults crossing through) prevents using this technique to obtain reliable results.

• to use calibration shots fired in boreholes at various depths:

After the deployment of the probes in their respective boreholes in 1993 and before the hydraulic experiments, It was was proposed: to fire several shots at different depths in G P K 1 well (in order to control the probe réponses according to the depth of sources (dip)), and to repeat these operations in borehole E P S 1 (to control also the responses of the probes versus azimuths).

T w o calibration shots (800 and 300 g) were fired (29 and 30 August 1993) using a Schlumberger's shot-bar tool at 3360 and 2945 m depth in the G P K 1 borehole. Unfortunately, the signals were too emergent to get reliable information to orientate the probes: sismograms of the shot n°l are presented as an example in figures 1 and 2 of the appendix 6, together with corresponding hodograms. Nevertheless, these shots confirm the velocity model determined from previous shots fired during earlier phases of the project.

Face to this problem and in order to solve it, it was decided to select a subset of the microseismic data recorded during the 1993 hydraulic experiments, hoping to get some reliable results. Obviously, w e shall bear in mind that errors due to the inversion location process which uses P - and S-wave timings will certainly corrupt our results. However, this study will allow to analyse the quality of the P-waves, and to determine the coherency of the responses of these n e w probes all over the experiments.

Rapport BRGM R 39025 31

Page 28: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

5 - RESULTS

5.1-THE DATA

Around 20 000 microseismic events were recorded during the 1993 stimulation tests and about 16 000 events were located. Obviously, to test the hodogram method, it was decided to select a more reduced data set. A m o n g all the data, w e consider in this report the results deduced from a set of 77 events. T h e main characteristics of this data set are as follows:

• The selected events are mainly distributed all over the 1993 September stimulation test time period (table 3).

• The hypocenters of the selected events are distributed all over the seismic cloud without any special preference. These hypocenters were computed with the conventional least-squares method based on P- and S-wave timings. Figure 10 presents the locations of the data set on m a p view and cross-sections. Figures 11 and 12 show the theoretical azimuth and dip distributions on a rose diagram for the 3 probes 4616, 4550 and 4601. Azimuths (trigonometric direction, 0° at the East) and dips (from the vertical and trigonometric direction) are referred from the probe pointing out towards the events.

• Usually, the amplitude of events are among the highest ones; clipped events are of course disregarded. For each probe, figure 13 exhibits respectively the m a x i m u m amplitude distributions (peak to peak) recorded on the vertical component, and the signal to noise ratio distributions; to calculate this last parameter, 15 or 30 samples after the onset of the P -wave are considered (30 samples before the onset for the noise). For all the probes, more than 75% of the selected events show peak to peak m a x i m u m amplitudes higher than 1000 |ig and about 80% present a signal to noise ratio higher than 10.

• A m o n g the selected data set, it must be pointed out that w e have included in this study various multiplets (Fremont, 1984; Poupinet et al, 1986; Fréchet 1988) which were identified during another study. The list of these events, locations and various examples of sismograms are given in appendix 3. They formed a cloud that presents a general trend orientated N W - S E situated at about 250 m towards the S E of G P K 1 . These events belong to the structure at 2400 - 2700 m depths which was clearly noticeable on the S S E of G P K 1 on figure 4. It must be noticed that the amplitudes of these events are among the weakest of the data set of this report.

Rapport BRGM R 39025 33

Page 29: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

File number

Date and hour of test

(beginning/end)

Total event

number

Analysed event

number

Injection flowrate

17

18

19

23

25

26

27

30

33

45

63

07/09 -- 12h 10 07/09 -- 22h 35

07/09 - 22h 36 08/09 - 14h 00

08/09 - 14h 01 08/09 -- 22h 45

09/09 -- 21h 36 10/09 - 08h 14

10/09 - 15h 26 10/09 - 22h 58

10/09 - 22h 59 l l /09-07h30

ll/09-07h31 11/09-14h 39

ll/09-22hll 12/09 - 07h 30

12/09 - 22h 30 13/09-07h 32

16/09-07h 40 16/09 -- 16h 16

16/10 -- 13h 35 16/10 - 22h 28

310

295

326

470

327

535

440

511

487

454

295

1

2

3

3

6

18

6

17

6

5

10

121/s

121/s

18 1/s

181/s

24 1/s

24 1/s

24 1/s

2 4 1/s

3 0 1/s

36 1/s

01/s

Table 3 - N u m b e r and date of analysed files with the total number of detected events and injection flowrate.

34 Rapport BRGM R 39025

Page 30: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

M a p view

400-

200-

0-

•ë- -200->-

-400-

-600-

-800-

i '

4601 •

i i i

GPK1

— r — • - | | • •

$4616 •

• •

• < * 4550

r». •

EPS1

—r i

-1200 -1000 -800 -600 -400

X(m)

-200 200 400

X Z cross-section. Y Z cross-section.

-1200-

•1400-

-1600-

•1800-

-2000-

-2200-

E -2400-

S- .2600-

-2800-

-3000-

-3200-

-3400-

-3600-

•3800-

i

• • A

• •

V

ai

46161 1

II 4550 . 1

EPS1 -•

•• •

-

t m

1

1K1

-1200-

-1400-

-1600-

-1800-

-2OO0-

-2200-

E. -2400-

¿ -2600-

-2800-

-3000-

-3200-

-3400-

-3600-

-3800-

46 01

ËPS1

\

&

• •

G

4616] P 4550 -

-

-

-

• • • •

• •

• •

i

-

= K1

-400 -200 0 200 400

X(m)

-1000 -800 -600 -400 -200 0 200 400

Y(m)

Figure 10 - Event and probe locations of the selected events.

Rapport BRGM R 39025 35

Page 31: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

PROBE 4616 PROBE 4550

PROBE 4601

Figure 11 - Azimut distribution of the whole data set calculated using timings (bar width=5°, frequency shown as radius of wedge).

36 Rapport BRGM R 39025

Page 32: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

i çno »

PROBE 4616

90°

«

1 »

1 15

1 IS 10 S • ^ ^ ^ ^ 1 0

; 1

10

IS

1 so

1 • »

270°

A i 20 « 0°

PROBE 4550

PROBE 4601

Figure 12 - Dip distribution of the whole data set calculated using timings (bar width=5°, frequency shown as radius of wedge).

Rapport BRGM R 39025 37

Page 33: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

10000 1000

Figure 13 - Peak to peak m a x i m u m amplitude and S / N ratio distributions of the P-waves on die whole data set (vertical component).

38 Rapport BRGM R 39025

Page 34: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

For one considered probe and for each sensor combination, the difference between the theoretical azimuth (resp. dip) and the azimuth (resp. dip) deduced from the hodogram method should be theoretically a constant number, assuming a homogeneous model. This constant should give the orientation of the probe (component hi taken as the reference) with respect to the reference mainframe system X Y Z of the probe (for this report, X-axis is pointing out towards the East ).

In the next parts of this report w e shall mention in detail the quality of P-wave polarization, for each probe and for the 4-sensor combinations, namely (z-hl-h2), (z-hl-h3), (z-h2-h3), (hl-h2-h3).

For each probe and each combination the following parameters are studied:

• parameters identifying the characteristics of the signals (peak to peak m a x i m u m amplitudes, signal to noise ratios).

• shape parameters: the main, intermediate, transverse ellipticities, the global polarization coefficient, the oblateness coefficient; these coefficients describe the wave polarization properties. They are presented on 3 D histograms. Numerical values of these parameters can be found in appendix 5.

• angular parameters (appendix 1): the azimuths and disp calculated with hodogram method for each of the 4 combinations, the mean azimuth and dip values, the standard deviation, the theoretical azimuths and dips, the differences between the theoretical angles and hodogram angles. T h e results are given in X Y diagrams or rose diagrams. Azimuths are given with a 180° ambiguity. So, to calculate the orientation of the probes, the azimuths were adjusted in order to be compatible.

In the first place, it is necessary to test the effects of the time window width on the azimuths and dips computed with hodogram method. The width of the time window must be carefully selected in order to analyse the initial phase of seismic wave and to avoid signal degradation by other phases such as reflected or diffracted waves. This problem is of course more serious w h e n considering surface seismic arrays but should be considered also for downhole network.

5.2 - SELECTION OF THE TIME WINDOW WIDTH

This preliminary study was carried out on a limited number of events (7) distributed all along the stimulation time period and at various locations within the seismic cloud. T w o time window lengths were chosen; respectively 1 period and 1/2 period after the onset of the P-wave.

Appendix 4 gives the list of the selected events, together with various parameters such as time window lengths, hodogram and polarization parameters.

For each probe, specially for azimuth, dip and global polarization coefficient, it can be emphazised:

Rapport BRGM R 39025 39

Page 35: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

Probe 4616

The behaviour of this probe is largely erratic for all events.

-For event 19-194, the angles values are different according to the time window widths and also to the sensor combinations. Only the global polarization coefficient for the (z-hl-h3) combination is nearly 1.

-For events 26-202, 26-488, and for a given combination, whatever are the time window widths, the angle values are coherent. But the values calculated for each combination are different. A n d again, only the combination (z-hl-h3) scores a global polarization coefficient nearly equal to 1.

-For event 27-339, only 2 combinations (z-hl-h3), (hl-h2-h3) give consistent responses according to the time window widths; the azimuth angles are similar and global polarization coefficients are close to 1 in both cases.

However, only 2 events (25-250, 63-96) show coherent angles whatever the chosen width of the time window for the 4 combinations. For these examples, the global polarization coefficients are respectively close to 1 or higher than 0.74, which means a quasi-linear P-wave polarization.

Probe 4550

For the data set, whatever the selected width of the time window, the azimuth and dip values for the 4 combinations are consistent and the global polarization coefficients are almost equal to 1.

However, only one event (27-339) presents larger angle differences according to the time windows; but these variations cannot be compared with those observed on probe 4616.

Probe 4601

Generally, the values are similar whatever the time windows and the 4 combinations; only 2 events (63-96 and 63-250), for a time window of 1 period, give different values for the 4 combinations. For this probe, the global polarization coefficients lie between 0.4 and 1.

Conclusions

W h e n the global polarization coefficient is close to 1, the angles deduced from hodogram method seems to be indépendant of the width of the time window (between 1 and 1/2 period).

Otherwise, it can be mentioned that the responses of each of the 3 probes are completely erratic. For a selected time window length, the angles are different in between the 4 combinations (probe 4616) but they are similar for probe 4601.

Only probe 4550 presents coherent results. For this probe, no noticeable variations can be observed according to the width of the time window.

In such conditions, and for this study it was decided to use a time window length of 1/2 period for probes 4616 and 4550, and of 1 period for probe 4601 considering the location of this last probe with respect to the microseismic cloud.

40 Rapport BRGM R 39025

Page 36: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

5.3-PROBE 4616

Signal characteristics

S o m e examples of sismogram plots and hodogram patterns are illustrated in figures 3 to 8 of appendix 6. Considered time windows for these plots are 30 m s (150 samples).

Figures 14 and 15 respectively describe the peak to peak m a x i m u m amplitudes (in the studied window, i.e. 1/2 period or 1 period) and the signal to noise ratio distributions. A s expected, the signal on the vertical component shows the highest amplitude value (around 1000 fig) compared with hi, h2 and h3 component values. Generally, the 4 diagrams plotted on figure 15 show signal to noise ratios higher or equal to 10.

Shape parameters

T o compare the results deduced from the 4-sensor combinations for the studied data set, main, transverse and intermediate ellipticities are represented on figure 16. The 3-sensor combinations, (z-hl-h2), (z-h2-h3), (hl-h2-h3) produce very similar trends versus time for the main ellipticity parameter: the calculated values lie between 0.3 and 0.8. This means a large variability for the eigenvalue ratios X2A.1 of the covariance matrix. For the combinaison (z-hl-h3), the main ellipticities are m u c h smaller (around 0.3) and more stable on the whole data set.

At this stage, it can be pointed out a noticeable trend change for all the combinations starting from event number 63 to the end of the list: for this last period, all values, for all combinations are around 0.3. This illustrates a more linear trend for the P-wave polarization. The trends shown by transverse and intermediate ellipticity parameters are more elliptical than ellipsoidal.

These results are also observed on the global polarization coefficients (figure 17). F r o m the first selected event to the last one, these coefficients are always around 1 for the sensor combination (z-hl-h3) (so, without h2 component). For the other 3 combinations which include component h2, the polarization coefficients have m u c h lower values and do not show any noticeable discrepancies. But as mentioned before, the global behaviour of the probe exhibits a severe change starting at event number 63 (with some exceptions for event n° 65, 67, 73) where the parameters are close to 1 for every combinations.

Oblateness coefficient diagrams show without ambiguity a planar trajectory for any combinations.

Azimuth and dip results

Figure 18 shows the distribution of the mean standard deviations for the azimuths (resp. dips) deduced from hodogram method for the 4 combinations. A s for the shape parameters, the results given by these combinations begin to be consistent at event n°63.

Figure 19 presents on rose diagrams, for each combination, the distribution of the difference between the theoretical azimuths and the azimuths deduced from hodogram data for all selected events.

Rapport BRGM R 39025 41

Page 37: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

100000 T

3 10000 -t

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

100000 T

'S 10000 +

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

100000 T

'S 10000 T

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

100000T

'S 10000-

m 1000

H3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Figure 14 - Probe 4616: Peak to peak m a x i m u m amplitude distribution of the P-waves on the whole data set versus chronological event numbers.

42 Rapport BRGM R 39025

Page 38: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

1000 T

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

1000T H1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

1000 T H2

yn i""PF,1"!1"*W*.*i*P,*l*"Pi*n'r*fl ppr*r."pft I F—"WW WW1W*W,W.,."WW 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

1000 T

O 100 -

O

CO 10

H3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Figure 15 - Probe 4616: S / N ratio distribution of the P-waves on the whole data set versus chronological event numbers.

Rapport BRGM R 39025 43

Page 39: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

1 ,00- / 0 , 5 0 V

0.00 \t

M a i n ellipticity

Í9fPkmkj¿ jT^ W^É^L^T^W hl-h2-h3 Ir^^-l »-^vf-'WiA4k4 #l]i YJ¡* W^^WftHflfcA^ / : ^ ^ * 5 ^ s i p ^ i ^ ( ^ ic*r^^ z'tii-n:i

r 7 ^ ^ ^ » T ^ / z - h 2 - h 3 J1 41 ~ ? ~ ~ ^ ^ ^ y z-hl-h2

51 ^ ~i~T7 6 ^ " ^ 71

1.00 -/

o.soK

COOK i

Inte îrmediate ellipticity

/^^^^^^^kSS^jk^^^ hl-h2-h3 ^ ^ ^ ^ ^ ^ ^ ^ ^ S T ^ ^ ^ z-hl-h3

11 ~ >~"-0* fea8i T^^^^r z-h2-h3 21 ~--— _~ ^WrBfcL_ /: 31 41 ~~^p^^^^^z-hl-h2

61^""">"---¿ 71

Transverse ellipticity

Figure 16 - Probe 4616: Ellipticity histograms.

44 Rapport BRGM R 39025

Page 40: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

Global polarization coefficient

Oblateness coefficient

Figure 17 - Probe 4616: Polarization coefficient histograms.

Rapport BRGM R 39025 45

Page 41: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

^ 160T tc «d' « 140-

"3 _. E 120-'S 2 loo-o

**• 5 SO-ca

'*3

•S 60-> o> "° 40-"O h .

•g 20-c to

co 0 -I

PROBE 4616

m

1

- 1 1 I 1 1 1

1 1

1 I 1 " P I . I l i iiii.iij ¡iii^^.iii^.i.iiijijiii ill 1,11,11 ii,il ,111,1,1,1,1111 | ¡iii|ii

1, III, M ., -Il -_, " P P P P I • !"."."! H ". r P P r P P l

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

30 T

25 10 Q .

"O k>

O c

tio

S3 > CO •a •a w a "O C

a w

?n

15

10

5

0

PROBE 4616

ll i 11, JII.L..I i.i. 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Figure 18 - Probe 4616: M e a n standard deviation distribution for the azimuths and the dips deduced from the 4 combinations versus chronological event numbers.

46 Rapport BRGM R 39025

Page 42: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

Results show noticeable variations, specially for the 3 combinations (z-hl-h2), (z-h2-h3), (hl-h2-h3). The less scattered results correspond to combination (z-hl-h3), for which one the P -wave polarization is nearly linear. But even in this case, the angle values lie between 135° to 180°.

Unlike the scattered differences between theoretical and hodogram dips observed from event 1 to 62 (figure 20), the results are quite constant starting at event 63 (stimulation period with the 36 1/s flowrate). However, it must be noticed that this constant trend is not always observed (for example on events number 65, 67 ,73 , the results are still scattered).

Attempt to determine the probe orientation

Taking into account the previous comments, orientation of the probe can only be done on some selected events. The criteria required for this selection are the following:

- a standard deviation for the mean azimuth deduced from die 4 combinations lower than 10°,

- a global polarization coefficient for the 4 combinations higher than 0.8.

Only 11 events have fulfilled these conditions. They all occured after event n°62 : mean standard deviations deduced from hodogram method are about 2.1° for the azimuths (resp. 0.9° for the dips). They all belong to files 45 and 63.

The differences between theoretical and hodogram azimuths (repectively dips) are presented in figure 21.

The orientation of component deduced from this set of data is :

azimuth = 153.5° ±18.3°

dip = -5° ±2.4°

The same process was applied to the results delivered by the combination (z-hl-h3) for events which presents global polarization coefficients higher than 0.8: 62 events were selected; they are distributed all over the time period of analysis. The results are similar from the previous ones, i.e. 156.4° ± 17.6° for the azimuth and -2.2° ± 3.6° for the dip. This confirms that this combination seems to be the only one which could be used during the whole experiment period for the probe 4616.

Rapport BRGM R 39025 47

Page 43: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

z-hl-h2 z-hl-h3

z-h2-h3 hl-h2-h3

Figure 19 - Probe 4616: Differences between azimuth calculated using timings and azimuth calculated by hodogrametry for the 4 combinations

(bar width=5°, frequency shown as radius of wedge).

48 Rapport BRGM R 39025

Page 44: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Souttz microseismic data

Discussions and relevant conclusions

From the data set selected in this report, the overall response of the probe 4616 is rather erratic. The behaviour of this probe can be divided in 2 periods :

• F rom the beginning of the 1993 hydraulic experiment till around the 16th September (file n° 45): during this first period, when considering an event, azimuths and dips computed with the 4 combinaisons of sensors were systematically completely different. P-wave polarizations deduced from the 3 combinaisons (z-hl-h2), (z-h2-h3), (hl-h2-h3) were far from linear, indicating probably a probe failure. However, it must be pointed out that during this same period, P-wave polarizations observed on the combinaison (z-hl-h3) behaves almost linearly. W e hypothesized that the component h2 of this probe could be at the origin of the bad results observed on the other 3 combinaisons.

• After around 16th of September 1993: the responses of the probe were consistent between the 4 combinaisons: m e a n standard deviation for the azimuths (resp. dips) deduced from the 4 combinations is low, i.e about 2.1° (resp. 0.9°). For all these combinaisons, P-wave polarizations were quasi-linear. However, it must be pointed out that in some cases, even if the polarizations were quasi-linear, standard deviations associated to the azimuths and dips can reach 10°.

The reason w h y this pronounced change around 16th September is unknown (may be a power supply problem for this probe?).

Grouting of the probe, or others characteristics of the selected events such as signal to noise ratios, amplitudes, specific locations cannot be involve in order to explain these results.

In such conditions, the orientation of this probe could be evaluated on the data set that belong to the second period. Despite of the selection criteria, the standard deviation deduced on the differences between theoretical and hodogram azimuths are rather high (± 18.3°); location errors will certainly contribute to a certain unknown extent to this scattered results. Taking into account the best combination of sensors that does not include component h2, w e deduced orientation results similar to the previous one. This confirms the fact that data from this combination can be used all over the 1993 experiments.

Rapport BRGM R 39025 49

Page 45: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

z-hl-h2 z-hl-h3

z-h2-h3 hl-h2-h3

Figure 20 - Probe 4616: Differences between dip calculated using timings and dip calculated by hodogrametry for the 4 configurations

(bar width=5°, frequency shown as radius of wedge).

50 Rapport BRGM R 39025

Page 46: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

AZIMUTH DIP

Figure 21 - Probe 4616: Differences between azimuths (resp. dips) calculated using timings and azimuths (resp. dips) calculated by hodogrametry of the selected data set

(bar width=5°, frequency shown as radius of wedge).

Rapport BRGM R 39025 51

Page 47: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

5.4 - PROBE 4550

Signal characteristics

Figures 3 to 8 of appendix 6 present various examples of sismograms and polarization diagrams. Distributions of the peak to peak m a x i m u m amplitudes and the signal to noise ratios are plotted on figures 22 and 23. Probe 4550 is situated close to probe 4616. The m a x i m u m amplitudes are observed on the vertical component (around 1000 (lg) and generally the signal to noise ratios are higher than 10.

Shape parameters

Unlike to probe 4616, generally the results observed on probe 4550 are equivalent for the 4 sensor combinations. The distributions of the main, intermediate and transverse ellipticity parameters are similar for the 4-sensor combinations and for the whole data set (figure 24). The global polarization coefficients for the 4 combinations are nearly identical and close to 1 (figure 25). The same comments can be apply to the oblateness coefficients. In consequence, the P -wave polarizations recorded on probe 4550 seem to be linear, except for some very few events (about 5 upon the 77 events of the whole data set) where the global polarization coefficients can reach in the worst cases 0.7.

Azimuth and dip results

M e a n standard deviations for the azimuths and the dips deduced from the 4 combinations of sensors are low all over the data set, excepted for some few events occuring towards the end (figure 26).

Differences between theoretical and hodogram azimuths (resp. dips) are represented on rose diagrams on figure 27 (resp. figure 28). Unlike the results deduced from probe 4616, those from the probe 4550 are more consistent all over the whole data set. For each event, the azimuths and dips determined from the 4-sensor combinations are equivalent; generally, the standard deviations associated to the azimuths lie between Io and 4°. However, it must be pointed out that from event n°59 up to the end of the data set, the trend is reversed: during this period, the standard deviations for the azimuths lie between 10° and 40°.

However, despite a coherent response between the 4 combinations for a given event, the differences between theoretical azimuths and hodogram ones are far from being constant as it would be expected. In order to study more in detail this scatter, figure 29 shows on a X - Y diagram the differences between theoretical azimuths and hodogram ones versus theoretical azimuths for the 60 best events (see also next section). T w o groups of data can be identified; for group A , even if some scatter exists, no noticeable trend can be really determine. O n the other hand, for group B , this parameter seems to be linearly dependent on the theoretical azimuths: w e must be careful, as the data set is far from exhaustive, but this trend clearly exists on our results.

52 Rapport BRGM R 39025

Page 48: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

Attempt to determine the probe orientation.

The criteria used for the event selection are:

-a standard deviation for the mean azimuths deduced from the 4 combinations lower than 10°,

-a global polarization coefficient higher than 0.8 for each of the 4 combinations.

These criteria lead to a selection of 60 events amongst the 77 of the data set (figure 30). For these events, the mean standard deviation for the azimuths (resp. dips) given by the 4 combinations are equal to 2.3° (resp. 0.8°). They are distributed all along the stimulation time period.

The final orientation of the probe 4550 is the following:

azimuth = 56.9° ± 13.6°

dip = - 2.1° ±4°

Discussions and relevant conclusions

A s a general comment , the results are quite homogeneous over the whole data set: azimuths and dips are nearly similar for any combinations, P-wave polarizations are always linear, excepted in very few cases. These results are indépendant of the amplitudes of the signal and signal to noise ratios. A m o n g the data set various doublets were selected to test the quality of the results as a function of the amplitude of the event. A s an example, for the two events (n°31 and 54, respective amplitudes on Z component of around 500 \ig and 25 u.g), both azimuth results were compatible within 4°. Moreover, high amplitudes do not insure that the results would be reliable: for event N°71 with an amplitude of 7000 ng, the azimuth results deduced from the 4 combinations are completely different (standard deviation = 12°). Event 73 (amplitude 3000 \L g) obtains very good results (standard deviation is equal to 0.4°).

However, it must be emphasized that some degradation trend occurs in the coherency of the azimuths deduced from the 4 combinations starting at event number 59, even if the polarizations still continue to be linear.

Nevertheless, in spite of these good results, the differences between theoretical azimuths and hodogram ones are widely scattered: this is certainly due to the errors on the theoretical locations.

Rapport BRGM R 39025 53

Page 49: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

100000T

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

100000 T

•JJ 10000--

03 1000 -T3

H1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

100000 T

3¡ 10000 +

H2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

S ss. cu •o

s lit

Q.

E <

1UUUUU ••

10000 -

1000

100 -

10-

H3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Figure 22 - Probe 4550: Peak to peak m a x i m u m amplitude distribution of the P-waves on the whole data set versus chronological event numbers.

54 Rapport BRGM R 39025

Page 50: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

1000 T

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

1000 H3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Figure 23-Probe 4550: S / N ratio distribution of the P-waves on the whole data set versus chronological event numbers.

Rapport BRGM R 39025 55

Page 51: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

M a i n ellipticity

1 .00 - /

0,50 Y

o.oo vt 1 11

lnt< jrmediate ellipticity

^^%y^'m^^ekfaZ^^Gyh hl-h2-h3 ^ ^ g ^ / ^ ^ ^ ^ ^ ^ / I / ^ ^ Ê a r z-h 1 -h3

41 7r~~~^^^^'^ z-hl-h2

71

Transverse ellipticity

Figure 24-Probe 4550: Ellipticity histograms.

Rapport BRGM R 39025

Page 52: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

Global polarization coefficient

Oblateness coefficient

Figure 25-Probe 4550: Polarization coefficient histograms.

Rapport BRGM R 39025 57

Page 53: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

(~* 160

w 140

1 120

2 100 o

80

S 60 •-

40

2 0 • •

c o id

"> CD

•a •a k.

a •a c ea

CO

PROBE 4550

t-H-H

1 5

-H-ft- •ft4- J*. • . H I-PI •ll.»llwlll iil| iili»| | pii "•i i (-P*il|-Hr *i 111 p*r;v:-i*:':'f."!' i n i i-ri n i 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

I c o "5 • >

a) •a •a k.

a •a c S3

C/D

30

25 -

20

15

10

PROBE 4550

0 :'*.-! ! I-*,--II^-!-I,I;,,,I-I H-:M." iMftM*r B i m rn-Pfi-ftUiMi'.'riMi-9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Figure 26 - Probe 4550: M e a n standard deviation distribution for the azimuths and the dips deduced from the 4 combinations versus chronological event numbers.

58 Rapport BRGM R 39025

Page 54: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

z-hl-h2 z-hl-h3

z-h2-h3 hl-h2-h3

Figure 27 - Probe 4550: Differences between azimuth calculated using timings and azimuth calculated by hodogrametry for the 4 combinations

(bar width=5°, frequency shown as radius of wedge).

Rapport BRGM R 39025

Page 55: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

z-hl-h2 z-hl-h3

z-h2-h3 hl-h2-h3

Figure 28 - Probe 4550: Differences between dip calculated using timings and dip calculated by hodogrametry for the 4 combinations (bar width=5°, frequency shown as radius of wedge).

60 Rapport BRGM R 39025

Page 56: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

PROBE 4550

M CO

• o

O X

M CO

O CD

90 -

45 -

0 -

I ! I I I I I

B ^ ^ ^ *WÏ • # \ A

/ • • W Am \ / #t % 7 V # l

/ • • / Wi* i

i i i i i i i

135 180 225 270

Theoretical azi. (in °)

Figure 29-Differences between azimuth calculated using timings and azimuth calculated by hodogrametry versus calculated azimuth.

315

AZIMUTH DIP

90°

i o n o ig w • e * 3 W t

s

I

4 € I 10 18 Q O

270°

Figure 30 - Probe 4550: Differences between azimuths (resp. dips) calculated using timings and azimuths (resp. dips) calculated by hodogrametry of the selected data set

(bar width=5°, frequency shown as radius of wedge).

Rapport BRGM R 39025 61

Page 57: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

5.5 - PROBE 4601

Signal characteristics

Examples of sismograms and hodograms are presented in figures 3 to 8 of the appendix 6. Figures 31 and 32 show respectively the distributions of the m a x i m u m amplitudes and the signal to noise ratios on the 4 sensors of this probe. Amplitude distributions are not so high as those recorded on the other 2 probes, due to the distance of this probe to the induced microseismicity. But identical S / N ratio distributions are observed on the 2 other probes.

Shape parameters

For a given event, no main or systematic differences can be noticed in the distributions of the main, intermediate and transverse ellipticity parameters between the responses of the 4 combinations of sensors (figure 33). However, for the whole data set, the distributions are rather irregular. This implies large variations for the global polarization coefficients which lie between 0.9 to 0.3 (figure 34). In consequence, the polarizations of the P-wave recorded on this probe are more circular than linear. The oblateness coefficients are generally close to 1 indicating a planar trajectory.

Azimuth and dip results

Azimuth results deduced from the 4 combinations are mainly reliable. They seem to get worst towards the end of the data set (figure 35). Dips do not show any consistency.

The difference between theoretical azimuths and hodogram ones deduced from the 4 sensor combinations (figure 36) are nearly constant all over the data set with a rather low standard deviation. O n the other hand, large discrepencies are observed on the differences between theoretical and hodogram dip distributions (figure 37): the combination (hl-h2-h3) seems to give results which are quite different in comparison with the 3 other ones, specially starting at event number 63. The reason w h y this behaviour is unknown.

Attempt to determine the probe orientation

The trial to orientate this probe is based on the following criteria:

-a standard deviation for the mean azimuth deduced from the 4 combinations lower than 10°,

-a global polarization coefficient higher than 0.77 for each combination.

Based on these criteria, 14 events were selected to orientate the probe. The mean standard deviation determine for the azimuths (resp. dips) are equal to 2.6° (resp. 1.8°).

62 Rapport BRGM R 39025

Page 58: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

The final results (see figure 38) are:

azimuth =53.5° ±3.9°

dip =5.6° ±15.6°

Discussions and relevant conclusions

For the main part of the data set of the probe 4601, the azimuths are quite coherent unlike the results deduced for the dips. For which concerns the azimuths, one must bear in mind that the theoretical azimuth window for this probe is very narrow (about 20°, see figure 11) in comparison with those of probes 4616 and 4550. However, the main point that must be emphasized for this probe is the non-linear polarization observed on almost all the P-waves. The consequence of this comment is that the data recorded on this probe is physically not acceptable and hence cannot be really used for hodogram purposes. Once more, the physical reason is unknown : electronic failures, geological features (fault)....?

Rapport BRGM R 39025 63

Page 59: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

100000

*3 10000-f

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

100000 T

-3 10000--

03 1000 -t. •a

i= 100

S <

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

100000

CT 10000

o • o

= lit

a. E <

1000

100

10

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Figure 31 - Probe 4601: Peak to peak m a x i m u m amplitude distribution of the P-waves on the whole data set versus chronological event numbers.

64 Rapport BRGM R 39025

Page 60: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

1000 T

1000T H1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

1000 T H2

1000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

H3

Jj 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Figure 32 - Probe 4601: S / N ratio distribution of the P-waves on the whole data set versus chronological event numbers.

Rapport BRGM R 39025 65

Page 61: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

Main ellipticity

l .OO-/

0,50 i/

0,00 4¿ I

Inte jrmediate ellipticity

' /^^%¡%^Z*^^9í£b^A^^^^t~ hl-h2-h3 ^^^^êL^^^^^O^J^^^^/ z-h l-h3

n ^7r~^-^^^^@wÉta*íi]r^^v z-h2-h3

4 7 T ~ ~ ^ O ! ^ ^ z-hl-h2 61 ^ ~ r ~ - - /

71

Transverse ellipticity

Figure 33 - Probe 4601: Ellipticity histograms.

66 Rapport BRGM R 39025

Page 62: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismtc data

Global polarization coefficient

1.00-ff

0 ,5oW

0 . 0 0 ^ 1

Oblateness coefficient

^[/^W^MPI^^SHHHBH»

^IV-^^'^^^JHf^IlBiy" hl-h2-h3 "*~*~ L. i ifT^t^WfIT z"h*"h3

" ^ ^ ^ ^ z-h2-h3 31 ^T^-i<^p /z-hi-h2

61 ^ ^ ^ ~ - 7 71

Figure 34 - Probe 4601: Polarization coefficient histograms.

Rapport BRGM R 39025 67

Page 63: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

<"* 160 c «T 140 --x: I 120

raz

o c o *-Ö

> 0)

• D

"O b .

o •a c ü

C/3

100

80

60

40

20

0

P R O B E 4601

•ñ'.'i-Pr! hft1:'.-! i-rli iMrrrrWi-t M-i » .1 i»wi i I-I I-H ft'.'ilvi-i I'rrrli rrlriUiUMiU.U 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

30 T

13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Figure 35 - Probe 4601 : M e a n standard deviation distribution for the azimuths and the dips deduced from the 4 combinations versus chronological event numbers.

68 Rapport B R G M R 39025

Page 64: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

z-hl-h2 z-hl-h3

z-h2-h3 hl-h2-h3

Figure 36 - Probe 4601: Difference between azimuth calculated using timings and azimuth calculated by hodogrametiy for the 4 combinations

(bar width=5°, frequency shown as radius of wedge).

Rapport BRGM R 39025 69

Page 65: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

z-hl-h2 z-hl-h3

z-h2-h3 hl-h2-h3

Figure 37 - Probe 4601: Differences between dip calculated using timings and dip calculated by hodogrametry for the 4 combinations (bar width=5°, frequency shown as radius of wedge).

70 Rapport BRGM R 39025

Page 66: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

AZIMUTH DIP

Figure 38 - Probe 4601: Differences between azimuths (resp. dips) calculated using timings and azimuths (resp. dips) calculated by hodogrametry of the selected data set

(bar width=5°, frequency shown as radius of wedge).

Rapport BRGM R 39025 71

Page 67: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

6 - CONCLUSIONS

Microseismic event locations are able of providing information on the overall structure of a stimulated or circulated reservoir. A s only a limited number of sensors are available for the microseismic monitoring of the Soultz Hot Dry Rock project, it was decided to use directional data to complement the P - and S-wave timings to better constraint the inversion event location process. Moreover, 4-axes accelerometer probes were manufactured allowing some redundancy to the hodogram data.

A previous report concluded on the usefulness of this data to the location accuracy on synthetic data considering various seismic network configurations based on the current Soultz network.

T o combine the 2 sets of data, it was necessary to first deduce the orientations of the probes and to determine the accuracy of the results. In absence of useful information from the calibration shots, the responses of the 4 possible configurations of sensors was evaluated for the 3 probes on a reduced data set of events distributed over the 1993 experiences. In such unfavourable conditions, it is obvious that errors inherent in the location process using only P - and S-waves timings will also participate to the inaccuracies of the probe orientations. The main conclusions which could be deduced from this analysis can be summarize as follow:

• Probe 4616 behaves in an erratic w a y during the period before the 16 September: P-wave polarizations were not linear excepted for combination (z-hl-h3). Afterwards, polarizations became more generally linear for any combinations. For a selected data set, an orientation of the probe is obtained but results are highly scattered, particularly on azimuths (o = ± 18.3°).

• O n the contrary, probe 4550 gives homogeneous results: P-wave polarizations are always linear (but results get worst towards the end of the data set period), and hodogram parameters deduced from the 4 combinations of sensors are consistent (standard deviation for the azimuths : ±2.6°, and ±2° for the dips). Despite these results, attempt to orientate the probe yields to a severe scatter (a ¡a. = — 13.6°; a dip = ± 4°) which is obviously tied to the location errors of the selected data set. This demonstrates also the necessity to get calibration shots to determine accurately the orientation of the probe.

• At last, P-wave polarizations recorded on probe 4601 are mainly not linear which have for consequence to not allow the use of hodogram method to these data. Attempt to orientate the probe is proposed with a few subset of the data base. Apparently, a low scatter is observed, but it is necessary to consider the situation of this probe with regard to the microseismic cloud.

Rapport BRGM R 39025 73

Page 68: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz mlcroseismic data

Observed inconsistencies of the probes cannot be explained by neither location effects, grouting effects, geological environment, nor signal characteristics (amplitudes, S / N ratios of the selected events). It seems that an inherent failure in the probes themselves should be considered.

In such conditions and taking into account the previous report conclusions, it was not possible to carry on this study.

Nevertheless, these results demonstrate the advantage of a 4-component sonde over a classic 3-component probe: the redundancy of the information will allow to appreciate the quality of the data and to detect eventual sensor failure; therefore, part of the information delivered by the probe for a specific combination could be used for orientation and location purposes.

74 Rapport BRGM R 39025

Page 69: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

REFERENCES

A L B R I G H T J.N. and P E A R S O N C F . (1982) - Acoustic emission as a tool for hydraulic fracture location: experience at the Fenton Hill Hot Dry Rock Site. Soc. Petrol. Eng., J., pp. 523-530.

B A C K U S G . , G I L B E R T F. (1967) - Numerical applications of a formalism for geophysical inverse problems. Geophysical Journal of the Royal Astronomical Society, 13, p. 247-276.

BEAUCE A., FABRIOL H., LE MASNE D., CAVOIT C , MECHLER P., CHEN X. (1991) -Seismic studies on the H D R site of Soultz-sous-Forêts (Alsace, France). Geotherm. Sei. & Tech., Vol. 3, p 139-266.

B E A U C E A . , J O N E S R. , F A B R I O L H . , H U L O T C . (1995) - Seismic studies on the Soultz H D R Project (France) during phase Ha. Geotherm. Sei. & Tech., Volume 4(4), p 253-272.

B E A U C E A . , J O N E S R . , F A B R I O L H . , T W O S E C , H U L O T C . (1992) - Microseismic monitoring of hydraulic experiments undertaken during phase Ha of the Soultz H D R project (Alsace, France). 17th Workshop on Geothermal Reservoir Engineering, Stanford, Cal., U S A , January 29-31, p 253-258.

B E A U C E A . et H U L O T C . (1993) - Combining timings and directional data for microseismic location purposes. E H D R A Scientific Meeting, M a y 27th, 1993,4 p.

B E C Q U E Y M . , B E R N E T - R O L L A N D E J. O . and N O C O L E T I S S. (1989) - Microsismicité induite par un arrêt d'injection. Proc, Xllth Internat. Logging S Y M P O S . , SAID, Paris.

B E C Q U E Y M . and D U B E S S E T M . (1990) - Three-component sonde orientation in a deviated well. Geophysics, Vol. 55, N O . 10, P. 1386-1388.

B E N H A M A A . , CLIET C , D U B E S S E T M . (1988) - Study and application of spatial directional filterings in the three-component recordings. Geophys. Prosp., 36, p. 591-613.

C H E N X . K . (1990) - Géothermie Roches Chaudes Sèches. Etudes sismiques sur le site de Soultz-sous-Forêts (Alsace-France). Thèse de Doctorat de l'Université de Paris 6, soutenue le 17 décembre 1990, 147 p.

C H R I S T O F F E R S S O N A . , H U S E B Y E E . S. and I N G A T E S. F . (1985) - A new technique for 3-component seismogram analysis. Semianual Technical Summary, Oct. 1984-Mar. 1985, N O R S A R Scientific Report 2-85/86, Kjeller, Norway.

CLIET C . & D U B E S S E T M . (1988) - Polarization analysis in three-component seismics. Geophys. Trans., 34-1, p. 101-119.

D E F L A N D R E J.-P. & D U B E S S E T M . (1992) (a) - Identification of P/S-wave successions for application in microsismicity. Pure and Applied Geophysics, Volume 139, N ° 3/4.

D E F L A N D R E J.-P. and L A U R E N T J. (1992) (b) - Microseismic survey for reservoir management. Fourth North Sea Chalk Symposium, Deauville, France, September 1992.

Rapport BRGM R 39025 75

Page 70: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

D E F L A N D R E J.-P., L A U R E N T J., and BLONDIN E . (1992) - Microseismic Survey for Reservoir Management. Fourth North Sea Chalk Symposium, Deauville, France, September 1992,10 p.

D E F L A N D R E J.-P., L A U R E N T J., M I C H O N D . and BLONDÍN E . (1995) - Microseismic surveying and repeated VSPs for monitoring an underground gas storage reservoir using permanent geophones. First Break, Vol. 13, N° 4, April 1995, p. 129-138.

FABRIOL H . , B E A U C E A . , G E N T E R A . and JONES R. (1994) - Induced microseismicity and its relation with natural fractures: the H D R example of Soultz (France). Geothermal Resources Council T R A N S A C T I O N S , Vol. 18, October 1994, p. 423-430.

F L Y N N E .A . (1965) - Signal analysis using rectlinearity and direction of particle motion. Proc. IEEE, 53: 1725-1743.

F R E C H E T J. (1988) - Sismogénèse et doublets sismiques. Thèse de Docteur d'état es-sciences physiques de l'Université scientifique et médicale de Grenoble, 12 juin 1985,207 p + annexes.

F R E M O N T M-J. (1984) - Mesure de variables temporelles des paramètres de la croûte terrestre et d'effets de sources par traitement de doublets sismiques. Thèse de Docteur de 3ième cycle de l'Université scientifique et médicale de Grenoble, 25 mai 1984, 225 p.

F U R U Z A W A T . (1974) - Some problems of seismic data processing. Part 2. Data processing techniques for the detection and analysis of P- and S-waves of local earthquakes. Bull. Disas. Prev. Res. Inst., Kyoto Univ., 24, No. 222, 127-145.

F U R U Z A W A T . and IRIKURA K . (1970) - The direction of the particle motions of local small earthquakes. Annu. Disas. Prev. Res. Inst., Kyoto Univ, 13A, 149-161.

GARNISH J., BARIA R., B A U M G A R T N E R J. and G E R A R D A . (1994) - The european Hot Dry Rock programme 1994-95. Geothermal Resources Council TRANSACTIONS, Vol. 18, October 1994, p. 431-438.

H U L O T C . and B E A U C E A . (1996) - Combining timing and directional data for microseismic location purposes, rapport B R G M R 39002, 61 p.

JONES R . (1992) - Further analysis of Soultz Phase Ha stimulation seismic data. Technical note, March 1992, C S M TN03/99, 19 p.

JONES R. (1992) - Optimum orientation for sensors in a 4-component sonde. C S M A Internal Technical Note, n° TN03/101, 5 August 1992.

JONES R., B E A U C E A . , JUPE A . , FABRIOL H . , D Y E R B . C . (1995) - Imaging induced microseismicity during the 1993 injection tests at Soultz-sous-Forêts, Frances. Proceedings of the world geothermal congress, 1995, Florence, Italy, 18-31 May, Vol. 4, p. 2665-2669.

J U N G R. (1991) - Hydraulic fracturing and hydraulic testing in the granitic section of borehole GPK1, Soultz-sous-Forêts. Geotherm. Sei & Tech., Vol. 3(1-4), p. 149-198.

76 Rapport BRGM R 39025

Page 71: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

JUNG R. (1992) - Connecting a borehole to a nearby fault by means of hydraulic fracturing. 20th Annual Meeting of the Geothermal Ressources Council, San Diego, USA, 4-7 Oct. 1992, Transactions, Vol. 16, p. 433-437.

JUNG R. (1994) - Hydraulic tests Summer/Autumn 1993. B G R fied report.

JUPE A. , JONES R. J., WILLIS-RICHARDS J., D Y E R B. , NICHOLLS J. and JACQUES P. (1994) - Report on the H D R Phase 4 - Activity 4.1 Soultz experimental programme 1993/1994, C S M A Report, 177 p.

JURKEVICS A . (1988) - Polarization analysis of three-component array data. Bulletin of the Seismological Society of America, Vol. 78, No 5, October 1988, pp. 1725-1743.

KAPPELMEYER O., GERARD A., SCHOEMER W . , FERRANDES R., RUMMEL F., B E N D E R I T T E R Y . (1991) - European H D R project at Soultz-sous-Forêts general presentation. Geotherm. Sei. & Tech., Vol. 2(4), p. 263-289.

K U R I H A R A K . , U T S U N O T . and N A G A M U N E T . (1974) - Deviation of directions of initial P-waves at Tokatidake, Hokkaido, Japon. Q . J. Seismol., 39 (4), 75-81.

L E F E V R E J. (1980) - Introduction aux analyses statistiques multidimentionnelles. Edition Masson, 259 p.

L E V E N B E R G K . (1944) - A method for the solution of certain non-linear problems in least-squares. Quarterly of Applied Mathematics, 2, p. 164-168.

M A G O T R A N . , A H M E D N . and C H A E L E . (1987) - Seismic event detection and source location using single-station (three-component) data. Bull. Seism. Soc. A m . , 77, 958-971.

M A R Q U A R D T D . W . (1963) - A n algorithm for least-squares estimation of non-linear parameters. Journal of the Society of Industrial and Applied Mathematics, 11, p. 431-441.

M A T S U M U R A S. (1981) - Three-dimensional expression of seismic particle motions by the trajectory ellipsoid and its application to the seismic data observed in the Kanto District. Japan, J. Phys. Earth, 29, 221-239.

M O R I Y A H . , N A G A N O K . and N U T S U M A H . (1994) - Precise source location of A E doublets by spectral matrix analysis of triaxial hodogram. Geophysiscs, Vol. 59, N ° 1, p. 36-45.

M O R I Y A H . , R U T L E D G E J. T . , K A I E D A H . , N U T S U M A H . (1996) - Subsurface stress field determination using multiplets in downhole three-component microseismic measurement. N A R M S 96, Montreal Canada 19-21 June 1996.

N I C O L L S J. (1993) - Field report on the deployment of the 4-axis seismic sondes in wells 450, 4616 and 4601. C S M A Internal Technical Note TN04/68 .

N D T S U M A H . , M O R I Y A H . and N A G A N O K . (1991) - Calibration method using the spectral matrix for downhole triaxial seismic detectors. 5th Conference on A E / M A in Geologic Structures and Materials Penn-State Univ., June, 1991.

Rapport BRGM R 39025 77

Page 72: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

NIITSUMA H., NAKATSUKA K., CHUBACHI N., YOKOYAMA H. and TAKANOHASHI M . (1985) - Acoustic emmission measurement of geothermal reservoir cracks in Takinoue ( K A K K O N D A ) Field, Japon. Geothermics, vol. 14, 525-538.

PRESS W . , F L A N N E R Y B . , T E V K O L S K Y S.A, VETTERLING W . T. (1986) - Numerical Recipes: the art of scientific computing, Cambridge University Press, New York, 818 p.

POUPINET G., FRECHET J., ELLSWORTH W . L., FREMONT M . J. et GLANGEAUD F. (1985) - Doublet analysis: improved occuracy for earthquake prediction studies. Erthqu. Predict. Res., 1, p. 81-93.

R O B E R T S R . G . , C H R I S T O F F E R S S O N A . and C A S S I D Y F. (1989) - Real-time event detection, phase identification and source location estimation using single-station three-component seismic data. Geophys. J., 97,471-480.

R U U D B . O . , H U S E B Y E E . S., INGATE S. F. and CHRISTOFFERSSON A . (1988) - Event location at any distance using seismic data from a single, three-component station. Bull. Seism. Soc. A m . , 78, 308-325.

S A M S O N J. C . (1977) - Matrix and stokes vector representation of detectors for polarized wave-forms: theory, with some applications to teleseismic waves. Geophysical Journal of the Royal Astronomical Society, 51, p. 583-603.

S I M O N S , R . S . (1968) - A surface-wave particle motion discrimination process, B . S . S . A , N°58, pp. 629 - 638.

S U T E A U - H E N S O N A . (1990) - Estimating azimuth and slowness from three-component and array stations. Bull. Seism. Soc. A m . , 80, 1987-1998.

T E Z U K A K . and MIYAIRI M . (1995) - Acoustic emissions monitoring with triaxial double sonde method at Hijiori H D R test site. Geotherm. Sei. & Tech., Volume 5, pp. 3-20.

T W O S E C . (1996) - High temperature tool development. European Hot Dry Rock programme 1992-1995. Extended summary of the final report to European Community (DGXIJ). Contract N ° JOU2-CT92-0115, edited by R . Baria, J. Baumgärtner and A . Gerard, p. 95-103.

U T S U T . (1956) - O n deflection of the direction of initial motion P-wave. Q . J. Seismol., 21 (1), 13-20.

W A D A T . and N I S H I M U R A K . (1971) - A structure of volcano Aso deduced from azimuthal deviation of P-wave. Annu. Disas. Prev. Res. Inst., Kyoto Univ., 14A, 139-148.

Z H U X . , G I B S O N J., R A V I N D R A N N . , Z I N N O R . and SIXTA D . (1996) - Seismic imaging of hydraulic fractures in Carthage tight sands: A pilot study. The Leading Edge, March 1996, p. 218-224.

78 Rapport BRGM R 39025

Page 73: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Testing the hodogram method on the 1993 Soultz microseismic data

APPENDICES

Rapport BRGM R 39025 79

Page 74: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

APPENDIX 1

- LIST OF EVENTS -AZIMUTHS AND DIPS DEDUCED FROM HODOGRAMETRY

N ° on m a p : Chronological number of the event. N ° file, N ° event : Reference of the event in the original field data base. Date, Time : Date and time of the event X , Y , Z : Location of the event M e a n amplitudes on vertical component of probe 4616, 4550,4601. For each probe :

. First and last point of the time window used for hodogram analysis

. Azimuths for each combination of sensors deduced from hodogrametry . Standard deviation . M e a n azimuth deduced from hodogrametry

. Theoretical azimuth (deduced from P - and S-wave timings)

. Difference between theoretical azimuth and hodogram azimuth

. Dips for each combination of sensors deduced from hodogrametry . Standard deviation . M e a n dip deduced from hodogrametry

. Theoretical dip (deduced from P - and S-wave timings)

. Difference between theoretical dip and hodogram dip.

Page 75: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

1 n° on

map

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

file

17

18

18

19

19

19

23

23

23

25

25

25

25

25

25

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

26

27

27

27

27

27

27

I I I n°

evt.

177

230

269

20

183

194

255

313

433

26

152

224

304

349

354

33

87

91

108

164

171

179

194

202

274

291

302

377

420

438

452

488

513

10

18

60

153

254

339

date time

I |

07/09/1993 | 18:22:47

08/09/1993

08/09/1993

08/09/1993

08/09/1993

08/09/1993

10/09/1993

10/09/1993

10/09/1993

10/09/1993

10/09/1993

10/09/1993

10/09/1993

10/09/1993

10/09/1993

10/09/1993

11/09/1993

11/09/1993

11/09/1993

11/09/1993

09:18:44

12:09:55

15:26:45

19:12:51

19:29:15

03:22:33

04:29:21

06:55:55

16:09:13

18:55:47

20:13:37

21:59:53

22:40:30

22:48:05

23:42:02

00:24:53

00:28:48

00:46:31

01:46:08

11/09/1993 | 01:49:48

11/09/1993

11/09/1993

11/09/1993

11/09/1993

11/09/1993

11/09/1993

11/09/1993

11/09/1993

01:54:23

02:07:38

02:16:04

03:22:08

03:46:08

04:03:04

05:07:41

05:41:07

11/09/1993 | 05:47:59

11/09/1993

11/09/1993

11/09/1993

11/09/1993

11/09/1993

11/09/1993

05:56:58

06:43:55

07:00:23

07:42:13

07:44:56

08:29:43

11/09/1993 | 10:19:05

11/09/1993 | 11:53:40

11/09/1993 | 13:11:40

X<m)

6.70

-8.89

60,26

91,32

32,84

45,60

Y (m)

1 1 1 Z(m)

|

13,81 | -2935,58

0,43

-198,24

-214,41

-42,89

-70,87

111,59 | -201,88

-52,31

-28,82

167,34

175,43

202,55

170,15

165,26

174,87

-27,19

151,00

181,05

19,92

16,32

-202,67

-230,28

-224,36

-217,55

-224,01

-212,16

78,83

-236,50

-232,81

-7,93 | 59,58

123,86

4,27

17,87

272,04

-60,94

211,09

277,87

17,03

-18,80

-225,48

-244,32

-230,30

-282,47

-35,64

-272,65

-276,17

46,92

-254,86

195,56 | -225,83

217,25

221,99

21,82

232,97

-33,88

171,53

-224,14

-231,12

126,94

-265,11

-291,14

-290,19

-2838,55

-2876,69

-2833,82

-3191,81

-3274,71

-2657,65

-3212,96

-3174,02

-2650,11

-2695,05

-2530,15

-2659,06

-2628,49

-2577,61

-2864,22

-2591,81

-2604,11

-2517,65

-2616,43

-2892,79

-2931,29

-2652,09

-3173,44

-2620,96

-2658,96

-2462,71

-2792,59

-2483,95

-2516,28

-2506,84

-2801,61

-2675,10

-2817,91

-2821,13

-54,79 | 71,93 | -2854,24

-68,05

-9,00

-271,73

-225,84

-71,35 | -316,63

-2741,81

-2836,06

-2875,11

mean amplitude

4616

15267

11983

12591

15237

10925

14704

6153

4550

15111

14719

14379

15111

13595

15111

11174

7928 | 10399

9700 | 13651

7987

1655

1794

1794

241

3376

14264

678

552

11856

393

13706

8634

2196

11784

1417

2916

8847

12748

13537

3908

11364

14178

10026

13936

15177

14025

13625

15267

12878

8292

4601

12491

2137

5245

9106

2438

5114

1853

2972

3892

2531

2899 | 765

2315

3352

458

5326

15111

1149

1082

14470

639

13444

7393

3864

13724

2607

4967

13422

14354

13554

4415

12579

12896

14177

13706

15111

14489

15029

15000

13501

320

884

60

1211

7534

174

130

2559

94

4198

2137

1631

3950

658

2371

1298

3026

4913

854

2512

3077

6635

5552

13184

6636

5281

7045

4635

Page 76: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

1 1 n° on

map

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

file

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

33

33

33

33

33

33

45

45

45

45

45

63

63

63

63

63

63

63

63

63

63

evt.

19

46

73

78

112

159

200

283

284

288

290

303

322

353

367

379

429

1

120

196

221

310

385

11

34

120

337

408

1

38

40

41

96

152

176

209

243

250

I I date time

I 11/09/1993

11/09/1993

11/09/1993

11/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

12/09/1993

13/09/1993

13/09/1993

13/09/1993

13/09/1993

13/09/1993

16/09/1993

16/09/1993

16/09/1993

16/09/1993

16/09/1993

16/10/1993

16/10/1993

16/10/1993

16/10/1993

16/10/1993

16/10/1993

16/10/1993

16/10/1993

16/10/1993

22:29:53

22:59:38

23:32:57

23:39:25

00:06:58

01:07:51

01:53:24

03:34:15

03:34:43

03:39:47

03:40:07

03:50:35

04:05:57

04:36:57

04:55:57

05:12:49

05:57:04

22:33:44

00:51:16

02:13:41

02:42:21

04:18:36

05:47:49

07:52:14

08:18:41

10:09:59

14:40:52

15:58:53

13:34:05

14:12:40

14:12:50

14:13:08

15:24:19

16:42:16

17:21:59

18:53:52

20:24:04

16/10/1993 | 20:30:23

I

Xm) Ytm)

244,98 | -251,14

293,51

258,64

240,56

202,98

224,34

-148,83

281,98

287,56

304,51

310,50

-294,73

-272,40

-292,61

-237,77

-273,24

150,19

-290,56

-303,05

-321,21

-312,08

254,72 | -310,25

-72,18

-65,55

264,88

96,49

252,10

187,99

316,74

41,48

259,42

313,54

48,77

71,66

-24,26

0,83

47,82

-0,81

41,74

-20,74

-242,69

-189,31

-280,91

-337,31

-320,35

126,55

-260,41

-307,02

111,09

133,98

326,23

286,14

148,75

282,72

-77,01 | -298,52

224,44

247,61

265,01

-66,61

-15,21

70,29

18,85

70,90

97,93

-182,78

-171,33

-171,83

118,14

345,21

-333,56

I I I Z(m)

-2521,86

-2572,70

-2549,11

-2499,58

-2518,06

-2680,83

-3009,22

-2591,53

-2664,77

-2625,43

-2647,43

-2554,95

-3008,54

-3147,92

-2592,55

-2684,91

-2719,87

-2872,16

-2666,18

-2630,57

-2510,88

-2553,28

-2858,88

-2875,63

-2861,12

-2457,58

-2380,80

-2835,56

-3020,77

-2256,81

-2292,95

-2303,97

-2630,78

-2785,67

-3420,98

-356,45 | -3217,94

-285,88

210,58

-3453,74

-2612,20

mean amplitude |

4616

321

207

2690

1603

2497

1269

6588

1153

496

501

437

1009

10443

10776

548

1576

15267

9534

15104

6146

299

3703

5896

10805

3558

10765

6120

15268

9255

15267

5155

13964

10750

4550

669

330

3840

2623

4058

2878

8830

1581

834

808

660

1685

10845

12198

783

2627

15111

12931

14870

7073

639

5133

7949

13675

4243

10225

11860

15115

7918

15111

7180

15111

11553

13973 | 14847

8526

5146

15051

13116

8244

6194

13476

12456

4601

108

68

1044

568

771

694

3240

276

215

194

172

228

2340

3337

109

475

14569

5491

8073

607

101

798

1016

4515

1552

592

1356

13790

3524

3891

312

1645

2580

5920

5113

1785

9111

2308

Page 77: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

map

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4616 |

1st. | last

Pt. 1 pt.

1 3123

3115

3144

3149

3137

3135

3148

3117

3117

3173

3171

3182

3160

3156

3142

3170

3176

3162

3163

3162

3146

3145

3192

3190

3196

3181

3193 | 3213

3112|3127

3173

3176

3111

3129

3128

3128

3190

3117

3156

3190

3118

3123

3187

3184

3191

3124

3187

3200

3203

3127

^3146

3145

3139

3213

3150

3178

3213

3135

3132

3216

3210

3217

3147

3213

3133 |3148

3171

3104

3119

3130

3129

3200

3121

3135

3137

3139

I I ! I I I I I I I I I I I I Hodogram

z-M-h2

253,5

75,7

72,2

69,9

z-h1-h3

137,2

302 ,4

296,2

314 ,4

azimuth

z-h2-h3

334,9

157,9

163,5

155,3

255,4 122,0 | 339,1

74,6 ¡ 303,2

194,5

254,8

254,7

56,5

241,5

108,9

120,1

123,8

288,0

150,1

48,1 | 146,5

61,2

227,1

254,8

243,1

235,1

280,6

240,6

13,7

97,0

233,0

254,3

233,1

236,4

236,8

84,0

65,1

233,0

237,2

252,4

247,5

102,0

67,6

261,8

139,8

85,6

268,8

314,6

133,0

89,4

145,2

159,2

29,1

341,0

340,1

17,0

325,7

345,6

166,2

359,2

8,6

329,4

152,9 | 319,0

94,7

107,5

282,9

276,5

160,6

120,2

143,2

154,3

101,1

272,7

322,8

144,5

152,4

116,2

312,5

281,5

316,8

86,6

280.4

273,5

95,3

35,2

13,0

203,2

215,1

311,0

339,1

346,1

322,5

18,1

268,0

156,8

343,2

337,3

347,5

342,4

258,4

156,0

10,5

211,5

135,2

89,8

M-h2-h3

285,1

76,7

80,4

86,0

268,9

89,5

288,4

257,0

257,2

101,4

267,8

347,0

95,0

334,5

70,3

288,7

283,0

264,9

266,5

103,3

287,1

201,5

72,0

300,7

345,3

269,3

280,3

133,3

164,2

165,1

269,0

304,5

283,1

104,3

67,2

102,9

289,3

103,5

Stand.

Dev.

72,7

92 ,4

90.0

96,7

78,5

90 ,4

96,6

79,1

77,4

103,8

63,3

129,3

97,3

90,2

91,1

68,6

62,2

106,2

102,7

101,5

75,5

55,1

106,0

76,4

75,5

101,7

82,2

94,7

77,7

73,5

83,2

34,4

75,3

95,2

93,9

68,1

87,5

74,9

Az

hod.

252,7

153,2

153,0

156,4

246,3

156,6

155,2

243,2

243,9

115,7

246,3

221,8

159,3

263,4

105,8

251,6

247,5

168,8

156,9

150,8

218,9

226,5

196,4

255,8

264,6

156,3

226,2

169,5

221,2

223,0

246,3

301,7

231,2

161,2

106,5

183,7

195,9

139,3

Az

loc

273,9

271,3

277,9

280,8

277,1

278,3

283,0

263,9

267,9

288.3

288,2

290,8

288,1

287,5

288,7

267,8

285,9

288,6

271,7

283,6

272,0

273,4

294,4

263,5

290,0

295,1

276,3

269,8

290,1

292.0

292,2

279,6

292,0

268,5

286,3

262,3

265,3

270,8

265,3

Delta

21 ,3

118,1

124,9

124,3

3 0 , 8

121,7

127,8

20 ,7

24 ,0

172,6

41 ,9

69 ,0

128,8

25 ,3

162,0

34,3

41,1

102,8

126,7

121,2

54,5

67 ,9

67,1

34,2

30,4

119,9

43,6

120,6

70,8

69,2

33,3

-9,8

37,2

125,1

155,8

81,6

74,9

126,0

Hodogram ¡dip

z-h1-h2

38,0

34,0

46,2

46 ,2

36,9

35,0

9,5

34,2

33,1

18,5

46,3

31,7

35,3

28,6

z-h1-h3 z-h2-h3

1 15,6

12,0

21,6

21,7

15,1

14,2

32,2

27,6

34,3

34,5

30,7

28,2

27,7 | 22,3

14,2

13,9

26,1

21,5

26,8

28,8

28,6

23,7

18,5

18,8

19,4 | 16,7

|

28,5

17,9 | 14,0

46,1

41,3

4,9

19,7

6,5

9,8

39,9

39,5

40,4

39,6

8,3

31,7

43,4

36,2

39,5

26,7

43,8

14,6

45,2

10,9

5,5

25,2

26,4

20,5

25,1

17,0

21,7

13,4

18,7

26,6 | 25,5

28,0

18,0

26,9

15,3

29,2

25,9

19,7

19,8

26,3

28,4

27,3

14,1

27,6

22,1

24,3

14,6

25.4

26,7

16,5

16,7

31,0

13,0

19,3

19,7

18,1

35,2

23,4

30,3

22,3

39,0

16,5

h1-h2-h3

34,2

16.2

38,4

40,5

23.6

20,1

18,5

17,5

11,9

27,3

27,3

24

19,1

21,8

24,9

28,4

25,3

18,9

28,2

20,3

16,7

26,5

32,3

23,3

20.2

20,1

19

26,7

26,7

25,2

16,8

28,5

14

32,8 | 32,4

18,3

22,9

39,6 | 17,1 | 32,5

21,4 17,4

22,4

17,1

17,7

15,5 | 16,9

Stand.

Dev.

8,6

8,8

8,9

9,1

8,1

7,9

6,6

8,1

9,1

3,4

10,8

4,7

7,4

2,8

4,0

9,4

9,9

6,3

3,2

8,5

3,2

8,2

8,8

9,9

8,1

5,0

5,5

7,0

4,7

5,5

4,9

6,9

3,2

7,5

4,3

7,7

9,7

2,2

Dip

hod.

30,0

22,5

35,1

35,7

26,6

24,4

19,5

23,7

21,9

23,9

28,4

25,3

22,6

26,0

18,5

30,4

26,6

15,8

25,0

20,4

15,3

27,5

29,5

26,5

26,3

17,0

22,2

32,9

28,7

30,6

20,0

34,7

16,8

33,7

16,6

17,7

26,7

17,8

Dip

loc

12,3

13,6

20,4

21.6

12.4

12,7

24,0

10,4

10,6

24,7

25,0

28,2

25,1

25,8

26,4

10,5

26,8

26,8

14,5

25,7

21,5

20,6

28,7

12,3

28,2

28,5

15,9

23,3

29,1

28,7

29,2

9,2

27,2

24,1

24,9

10,9

24,7

21,7

24,2

Delta

•17,7

-8,9

-14,7

-14,1

-14,2

-11,7

4,5

-13,3

•11,3

0,8

-3 ,4

2,9

2,5

0,4

-8 ,0

-3,6

0,2

-1,3

0,7

1,1

5,3

1,2

-17,2

1,7

2,3

-1,1

1,2

-3,8

0,0

- 1 , 4

-10,8

-7,5

7,3

-8,8

-5,7

7,0

-5,0

6,4

Page 78: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

map

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

4616 1

1st.

pt.

3090

2922

3180

3169

3166

3083

3186

3111

3111

3089

3148

3106

last

pt.

3112

2934

3192

3181

3190

3102

3198

3127

3127

3108

3160

3136

3119 | 3151

|

|

3198

3171

3219

3116

3090

3208

3130

3130

3082

3116

3095

3117

3202

3199

3203

3091

3092

3148

3140

3149

3130

3221

3197

3231

3139

3112

3224

3154

3152

3094

3128

3123

3135

3221

3225

3236

3118

3105

3176

3159

3172

3161

I I I I H o d o g r a m

z-h1-h2

211,0

237,0

234,2

228,9

241,0

274,8

200,1

207,0

212,5

224,5

200,2

255,6

74,1

243,0

249,2

238,7

252,5

221,6

216,1

254,0

106,5

74,5

103,9

110,3

102,2

159,6

343,8

344,3

105,3

85,2

116,4

94,1

2-h1-h3

165,1

151,8

151,3

148,2

129,9

77,1

151,8

143,4

138,1

142,8

154,1

283,9

302,9

122,3

127,8

155,1

115,7

164,4

158,6

118,6

112,1

69,1

108,5

129,1

102,1

172,2

346,1

345,7

106,4

84,9

122,8

93,9

126,8 | 132,4

161,8 | 168,0

I

azimuth

z-h2-h3

359,6

334,0

332,2

329,1

h1-h2-h3

175,0

137,8

130,7

129,6

|

350,1 | 305,6

10,1

330,1

314,4

288,1

107,1

333,9

349,0

57,7

133,7

125,2

124,0

122,4

144,3

254,0

338,1 | 253,2

355,1

340,2

331,1

347,5

245,1

346,1

345,7

121,1

93,7

117,1

138,2

100,9

167,3

345,5

345,3

109,2

110,8

128,2

91,9

134,5

166,1

120,6

95,1

128,7

270,6

159,7

154,9

285,9

112,8

74,0

108,5

120,0

101,5

164,6

345,0

345,0

106,3

88,9

122,5

93,5

130,7

164,6

Stand.

Dev.

78,1

78,4

79,4

78,8

82,8

101,1

76,8

74,0

65,5

45,3

75,6

38,5

101,6

97,2

97,8

79,1

83,6

36,6

77,3

83,2

5,2

9,4

4,8

10,4

0,5

4,6

0,8

0,5

1.5

10,7

4,2

0,9

2,8

2,3

I I I 1 1 1 1 1 | 1 Ai

hod.

227,7

215,1

212,1

208,9

256,6

104,9

203,9

197,5

190,7

149,2

208,1

285,6

242,1

210,3

203,1

213,4

246,6

197,7

218,9

251,1

113,1

77,8

109,5

124,4

101,7

165,9

345,1

345,1

106,8

92,4

122,5

93,4

131,1

165,1

Az

loc

293,4

295,6

293,7

291,7

290,4

291,0

237,0

294,9

294,8

295,4

296,2

292,2

259,9

262,6

295,3

281,8

292,9

286,5

296,3

284,3

294,2

296,5

285,1

291,9

254,5

284,4

287,4

282,5

264,7

294,2

296,7

298,2

258,0

279,1

277,2

272,9

277,8

308,6

Delta

65,7

80,4

81,6

82,8

34,4

132,1

90,9

97,3

104,8

147,0

84,1

-25,7

20,5

82,7

83,4

82,9

37,8

96,5

77,6

34,0

178,7

206,6

177,9

158,1

163,0

128,2

-48,4

-46,9

151.2

186,7

154,7

179,5

146,7

143,5

Hodogram

z-h1-h2

46,9

61,1

48,9

44,5

36,6

12,2

32,5

35.8

35,6

42,4

31,9

34,0

40,0

37,7

47,5

56,0

28,0

40,5

z-h1-h3

40,4

43,0

32,6

33,0

28,3

17,9

33,0

37,4

37,2

36,5

31,9

16,5

15,4

30,5

24,8

34,1

14,7

30,9

46,5 | 42,1

28,0 | 15,2

15,2 | 11,7

12,6

17,2

8,1

25,9

36,4

39,5

38,8

19,6

11,6

21,3

30,2

21,0

13,3

8,4

13,7

4,7

26,7

35,4

39,3

38,6

18,4

6,7

17,8

31,5

19,0

13,0

dip

z-h2-h3

23,7

60,4

42,8

44,7

30,0

23,5

M-h2-h3

22,1

24,1

25,9

27,6

25,4

28,1

36,5 | 27,5

19,5

13,6

8,3

37,1

27,9

31,5

35,5

33,5

50,9

22.0

8,3

33,9

26,2

14,8

9,9

16,6

8.3

26,1

40,1

40,2

29

29,7

30,2

29,7

27,6

33,3

25,1

35,5

27,8

20,7

19,9

35

15,8

13,1

10

14,6

6,53

26

32,8

38,4

39,3 | 38,2

19,3

9,6

21,5

30,8

21,5

14,3

18,8

9

18,9

31

19.7

13

Stand.

Dev.

10,6

15,2

8,9

7,4

4,1

6,0

3,2

7,1

9.3

12.9

2,7

6,3

9.0

4,9

8,1

11,6

4,7

12,0

5,2

5,8

1.4

1.5

1.4

1.4

0,3

2,6

0,6

0,4

0,5

1.7

1,6

0,5

1,0

0,5

Dip

hod.

33,3

47,2

37,6

37,5

30.1

20,4

32,4

30,4

29,0

29,3

32,7

26,5

30,1

32,2

35,3

42,2

21,4

24,9

39,4

21,3

13,7

10,2

15,5

6,9

26,2

36,2

39,4

38,7

19.0

9,2

19,9

30,9

20,3

13,4

Dip

loc

29,9

31,0

30,3

31,8

28,9

27,2

8,5

30,3

29,3

30,9

30,3

31,3

11,0

12,0

28,5

27,2

25,7

30,2

10,6

30,7

32,1

9.6

9.0

1.1

3,7

12,1

2,9

21.7

33,7

32,7

32,7

10,9

0,4

18,7

21,1

17,3

8,4

Delta

-3,4

-16,2

-7,3

-5,7

-2,9

-11,9

-2,1

-1,1

1,9

1,0

-1.4

-15,5

-18,1

-5,0

-9,6

•12,0

•10,8

5,8

-7,3

-11.7

-4,7

-6,5

-3,4

-4,0

-4,5

-2,5

-6,7

-6,0

-8,1

-8,8

-1,2

-9.8

-3,0

-5,0

Page 79: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

map

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4550 I

1st.

Pt.

3003

3000

3001

last

Pt.

3021

3011

3031

3001 | 3025

3012

3019

3006

2999

2999

3007

2998

2974

2989

2886

2998

3001

2984

2982

3002

2998

2999

2986

2998

2961

2985

3000

2999

2997

2985

2995

3000

2990

2999

3001

3002

3012

3000

3000

3033

3038

3016

3018

3018

3027

3012

2986

3006

2903

3008

3017

3008

3006

3014

3022

3026

3007

3033

2975

3006

3008

3011

3008

2995

3005

3008

3006

3013

3028

3033

3035

3018

3014

1 1 1 1 1 1 1 1 1 1 1 1 1 | | . Hodogram

z-h1-h2 z-h1-h3

333,6 | 329,3

157,4

160,9

167,9

329,1

137,9

350,5

338,5

337,8

5,2

355,5

208,1

166,6

359,7

192,6

334,3

153,4

161,2

167,1

328,6

137,5

341,5

333,7

336,3

4,2

357,1

215,9

169,0

358,3

189,1

326,0

181,8 | 186,8

185,0

328 ,4

343 ,2

344,8

203,6

331 ,4

41 ,3

205 ,0

338,8

348,8

201,5

193,0

212 ,0

314,8

34,1

354,3

192,5

312,8

343,7

343,5

346,9

154,3

327,9

344,4

344,6

209,2

azimuth

z-h2-h3 h1-h2-h3

329,4 | 330,8

153,7

161,7

167,4

328,5

137,1

342,6

334,4

336,8

155,0

159,6

167,3

329,0

138,0

347,7

335,3

336,8

5,0 | 4,1

356,4

208,3

168,1

359,1

191,3

325,3

184,0

185,0

328,1

344,1

344,9

204,1

320,9 | 318,5

32,5

210,0

331,6

344,6

208,4

201,0

222,0

314,1

38,0

43,6

205,1

331,8

346,1

202,1

194,3

211,0

323,9

33,7

352,2 | 353,2

193,2

311,0

346,4

342,0

343,9

193,0

310,1

346,2

342,4

345,2

356,4

210,7

168,3

178,9

191,2

328,7

184,0

185,0

327,9

343,9

344,1

205,8

323,8

39,1

205,7

335,1

346,2

204,7

206,3

211,7

314,8

35,2

352,9

192,2

311,4

344,3

342,7

344,4

Stand.

Dev.

1,8

1,6

0,8

0,3

0,3

0.4

3,7

1,8

0,5

0,5

0,6

3,1

0,9

78,0

1.3

3,5

1,8

13,3

0,2

0,4

0,3

2,2

4,9

4,1

2,1

2.9

1,5

2,7

5,4

4.5

4,1

1,7

0,8

0,4

1,0

1,2

0,5

1,1

Az

hod.

330,8

154,9

160,8

167,4

328,8

137,6

345,6

335,5

336,9

4,6

356 ,4

210,7

168,0

314,0

191,1

328,6

184,2

177,3

328,1

343,9

344,6

205,7

323,6

39,1

206,5

334,3

346,4

204,2

198,7

214,2

316,9

35,3

353,1

192,7

311,3

345,1

342,6

345,1

Az

loc

210,1

210,7

237,9

242,3

220,3

225,0

244,0

205,0

207,0

251,0

253,2

256,5

252,1

251,7

252.4

197,8

250,5

254,0

202,0

246,7

235,4

235,7

266,5

211,3

259,0

267,2

205,8

234,0

255,7

258,5

259,3

191,6

261,5

234,9

254,8

197.5

231,1

233,0

233,4

Delta

-1 20,7

55,8

77.1

74,9

-108,5

87,4

-101,6

-130,5

-129,9

246,4

-103,2

45,8

84,1

-62,3

61,4

-130,8

66,3

76.7

-126,1

-108,5

-108,9

60,8

-112,3

219,9

60,7

-128,5

-112,4

51,5

59,9

45,1

-125,3

226,2

-118,2

62,1

-113,8

-114,0

-109,6

-111,7

Hodogram

z-h1-h2

16,8

23 ,4

14,7

15,7

17,1

21,0

18,1

16,8

16,6

16.2

24 ,4

24,0

18,7

21 ,4

23,5

18,4

18,3

18,5

22,4

20,1

16,6

24,4

17,3

28,3

23,3

19,2

23,4

20,6

17,0

19,8

15,0

20,1

20,0

17,4

22,0

21,0

21,4

20,7

z-h1-h3

17,6

24,1

dip

z-h2-h3

16,1

22,5

14,7 | 14,7

15,7

17,2

21,2

18,8

17,4

16,8

16,2

24 ,4

25,7

18,5

21,4

23,3

20.0

18.4

17.4

15,5

17,0

h1-h2-h3

16,8

22,6

15,1

15,8

17.1

21,0 | 20 .8

16,1

16,0

16,5

15,9

25 ,0

27,2

19,2

20,9

22,3

17

16,2

16,2

16,2

24,8

27

19,1

21,5

22,6

16,9 | 17,6

19,6

17,4

22,5 | 22 ,4

20,0

16,7

25,4

19,5

25,7

24,3

20,3

23.9

21.6

17,6

22,5

15,3

21,1

20,3

16,5

26,7

15,6

24,1

25 ,4

17,9

22,2

23 ,0

19,4

24,2

15,0

21,7

20,1 | 19,4

17,4

22,8

20,8

21,5

17,4

21 ,8

21 ,7

21,0

21 ,0 | 19,9

19,6

18,6

22,1

20,3

16,9

26,4

16,5

24,1

25,9

17,8

22,9

22,9

25,4

25,6

14,5

21,4

19,9

17,7

22

21,5

21,2

20,5

Stand.

Dev.

0,5

0,7

0,2

0,1

0,1

0,1

1,0

0.5

0,2

0,1

0,3

1,3

0,3

0,2

0,5

1,2

0,6

0,6

0,1

0,1

0,1

0,9

1,4

1,7

1,0

1,0

0,6

1,0

3,3

2,2

0,3

0,6

0,3

0,1

0,4

0,4

0,2

0,4

Dip

hod.

16 ,8

23 ,2

14,8

15,7

17,1

21 ,0

17,5

16,6

16,5

16,1

24 ,7

26 ,0

18,9

21 ,3

22 ,9

18,2

19,0

18,0

22 ,4

20 ,2

16,7

25 ,7

17,2

25,6

24 ,7

18,8

23,1

22,0

19,9

23,0

15,0

21,1

19,9

17,5

22,2

21,3

21,3

20,5

Dip

loc

13,2

14,9

18,0

18,4

11,6

11,4

20,1

12,7

12,3

19,3

19,7

21,9

19,8

20,6

20,8

14,0

21,9

21,2

17,8

21,5

20,3

19,1

21,8

14,1

22,3

21,4

17,8

22,5

22,9

22,0

22.4

12,2

20,9

23,5

20,2

15,2

25,0

20,8

24,1

Dalt.

-3 ,7

-8,3

3,2

2,8

-5,5

-9,6

2,6

-3,9

-4,2

3,2

-5,0

-4,1

0,9

-0,7

-2,1

-4,2

3,0

3,2

-4,5

0,1

2,4

-3,9

-3,2

-3.3

-3,3

-1 .0

-0.6

0,9

2,1

-0,6

-2,8

-0,2

3,7

2,7

-7 .0

3.7

-0,5

3,6

Page 80: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

map

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

4550 I

1st. | last

pt. pt.

2883 | 2895

2965

2956

2993

2977

2999

2969

2897

2896

2883

2932

2999

3002

2952

2993

3003

3002

2999

2998

2883

2979

2970

3009

2988

3014

2979

2913

2912

2897

2942

3013

3020

2962

3008

3027

3013

3020

3009

2895

2995 | 3010

3001 | 3013

2997

2999

2998

2999

3001

2998

3003

3001

3000

3000

3000

3022

2997

3003

3002

3010

3014

3008

3008

3028

3016

3013

3008

3017

3018

3012

3057

3023

3022

3022

I I I I I I I I I I ! I I I I Hodogram

z-h1-h2

233,0

222,0

211,8

65,0

181,5

309,3

219,0

223,6

238,0

2-h1-h3

237,0

220,0

214,5

64,9

186,6

304,9

240,0

228,3

229,0

33,1 | 37,0

232,0

330,4

238,0

328,3

342,0 | 333,4

210,0 212,0

344,4 | 345,6

218,0

185,3

219,0

312,8

228.0

29,4

325,4

314,7

302,7

311,3

338,3

304,2

330,2

25,5

23,2

21,6

329,6

305,4

319,1

319,5

323,8

305,1

218,5

179,1

222,3

311,8

236,0

35,5

323,9

316,3

300,4

303,0

331,6

298,8

356,7

29,2

52,0

53,6

335,7

304,8

12,4

220,1

354,6

308,1

azimuth

z-h2-h3

221,0

223,0

211,0

66,1

183,8

301,8

215,0

221,5

246,0

32,4

224,0

328,0

334,1

210,0

345,1

218,0

182,8

218,2

311,6

222,0

29,2

323,7

316,8

297,8

295,6

332.0

292,1

348,2

24,6

26,3

25,6

335,1

h1-h2-h3

215,4

221,0

213,3

64,3

183,4

305,3

218,0

224,5

226,7

34,2

220,0

329,7

336,4

208.8

345,4

218,0

181,7

220,0

131,8

212,1

31,8

324,7

316,2

301,0

304,3

334,0

299,6

343,3

26,3

34,2

34,0

333,4

304,4 | 304,7

351.5

359,8

345,3

310,2

333,6

355,4

339,9

307,3

Stand.

Dev.

8,8

1,1

1,3

0,6

1.8

2,7

9,9

2,5

7.7

1.7

7.0

1.0

3.4

1.1

0,5

0,2

2,2

1,5

78,0

8,7

2,5

0,7

0,8

1,8

5,6

2,7

4,3

9,6

1,7

11,2

12,3

2,4

0,4

»tttttt

56,3

11.2

1.8

Az

hod.

226,6

221,5

212,6

65,1

183,8

305,3

223,0

224,5

234,9

34,2

228,5

329,1

336,5

210,2

345,1

218,1

182,2

219,9

267,0

224,5

31,5

324,4

316,0

300,5

303,6

334,0

298,7

344,6

26,4

33,9

33,7

333,4

304,8

254,2

313,7

340,9

307,7

A2

loc

262,8

269,2

264,8

262,9

257,0

260,6

184,3

267,8

268,5

270,5

271,2

264,7

200,9

209,2

265,3

241,4

264,1

257,8

271,9

192,5

264,8

271,5

196,2

192,4

156,4

161,2

188,0

161,9

232,0

258,3

261,6

264,3

190,2

152,9

246,0

242,5

244,0

172,5

Delta

36,2

43,3

50,3

191,9

76,8

-121,0

44,8

44,0

35,6

237,0

36,2

-128,2

-127,3

55,1

-103,7

46,0

75,6

52,0

-74,5

40,3

240,0

-128,2

-123,6

-144,1

-142,4

-146,0

-136,8

-112,6

231,9

227,7

230,6

-143,2

-151,9

-8,2

-71,2

-96,9

-135,2

Hodogram ¡dip

z-h1-h2

25,4

29,1

27,1

20,4

14,9

18,4

18,6

30,6

18,2

28,3

22,9

19,3

18,5

28,2

20,4

z-h1-h3

27,5

28,3

27,9

z-h2-h3

29,3

28,0

28,5

20,1 | 20,1

15,0 16,3

20,1 | 18,2

27,1

32,4

29,5

33,4

14,8 ¡ 14,6

29,2 | 30,2

25,7

19,8

19.7

27.9

20,3

15,5 | 15,6

18,6 | 18,5

26,6

16,9

24,0

27,6

17,4

14,6

18,7

15,8

20,1

16,6

19,6

38,6

19,6

19,3

20,8

18,4

14,8

14,6

17,2

18,7

27,7

17,1

27,6

29,2

17,7

14,3

20,0

19,0

21,1

19,4

17,2

38,4

27,8

28,7

19.7

18,7

11,2

14,2

14,1

17,5

I

26,9

18,9

16,7

28,2

20,7

15,6

16,8

28,3

16.9

28.9

30,6

17,2

14,7

18,7

15,6

18,8

16,7

24,6

39,5

32,0

33,3

22,0

18,4

21,0

25,7

21,9

18.9

h1-h2-h3

25,5

27,6

28,4

19,9

15,2

17,8

27,7

32,8

23,3

29,7

26

19,2

17,6

24,5

20,6

15,7

17,7

28,3

16,1

26,3

30,6

16,9

14,5

18,4

14,9

19

16,6

22,9

39,9

32,1

33,9

21,5

18,4

19,8

21,9

20,1

18,9

Stand.

Dev.

1.6

0.6

0,6

0,2

0,6

0,9

4,2

1,0

3,5

0,7

1,5

0,3

1,1

1,6

0,2

0,1

0,7

0,7

0,4

1,8

1,2

0,3

0,1

0,6

1,6

0,9

1.2

2.9

0,6

5,1

5,8

0,9

0,1

3,9

4,9

3,0

0,6

Dip

hod.

26.9

28,3

28,0

20,1

15,4

18.6

25.7

32,3

17,7

29,4

25,4

19,3

18,1

27,2

20,5

15,6

17,9

27,7

16,8

26,7

29,5

17,3

14,5

19,0

16,3

19,8

17,3

21,1

39,1

27,9

28,8

21,0

18,5

16,7

19.1

18,3

18,5

Dip

loc

22,9

23,7

23,3

25,3

22,7

21,2

16,5

23,2

22,4

23,9

23,1

24,9

14,7

14,1

21,1

19,5

20,7

21,0

23,1

13,0

23,5

24,7

10,8

9,5

14,4

18,0

15,9

13,2

21,7

25,9

23,9

23,6

18,0

15,2

16,3

19,4

14,9

10.3

Delta

-4,0

-5,0

-2.7

2,6

5,8

-2,2

-2,5

-9,9

6,1

-6,3

-0,5

-4,7

-4,0

-6,1

-1,0

5,1

3,1

-4,6

-3,7

-3,2

-4,8

-6,5

-5,0

-4,5

1,7

-3,9

-4,1

0,7

-13,3

-3,9

-5,3

-3,0

-3,3

-0,4

0,3

-3,5

-8,3

Page 81: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

map

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4601 |

1st.

pt.

last

pt.

|

3499

3513

3437

3449

3446

3437

3547

3561

3475

3486

3496

3486

3515 | 3554

3405

3416

3563

3537

3619

3543

3578

3533

3559

3631

3515

3365

3374

3578

3395

3548

3578

3689

3355

3625

3620

3630

3615

3552

3333

3478

3524

3339

3375

3303

3456

3459

3599

3555

3645

3576

3601

3556

3599

3654

3547

3393

3400

3600

3440

3583

3600

3725

3386

3660

3642

3652

3642

3592

3355

3501

3550

3350

3401

3320

I I I I ! I I I I I I I I I I Hodogram

z-M-h2 z-h1-h3

164,8 | 160,1

166,5 | 159,0

350,5

331,3

160,1

339,1

154,9

342,3

341,8

153,7

165,5

316,6

330,1

343,1

339,8

156,6

334,7

149,6

339,9

azimuth

z-h2-h3

161,1

160,3

344,5

335,0

157,1

335,4

149,8

340,5

338,7 | 339,3

146,8 | 146,3

154,4

324,1

333,6

140,8 | 145,5

340,7 | 348,0

291,1

156,7

343,3

145,9

145,5

143,7

344,0

153,6

144,1

357,5

148,4

143,5

137,9

135.8

158.7

328.5

140,7

136.0

344,8

328,8

146,0

303,1

165,4

321,5

151,0

151,2

145,1

339,5

165,9

148,1

346,9

150,9

157,1

324,2

332,5

146,1

345,8

311,3

163,2

305,4

150,4

150,1

145,3

h1-h2-h3

162,1

162,1

350.1

340,3

157,9

346,7

151,5

340,8

339,9

150,7

158,6

320,8

334,5

144,3

344,7

307,4

161,7

311,6

149,3

149,1

148,9

340,4 | 341,4

158,3

148,3

350.5

150,6

143,8 | 143,9

164,0

151,3

164,0

329,2

146,6

158,5

178,3

150,9

358,4

150,2

143,7

144,6

149,2 | 150,0

162,9

328,8

146,1

142,2 | 140,9

346,5

330,7

150,0

141,1 | 146,6

346,1

330,7

149.1

161,9

329,8

143,7

139,5

345,8

150,1

148,6

146,6 | 144,5

Stand.

Dev.

1,8

2,8

3,3

3,7

1,3

4,8

2,1

0,9

1,2

3,0

4,1

3,1

1,6

2,0

2,7

7,6

3,2

14,4

2,0

2,1

1,9

1,7

9,3

2,4

4,8

1,0

0,1

10,5

6,3

2,0

0,5

2,4

2,3

0,6

77,9

1,5

2,2

Az

hod.

162,0

162,0

347,1

336,6

157,9

339,0

151,4

340,9

339,9

149,4

158,9

321,4

332,7

144,2

344.8

303,2

161,8

320,5

149,1

149,0

145,8

341,3

164,0

147,9

353,3

150,0

143,7

151,2

146,6

161,9

329,1

144,3

139,7

345,8

285,1

148,4

144,7

Az

loc

33,9

33,8

25,3

24,1

31,4

30,2

24,2

35,5

34,8

23,3

22,2

22,0

22,7

22,6

22,9

36,8

22,3

22,0

35,7

23,2

24,5

24,8

19,0

33,8

20,2

19,2

34,8

24,5

22,1

21,8

21,5

37,2

20,1

23,2

20,0

37,3

24,7

25,5

22,8

Delta

-128,1

-128,1

-321,8

-312,5

-126,5

-308,8

-127,2

-305,4

-305,1

-126,1

-136,7

-299,4

-309,9

-121,3

-308,0

-280,9

-126,0

-297,3

-124,6

-124,2

-126,7

-307,5

-143,9

-128,7

-318,6

-125,5

-121,7

-129,4

-125,1

-124,7

-308,9

-121,0

-119,6

-308,5

-260,4

-123,0

-121,9

Hodogram

z-h1-h2 z-h2-h3

28,1 | 28,7

25,5

19,9

36 ,0

28,2

26,8

24 ,4

25,9

25,9

17,7

82,9

76 ,0

34 ,4

73,9

70,8

20,5

85,3

18,9

47 ,3

58,4

86.8

27,5

19,5

78,0

17,7

42,7

55,8

55,2

54,6

43,1

42,4

74,9

66,2

38,1

47,9

56,1

72,5

26 ,4

20,5

dip

z-h2-r>3

26 ,8

23 ,5

18,9

31 ,4 | 4 1 , 4

28,8 | 27 ,2

27,5

25,1

26,1

26,2

18,7

83,1

65,4

30,4

72,0

68,7

15,7

84,7

25 ,7

23 ,8

25 ,6

25,3

17,0

82,8

78,8

40,4

75,2

74,8

21,3

86,2

23,8 | 9,8

44,5

53,0

87,0

28,0

16,2

77,8

18,5

41,6

55,4

42,6

40,5

38,6

40,4

68,8

59,0

37,5

47,3

52,0

69,9

49,5

62,3

86,7

26,4

25,4

78,6

15,6

43,8

56,1

60,3

59,7

53,2

44,8

76,9

68,1

39,8

48,5

59,1

73,6

h1-h2-h3

26,5

22,9

15,7

30,5

27,3

29 ,4

20,1

24,5

24,4

10,4

71.1

89,8

25,1

79,6

79,6

27,7

85,7

1,95

48,6

60

41

25,5

10,6

27,7

9,74

43,1

55,7

42,8

30

40,4

38,1

83

68,7

37,7

48,8

56,6

78

Stand.

Dev.

0,9

1,4

1,9

4,3

0,7

1,3

1,9

0,6

0,7

3,3

5,1

8,7

5,6

2,8

4,2

4,3

0,5

8,4

1,9

3,4

19,8

1,0

5,4

21,8

3,4

0,8

0,2

7,7

11,7

5,6

2,5

5,1

3,9

0,9

0,6

2,5

2,9

Dip

hod.

27,5

24.6

18,8

34,8

27,9

27 ,4

23,4

25,5

25,5

16,0

80,0

77,5

32,6

75,2

73,5

21,3

85,5

13,6

47,5

58,4

75 ,4

26,9

17.9

65,5

15,4

42,8

55,8

50,2

46,2

43,8

41 ,4

75,9

65,5

38,3

48,1

56,0

73,5

Dip

loc

46,3

48,0

46,4

47,8

41,2

39,7

52,5

40,1

41,1

53,6

52,5

57,2

53,3

54,0

55,6

48,0

54,6

54,8

56,7

53,6

44,5

44,1

54,8

40,0

54,7

54,8

58,5

46,2

58,4

57,8

58,1

50,8

53,7

45,0

49 ,0

47,7

46,2

45,7

42,6

Delta

18,8

23 ,4

27,6

12,9

13,3

12,4

29,1

14,6

15,7

37,7

-27,5

-20,3

20,8

-19,6

-25,4

33,3

-28,8

40,0

-3,0

-14,3

-20,5

13,1

36,7

-10,7

43,1

3,4

2,6

7,6

11,9

6,9

12,3

-30,9

-16,5

9,5

-1,9

-10,3

-30,9

Page 82: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

map

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

4601 |

1st. last

pt. | pt.

3585

3573

3614

3526

3474

3581

3504

3504

3487

3546

3435

3392

3505

3557

3451

3578

3668

3611

3616

3619

3636

3787

3792

3647

3248

3754

3753

3753

3581

3678

3278

3278

3292

3774

3608

3596

3639

3566

3508

3603

3532

3532

3518

3568

3480

3439

3545

3605

3478

3628

3702

3639

3640

3648

3658

3805

3817

3706

3276

3782

3774

3782

3605

3720

3310

3307

3321

3798

I I I Hodogram

z-h1-h2 z-h1-h3

|

132,3

132,9

318 ,3

149,1

348,9

129,0

321,8

321,3

320,6

129,3

163,5

343,0

162,1

153,6

136,5

159,8

154,2

136,0

159,6

343,4

181,6

341,3

339,7

355,0

160,3

148,5

137,3

150,6

344,0

356,5

348,4

353,5

356,1

167,8

134,1

133,4

321,8

151,4

348,7

134,8

326,1

329,2

338,5

133,1

158,6

340,0

151,2

150,6

140,5

158,1

147,8

139,4

165,2

323,4

175,8

353,3

352,2

330,6

123,6

127,8

123,5

130,0

329,0

327,1

300,0

300,5

300,1

138,4

azimuth

z-h2-h3 h1-h2-h3

|

134,9 133,8

133,3 | 133,2

322,0 | 320,6

151,3 | 151,2

348,9 | 348 ,8

137,1 133,1

329,7 | 324,8

329,2

335,8

135,3

159,7

340,6

152,1

333,2

334,7

132,6

160,3

341,2

154,9

150,3 | 152,2

140,7

157,2

152,5

138,8

160,8

56,0

I 139,6 138,4

163,7 | 162,7

342,2 320,3

178,3 | 178,7

348,9

348,0

330,6

89,9

127,6

144,4

124,6

345,1

334,1

252,6

244,7

347,6

346,4

339,2

125,1

128,9

122,0

132,4

336,4

336,3

300,6

301,2

244,3 | 300.3

157,6 | 143,8

I

I I I I I I I I I I I Stand.

Dev.

0,9

0,2

1,5

1,0

0,1

2,9

2,8

4,3

7,0

2,1

1,8

1.1

4,3

1,3

1,7

1,4

4 1 , 4

1,4

2,1

10,6

2,0

4,3

4,5

10,0

24 ,9

8,8

9,4

9,8

6,5

11 ,0

33 ,8

38,5

39 ,5

11,5

Az

hod.

133,8

133,2

320,6

150,7

348,8

133,5

325,6

328,2

332,4

132,6

160,5

341,2

155,1

151,7

139,1

158,9

127,6

138,4

162,8

332,3

178,6

347,8

346,6

338,8

124,7

133,2

131,8

134,4

338,6

338,5

300,4

300,0

300,2

151,9

Az

loc

20,5

18,3

19,6

19,1

21,5

20 ,0

42,2

18,6

18,1

17,3

17,5

18,3

36,7

34 ,4

20,5

25 ,0

19,3

18,1

17,2

36,7

20,0

17,7

36,1

36,3

43 ,9

42,2

37,2

42,1

23,7

23,2

23,2

22,9

39,0

44,1

19,8

19,6

21,7

37,9

Delta

-114,2

-114,1

-299,1

-130,8

-306,6

-114,9

-307,5

-310,9

-314,9

-114,3

-123,8

-306,8

-130,1

-132,3

-121,1

-141,8

-90,9

-120,7

-126,7

-296,1

-134,7

-305,6

-309,4

-296,7

-101,0

•110,0

-108,6

-111,4

-299,6

-294,4

-280,6

-280,4

-278,5

-114,0

Hodogram

z-h1-h2 z-h2-h3

|

89.5 89,5

87,7

64,2

34,1

37,3

89,5

85,5

83,7

37,6

83,1

23,7

26,9

24,9

30,8

68,8

37,4

9,2

56,5

78,8

63,1

77,4

88,2

82,3

45,3

72,9

84,3

86,5

60,7

31,7

37 ,2

88,5

71,5

73 ,4

27,6

87,3

24 ,2

27 ,2

26,5

31,3

66,3

37 ,0

9,2

51,5

77,9

60,1

77,5

87,6

82,7

49,4

78,7

82,0

87,2 ¡ 85,6

84,2

89,7

82,2

65,9

63,2

68,2

80,1

83,0

86,3

82,2

78,9

77,8

79,7

79,5

dip

z-h2-h3

89,3

88,1

65,6

37,1

37,6

89,6

88,4

87,5

48,2

82,3

22,7

26,3

22,9

30,4

69,3

39,2

9,9

58,4

80,1

82,0

77,7

88,8

82,4

32,9

69,1

87,0

82,6

85,1

83,4

84,4

67,9

64,9

68,7

h1-h2-h3

87,8

87,2

67,6

29,7

36,7

84,3

67,9

21 ,4

27

89

21,7

25,5

18,9

28,5

72,6

32,4

2,79

57,3

85

25,4

72,3

81,7

70,7

33,3

37,8

50,4

54

55,2

75,6

52,1

33,2

29,8

29,9

89,7 | 42,6

I

Stand.

Dev.

0,7

0,6

2,5

2,8

0,3

2,2

8,8

26,5

8,7

2,8

1,0

0,6

2.8

1,1

2,2

2,5

2,9

2,6

2,7

20 ,4

2,3

2,8

5,1

7,3

15,9

14,8

13,6

12,5

5,2

13 ,4

17,1

17,7

18,9

18,0

Dip

hod.

89 ,0

8 7 , 4

64,5

33 ,2

37 ,2

88 ,0

78,3

66,5

35,1

85,4

23,1

26,5

23,3

30,3

69,3

36,5

7,8

55,9

80,5

57,7

76,2

86,6

79,5

40,2

64,6

75,9

77,4

76,9

83,8

75,2

61,5

58,9

61,6

73,0

Dip

loc

58,0

57,1

57,3

58,3

57,5

53,4

44,0

56,5

54,7

55,8

55,4

56,9

43,8

40,5

56,5

51,6

52,8

47,8

55,0

55,2

58,4

57,9

49,7

49,9

51,1

60,9

62,3

51,5

39,7

65,8

65,1

64,9

53,5

53,1

35,7

37,7

35,5

57,2

Delta

-31,7

-29,1

-7,1

20,2

6,8

-31,5

-23,7

-10,7

20,3

-28,5

20,7

14,1

28,3

22,6

-21,4

18,5

47,4

2,0

-30,8

-7,7

-25,1

-25,7

-17,3

11,2

-24.9

-10,1

-12,3

-11,9

-30,3

-22,1

-25,8

-21,3

-26,1

-15,7

Page 83: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

APPENDIX 2

THEORETICAL LOCATIONS OF THE EVENTS WITH THEIR CHRONOLOGICAL NUMBERS

(using P- andS-wave timings)

Page 84: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

400-

300-

200-

100-

£ 0-

•100-

•200-

-300

-400-

46

73

64

n

77

72

66

32 59 6.3

* *62

36 16 19

52 • 27 «! , r 53 54

55 69 70 71

2 ' 7 1.

38

28

'.° 22 21 *

1 % • • An "

37

6.B

39

34 76

74

4 0 c

, , • 6u

35 43« ^ 51

57

75

-200 -100 0 100

X(m)

200 300 400

Figure 1 - Event locations: m a p view.

Page 85: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

-2000

-2200-

-2400-

-2600-

sz ex S" -2800H

-3000-

-3200-

-3400

«&7

n

37

36

10

Í 34

"«*' ?

32

7#7 jo

7

55*

62 •13

"1. 14*

11

5447» • • 25 49

91 ^"»SB 4Ï? ^* •

57

H

S3

5<

-400 -200 0

X(m)

200 400

Figure 2 - Event locations: X Z cross-section.

Page 86: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

-2000

-2200-

-2400-

-3000-

-3200-

-3400

E j= H—»

CL

Q

-2600-

-2800-

"Vf '5

» *»? la • «%. Vf ••?„«

S« *

V •

V * » . ••

400 -200

53

84* .

0 200

Y (m)

400

Figure 3 - Event locations: Y Z cross-section.

Page 87: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

APPENDIX 3

LIST AND THEORETICAL LOCATIONS OF MULTIPLETS WITH THEIR CHRONOLOGICAL NUMBERS

(using P- and S-wave timings)

Page 88: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

N° on map

23 26

17 IS

30 31 54

41 42 43

40 60

47 51

48 49

N ° of file

26 26

26 26

26 26 30

30 30 30

30 33

30 30

30 30

N ° of evt.

194 291

87 91

438 452 367

46 73 78

19 221

283 303

284 288

Date

11/09/93 11/09/93

11/09/93 11/09/93

11/09/93 11/09/93 12/09/93

11/09/93 11/09/93 11/09/93

11/09/93 13/09/93

12/09/93 12/09/93

12/09/93 12/09/93

02:07:38 03:46:08

00:24:53 00:28:48

05:47:59 05:56:58 04:55:57

22:59:38 23:32:57 23:39:25

22:29:53 02:42:21

03:34:21 03:50:35

03:34:43 03:39:47

List of doublet and multiplet events.

Page 89: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

£ >

-100

•150-

-200-

-250-

-300-

-350 100 150 200 250

X(m)

300 350

Figure 1: Doublet and multiplet locations: m a p view.

Page 90: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

-2400

400

X(m)

Figure 2 - Doublet and multiplet locations: X Z cross-section.

Page 91: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

-2400-

-2450-

-2500-

B -2550H O .

a

-2600-

-2650-

-2700-

51

43

* 60 3.1

• *30

42

41

47 547

49

48

23 •26

-350 -300 -250

Y(m)

-200 -150

Figure 3 - Doublet and multiplet events: Y Z cross-section.

Page 92: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

2 < S LU oc ce O o

o tu o

CD M" O HI o o a?

Sil Sil mil

Figure 4 - Example of triplet : Master Event N ° 30-46 (solid line) and event 30-73. From left to right, 2 windows centred on P-wave, 1 window centred on the m a x i m u m

correlation value; from top to bottom, the same sheme for S-wave as for P-wave, respectively for probe 4616,4550,4601, EPS1 (excepted S-wave); horizontal scale in samples.

Page 93: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Figure 4 bis - Example of triplets: Master Event N ° 30-46 (solid line) and event 30-78. From left to right, 2 windows centred on P-wave, 1 window centred on the m a x i m u m

correlation value; from top to bottom, the same sheme for S-wave as for P-wave, respectively for probe 4616,4550,4601, EPS1 (excepted S-wave); horizontal scale in samples.

Page 94: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Figure 5 - Example of doublet: Master Event N ° 30-19 (solid line) and event 33-221. From left to right, 2 windows centred on P-wave, 1 window centred on the m a x i m u m

correlation value; from top to bottom, the same sheme for S-wave as for P-wave, respectively for probe 4616,4550,4601, EPSl (excepted S-wave); horizontal scale in samples.

Page 95: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Q <

UJ cc te o o

o CM LU Q to en

oo 04 LU

o 0?

«M • *

¡52SÄ

$*3

CM li)S|

SU

Figure 6 - Example of doublet: Master Event N ° 30-284 (solid line) and event 30-288. From left to right, 2 windows centred on P-wave, 1 window centred on the m a x i m u m

correlation value; from top to bottom, the same sheme for S-wave as for P-wave, respectively for probe 4616,4550,4601, EPS l (excepted S-wave); horizontal scale in samples.

Page 96: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

APPENDIX 4

HODOGRAM RESULTS DEDUCED FROM VARIOUS TIME WINDOW LENGTHS ON SELECTED EVENTS

N ° on m a p : Chronological number of event. N ° file, N ° event : Reference of the event in original field data base. For each probe :

. First and last point of the time window used for hodogram analysis

. Azimuths for each combination of sensors deduced from hodogrametry . Standard deviation . M e a n azimuth deduced from hodogrametry

. Theoretical azimuth (deduced from P - and S-wave timings)

. Difference between theoretical azimuth and hodogram azimuth

. Dips for each combination of sensors deduced from hodogrametry . Standard deviation . M e a n dip deduced from hodogrametry

. Theoretical dip (deduced from P - and S-wave timings)

. Difference between theoretical dip and hodogram dip.

. Polarization parameters

Page 97: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

N"

on

map

5

6

24

32

39

72

77

fila

19

19

26

26

27

63

63

evt.

183

194

202

488

339

96

250

4616

n"

1st

point

3137

3137

3136

3135

3135

3117

3117

3124

3124

3126

3125

3129

3129

3091

3091

3094

3130

3130

3128

last

point

3162

3150

3166

3163

3152

3150

3135

3147

3138

3140

3148

3145

3139

3118

3108

3122

3161

3146

3154

1P

1/2P

1P#

1P

1/2P

IP

1/2P

IP

1/2P

1/2P*

1P'

IP

1/2P

IP

1/2P

IP»

1P

1/2P

^P'

Hodogram

azimut

z.hl.hZ

255,0

293,0

257,0

74,6

65,9

254,0

256,3

252,0

240,0

187,8

252,0

228,0

269,0

105,3

91,4

105.0

161.8

155,9

151,0

z.h1.h3

122,0

97,4

107,4

303,2

281,1

120,0

92,2

116,2

101,0

98.9

114,3

100,9

95,3

106,4

93,5

106,7

168,0

169.8

163,5

z.h2.h3

339,1

49,4

349,0

159,2

193,6

339,0

358,9

347,5

18,0

33.3

349,7

20,2

90,0

109,0

105,0

109,0

166,0

165.8

160,8

h1,h2,h3

268,9

264,9

255,9

89,5

82,5

72,0

70,1

269,0

264,9

260,7

269,9

95,3

103,5

107,1

94,1

106,3

164,6

164,1

158,3

Stand.

dev.

78,5

104,6

86.6

90,4

87,4

106,0

119,1

83,2

101,2

86,3

84,7

74,6

75,0

1,3

5,3

1,4

2,3

5,1

4,7

Loc.

azi.

277,1

277,1

277.1

278,3

278,3

263.5

263,5

279,6

279,6

279,6

279,6

265,3

265,3

258,0

258,0

258,0

308.6

308.6

308,6

Mean

azi.

2 4 6 . 2

1 7 6 , 2

2 4 2 , 3

1 5 6 . 6

1 5 5 . 8

1 9 6 , 3

1 9 4 , 4

2 4 6 , 2

1 5 6 , 0

1 4 5 . 2

2 4 6 , 5

111,1

1 3 9 , 4

1 0 7 , 0

96,0

106.8

165,1

163,9

158,4

Delta

30,9

100,9

34,8

121,7

122,5

67,2

69,1

33,4

123.6

134.4

33,1

154,2

125,9

151,0

162,0

151,3

143,5

144,7

150,2

Hodogram

dip

z.h1.h2

36.9

5,1

27,4

35,0

9,5

39,5

32,2

26,7

5,6

20,5

25,6

7,7

21,4

19,5

19,1

19,6

13,3

12,2

11,5

z.h1.h3

15,1

16,5

15,3

14,2

13,8

15,3

19.1

14,1

11,4

13,4

14,1

25,9

17,4

18,3

15,1

18,4

13,0

11,4

10,4

Z,h2.h3

30,7

13,4

26,5

28.2

14,3

31,0

26,5

22,3

11,3

28.3

22,9

26,1

15,5

19,2

17,5

19,3

14,3

14,2

13,0

h1,h2.h3

23.6

17,5

19,2

20.1

18.5

32,3

33.6

16,8

15,4

11,3

18,2

18

16,9

18,6

16,4

18.8

13

11,9

11.1

Stand

dav.

8,1

4,9

5,1

7,9

3.2

8.8

5,7

4,9

3,5

6,7

4,4

7,5

2,2

0,5

1,5

0,5

0,5

1,1

1,0

Loc.

dip

12,4

12,4

12,4

12,7

12,7

12,3

12,3

9,2

9.2

9.2

9,2

24,2

24,2

10,9

10,9

10.9

8,4

8,4

8,4

Mean

dip

26.6

13.1

22,1

24.4

14,0

29,5

27,9

20,0

10,9

18,4

20,2

19,4

17,8

18,9

17,0

19,0

13,4

12,4

11,5

Delta

-14,2

-0.7

-9.7

-11,7

-1.3

-17,2

-15,6

-10,8

-1,7

- 9 , 2

- 1 1 , 0

4.8

6,4

• 8 , 0

-6,1

•8.1

• 5 , 0

- 4 , 0

-3,1 I

|

Page 98: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Global 1

CO

X X N

To XI o

CM

X

X N

(O

CO

o

z

pol. I

i 1

O Z S

coeff. J

CS

u

U

*<

S

ï<

•*> a

o

o

e)

CO

u

(0

CM

w

ro

ri

CM <<

S a.

a.

>

»

_g

a

co

E

0,93

LU

CM O

T—

CM

UJ

CM

CO

LU

en m co + LU

O rv

m +

LU

CO

CO

CO

+

LU

tn

CD

•«t

in

d

CM LU CO

00

CO

CM

LU

rv

00

CM

00

t"

CO +

LU

05

CM

CO +

UJ

CO

en

co + LU

CM

CO

00

a.

CM

co CO

IV

CO

CO 19 EVT 183

m

0,95

CM

UJ

00

CO

CO

LU

CO

o

00

LU

o

CO

+

LU

rv rv co

+

UJ rv rv

co + LU

O

CM

in

d

CM

LU

co CO

CO

LU

oo rv CO

LU

rv en

+

LU

CO

Tt

m +

LU

00

co CM

9 + 399'6 a.

CM

O m co

rv co

co

0,93

Ul

rv

CM

00

03

i

LU

CO

CO

+

UJ

CM

en CM

m +

LU

in

*~

CN

CO

+

LU

O CO

00

d

CM

UJ

O CM

00

CM

LU

co

UJ

rv

q

in 1.59E + 4 2.36E + 6

co + UJ

co

en *

CL.

CO

CO

CO

co

CO

CO

|

0,93

CM

LLI

CO

in

00

CM

LLI

CO

CO

m

CO

+

LU

•<* O

m +

LU

CM

I"

r—

9 + 390'9 LO

d

CM

LU rv co CM

CM

LU co CO

LU en q

co + UJ en q

co + UJ m en

co + Ul

CM

m rv

a.

co

CO

CO

in

CO

CO 19 EVT 194

CO

0,90

CM

LU

in

CO

CM

UJ

CM

UJ

m

00

CM +

tu

m

O +

LU

00

CM

LO +

LU

CM

CM

rv

tn

co

d

CM

LU oo rv

CM

LU

o

CM

LU

in

rv

d +

UJ

en en en

in

+

LU

LO

CO

m +

UJ

en co

a.

CM

CM

m co

m co

co

0,82

Ul

CO

o

CM

Ûl en co CM

UJ

CM

co CM

CO

+

UJ o en in

LO

+

LU

rv m m CD

+

Ul co

00

m

tn

d

CM

LU

CM

en

co LU

en

LU rv rv

-"

CM

+

Ul

q

d

co + Ul

o

m

CM rv +

Ul o

a.

O in

co

rv

co 26 EVT 202

<* CM

0,75

LU -CM

CM

LU

en co

LU co

CO

CM

+

UJ

o

CO

in

+

LU

co 'S-

CO 3,46E + 5

CM

CO

d

CM

CO

q

LU

05

CO

oo i

LU

CO

CM

rv

+

UJ

co LO

CM

in

+

LU

O

en

m +

LU

en m co

a.

CM

m co

co

rv

co

0,94

LU

co CM

CM iù co CO

CO

Ul

to

+

Ul

o 2.63E + 5

rv +

UJ

•>*

CM

d

CM

LU

rv CO

CO

CM

LLI -05

LLI

in

rv

d

e + 360'9 CD +

Ul

rv

rv

+

Ul m

CO

0.

rv

CO

CM

CO 26 EVT 488

CM

CO

0,91

LLI O

CM

Ul

CD

CM

LU

CO

rv

CO

+

LU

O rv

+

Ul

CO

rv

CO

CO

+

LU

CO

CM

CO

CO

d

CM

Ul

q

LU

rv

•>* rv

UJ

CO

rv

d 1.51E + 2

CO

+

LU

CO

CM

co

+

UJ

rv

CM

a.

CM

oo co

CO

•>* CM

CO

0,97

Ul

rv

CM

LLI 00

CD

LU

O CO

en

CO

+

LU en CM

CM

+

LU

O 00

rv

CD

+

LU

CM

00

OO

CD

d

CM

LU

in

CO

q

LU

rv

co i

LU

rv d

CM

+

Ul

t q CM

CD +

LU oo o CO

+

Ul

CO

rv

|v

*

Ou

CM

O t

CO

CO

CM

CO

0,93

LU

00

O

CO

CM

lu LO

co

in

'S-+

Ul

LO

rv CM

m +

LU en oo CM

rv

+

Ul

rv

eg

O d

CM

lù *r rv co

CM

tù en CM

CM

Ùl

CM

d

co + Ul

rv q

rv

9 + 390'9 rv

+

UJ

in

co

CL

00

CO

m

CM

co

0,93

CN

Ul m m co

CM

Ul

in

O

Ul

CD

+

Ul r» o LO

+

LU oo

in

+

LU co in

CM

m d

CM

lù en CD

q

iû en <* 00

LU

q

+

LU

CM

rv CM

+

UJ

rv

en LO

+

UJ

rv

rv

co

CL

en co

co

en CM

co 27 EVT 339

en co

0,86

CM tù m CM

LO

CM

CO

LÙ -CM

CM

+

UJ

CO

co + Ul

en

m m +

Ul co o

en co

d

CM

CM

LO *

m

Ul -LO

en

tù en q

d

O +

UJ

en CM

d •4,03E + 4

LO

+

LU

CM

O CL

CM 1

0,87

LU

en 00

CM

eg

LU

CO

en m tù in

O

CM

co + UJ

00

co

+

UJ o

«*•

rv

co

+

Ul co rv

OO

00

d

Ul

CO

<^ CM

CM

ùl oo CM

Ul

q

CM"

co + Ul co CM

d 7,17E + 4

co + Ul oo rv

0.

03

co

05

o

CO 63 EVT 96

CM

rv

0,78

LU

en co

CM

Ul co oo t

lÙ co co CM 3.19E + 2

t +

Ul

CM ~

m +

Ul

LO

co

rv rv

d

CM

Ùl o o oo

CM

Ul

co

CM

lÙ •>* q d + UJ

q d +

UJ o

CO

LO

+

LU

5

CL

CM

00

o

CO

en o CO

0,74

tù en oo

CM

Ùl

rv en LO

Ul

CD

co

co + Ul

LO

CM

CO

m +

UJ

LO

rv

co +

Ul co rv

t rv d

en co

CM

en

LU

CO

q d

co + LU

en in

d

in

+

LU

co oo

co + UJ

00

r-*

0.

CM

CM

CO

en o CO

0,95

LU

en co

CM

00

oo CM

CO +

Ul

en CM

+

LU

CM

rv co 4.07E + 6

en d

CM lù en 1-q

Ùl

CM

CO

CD

LU

oo

CM

+

LU en rv 8.88E + 4

CD +

LU

CO

O CL

CO

co

o

CO

CO 63 EVT 250

rv

rv

0,98

CM

CM i

LU

CD

CO

eg

oo 00

rv

+

LU

LO 1.61E + 3 2.59E + 5

en en

d

Ul

en o eg

eg

Ul

O

CM

Ul

in

en

+

LU

en

CM

eg

+

Ul en CO

CO

in

+

Ul o

ID

eg

a.

eg

CO

CO

o co

CO

1,00

tù o

o

CO

CM

lù co O eg

CM

t

CO

CO

+

LU

CO

+

UJ o

CO

CO

+

LU

eg

CO

CM

O

q

Ul

rv

CO

LU

CM

CO

m

CM

UJ

CM

q d +

LU

q d 3.86E + 3

CO +

UJ

•*

CO

CM

• a.

LO

CO

00

eg

CO

Page 99: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

1 N°

on

map

5

6

24

32

39

72

77

XI

7.78E + 6

1.01E + 6

9.43E + 6

7,02E + 6

7,23E + 5

1.01E + 7

3.84E + 5

1.33E + 7

2.80E + 6

8.02E + 6

1,34E + 7

4.48E + 5

1.01E + 5

1.77E + 6

1.39E + 5

1,78E + 6

4,11E + 6

2.64E + 5

2.67E + 6

Z - H 2 - H 3

X2

1.32E + 6

1,27E + 5

1.42E + 6

1,31E + 6

1.66E + 5

1.41E + 6

9,45E + 4

2.84E + 6

6.67E + 5

5.92E + 5

3,20E + 6

9.09E + 4

4.38E + 4

7.62E + 4

8.44E + 4

1.70E + 5

3.83E + 4

5.78E + 2

2,65E + 3

X3

2,44E + 3

3,30E + 0

1.65E + 4

3,12E + 2

8.54E + 0

4.00E + 3

7.21E + 2

3,75E + 3

9.81E + 2

1.16E + 3

8.49E + 3

2.44E + 2

3.51E + 1

2,96E + 3

8.86E + 3

3.35E + 3

1.78E + 2

3,02E + 1

8.66E + 1

E21

4.12E-1

3,53E-1

3.88E-1

4.32E-1

4,79E-1

3,74E-1

4.96E-1

4.62E-1

4.88E-1

2.72E-1

4,89E-1

4,50E-1

6,59E-1

2.07E-1

7.79E-1

3.09E-1

9,65E-2

4.68E-2

3.15E-2

831

1.77E-2

1.81E-3

4,18E-2

6.67E-3

3.44E-3

1,99E-2

4.33E-2

1.68E-2

1,87E-2

1.20E-2

2.52E-2

2,33E-2

1,86E-2

4.09E-2

2.52E-1

4,34E-2

6,58E-3

1.07E-2

5,70E-3

E32

4.30E-2

5,11E-3

1.08E-1

1.54E-2

7.17E-3

5.33E-2

8.74E-2

3.63E-2

3.83E-2

4.43E-2

5,15E-2

5,18E-2

2,83E-2

1.97E-1

3,24E-1

1.40E-1

6.82E-2

2,29E-1

1.81E-1

1 Global

pol.

coeff.

0 ,63

0 ,70

0 ,65

0 , 6 0

0 , 5 4

0 , 6 8

0 ,52

0 ,56

0 ,53

0,81

0 ,53

0 , 5 8

0 , 3 7

0 , 8 8

0 , 2 4

0 ,76

0 , 9 7

0 ,99

1,00

XI

2.55E + 6

8,31E + 5

3.52E + 6

2.74E + 6

5,83E + 5

2,87E + 6

2.16E + 5

7.28E + 6

2,63E + 6

6.00E + 6

8.06E + 6

2.54E + 5

1,45E + 5

1.83E + 6

1.55E + 5

1.83E + 6

4.26E + 6

2.84E + 5

2.84E + 6

H1-H2-H3

X2

6,88E + 5

2.51E + 4

6.61E + 5

6,28E + 5

4.35E + 4

9.54E + 5

2,95E + 4

9.12E + 5

1,47E + 5

1.38E + 5

9,46E + 5

5.85E + 3

1.10E + 3

7,41E + 4

1.04E + 4

1.75E + 5

6.87E + 4

3.94E + 2

3,07E + 3

X3

3.10E + 3

2,12E + 1

2.03E + 4

1.03E + 3

6.13E + 1

9,35E + 2

2,39E + 2

1,44E + 3

4,85E + 1

2,42E + 1

1.25E + 3

2,82E + 2

3,75E + 1

4.75E + 3

2.01E + 2

4,80E + 3

4.75E + 2

9.13E+1

3.23E + 2

s2I

5,19E-1

1.74E-1

4,33E-1

4,79E-1

2.73E-1

5.77E-1

3.70E-1

3.54E-1

2.36E-1

1.52E-1

3.43E-1

1.52E-1

8,71 E-2

2,01 E-1

2.59E-1

3.09E-1

1.27E-1

3.72E-2

3.29E-2

e31

3,49E-2

5.05E-3

7.59E-2

1.94E-2

1.03E-2

1.80E-2

3.33E-2

1,41 E-2

4,29E-3

2,01 E-3

1.25E-2

3.33E-2

1,61 E-2

5.09E-2

3.60E-2

5.12E-2

1.06E-2

1,79E-2

1.07E-2

E32

6,71 E-2

2,91E-2

1.75E-1

4,05E-2

3,75E-2

3,13E-2

9.00E-2

3,97E-2

1,82E-2

1.32E-2

3.64E-2

2.20E-1

1.85E-1

2.53E-1

1.39E-1

1.66E-1

8.32E-2

4.81E-1

3.24E-1

Global

pol.

coeff.

0 , 5 0

0,91

0 ,59

0 , 5 4

0,81

0,44

0,68

0,70

0,85

0,93

0,72

0,93

0,98

0,88

0,82

0,76

0,95

0,99

1,00

Page 100: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

4550

Delta Mean Loe. Stand. Hodogram Delta

I Loe, Stand. Hodogram

e c

o C

e Z o

Z

dip dip dev. dip azi. azi. dev. azimut last 1st evt. file

Z o

I 2.

2. 5

I .c i 2. point point I map

« 17,1 11.6 0,1 17,1 17,0 17,2 17,1 -108,5

-,. 13,5 11.6 1,7 12,3 11,4 15,6 14,6 -126,2

328,8

346,5

220,3 0,3 329,0 328,5 328,6 329,1

cu 3033 3012 183

CA

IO

220,3 6,8 349,7 341,7 338,8 356,0 1/2P 3020 3012

-,, 16,7 11,6 0,0 16,7 16,7 16,6 16.6 -108,3 328,6 220,3 0,2 328,9 328,6 328,7 328,2

a. 3032 3014

-9,6 21,0 11,4 0,1 20,8 21,0 21.2 21,0 87,4 137,6 225,0 0,4 138,0 137,1 137,5 137,9

0. 3038 3019 194

CA

(O

•6,5 17,9 11,4 1,4 17,0 16,2 20,0 18.3 73,2 151,8 225,0 4,7 152,4 147,4 148,2 159,2 1/2P 3031 3019

•»., 17,2

l'frl

1,4 16,5 15,6 19,5 17,3 -112,3 323,6 211,3 4.9 323.8 318,5 320,9 331,4

0. 3033 2998 202

CD CM

CM

-2,2 16,3 14,1 0,4 16,3 15,8 16.8 16.3 -121,1 332.4 211,3

-

332,3 331,7 331,4 334,2 1/2P 3019 2998

-5,0 17,2 12.2 0.3 16,8 17,5

O'il

17,3 -132,1 323,7 191,6 0,5 323,7 324,3 323,9 323,0

0. 3012 3000 488

CO CM

CM

CO

-2,8 15,0 12,2 0,3 14,5 15,0 15,3 15,0 •125,3 316,9 191,6 4,1 314.8 323.9 314,1 314.8 1/2P 3008 3000

7,7 16,4 24,1 0,3 16,6 16,8 16,3 16,0 222,7 10,7 233,4

-

9,4 11,0 12,3 10,0

0. 3030 3000 339

r-» CM

CA CO

3,6 20.5 24,1 0,4 20,5 19,9 21,0 20,7 -111,7 345,1 233,4 1,1 344,4 345,2 343,9 346,9 1/2P 3014

OOOE

-3,0 21,0 18,0 0,9 21,5 22,0 19,7 20,8 -143,2 333,4 190,2 2,4 333,4 335,1 335,7 329.6

0-3018 3000

to

Ol

CO

CM

-2,3 20,3 18,0 0,2 20,4 20,5 20,0 20,2 -142,8 333,0 190,2 0,6 333,0 333,4 333,5 332,1 1/2P 3012 3000 |

-8,2 1 18,5 10,3 0.6 18,9 18,9

S'il

18,7 -135,2 307,7 172,5 1,8 307,3 310,2 308,1 305,1

a. 3022 3002 250

m

tD

-6,0 1 16,3 10.3

-. 16,7 17,1 14,4 16,8 -133,5 306,0 172,5 3,6 306,2 310,6 306,6 300,4 1/2P 3013 3002

Page 101: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

I Global 1

eo X X N T5 ja o

O

CM

X X N

-O LO

in

o Z

I Pol. 1

1

1 5

O 2 g

| coeff. |

es

u

3

es

t<

a

o u

CM

fO Id

fO

w

CM

W

3

es

7<

a. fila & evt. o.

ca

E

0,97

CM

•*"

CM

LLI CM

q

CO

CM

LU

t q

co" 1,28E + 4

+

LU

in

in

d 8.77E + 6

05

o"

LU

m

CM

Lu

CO

d

CM

UJ

èo oo"

+

LU

CM

CO

eo 6,49E + 4 8,76E + 6

0.

co co o CO

CM

o

CO 19 EVT 183

LO

0,99

LU

CM

CO

UI

o

CM

00

CM

UI

O q

co" 2.04E+1

eo

+

LU

O 3.03E + 5

eo CO

d

CM

05

r^

CO

CO

LLI

tn

oo"

LU

in

CM

CM

+

UJ

05

' CM

+

UI

CM

LC5

m +

UJ o o eo"

o.

CM

o

CN

O CO

CM

O CO

0,99

CM

CO

tú CM

CM

d

CM

O CO

eo"

+

tu

in

O

CM"

co + LU O 3.03E + 5

en

d

Ul

00

in"

CM

LU

m en •

*"

CM

LU

in

oo"

f + 391'2 t +

LU

d

co +

Ul

00

oo"

*

CM

CO O

CO

o

eo |

0,98

Ul

co o

t"

CM

Ul

CM

CO

CM

Ûl

p>"

E + 399'9

4.04E + 4 6.75E + 6

in

en d

LLJ

oo CM

CO

CM

Ul

CO

O

•*"

Ul

CM

+

Ul

m +

UJ co q

co + Ul

d

D.

co co o eo

05

O CO 19 EVT 194

co

0,97

Ul

o m

CM

Ul

CM

in

LU

q 4.01E + 2 1,78E + 4 1.74E + 6

05

d

Ul

CM

q

CM

«t q

CM

LLJ

co 1.37E + 3

+

LU

O p»

co" co + LU

O p^

Q.

CM

T—

co o co

en

o co

0,97

tu co q

co"

CM

Ul o q co"

CM

Ûl

en"

+ Ul

00

in

+

Ul

q

T— 1.14E + 7

en

d

Ul

CM

q

co

CM

co

co"

CM

LU

•<

*

00

+

LU 8,48E + 4

+

LU

Q.

CO

CO

O

eo

00

en en CM 26 EVT 202

CM

0,96

Ûl

q

CM

CM

Ul

00

co

LU

CO

CM

+

Ul

in

eo + LU

00

d

in

+

Ul m q

in

03

q d

e\i

Ul

m

d

eo Ul

t 00

CM

CD

m

d

l + 360'E co + LU

en co eo" m + Ul co q

in"

0.

CM

en

o co

oo 05

en CM |

0,98

LU en q

co"

CM •

LU

<* CM

d

CM

lu

q d

CM

+

LU

00

m 1,05E + 3

m +

Ul

m m en d •

LU

05

CM

Ul

eo 00

P^

CM

LLI

eo q

d 9,33E + 2

co + LU en •<* -in

+

LU

in

D.

CM

O CO

O o o co 26 EVT 488

CM

CO

0,99

LU

CO

q

CM"

cp iù

CM

in

d

CM

LÙ oo co t"

o +

LU

in

d

CM

+

Ul

00

CM

CM

m +

LU

q

CO

en d

LU

in q

CM

Ul

O co CM

lu

OO

+

Ul

en

in

co + LU

in

*t

in

+

LU

q

0.

CM

00

o o co

o o o co

0,87

CM

Ul

O d

CM

Ul

co q

CM

LLI CO

CM

CM +

Ul

CO

in

+

LU

q

in 1,24E + 6

CM

en d LU

q

CM

LU

in

CM

CM

tu

eo 6.29E + 2 3.48E + 4 1.24E + 6

Q.

O CO

O

co

o o o co 27 EVT 339

en eo

0,89

Ul

q

CM

S

d

S 3 1,34E + 2

E + 302'9 in

+

LU

eo

en d

LLI

p» q d

CM

LU

*-•

CM

<r"

p» co 2.37E + 2

eo

+

Ul

m CM"

m +

Ul

q

0.

CM

O CO

o o o co

0,99

UJ co q

eo Ûl

CM

in

CM

LLI

CM

00

t"

+

LU

CO

in

co + Ul

co m •<*"

co + Ul

co en

en en

d

Ûl o q

co Ul

in

CM

O CM

t"

+

LU

05

00

m"

eo

+

LU

in

CO 1.99E + 6

0.

00

o co

o o o co 63 EVT 96

CM

0,99

LU m q

eo Ul co q

CM

UJ -m t"

+

Ul

CM

+

LU

p» q +

Ul co in

d

en en

d

CM

Ul

p» q d

co Ul

CM

•<t"

CM

Ul

CM

•<t

•*"

O +

Ul

co

d

CM

+

LU

q d

in

+

LU

q d

CL

ÇM

CM

O co

o o o co

0,96

LU en q d

CM

Ûl

CM

q d

Ûl

eo 1,12E + 3

co + Ul

m

d

9+369Y en 05

d

Ul

co q

in"

CM

Ul

q d

CM

Ul

oo q d

CM +

Ul co q

co + Ul

00

00

CM

m +

LU

O 00

0-

CM

CM

O CO

CM

O O CO 63 EVT 250

0,99

LU

q

CM

CM

Ul

CM

UJ

d 2,82E + 1

CM

+

LU

CO

q d 9.64E + 4

00

en d

00 q

CM

Ul

m

CM

tù o q d +

Ul

q

CM

CM

+

Ul

CM

q d |9,87E + 4

CL

ÇM

eo

O

eo

CM

O O co

0,92

Ul

co q d

CM

èo •*"

lÙ en m 1,41E + 3

+

LU

m

m +

LU en q d

os en

d

lù - co

CM

m q

CM

Ul

m d +

LU

q

d

co + UJ

m

t"

m +

LU

CO

CM

d *

CL

ÇM

CM

CM

O CO

O eo

Page 102: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

1 N°

on

map

5

6

24

32

39

72

77

XI

8,75E + 6

2.92E + 5

8.81E + 6

6.73E + 6

1.67E + 6

1,09E + 7

5.01E + 5

1.51E + 5

1,04E + 5

1.25E + 6

1,33E + 5

2.02E + 6

3.56E + 5

7,82E + 5

9.90E + 4

6,28E + 5

I Z - H 2 - H 3

X2

3.93E + 4

1,05E + 4

2.46E + 4

4.89E + 4

1.76E + 4

3,57E + 4

8.87E + 2

3,28E + 3

1,18E + 3

4,20E + 4

2.34E + 3

4.13E + 3

7,25E + 2

8.35E + 3

1.84E + 2

1,28E + 4

X3

1.52E + 4

2,25E + 1

1.72E + 4

1.65E + 4

4.89E + 3

9.02E + 3

8,05E + 2

1.14E + 2

1,81E + 0

4.32E + 2

6,03E + 1

9.64E + 2

5.62E+1

1.83E + 2

3.22E + 1

1.74E + 2

E21

6,70E-2

1.90E-1

5,28E-2

8.52E-2

1.03E-1

5,72E-2

4,21 E-2

1.47E-1

1.06E-1

1,83E-1

1.33E-1

4.52E-2

4.52E-2

1.03E-1

4,31 E-2

1.43E-1

E31

4,17E-2

8,77E-3

4.42E-2

4.95E-2

5.42E-2

2.88E-2

4,01 E-2

2.75E-2

4,17E-3

1,86E-2

2.13E-2

2.18E-2

1.26E-2

1,53E-2

1.80E-2

1.66E-2

e32

6.22E-1

4,62E-2

8,37E-1

5.81E-1

5,27E-1

5.03E-1

9.53E-1

1.87E-1

3,92E-2

1.01E-1

1.61E-1

4.83E-1

2.78E-1

1,48E-1

4,19E-1

1.16E-1

Global

pol.

coeff.

0 ,98

0 ,90

0,99

0 ,97

0 ,96

0 ,99

0 ,99

0 ,94

0 ,97

0 ,90

0,95

0,99

0,99

0 ,97

0,99

0 ,94

XI

8.82E + 6

3.42E + 5

8,78E + 6

6.81E + 6

1.90E + 6

1,24E + 7

5,17E + 5

1,51E + 5

1.06E + 5

1,22E + 6

1.38E + 5

1.87E + 6

3,49E + 5

7,45E + 5

9.03E+4

I H 1 - H 2 - H 3

X2

4 . 3 2 E + 4

7.82E + 3

3.32E + 4

6.54E + 4

2.22E + 4

4.08E + 4

1.54E + 3

2,04E + 3

5.63E + 2

4.39E + 4

2.41E + 3

3.66E + 3

6,90E + 2

5.09E + 3

3,15E + 2

X3

2,35E + 4

2,39E + 1

2,05E + 4

1.42E + 4

2,68E + 3

6,58E + 3

3.08E + 2

2.57E + 2

2,17E + 1

4,30E + 2

1,08E + 2

5.63E + 2

3,03E + 1

2.97E + 2

2,40E + 1

E21

7.00E-2

1,51E-1

6,15E-2

9,80E-2

1.08E-1

5,74E-2

5,46E-2

1,16E-1

7.29E-2

1.90E-1

1,32E-1

4,42E-2

4.45E-2

8.27E-2

5,91 E-2

£31

5,16E-2

8.36E-3

4.83E-2

4.57E-2

3,76E-2

2.30E-2

2.44E-2

4,13E-2

1.43E-2

1.88E-2

2.80E-2

1,74E-2

9,32E-3

2,00E-2

1,63E-2

e32

7.38E-1

5.53E-2

7,86E-1

4.66E-1

3,47E-1

4,02E-1

4.47E-1

3,55E-1

1,96E-1

' 9,90E-2

2,12E-1

3.92E-1

2,10E-1

2.42E-1

2,76E-1

Global

pol.

coeff.

0 , 9 8

0 ,93

0 , 9 8

0 ,97

0 ,96

0 ,99

0 ,99

0 ,96

0 , 9 8

0 ,90

0 ,95

0 ,99

0 ,99

0 , 9 8

0 ,99

Page 103: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

— 4601

Delta 1 Mean Loe. Stand. Hodogiam Delta Mean Loe. Stand. Hodogram

o C

o C

o

Z o

Z

o

Z

dip dip

i dip azi. azi.

i azimut last 1st evt. (¡te

c

o 1 1 I 2

5

I I 2

2

5 point point

!

13,3 I 27,9 41,2 0,7 27,3 27,2 28,8 28,2 -126,5 157,9 31,4 1,3 157,9 157,1 156.6 160,1

CL

3496 3446 183

en

u>

13,7 | 27,5 41,2 0.9 26.2 27,2 28.6 28.1 -127,6 159,0 31,4 1,5 159,2 158,0 157,4 161,4 1/2P 3473 3448

11,6 1 29,6 41.2 0,7 28,7 29,1 30,6 30,0 -125,2 156.6 31.4 1.5 156,8 155,7 155,0 159,0

0. 3473 3431

10,7 J 29.0 39,7 1,9 25,7 29,6 30,4 30,2 -306,1 336,3 30,2 1.7 336,2 335,2 334,7 339,1

CL

3486 3437 194

en

to

9.6 | 30,1 39,7 0,7 29,0 29,8 30.8 30,7 -324,0 354,2

Z'OE

1,2 354.5 353,8 352,6 356,0 1/2P 3467 3437

13,2 | 26,9 40,0 1,0 25,5 26.4 28,0 27,5. -307,4 341,2 33,8 1,8 341,4 340,4 339,0 344,0

CL

3440 3395 202

-8,5 J 48.5 40.0 1,5 48,8 50.7 46,4 48,0 -305,5 339,3 33.8 1.3 339,5 339,8 340,8 337.3 1/2P 3418 3395

to

CM

Ol

« 43.8 50.8 5,6 40,4 53,2 38.6 43,1 -124,7 161,9 37.2 2,0 161.9 163.0 164,0 158,7

CL

3642 3615 488

to

23.325 J 27,5 50,8 10,7 26.8 44,2 14,4 24,5 -122,4325 159,6 37,2 6,1 159,6 162,4 166,6 149,9 1/2P 3635 3615

Ol

CO

23,7 J 19,0 42,6 1.5 17,0 18,2 20,8 19,8 -137,0 159,8 22,8 3,4 161,0 157,2 156,3 164,8

0. 3340 3303 339

o-

Ol

en

CO

-30,9 | 73,5 42,6 2,9 78,0 73,6 69,9 72,5 -122,0 144,8 22.8 2,3 144,5 147,0 146,6 141,1 1/2P 3320 3303 |

., 54,2 53,5 17.8 25,4 54,3 72,2 64,8 -259,2 298.2 39,0 46.3 304,3 227,0 304,8 356,8

CL

3614 3581

to

CO

to

Ol

-30,3 J 83,8 53,5 5,2 75,6 83,4 86,3 89,7 -299,6 338,6 39,0 6,5 336,4 345,1 329,0 344,0 1/2P 3605 3581

» 54,7 | 57,2 | 19,8 | 22,6 54,8 74,3 67,1 -124,2 162,1 37,9 37.2 126.8 213,0 126,2 182,2

CL

3814 3774 250

tn

to

iv

-15,8 I 73,0 | 67,2 | 18,0 | 42,6 89,7 79,5 80.1 -114,0 151,9 37,9 11,5 143,8 157,6 138,4 167,7 1/2P 3798 3774

Page 104: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Global 1

CO

X

I

Ñ

T3 J3

O

rg

X

X

NI

O

co

pol. 1 o Q.

tft

JO

(A

O

o

c

Z

o

coeff. |

<N

u

CN

U

*<

<N

<<

3 0

O

O

<N

m w

es

u

o«;

s Í< o.

a.

_52 «•i

a

re

E

0,97

ÙJ

ro co CN

CM

Ul en CM

CM

uj

en

+ Ul

oo co

CN +

UJ

eg q

p^

'S-

+

UJ

CM

en pC

en o UJ

oo

CM

CM

UJ

co CM

cg

UJ

t q +

UJ o

o

•*"

eg

+

UJ

O «í

00 7,84E + 4

D.

CO

en t

co

co

CO 19 EVT 183

m

0,81

CM

UI

O

CM

UI

en q

UJ

co p»

CN

O + UJ

T—

CO

+

UJ

q

«3-

+

UJ

CO

O

CM

Ùl

CM

q

00

CM

UJ

eg"

UJ

q

co 8.39E + 0

co +

UJ o

CO

+

LU

5

a. CM

co

co

CD

M-

CO

0,73

CN

LU

CO

CM

CO

CM

LU

en q

LU

q

co

O +

LU

•<* q 1.54E + 3 1,39E + 4

00

O

UJ

co q

CM

LU

00

CM

CM

lîl

m

cg

+

UJ

co q

CM +

Ul

en

en t +

UJ

en q *

co

r*

co

co

TI­CO I

0,95

LU

CM

q

CM

Ùl

CM

in

Ul

CM

CO

+

UJ

co q

co" 3,55E + 4

co

+

UJ

CM

m en O

LU

CM

p^

CD

CM

LU

O q

pC

LU

q

«t +

Ul

co

+ UJ

S

CM

CD

+

UJ

CM

a.

CD

co co

r» co co 19 EVT 194

co

0,91

UJ

m

CO

CM

LU

in q

in

LU

O

co + LU

in

+

Ul

CM

in

T—

m +

UJ

oo eg

LO

oo CO

o"

LU

00

q

CM

CM

Ùl

co q

Ul

en q

CO

+

Ul

en

+ Ul

00

q

CM

in

+

Ul

co CM

in

0.

eg

CD

co

co co

0,85

CM i

LU

r-

00

CM

LU •<* 00

Ùl

t q

CM

eg

+

Ul

r-q +

UJ

CM

eg 4.05E + 5

CM

CD

o"

eg

Ùl

00

CM

CM

CO

Ùl

q

in

Ùl

en "1

CM

+

LU

O 2,70E + 4 4,01 E + 5

a.

O t

**

co

in

en co co 26 EVT 202

eg

0,57

eg

ÙJ

CD q

eg

CO

Ùl

CM

in

en

Ùl

co •

*"

o +

Ul

in 3.40E + 3

+

UJ o q

CO

en o"

CM

ùl

en

O

CO

cp Ùl

CO

t"

Ùl

co m 3.67E + 0

co

+

Ul w q

co m + LU

q

a.

CM

co

co

m en co co

0,32

cg

Ùl

00

q oo

CM

Ùl

m

CM

CM"

Ul

co q 9.40E + 0

co

+

Ul

«t

q en

+ UJ

in q

o"

CM

Ùl

CD

q

cg

CM

Ùl

q

CM

Ùl

in

O +

LU

co co r-"

+ LU

oo q

+

LU

O

°i

0,39

CM

Ùl

m in

CO

Ùl

en q

en

Ùl

m

CM

co

0 + 309'l co

+

Ul

m q

CD 1,70E + 4

CM

o"

CM

Ùl

in

CN

CM

Ùl

en

Ùl

q

in 4.20E + 0 6,67E + 3

+

LU

en 00

n I °-

0-

CM

CM

CD

CO

m co co 26 EVT 488

CM

CO

en co CD

co

CM

eg

CO

CO

I

0,75

CM

Ùl

eg q

en

eg

ÙI

CD

00

eg

Ùl

CO

CM +

UI

en q

CM"

+

Ul

CO

CO 3,28E + 5

CO

Ö

eg

Ùl

en q eg

Ùl

O

p^

CO

Ùl

TI-

CO 4,45E + 2

+

UI

in

m

«i in

+

LU

CM

CO

a.

CO

CO

CO

o

CO

CO 27 EVT 339

en co

0,56

CO

Ùl

o

00

en" cp

Ùl

CO

"*"

ÙJ

o

Ùl

p~

oo"

co

+

LU

O en"

+ LU

O

•*"

in

O

eg

Ùl

co

eg

CO

Ùl

en q

en"

Ùl

en m •*"

o +

Ul

CM

in

•*"

co

+

Ul

CM

r-

en

+

UJ

CN

CO

•*"

a.

CM

O eg

CO

CO

co o co CO

0,82

UJ

eg q

eg

uj

in q

eg

Ùl

q

CM

+

UJ

in

oo" 8,48E + 3

in

+

LU

CM

CO

o"

CM

Ùl

m

CM.

CM

cp Ùl

LO

CO

Ùl

en CO 3.65E + 0 7.22E + 3 5.04E + 4

Q.

CD

CO

CO

in

CO 63 EVT 96

CN

0,61

CM

Ùl

CM

CM

CM

Ùl

q

CO

Ùl

CM

+

UJ

p~ q

CO 3.61E + 3

+

LU

q

CM

O

CM

Ùl

co

CM

Ùl

CO

CM i

LU

q

eg

O +

LU

CO

p^

CM

CO

+

UJ

I-» q +

LU

q

0_

CM

in

O

co CO

oo in

00

0,75

LU

O 00

•*"

Ùl

co CO

Ùl

CO

00

CM

eg

+

LU

O CO

00

CO

+

LU

q

CO

+

LU

O

in

•*

"

in

O

Ùl

q

CO

Ùl

CO

Ùl

co p»

t"

CM

+

UJ

CO

q

CO

CO

+

UI

CM

>*" +

Ul

CO

q a.

oo CO

1-

p~

CO 63 EVT 250

p>

0,76

CM

Ùl

CO

p^

eg"

ep Ùl

eg

00

Ùl

CO

CO

O + UJ

in

CO

+

UJ

co CM

CM

+

LU

O

q

CM

in

o"

eg

Ùl

CO

CO

CM

Ùl

m q T—

Ùl

co" o + LU

oo LO

CO

+

LU

co

+ LU

m

O-CM

00

en co

•«t

co

Page 105: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Global 1

CO

X

CM

X

I

•3

ja

0

a CO

X CM X Ñ

0

z

pol. 1

t g

coeff. J CS

U

u

CS

w

*<

S

s •*-CJJ 0 u

CM

U

ri

CM

U

en

CM

<<

i<

Q. « E

0,96 |

LU

m

CM

LU

O)

CD

LU

00

ca

+ LU

CO

q

CM"

CM

+

LU

r» m 05 8.18E + 4

10

O)

d

LU

O 01

CM

LU

m

1—

CM

LU CO

+

LU

in

LO

CO

CM +

LU

r» co O)

+

UJ

0 P-

LO

0,75 |

CM

lù CM

p-_

co"

CM

LU

co

10

co

0 + LU

co q

CM

co + Ul

0 +

Ul

O)

co

d

CM

UJ

co CM

co

CM

UJ

O)

q

co co

0 +

UJ

t q

co + LU

t

m +

LU

O)

co

0,86 |

CM

Ul

CD

q

00"

CM

Ul

05

05

LU

m

CM

CM

O +

UJ

m

CM_

co

CO

+

LU

m q

+

LU

00

q

CM

m co

d

CM

LU

O)

CM_

d

CM

LU

CO

CM"

co CM

O +

Ul

co CM

CO

+

UJ

p» q

T—

+

ul

t en |

0,94 |

Ul

co co in"

CM •

LU

m m co

lil co CM

+

Ul

en q

<* + Ul

co 00

co"

co + UJ

*t m CM

co en

d

lu

CO

00

•>*"

CM

Ul

q

d

Ul

m q

•>* + LU

CO

O 4.33E + 4

co + LU

CO

q

CM

CD

0,86 |

LU

O

CM

CM

lil

CO

CO

in

Ul

CM

CM

CM

CO

+

Ul

in

m 2,70E + 4

LO +

UJ

CD

in

00

d

LÙ co q

CM

CM

LU

05

in

Ùl co q

CM

co + UJ

m q +

LU

lO

q

CM

in

+

LU

CO

in"

0,80 |

CM

Ul

co q

co

CM

00

0

LU

q

CM

+

LU

Oi

00

t"

•<* + LU

q

co

m +

LU

CO

CM

•*

"

d

CM LÙ

co

**"

CM

LU

CO

Ul

CM

O CO

+

Ul

0 O co

+

Ul

m co

m +

LU

CM

CO

CM

0,47 |

CM

Ul

CO

q

co LÙ co en 00

in"

O +

LU

CO

CM .

CO

+

Ul

O co ••*"

+

LU

m CM

m d

CM

lil

CO

q

00"

LU

co en <*"

O +

LU

CM

co + LU

CM

CM

•*"

+

LU

CM

0,27 |

CM

Ul

00

q

CM

0

LU

00

in

00"

O +

LU

CD

in

•>* + LU

q +

LU

00

O CO

d

CM

CM_

eg

eg

LU

m

LU

O +

LU

r» CM_

d +

LU

CM

CM

•*

+

LU

m q

CM

CM

CO

0,30 |

CM

Ul

T—

CO

LU

en

LU

m r> pC

Ul

CM

q

en

co + UJ

q

d +

Ul

co

00

d

CM

Ùl

CM

CO

Ul

q d

Ul

CO

q

in"

Ul

en q

co

co + Ul

co q d +

Ul

O q

CM

0,68 |

CM

1

LU

00

CM

1

Ul

CD

q

eg"

lÙ O co"

CM

+

LU

en

CM

+

LU

co 00

in

+

LU

CO

in

co"

en m d

CM

CM

CO

0 05

*t"

lù en co Tj-"

0 +

Ul

0

q

co + Ul

CM

q d +

Ul

O q

in"

en co

0,52 |

CO

CO

q

00"

co 1

LU

p~

«*"

q

in"

UJ

m

p^

+

UJ

en <q

+

UJ

m co <*"

co CD

d

CM

LU

CO

in

d

CM

00

q

CM"

iù 0

t"

CM

+

UJ

co q

CM

+

UJ

co q

in

m +

Ul

co

0,73 |

CM

Ul

CM

q

LO

CM 1

LU

CO

co

Ùl

CO

co"

+

Ul

co 0 <*"

+

Ul

0

q

in

+

LU

CD

<* en co

d

CM

Ul

in

CM

LÙ 0 p-

•<t"

LÙ co CM

d +

LU

co q

œ +

UJ

CM

m

T—

+

UJ

co q

co"

CM

0,30 |

CM

Ul

00

CM

CM

Ùl

OO q

co

Ùl

p» q

pC

+

Ul

co p-^

co + LU

d +

LU

in q co

co

d

Ùl co q

eg Ùl

^•

"

Ùl en 0 -*"

+

UJ

CD

q

co

co

+

UJ

co q

CM"

+

UJ

m

0,70 |

Ùl en

CM

Ùl

O

CM

Ùl

co m co

+ LU

en m d 6.75E + 3

+

Ul

co

in

co d

Ùl

0 co

Ùl

CM

CM

Ùl

CM

q d

co + UJ

co q

co + UJ

in

m

in

+

Ul

en co

p^

p~

0,44 |

CM

ÙJ

CD

q

CM

CM

Ùl

m

T—

Ùl

00

p^

in

O +

Ul

co t"

co + LU

q

d +

UJ

m q

CM

0 M-

d

CM

Ùl

CO

q

CM

CM

Ùl m lÙ co CM

d

0 +

LU

CO

q

co + Ul

CD

q

co + Ul

d

Page 106: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

APPENDIX 5

POLARIZATION PARAMETERS FOR THE WHOLE DATA SET

N ° on m a p : Chronological number of event. N ° file, N ° event : Reference of the event in original field data base. For each sonde: Eigenvalues, main, intermédiaire, transverse ellipticities, global polarization

and oblateness coefficients for each combination.

Page 107: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

I Oblate. 1 1 Global Z-H1-H3 4616 Oblate. | Global | Z-H1-H2 4616

e

2

pol. pol.

o 2 c o

| coeff. | | coeff.

rg

m u

u

CM

to

CM

<<

i5 coeff. J coeff. J

CM

O to

to

CM

to

<<

3

3 file & evt. | I map J

I 0,96 I I 0,96 0,13 0,02 0,12

£ + 38'l m +

UI

co

+

UI

in 0,98 0,87 0,03 0,01 0,22 6.4E + 2

in

+

UI

CM

in 1.1E + 7 I 17 EVT 177 I

*—

0,90 I 0,91 0,23

to'o

0,18 7.0E + 3 1,3E + 5

9 + 33't 96'0

0,53

to'o

0,02 0,49

£ + 3£'3 9 + 3£'l 9 + 33'S

18 EVT 230 I

CM

I 0,91 I 0,79 0,14

to'o

0,28

CM +

UI

m 7,3E + 3

t + 33'6

0,96 0,47 0,04 0,02 0,54

+

UI

05

m 3.7E + 4

in

+

UI

CO 18 EVT 269 I

CO

I 0,89 I I 0,86 0,21 0,05 0,22

3 + 36't Tt +

LU

m +

UI

CO

CM 0,98 0,62 0,02 0,01 0,41

l+39'£ t + 30'9 +

UI

in

CO 19 EVT 20 I

"t

I 0,96 I I 0,93 0,10 0,02 0,16 1,7E + 3 1.6E + 5 6,5E + 6 0,96 0,54

to'o

0,02 0,48

£ + 36'2 9 + 36'l

8,3E + 6 19 EVT 183 I

in

I 0,97 I I 0,93 0,09 0,01 0,15 1.0E + 3

in

+

LU

Tt 6,1E + 6 0,97 0,51 0,03 0,01

IS'O

1.4E + 3

9 + 30'3

7,5E + 6 19 EVT 194 I

CD

I 0,90 I 0,87 0,19

to'o

0,22 1,0E + 2

£ + 38'3 «t

+

UI

o

CO

96'0 Ot'O

0,04 0,02

39'0 +

UI

05

CM

t + 36'l -t

+

UI

en 23 EVT 255 I

r*

0,93 I 0,92 0,17

EO'O

0,17

CO

+

UI

CO 1,2E + 5

co

+

UI

m

Tt 0,98 0,55 0,02 0,01 0,48

CM +

LU

O CO

9 + 3E'l CO +

UJ

tn

m 23 EVT 313

00

| 0,94 1 1 0,95 0,18 0,02 0,13 3,6E + 3 1,1E + 5

9 + 30'9

0,97 0,61

to'o

0,02 0,42 1.9E + 3

9 + 3t'l

7.5E + 6 23 EVT 433

en

I 0,81 I I 0,93 0,58 0,08 0,13 1.9E + 3

E + 3S'S tn

+

LU

CO 0,93 0,27 0,05

to'o

0,83

3 + 38't in

+

UI

00 2.7E + 5 25 EVT 26

o

| 98'0 |

I 0,75 0,21 0,07 0,31

l+39'l 3 + 3S'£

3,7E + 3

o

en

O 0,43 0,09

SO'O

0,58 1.4E + 1 1.7E + 3

CO +

UI

o

m 25 EVT 1 52

-

I 0,75 I | 0,76 0,41 0,12 0,29

l+36'l 3 + 33'l

1.4E + 3 0,80 0,52 0,22 0,11 0,49 1.7E + 1

3 + 39'£ CO +

LU

in

T— 25 EVT 224

CM

| 0,83 I 0,84 0,32 0,08 0,23 1.5E + 1 1.4E + 2 2,6E + 3 0,90 0,38 0,09 0,06 0,64 1,0E + 1 1.2E + 3 E + 36'3

25 EVT 304

CO

25 EVT 349

Tt

0,91 I 0,79 0,15

to'o

0,28 8.8E+1

CO +

UI

o

Tt 5.1E+4 0,92 0,47 0,08

to'o

0,55

l + 36'8 t + 3S'l t + 36't

25 EVT 354

m

0,90 I 0,74 0,15

SO'O

0,32

CO

+

UI

CO

CO

m +

UI 1.6E + 6 0,98 0,28 0,01 0,01 0,82

CM +

LU

CM

CO +

UI

CO

+

UI

CD 26 EVT 33

CO

0,60 I 0,81 0,93 0,18 0,19 3,2E + 1

+

UI

CO

CM

+

UI

en 0,78 0,38 0,20

El'O

0,62

l + 30'2

4,7E + 2

E + 32'l

26 EVT 87

r

0,67 I 0,82 0,71 0,15 0,21 2,5E + 1 5.0E+1

£ + 3l'L 28'0

0,49 0,19

Ol'O

0,52

+

UI

CO

3 + 39'£

1.4E + 3 26 EVT 91

00

0,91 I 0,90 0,19 0,04 0,19 1.1E + 3

Tt +

UI

CM

CO

S + 30'6

0,95 0,39

SO'O

0,03 0,63

CM +

UI

in

CD 3,1E + 5 8,0E + 5 26 EVT 108

en

0,68 I 0,84 0,71 0,14

03'0

2.0E+1 4,0E+1

£ + 30'l

0,71 0,39 0,29 0,17 0,59 2,5E+1

3 + 30'£

8,7E + 2 26 EVT 164

o

eg

0,96 I 0,89 0,08 0,02 0,20

o +

UI

O en 1.5E + 3 3,8E + 4 0,94 0,36 0,05

EO'O

0,67

l + 33'E

1.4E + 4 3,0E + 4 26 EVT 171

CM

0,91 1 0,88 0,18

to'o

0,21

0 + 32'E l + 33'6

2,3E + 3 0,93 0,34 0,06

to'o

0,70

O +

UI

CO

E + 30'l £ + 3l'2

26 EVT 179

eg

eg

0,92 I 0,94 0,22 0,03

tl'O

1.0E + 1

2 + 33'3

1,1E + 4

68'0

0,79 0,17 0,05 0,28 3.4E + 1 1,2E + 3

t + 33'l

26 EVT 194

CO

CM

0,94 I 0,82 0,10 0,03 0,26

CO

+

UI

en

in 5.6E + 5

CO

+

LU

CO 0,98 0,55 0,02 0,01 0,48 9,2E + 2

co

+

UI

m

CM

+

UI 26 EVT 202

Tt

CM

0,88 I 0,92 0,30 | 0,05 0,16

o +

UI

t

tn 6,2E + 1 2,4E + 3 0,89 0,42

Ol'O

0,06 0,59

o +

UI

oo

en

2 + 3E'6 CO

+

UI

CO

CM 26 EVT 274

in

eg

0,80 I 0,91 0,51 I 0,08 0,16 1.1E + 2

CM +

UI

Tt 1.7E + 4 0,87 0,71 0,17 0,06 0,34 7.4E+1 2,5E + 3

t+31'2

26 EVT 291

CO

CM

0,87 I 0,92 0,33 |

SO'O

0,16

CO +

UI

oo

t+39'l S + 39'9 86'0

0,34 0,01 0,01 0,69

l + 38't S + 38'3

6.0E + 5 26 EVT 302

CM

0,96 | 0,83 | 0,07 | 0,02 0,25

o +

UI

CO

CO

CO +

UI

Tt 2.2E + 4 0,93 0,33 0,06 0,04 0,71 4,4E + 1

t + 33'L t + 3E'3

26 EVT 377

00

eg

Page 108: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

I Oblate. 1 1 Global Z-H1-H3 4616 Oblate. Global Z-H1-H2 4616 |

o Z

pol. pol.

o z c o

| coeff. | | coeff.

CM ro

u

ro

u

CM u

ro

<<

3

3 coeff. coeff.

CM

u

m u

PM W

ro

S

ï< file & evt. I I map

I 0,89 I I 0,97 0,44 0,04

60'0

1.9E + 2

CM +

LU

CO

(35

9 + 33'L

0,91 0,58

Ol'O

0,04 0,45 3,0E + 2 3.1E+4 1,6E + 5 | 26 EVT 420 I

en CM

0,85 I I 0,86 0,30 0,07

33*0 l + 30'E

3,4E + 2 7,1E + 3 0,83 0,60 0,20 0,08 0,42 5,7E+1 1.4E + 3

| £ + 30*8

26 EVT 438 I

o

CO

0,76 I 0,82 0,45 0,11 0,24 4.2E + 2 2.1E + 3 3,6E + 4 0,81 0,55 0,21 0,10 0,46 4,2E + 2

£ + 39*6

4,5E + 4 | 26 EVT 452 |

CO

0,91 I 0,94 0,23

£0*0 91*0

1.4E + 4 2.6E + 5

+

LU

CM 0,96 0,44 0,03

30*0

0,58

E + 31'9

4,5E + 6 1,4E + 7 | 26 EVT 488 |

CM

CO

0,94 I

66*0

0,31 0,02 0,07 3.9E + 2 4,1E + 3 8,9E + 5 0,96 0,51 0,04 0,02 0,50

CM +

LU

CM

in 2.9E + 5 1,1E + 6 | 26 EVT 513 1

CO

CO

0,93 1 0,74 0,09 0,03

0,96

96'0

0,12 0,02

0,32

0,13

CM +

LU

*-•

CM 2,4E + 4 2.4E + 5 0,86 0,67 0,18 0,07 0,37

E + 30'l +

LU

CO

m +

LU

CM

CM 27 EVT 10 I

CO

7.3E+1

CO

+

LU

CM

in

m +

LU

CO 0,97 0,54 0,03

10*0

0,48

L+38'8 in +

LU O

in

+

LU

CO 27 EVT 18 |

in

CO

0,98 I 0,81

0,98 I

98'0

0,04

0,04

0,01 0,27 7,2E+1 5,2E+4 7,3E + 5 0,99 0,32 0,01 0,01 0,73 3.0E + 1 3,8E + 5

in

+

at

O 27 EVT 60

CO

CO

0,01 0,22 1,3E + 2 8,1E+4 1.6E + 6

96*0

0,45

t'0'0

0,02 0,56 6,0E + 2 4,2E + 5 1,3E + 6 27 EVT 153

r«-eo

0,97 I 0,90

90*0

0,01 0,19 7.8E + 0

£ + 36'l

5.5E+4 0,98 0,43

30*0

0,01 0,58 8.0E + 0 1.6E + 4 4,8E + 4 27 EVT 254

00

CO

0,97 0,93 0,07 0,01 0,16 5,1E+1 1,2E+4 4,6E + 5 0,98 0,52

30*0

0,01 0,50 2.7E + 1 9,5E + 4

9 + 38'£

27 EVT 339

en CO

0,63 I 0,57 0,49 0,20 0,41

0 + 38'£

1.6E + 1 9.8E + 1 0,65 0,39 0,37 0,21 0,57 4/7E + 0

+

LU m

CO

| 3 + 31*1

30 EVT 19

o

0,77 I 0,68 0,31 0,11 0,35 1.8E + 0 1,9E + 1

CM +

LU

m 0,64 0,40 0,39 0,21 0,55 1,0E+1 6,7E + 1

CM +

LU

CM

Ol 30 EVT 46

5

0,90 I 0,92 0,24 0,04 0,16

+

LU

CO

co 5,7E + 2 2,1E + 4 0,91 0,28 0,07 0,05 0,80 6.9E+1

+ LU

in 2.3E + 4 30 EVT 73

CM

t

0,80 I

36'0

0,59

80*0

0,14 5,3E+1 1,5E + 2 7,6E + 3 0,92 0,26 0,06 0,05 0,87 2,1E + 1 5,7E + 3 7.5E + 3 30 EVT 78

CO

30 EVT 112

0,94 I

96*0

0,21 0,02

ll'O O +

UJ

CO

00 1.8E + 2 1,4E + 4

88'0

0,47

ll'O

0,06 0,54

+

LU

CO

in 4,4E + 3 1.5E + 4 30 EVT 159

in

0,88 0,77 0,19

90*0

0,30

3 + 36'E

1,1E+4

g + 33'l 96'0

0,34 0,03 0,02 0,70

1 + 39*9

5,6E + 4 1.1E + 5 30 EVT 200

CO

0,91 I

t76'0

0,26

170*0

0,14 2.0E+1

3 + 3l'£ +

LU

in

t76'0

0,28 0,04

t'0'0

0,83

l+36'L

9,6E + 3 1.4E + 4 30 EVT 283

0,85 I 0,92 0,38 0,06 0,16

0 + 36*6 1 + 36*9 E + 38'3

0,87 0,35

ll'O

0,08

89*0 l + 39'l E + 33'L CO

+

LU

LO

Ol 30 EVT 284

oo

0,80 1 0,92 0,56 0,08 0,14 1,4E + 1 4,3E + 1 2,1E + 3

o en O 0,35 0,08 0,06 0,68 6,1E + 0

3 + 38'8

1.9E + 3 30 EVT 288

en

0,70 I 0,89 0,84 0,13 0,15

l + 39'3 +

LU

CO

CO 1.5E + 3 0,86 0,35 0,12 0,08

89*0

1,1E+1

3 + 30'¿ CO +

LU

in 30 EVT 290

o

m

0,89 I

| 66'0

0,78 0,04 0,05 3,0E + 0

0 + 30*9

1.9E + 3 0,93 0,28 0,06 0,05 0,81. 3,7E + 0

E + 33'l CO

+

LU

00 30 EVT 303

m

0,98 I 0,84 0,03 0,01 0,25 8,9E+1 1,4E + 5 2.3E + 6 0,99 0,40 0,01 0,01 0,62

+

LU

CO

m +

ai

en en

CD

+

LU

CO

CM 30 EVT 322

CM

in

0,93 I 0,83 I 0,11 0,03 0,25 4.9E + 3 3,8E + 5 5.8E + 6 0,97 0,58 0,03 0,01 0,45

CO

+

at

m 1.7E + 6 8,1E + 6 30 EVT 353

CO

m

30 EVT 367

in

30 EVT 379

in m

0,90 |

| t'6'0

0,29 0,04 0,14 5,0E + 3

+

LU

CO

d 3.0E + 6 0,95 0,36 0,04 0,03 0,67

E + 39'3

1.4E + 6

9 + 30'E

30 EVT 429

CO

in

Page 109: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Oblate. 1 Global Z-H1-H3 4616 Oblate. | Global Z-H1-H2 4616 |

o

z

pol. pol.

o z §

coeff. | coeff. CS

ro

CO

m u

CM

to

CO

CM

<<

i5 coeff. coeff.

PO

to

PO

to

eg

to

ro

eg

ï< file & evt. I map

0,94 I 0,88 0,11 0,02 0,21 7,5E+1

CO

+

Ul

CM

CO

in

+

ai 0,94 0,46 0,06

EO'O

0,93 | | 0,94 0,18 0,03 0,14 1.2E + 3

+ Ul r» CO

eo + Ul

q 0,96 0,29

EO'O EO'O

in I en

in I r-

d d

CM

+

LU

CO

+

LU

00

m

in

+

Ul en 33 EVT 1 |

in

E + 39'l co + LU

1-2.2E + 6 33 EVT 120

00

m

0,89 | 0,92 0,27 0,04 0,17

CO

+

LU

in

+

LU

O

co + LU

q

eg 0,95

Ofr'O

0,04

EO'O

0,61

£ + 30'3

1,1E + 6

co + LU

00

CM 33 EVT 196

en in

0,45 | | 0,58 0,94 0,30 0,32 9,1E + 0

l+30'l CM

+

Ul tq

99'0

0,52

Ofr'O

0,18 0,45

0 + 30'fr +

LU

1-

CM 1.2E + 2 33 EVT 221

o

CO

0,89 | | 0,96 0,38 0,04 0,12 1.1E + 2

CM

+

LU

1-+

LU

in

in 0,91

frfr'O

0,09 0,05 0,57

3 + 39'L fr + 30'3 +

LU

en in 33 EVT 310

CO

0,86 | | 0,98

6¿'0

0,05 0,07 1,2E + 4

fr + 30'3 9 + 39'fr

0,96 0,51 0,04 0,02 0,51

E + 31'3 co + ai

CO

CO

+

LU

in 33 EVT 385

CM

CO

0,93 |

96'0 |

0,23

EO'O

0,12 1,6E + 2

£ + 36'3 9 + 30'3

0,96 0,95 0,11 0,01 0,13 4.3E+1

E + 39'E m +

Ul *-•

eg 45 EVT 11

CO

eo

45 EVT 34

CO

0,95 | 0,84 0,09 0,02 0,25

+

Ul *-•

p» 8,9E + 3

in

+

LU

m

86'0

0,81 0,02 0,01 0,27

o +

ai

00

CO

+

ai 1,5E + 5 45 EVT 120

in

CO

0,89 | 0,94 0,29 0,04 frl'O +

LU

CO

eg

+

LU

CD

fr + 3fr'fr 0,95 0,95 0,16 0,02 0,13 2.0E + 1

CM

+

Ul

p-

fr + 39'fr 45 EVT 337

CO

CO

0,92 | 0,89 0,16 0,03 0,20

CO

+

LU

m eo

in

+

LU "

co + LU

eo" 0,95 0,84 0,08 0,02 0,24

eo + LU

in

+

UJ

O

eg

9 + 3fr'£

45 EVT 408

r-CD

0,96 | 0,92 0,08 0,01 0,17 3.1E + 2

fr + 39'fr co + LU

q 0,94 0,95 0,17 0,02 0,12

eg

+

LU

CO

P» 2.4E + 4

CO

+

Ul

CO 63 EVT 1

00

CO

0,90 | 0,87 0,20 0,04 0,21 1,1E+4

in

+

Ul en eg

CO

+

Ul <* co" 0,97 0,77 0,05 0,01 0,30 1.5E + 3

in

+

Ul eo

CO

+

Ul

CO

CO 63 EVT 38

en CO

0,87 | 0,96 0,46 0,05 0,11

eo + LU

co +

at

en

in

+

LU

in

CO 0,89 0,95 0,37 0,04 0,12

eo + LU

CO

CO

+

Ul

CO

en

g + 39'9

63 EVT 40

o

0,90 | 0,99 0,66

0,86 | 0,87 0,29

0,04

0,06

0,05

fr + 33'l fr + 38'3 co

+

Ul en 0,93 0,98 0,30 0,03 0,09

E + 39'9

7.2E+4 9,7E + 6 63 EVT 41

0,21

E + 33'9

7,4E + 4

9 + 38'L 06'0

0,88 0,21 0,04 0,20

CO

+

Ul

CO

CO 7.2E + 4

CO

+

Ul

00 63 EVT 96

eg

0,97 |

38'0

0,89 | 0,97

0,05

0,41

0,01 0,26

eg

+

Ul

O

eg

+

LU

en

co +

LU q 0,97 0,77 0,04 0,01 0,30

CM +

LU

CM

-CM

in

+

ai

CO 1.4E + 6 63 EVT 152

eo p»

0,04 0,10

+

Ul o

CM

3 + 33'L +

LU q 0,94 0,97 0,25 0,02

60'0

7,3E + 0 1,2E + 2

+

Ul

CO 63 EVT 176

1-

p«.

0,92 | 0,94 0,22 0,03 0,14

+

Ul

00

E + 39'l +

Ul

00

36'0

0,97 0,35

EO'O

0,09

+

LU

in

CM

+

LU

O

CO

+

Ul en p» 63 EVT 209

m

0,95 | 0,93 | 0,12 0,02 0,15

+

Ul

co

CO

4-

LU

eg

CM

fr + 38'6

0,98 0,92 0,05 0,01 0,17

o +

Ul m co 2.8E + 3

m + LU

O 63 EVT 243

CD

0,95 | 0,95 | 0,14 0,02 0,13 1.3E + 3

+

LU

r-> co

co + LU

t" 0,98 0,94 0,04 0,01 0,15

eg + Ul co

fr+36'8 CD

+

LU 63 EVT 250

p~

Page 110: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Oblate. 1 1 Global H1-H2-H3 4616 Oblate. Global Z-H2-H3 4616

o 2

pol. pol.

_ i

coeff. | coeff.

CM

co

U

co

u

CM

U

CO

a s coeff. coeff.

CM

CO u

CO

u

CM

CO

CM

3 | map

0,95 I 0,31 0,04 0,03 0,75

Z + 38'6

5,7E + 5

9 + 30'l

0,96 0,91 0,09

ZO'O

0,90 I I 0,50

Ol'O

0,05 0,51 4,5E + 3

m +

LU

00

•*

co

+

LU

TO 0,90 0,65 0,12 0,05

0,17

0,39

2.2E + 3

9 + 36'Z

9,7E + 6

-

1,1E + 4

9 + 39'¿ 9 + 36'fr CM

0,87 I 0,70 0,17 0,06 0,35

Z + 39'l £ + 3fr'9

4,4E + 4 0,90 0,57

ll'O

0,05 0,46

CM

+

UJ

en

CM

+

LU

CO

CM

m +

LU

CO

0,90 I 0,55 0,11 0,05 0,47

Z + 30'Z

1,7E + 4 7,7E + 4 0,87 0,65 0,16 0,06 0,39 1,1E + 3

+

LU

g + 38'z •*

0,93 1 0,50 0,07 0,03 0,52

CO

+

LU

CO

g + 36'9 9 + 39'Z

0,96 0,63 0,04 0,02

Ifr'O CO

+

LU

•«I-

CM

9 + 3E'l

7.8E + 6

0,96 1 0,54 0,04 0,02 0,48 1.0E + 3 6,3E + 5 2,7E + 6 0,99 0,60 0,02 0,01

Efr'O CM

+

LU

CO

CD

+

LU

CO 7.0E + 6

m co

0,89 1 | 0,97

Ofr'O

0,04 0,10 7,1E + 1

CM

+

UJ

+

UJ m 0,90 0,43 0,10 0,06 0,58

CM +

LU

CO

fr+38'l +

UJ

m

Po

0,94 1 1 0,55

90'0

0,03 0,48

CO

+

LU m 4,1E + 5

9 + 38'l

0,94 0,68 0,07 0,03 0,37

CO

+

LU 7.4E + 5 5,3E + 6

TO

0,92 I 0,54 0,08 0,04 0,48

CO

+

LU m

CO

in

+

UJ

in

co

+

LU

CN

Ol 0,94 0,71 0,08

EO'O

0,34

E + 39'9 g+3g'8 co

+

LU

CN

Po

05

0,77 1 0,93 0,72 0,09 0,13

CO

+

LU

CO

CM 4.4E + 3

9 + 39'Z

0,83 0,34 0,15 0,10 0,67 3,1E + 3

9 + 3£'L 9 + 36'Z o

0,86 I 0,52 0,15

0,69 I 0,88 0,84

0,07

0,13

0,50

0,16

l + 3Z'l Z + 3fr'9 CO

+

UJ

CN

CN 0,79 0,46 0,22

Zl'O

0,54

l + 36'fr

1,0E + 3

£ + 3g'E -

1.9E + 1 2,7E+1

CO

+

UJ 0,86 0,28 0,11 0,09 0,80

o +

LU

m

05

CN +

LU

in

Po

CO

+

LU

CN

CM

0,84 1 0,75 0,24 0,07 0,31 l+30'l C

N +

UJ

ro.

CO +

UJ

oo 0,86 0,48 0,14 0,08 0,53

+

UJ

CN +

LU

O

ro

CO

+

LU

in

CN

CO

'S-

0,90 I 0,95 0,33 0,04 0,12

+

LU

O

CO 5.4E + 2

+

UJ

TO

CO 0,84 0,29 0,13 0,10 0,77

3 + 39'fr fr + 39'Z

4,3E+4

in

0,93 I 0,72 0,10 0,03 0,34

CO

+

LU

CO

in

+

UJ

ro 1.4E + 6 0,87 0,49 0,13 0,07 0,52

CO

+

LU

TO

Po

in +

UJ m 1.7E + 6

CD

0,65 I 0,59 0,46 0,18 0,40

+

UJ

CN

CN

Z + 30'I Z + 39'9

0,81 0,34 0,16 0,11 0,68

+

LU

CM

+

LU

O *t

Ol

+

UJ

Po

00

Po

0,70 I 0,61 0,40 0,16 0,39 1.3E + 1

+

UJ

CM

TO

CN +

UJ

in 0,74 0,45 0,27

frl'O

0,53

+

LU

O

Ol

Z + 39'Z Z + 3£'6 CO

0,92 I 0,97 0,27 0,03 0,10 6.4E + 2

CO

+

UJ

CO

TO 7.9E + 5 0,93 0,54 0,08 0,04 0,48

£ + 3E'l in

+

UJ

CM

m +

LU

TO

TO

05

0,61 I 0,70

99'0

0,19 0,29

l+39'l l + 39'E CN

+

LU

CO

1-0,77 0,57 0,27 0,12 0,44 1.4E+1

Z + 36'l Z + 38'6 o

Ol

0,87 I 0,95

Ifr'O

0,05 0,13

L + 30'8 Ol

+

UJ

Po

*t

fr + 36'Z

0,93 0,42 0,06 0,04 0,60 4,7E + 1 1.3E + 4

fr + 39'E Ol

0,92 I 0,94 0,21 0,03 0,14 2.4E + 0

i + 3g'g CO

+

UJ

fo

Ol 0,94 0,33 0,05 0,03 0,71 2.4E + 0

CO +

UJ

CO

+

UJ

CN

CN

CM

CM

0,80 I 0,39 I 0,18 0,11 0,61

+

UJ

co

3 + 36'6 CO

+

UJ

Po

CN 0,71 0,73 0,47

frl'O

0,30

Z + 36'l

8,7E + 2

CO

+

UJ

Po

05

CO

Ol

0,97 I

| frfr'O

0,03 0,02 0,58 9.4E + 2

in

+

LU m

05

CO

+

LU

05

CM 0,96 0,68 0,05 0,02 0,37

CO

+

UJ

o

1-

co

+

UJ 1.0E + 7

Ol

0,82 | 0,77 0,28 0,08 0,29

0 + 36'6 Z + 3E'l E + 39'L

0,91 0,36 0,08 0,05 0,66

0 + 3£'9 Z + 31'8 £ + 36'l m

CN

0,79 1 0,36 |

6 I/O

0,12 0,65

l + 3£'9 CO

+

LU

TO

CO

+

LU

CM 0,70 0,63 0,40 0,15 0,38

CM

+

UJ

t

CO

CO

+

UJ

Ol

fr + 39'l CO

CM

0,92 I 0,92 0,20 0,03 0,16

CM

+

UJ

en

in

fr + 3fr'l m +

UJ

CO

m 0,91 0,49 0,09 0,05 0,53

E + 39'l m +

UJ

CO

g + 39'9 Po

CM

0,91 | 0,97 | 0,36

EO'O

0,09

l + 30'fr CM

+

UJ

CO

+

LU

in

CO 0,94 0,31 0,05 0,04 0,75 3.0E+1 1,2E+4 2.2E + 4

CO

CM

Page 111: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

on

map

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

4616

XI

1,2E + 5

6.0E + 3

3 , 3 E + 4

1.3E + 7

9.6E + 5

2,3E + 5

3,4E + 5

7,6E + 5

1.5E + 6

5.7E + 4

4,5E + 5

7.3E + 1

1,1E + 2

1.8E + 4

6,7E + 3

1.3E + 4

1,3E + 5

1.3E + 4

1,9E + 3

1.4E + 3

1.0E + 3

1,7E + 3

2.6E + 6

7,3E + 6

2.9E + 6

Z-H2-H3

n 3,8E + 4

2.4E + 3

1,8E + 4

2.8E + 6

3.2E + 5

4.8E + 4

8.6E + 4

1.6E + 5

4,8E + 5

1.6E + 4

9,1E + 4

1.6E + 1

8 ,3E+1

1.2E + 4

4,1E + 3

4,7E + 3

2,3E + 4

5,8E + 3

8,0E + 2

6,5E + 2

5,6E + 2

7,5E + 2

5,3E + 5

9,6E + 5

1.4E + 6

\3

1,9E + 2

1,4E + 2

2,5E + 2

3.8E + 3

6,2E + 2

8,6E + 2

2,1E + 2

5.2E + 1

1,4E + 3

3 ,3E+1

2.4E + 2

3,8E + 0

9,2E-1

2 ,8E+1

5 ,3E+1

1,3E + 1

9,7E + 1

2.0E + 1

7,9E + 0

1.2E + 1

1.7E + 1

2,8E + 0

6 ,6E+1

2.5E + 3

1,1E + 4

c21

0,56

0,63

0,74

0,46

0,57

0,46

0,50

0,46

0,56

0,52

0,45

0,46

0,87

0,84

0,78

0,60

0,42

0,66

0,65

0,67

0,75

0,66

0,45

0,36

0,69

e31

0,04

0,15

0,09

0,02

0,03

0,06

0,03

0,01

0,03

0,02

0,02

0,23

0,09

0,04

0,09

0,03

0,03

0,04

0,06

0,09

0,13

0,04

0,01

0,02

0,06

e32

0,07

0,24

0,12

0,04

0,04

0,13

0,05

0,02

0,05

0,05

0,05

0,49

0,11

0,05

0,11

0,05

0,06

0,06

0,10

0,13

0,18

0,06

0,01

0,05

0,09

Global

pol.

coeff.

0 ,45

0 ,36

0 ,30

0 ,56

0 ,44

0 ,56

0,51

0 ,57

0 ,45

0 ,49

0 ,58

0 ,48

0 ,26

0 ,27

0 ,29

0,41

0 ,62

0 ,36

0 ,37

0 ,35

0 ,29

0 ,36

0 ,58

0 ,69

0 ,34

Oblate.

coeff.

0 ,93

0 , 7 4

0 ,86

0 ,97

0,95

0 ,88

0,95

0 ,98

0 ,94

0,95

0 ,95

0 ,60

0 ,86

0 ,94

0 ,86

0 ,94

0 ,94

0 ,93

0,89

0,85

0 ,79

0,93

0,99

0 ,96

0 ,90

4616

XI

5 . 5 E + 4

3.0E + 3

2.4E + 4

7.3E + 6

4,7E + 5

2,5E + 5

1.4E + 5

5,9E + 5

1.3E + 6

7,3E + 4

1.5E + 5

2.7E + 2

2,0E + 2

2.5E + 4

9,4E + 3

7,3E + 3

8.1E + 4

1.7E + 4

1.8E + 3

1.4E + 3

1.0E + 3

2.5E + 3

1.2E + 6

1,9E + 6

2.2E + 6

H1-H2-H3

X2

6,3E + 3

3.5E + 2

1.8E + 3

9.1E + 5

2,4E + 4

5,0E + 3

1,9E + 4

5,1E + 4

2.5E + 4

4,4E + 2

1.1E + 3

1,1E + 2

2.9E + 1

1.6E + 3

5,3E + 2

2,3E + 2

9.9E + 3

1,2E + 3

2.2E + 2

1.0E + 2

1,1E + 2

3,6E + 2

1.9E + 5

6,9E + 5

1.8E+4

A3

3.4E + 2

1.3E + 1

4.1E + 2

1,4E + 3

5,2E + 2

9.0E + 2

9,6E + 1

2.8E + 1

1,9E + 3

9,9E + 0

3,8E + 1

9 , 6 E + 0

7,5E + 0

4.4E + 1

7.4E + 0

5.3E + 1

5,4E + 0

2.1E + 1

3.1E + 1

1.6E+1

2,8E+1

1,7E+1

6.0E+1

1.0E + 3

2.5E + 3

e21

0,34

0,34

0,27

0,35

0,22

0,14

0,37

0,29

0,14

0,08

0,09

0,63

0,39

0,25

0,24

0,18

0,35

0,26

0,34

0,27

0,32

0,38

0,40

0,60

0,09

E31

0,08

0,07

0,13

0,01

0,03

0.06

0,03

0,01

0,04

0,01

0,02

0,19

0,20

0,04

0,03

0,09

0,01

0,03

0,13

0,11

0,17

0,08

0,01

0,02

0,03

e32

0,23

0,19

0,48

0,04

0,15

0,43

0,07

0,02

0,28

0,15

0,18

0,30

0,51

0,17

0,12

0,48

0,02

0,13

0,38

0,40

0,52

0,22

0,02

0,04

0,37

Global

pol.

coeff.

0,71

0,71

0,77

0 ,70

0 ,86

0,93

0 ,68

0 ,78

0 ,94

0 ,98

0 ,98

0 ,34

0 ,59

0,83

0 ,85

0,89

0,71

0 ,82

0 ,68

0 ,78

0 ,68

0,65

0.65

0,41

0,97

Oblate.

coeff.

0 ,83

0 ,86

0 ,72

0 ,97

0 ,92

0 ,85

0 , 9 4

0 ,98

0 ,90

0 ,97

0 ,96

0 ,69

0 ,63

0 ,90

0 ,93

0 ,80

0 ,98

0 ,92

0 ,74

0 ,77

0 ,66

0 ,83

0 ,99

0 ,96

0,91

Page 112: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Oblate. 1 Global H1-H2-H3 4616 Oblate. Global Z-H2-H3 4616

o Z

pol. pol. c o

coeff. | coeff.

CM

ro u u

CM U

CM

ï< coeff. coeff.

CM

tn

u

PO

u

u

m

<->¡

CM

»-i

3 I map

0,86 J I 0,77 0,21 0,06 0,30

CM +

Ul

05

CM

CO +

Ul

CO 7.6E + 4 0,87 . 0,47

0,92 | 0,77 0,13 0,04 0,30

co + Ul

CM

CO

m +

Ul

o

CM

CO

+

Ul

CO

CM 0,97 0,28

0,13

0,02

0,07 0,54

CM +

Ul

q

1^

Tf +

Ul

in

Tf

g+39'i in

0,02 0,83 6,3E + 2

CO

+

Ul 1.6E + 6

CO

in

0,95 | 0,66 0,06 0,02 0,38

CM +

Ul

OO

r-m + Ul

CO

CM

CD +

Ul

in 0,95 0,52 0,05

ZO'O

0,50

CO +

Ul

Tf

9 + 38'9 CO

+

Ul

r-> CM

CO

in

0,77 | • 0,29

OZ'O

0,15 0,75

o +

LU

!••«

Tf 1,2E + 2 2,1E + 2 0,61 0,57 0,54 0,21 0,39 3,5E + 0 1.2E + 1

i+ao'8 o

CO

0,85 | 0,61 0,18 0,08 0,41

CM +

Ul

CM

CM 6.5E + 3

TÍ +

LU

00

CO

06'0

0,28 0,08 0,06 0,77 1.2E + 2

+

Ul

CM 3,5E + 4

CO

0,94 | 0,67 0,08 0,03 0,37 2.1E + 3

in

+

Ul

CO

CO

co

+

Ul

CO

CM

CM

o>

O 0,56 0,08 0,04 0,46

co

+

Ul

9 + 3l'l to

+

Ul

in

CM

to

0,95 | 0,96 0,17 0,02 0,11 8.6E + 1 2,9E + 3

m +

Ul

CO

CM 0,97 0,96 0,11 0,01 0,11 3,3E + 1

co

+

Ul

in

CM 2,1E + 5

CO

to

TI­CO

0,97 | 0,89 0,07 0,01 0,20 +

LU

CO

CO

+

LU

00

to 1,7E + 5 0,98 0,93 0,05 0,01 0,16

o +

Ul

q

co"

£ + 38'£ in

+

LU

in

m to

0,90 | 0,96 0,35 0,04 0,10 6,7E + 1 5,4E + 2

Tt +

LU

O

in 0,90 0,99 0,79 0,04 0,05 6,2E+1 1.0E + 2

Tf +

Ul

to

Tf

to

to

0,94 | 0,90 0,12 0,02 0,19 2,1E + 3

in

+

Ul

Tf

9 + 38'E

0,96 0,92 0,09

ZO'O

0,17 8.7E + 2

Tf +

Ul

OJ 3,4E + 6

i^

to

0,97 | 0,93 |

0,94 | 0,84

0,08

0,11

0,01 0,16

CM +

Ul

CM 4.0E + 4 1,6E + 6 0,96 0,96

Zl'O

0,01 0,12

CM +

LU

m

co' 2,4E + 4

9 + 39'l CO

to

0,03 0,24 5,8E + 3

m +

LU

to

Tf 8,0E + 6 0,95 0,92 0,12 0,02 0,16 2.7E + 3

9 + 30'Z

7,4E + 6

05

to

0,87 | 0,95 0,42 0,05 0,12

E + 36'l

1,1E + 4

in

+

LU

05

to

06'0

0,99 0,65

EO'O

0,05

Z + 30'8 £ + 36'l m +

Ul

r». CO

o

0,91 | 0,98 | 0,47

EO'O

0,07 1,2E + 4

Tf

+

Ul

Tf

m 1.0E + 7 0,95 0,99 0,40 0,02 0,04 2.8E + 3 1,8E + 4

9 + 36'6 r

0,89 | 0,76 0,17 0,05 0,31

CO

+

LU

OO

Tf

m +

Ul

00 1.8E + 6 0,90 0,88 0,20 0,04 0,21 3.0E + 3

Tf +

Ul

CO

9+ 38'I CM

0,97 | 0,85 0,05 0,01 0,24 2,0E + 2

Tf +

Ul

r> 00 1.5E + 6 0,97 0,87 0,06 0,01 0,22 2.5E + 2

Tf +

Ul

m CO | 1,3E + 6

CO

0,92 | 0,97 | 0,34 0,03 0,09 1.4E + 1 1.2E + 2 1.5E + 4 0,94 0,97 0,23

0,93 | 0,94 0,20 0,03 0,15 6.5E + 1 1.6E + 3

Tf +

Ul

00 0,94 0,95 0,17

0,02

0,02

0,10 7.0E + 0

CM +

Ul

CO 1,3E + 4

Tf

0,13 4.0E+1 1.4E + 3 8,0E+4

in

0,97 | 0,94 0,09 0,01 0,15 1,9E+1

CO

+

Ul

CO

CM 1,1E + 5 0,99 0,94 0,04

0,97 | 0,95 0,08 0,01 0,13

CM +

Ul

00

Tf

Tf

+

Ul

05

to

CO +

Ul

CO

Tf

86'0

0,97 0,07

0,01

0,01

0,14

o +

Ul

q

CO

£ + 36'l g+30'i | CO

0,10

Z + 38'L

3.8E + 4

to

+

Ul

Tf

Page 113: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

I Oblate. 1 Global

pol.

|

Z-H1-H3 4550 Oblat. Global Z-H1-H2 4550

o Z

pol. |

o 2 c o

| coeff. | coeff.

CN

m u

C1

u

CS

CO

ci

S

3 coeff. coeff.

CM

. r»3 CO

c*3 (0

CS

u

r«1

3

J5 file & evt. | map

1 0,99 1 0,93 0,04 0,01 0,15

Ol

+

LU

O +

LU

oo

9 + 39'E

0,93 0,96 | 0,22 0,03 0,12

CO

+

LU

Ol 4,9E + 4

9 + 39'£

17 EVT 177

-

0,94 I 0,99 0,42 0,02 0,06

+

Ul

o 4.0E + 2 1.3E + 5 0,92 0,98 0,41 0,03 0,08

Ol

+

Ul

CO

CN

+

Ul

CO

in

+

Ul

CO 18 EVT 230

Ol

I 0,80 I 0,79 0,33 0,09 0,27 4.4E + 3

fr + 30'fr tn

+

LU

CO

m 0,80 0,84 0,37 0,09 0,23

E + 30'fr fr+38'3 in

+

Ul

P0

in 18 EVT 269

CO

0,94 I 0,91

frl'O

0,02 0,18

CM

+

LU

CN

fr + 36'E CD +

Ul

CO 0,92 0,92 0,19

EO'O

0,17

E + 33'l fr+3g'E 9 + 3E'l

19 EVT 20

M-

I 0,90 I 0,97

frfr'O

0,04 0,09

+

Ul

CO

fr + 39'9 9 + 38'8

0,84 0,97 0,72 0,06

60'0

3,3E + 4

fr + 39'9

8,8E + 6 19 EVT 183

m

0,92 I 0,98 0,40

EO'O

0,08

E + 39'9 fr + 30'fr 9 + 38'9 O en O 0,95 0,33 0,04 0,12 1,1E + 4

in +

Ul

O

CO

+

Ul

CO 19 EVT 194

CO

0,95 0,91 0,11 0,02 0,17

Z + 30'3 fr + 39'l in

+

LU

CN

tn 0,93 0,82 0,11 0,03

93'0 3 + 3fr'fr <* + UJ

TI­

CO

in

+

Ul

Ol

m 23 EVT 255

r-.

0,90 0,98 0,45 0,04 0,08

Ol

+

Ul

o

Ol

E + 30'l 9 + 3fr'l

0,93 0,98 0,41 0,03 0,07

Ol

+

Ul

o

3 + 33'9

1.4E + 5 23 EVT 313

CO

0,89 1 0,98 0,64 0,04 0,06

3 + 30'E

7.1E + 2

m +

LU

en 0,90 0,98 0,53 0,04 0,07 2,5E + 2

Ol

+

Ul

CO

00

in +

Ul

en 23 EVT 433

05

0,93 0,93 0,17 0,03 0,16 5.3E + 1 1.8E + 3 7,1E + 4 0,91 0,95 | 0,28 0,03 0,12

l + 39'8 co + Ul 7,1E + 4 25 EVT 26

o

| 88'0

0,98 0,60 0,05 0,08

l + 39'fr Ol

+

Ul

CO

fr + 33'3

0,88 0,98 | 0,57 0,05 0,08

l + 3fr'fr CM +

Ul

fr + 33'3

25 EVT 152

r™

0,88 0,88 0,26 0,05 0,20 1,1E + 0

l + 39'l 3 + 36'E

0,83

| 88'0

0,36 0,07 0,20 1.9E + 0

l+39'l 3 + 38'£

25 EVT 224

Ol

0,87 I 0,97 0,54 I 0,05 0,09 l + 33'£ Ol

+

LU

+

LU

CO 0,92 0,96 0,27 0,03 0,12

l + 3£'l 3 + 38'l 1.3E + 4 25 EVT 304

CO

0,86 I 0,90 0,32 0,06 0,18 2,8E + 0 2.7E+1

Ol

+

Ul

CO

00

98'0

0,91

in

CO

o 0,06 0,17

0 + 30'£ +

Ul

in

CN

Ol

+

Ul

CO

00 25 EVT 349

*!-

0,89 I 0,98 0,53 0,04 0,08

l+33'l l+3fr'fr

7.5E + 3 0,91 0,96 0,34 0,04 0,11 9.6E + 0

l + 39'8 £ + 3g'¿

25 EVT 354

in

0,94 0,97 0,25 0,02

60'0

6,9E + 2

+

Ul

r-

9 + 3£'l

0,93

86'0 63'0

0,03 0,09

3 + 36'¿ E + 39'6 9 + 33'l

26 EVT 33

CD

0,93 0,93 0,19 0,03 0,16

o +

Ul

05

CO

3 + 30'3 E + 31'8

0,91 0,93 0,24 0,04 0,15

l + 30'l

1,8E + 2 8.1E + 3 26 EVT 87

i>

0,84 I 0,95 0,57 0,06 0,11

l + 39'l +

Ul

CO +

LU 0,86

96'0

0,50 0,05 0,10

+

Ul

PO

+

Ul

O

LO 4.7E + 3 26 EVT 91

00

0,91 1 0,90 J 0,19 0,04 0,19

CO

+

Ul 3.2E + 4

9 + 30'6

0,95 0,39

90'0

0,03 0,63

3 + 39'9 m +

LU

CO

g + 30'8

26 EVT 108

CO

26 EVT 164

o

CM

0,93 I 0,98 I

J 06'0

0,88 |

0,37

0,20

0,03 0,07

CM

+

LU

CO

co + Ul

PO

in

eo + LU

O 0,90 0,98 0,58 0,04 0,07 1,4E + 3 4.3E + 3

9 + 30'l

26 EVT 171

CM

0,04 0,20 9.7E + 2

fr + 39'3 9 + 30'9

0,90 0,91 0,25 0,04 0,17 1,1E + 3

fr + 38'l g + 30'9

26 EVT 179

CN

Ol

0,93 I

| 66'0

0,54 0,02 0,04

0 + 30'E +

Ul

o

E + 33'9

0,91

86'0

0,47 0,03 0,08

0 + 33'9 +

Ul

03

CN

CO +

Ul

*™

in 26 EVT 194

CO

CN

0,90 I 0,97 I 0,38 I 0,04

60'0 fr + 39'l 9 + 30'L r-+ Ul 0,92 0,97 0,36 0,03 0,09

+

Ul

fr+39'8

1,1E + 7 26 EVT 202

Ol

0,80 I 0,89 I 0,47 I 0,08 0,18

O + 39'E l+39'l 3 + 36'fr

0,82 0,91 0,46 0,08 0,17

o +

Ul

o

CO 1.4E + 1

Ol

+

Ul

in 26 EVT 274

m

Ol

0,93 I 0,99 I 0,57 |

EO'O

0,05

0 + 30'9

1.9E + 1

CO

+

Ul

cn 0,93

86'0

0,31 0,02

80'0 o + Ul

in

+

Ul

t

in

E + 36'8

26 EVT 291

CD

Ol

0,98 1 1,00 | 0,47 | 0,01 | 0,02

+

Ul 5.1E+1 1,6E + 5 0,98 0,94 0,06 0,01 0,15 1,3E + 1

CO +

Ul

t

CO

g + 39'l |

26 EVT 302

Ol

0,92 | 0,92 | 0,20 | 0,03 | 0,16

l + 30'E

7.3E + 2

fr + 38'3 98'0

0,95 0,45 0,05 0,12 8,2E + 1 4,1E + 2

fr + 38'3 |

26 EVT 377

00

CM

Page 114: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Oblate. 1 Global Z-H1-H3 4550 Oblate. Global Z-H1-H2 4550

o Z

pol. pol.

o Z C O

coeff. | coeff.

<N

ro

u

ro

u

CM

W

ro

CM

3 coeff. coeff.

ro

u

ro

u

CM

w

ro

3

¡5 file & evt. | | map |

| 0,87 I 0,95 0,43 0,05 0,12 1,1E+1

l+3E'9 ro + LU

in

t 0,87 0,90 0,29 0,05 0,18

+

Ul

q

CM +

Ul

in 4,4E + 3 26 EVT 420

05

CM

0,87 I 0,86 0,25 0,06 0,22

0 + 38'l

2.8E+1

CM

+

Ul

CO

in 0,84 0,66 0,20 0,08 0,37

o +

Ul

CM

co" 7,8E+1

CM +

LU

CO

m 26 EVT 438

O

CO

0,92 I 0,98 0,45

EO'O

0,07

o +

UJ

CO

o +

Ul

in

CO 1.9E + 3 0,94 0,92 0,14 0,02 0,17 9.5E-1

l+36'fr

1,8E + 3 26 EVT 452

CO

0,97 I 0,99 0,20 0,01 0,05

o +

UJ

m

O)

CM

+

Ul

CO

CM

in

+

Ul

O 0,94 0,96 0,19 0,02 0,12

+

Ul

in

in"

E + 39'l

1.0E + 5 26 EVT 488

CM

CO

0,97 I 0,99 0,24 0,01 0,05

o +

LU

CO

CO

CM +

Ul

+

Ul

86'0

1,00 0,24 0,01 0,02 1.3E + 0

+

Ul

CM 4,7E + 4 26 EVT 513

CO

CO

0,94 0,93 0,15 0,02 0,16

CM +

Ul

CM

CO +

LU

in

in

+

Ul

CM 0,90 0,95

0,95 I 0,85 0,08 0,02 0,23

CM +

Ul

CM

CD

<* + Ul

OJ

CO +

Ul 0,93 0,87

0,31

0,14

0,04 0,13

3 + 33'£

3,4E + 3 2.1E + 5 27 EVT 10

CO

0,03 0,22

E + 39'L fr + 33'8 eo + Ul 27 EVT 18

m

CO

0,85 1 0,94 0,47 0,06 0,12 1.5E + 4

fr + 36'g co + Ul ~

'S-0,81 0,95 0,70 0,07 0,11

+

Ul

CM 4.9E + 4

CO

+

Ul

CO 27 EVT 60

CO

CO

0,81 I 0,88 0,42 0,08 0,19 CO +

Ul

1-05

+

Ul

CO

m co + Ul 0,81 0,93

0,93 I 0,99 0,46 0,03 0,06

CO

+

Ul

CO

CM

+

Ul

CO 3.8E + 6 0,90

66'0

0,55

0,65

0,08 0,14

CO +

Ul

in

CO

fr + 36'3 co + Ul 27 EVT 153

CO

0,04 0,06

CO

+

Ul

CO

fr + 33'l 9 + 38'£

27 EVT 254

00

CO

0,92 I 0,89 0,16 0,03 0,20 1.3E + 2

CO

+

Ul

CM

m

in

+

Ul

CO 0,89 0,94 0,31 0,04 0,14 2,4E + 2 2,5E + 3 1.3E + 5 27 EVT 339

en CO

0,59 I 0,78 0,88 0,19 0,22

o +

LU

O

o +

Ul

CO 2,8E+1 0,59 0,64 0,64 0,21 0,33

0 + 33'l 0 + 30'£ +

LU

CM 30 EVT 19

o

1,00 I 30 EVT 46

0,94 I 1,00 0,67 0,02

EO'O

9,4E-1

o +

Ul

CM

E + 30'3

0,93

86'0

0,32 0,03 0,08

o +

Ul

q +

Ul

CO

E + 30'3

30 EVT 73

CM

0,92 I 0,97 0,31 0,03 0,10 6,7E-1

o +

Ul

03

CO

CM +

LU

tn eo

36'0

0,92 0,19 0,03 0,17 •

Ul

q

to"

l+36'L CM +

Ul

CO

eo 30 EVT 78

»

0,85 1 0,83 0,27 0,07 0,25 1,1E + 2

CO

+

LU

m 2,4E + 4 0,88 0,85 0,23 0,05 0,23 6,3E + 1

CO

+

LU

CM 2,4E+4 30 EVT 112

st-

0,94 I 0,96 0,21 0,02 0,11

o +

LU

q

co" CM +

Ul

CO 1,4E + 4

88'0

0,47 0,11 0,06 0,54 5,8E + 1

CO +

Ul

t 1,5E+4 30 EVT 159

m

0,97 I 1,00 0,65 0,01 0,02

o +

Ul

eo" 2.0E + 1

fr + 33'8

0,96 0,97 0,14 0,01 0,10

l + 39'l CM +

Ul

O 00

fr + 30'8

30 EVT 200

0,91 I 0,97 0,35 0,04 0,10 2.9E-1

o +

Ul

CM

CM +

Ul

CM 0,86 0,92 0,37 0,06 0,16 7.2E-1

o +

Ul

CM

LO

CM +

Ul

CM 30 EVT 283

co r»

0,84 I 0,93 0,46 0,06 0,14

l-30'8

3,8E + 0

CM +

LU

O

CM 0,79 0,94 0,71 0,09 0,12 1,4E + 0

o +

Ul

CO

CM

CM +

Ul

OJ 30 EVT 284

CO

0,86 I 0,82 0,25 0,06 0,25 2.0E-1

o +

Ul

CO

CO 5,2E + 1 0,79 0,90 0,54 0,09 0,17 4.3E-1

o +

Ul

m 5.4E+1 30 EVT 288

en

0,79 1 0,91 0,56 0,09 0,16 1,4E + 0

O +

Ul

in

CM +

LU

en 0,84 0,91

6E'0

0,07 0,17 8,1 E-1

o + LU

CM

in 1.8E + 2 30 EVT 290

o

LO

0,64 I 0,82 0,81 0,16 0,20

o +

Ul

0 + 39'l +

Ul

o 0,64 0,79 0,73 0,17 0,23 1.1E + 0

o +

Ul

o

CM 3,8E + 1 30 EVT 303

in

0,97 I 0,96 I 0,09 | 0,01 0,11

o +

Ul

q

in

CM +

Ul

to

co

+ Ul

CO

m 0,93 0,95 0,19

EO'O

0,13 3,4E+1

CM +

Ul

CO

en

+ Ul

CO

in 30 EVT 322

CM

in

0,96 I 0,99 I 0,20 0,01

ZO'O CM +

Ul

q

CM"

CO

+

Ul

o m eo + LU 0,98 0,99. 0,13 0,01 0,05 5.0E + 1 2.8E + 3

CO +

Ul 30 EVT 353

CO

m

0,75 I 0,75 0,41 0,12 0,29

o +

Ul

CM

+

Ul

CO

CM +

Ul

in 0,82 0,71

93'0

0,09 0,33

o +

Ul

+

Ul

to 1,4E + 2 30 EVT 367

in

0,85 I 0,98 0,84 0,06 0,07 6.7E+1

+

Ul

CO

05

fr + 33'3

0,87 0,96 0,51 0,05 0,10 5.6E+1

CM +

Ul

CM

CM 2,2E + 4 . 30 EVT 379

in

in

0,84 | 0,97 0,68 0,06 0,09

CO +

Ul

q +

UJ

CO

CO

+

Ul

CM 0,83 0,96 0,69 0,06 0,09

co +

Ul

CO

+

Ul

00 2,1E + 6 30 EVT 429

CO

in

Page 115: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

on

map

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

N° file & evt.

33 EVT 1

33 EVT 120

33 EVT 196

33 EVT 221

33 EVT 310

33 EVT 385

45 EVT 11

45 EVT 34

45 EVT 120

45 EVT 337

45 EVT 408

63 EVT 1

63 EVT 3 8 .

63 EVT 40

63 EVT 41

63 EVT 96

63 EVT 152

63 EVT 176

63 EVT 209

63 EVT 243

63 EVT 250

4550

XI

5.5E + 4

3.7E + 5

2 . 0 E + 4

2 .4E+1

1,6E+4

2.2E + 5

6.3E + 3

1.3E + 5

3.0E + 4

3,4E + 5

3.4E + 6

2.3E + 5

1,3E + 7

1,9E + 5

3,0E + 6

2.0E + 6

9.2E + 5

1.4E + 6

1,6E + 4

7.1E + 5

7.8E + 5

Z - H 1 - H 2

12

7.0E + 2

1,7E + 3

3.6E + 2

1,3E+0

2,8E + 2

3.4E + 3

9,4E + 1

2.5E + 3

1.0E + 3

1,9E + 3

7,1E + 4

1.5E + 3

1.1E + 6

4.2E + 3

1,0E + 4

3,5E + 3

7.6E + 3

6.5E + 4

2,1E + 2

4,9E + 3

2,9E + 3

Xi

2,4E + 0

1,9E + 2

7.6E + 1

2,1 E-1

2,8E + 1

2,1 E + 2

2.6E + 1

1,0E+1

1.2E + 0

2.6E + 1

2,7E + 2

9.0E + 0

3,7E.+ 4

2.0E + 1

4,5E + 3

5,9E + 1

1.8E + 2

5,5E + 2

2,0E + 1

6 , 9 E + 0

7,4E + 2

E21

0,11

0,07

0,13

0,23

0,13

0,12

0,12

0,14

0,18

0,08

0,15

0,08

0,29

0,15

0,06

0,04

0,09

0,21

0,11

0,08

0,06

E31

0,01

0,02

0,06

0,09

0,04

0,03

0,06

0,01

0,01

0,01

0,01

0,01

0,05

0,01

0,04

0,01

0,01

0,02

0,03

0,00

0,03

£32

0,06

0,33

0,46

0,41

0,32

0,25

0,52

0,06

0,03

0,12

0,06

0,08

0,19

0,07

0,66

0,13

0,15

0,09

0,31

0,04

0,51

Global

pol.

coeff.

0 ,96

0 ,98

0 ,94

0 ,84

0 , 9 4

0 ,95

0 , 9 4

0 ,95

0,91

0 ,98

0 ,94

0 ,98

0 ,78

0 , 9 4

0 ,99

0 ,99

0 ,97

0 ,88

0 ,96

0 ,98

0 ,99

Oblate.

coeff.

0 ,98

0 ,94

0,85

0,79

0,89

0 ,92

0 ,84

0 ,98

0 ,98

0 ,98

0 ,98 •

0 ,98

0 ,88

0 ,97

0,89

0 ,98

0 ,96

0 ,95

0,91

0,99

0 ,92

4550

X.1

5 ,5E+4

3,7E + 5

2.0E + 4

2 .6E + 1

1.6E + 4

2.2E + 5

6.3E + 3

1.4E + 5

3 , 1 E + 4

3,4E + 5

3.5E + 6

2.2E + 5

1.3E + 7

2,1E + 5

3,4E + 6

2,0E + 6

9.2E + 5

1,4E + 6

1.6E+4

6,9E + 5

7,7E + 5

Z -H1-H3

X2

1,2E + 3

6,2E + 2

1,0E + 2

1.2E + 0

1.4E + 2

1,0E + 3

9.7E + 1

4 .6E + 2

5,6E + 1

2,8E + 2

4 ,3E + 4

7.0E + 3

7,4E + 5

5,3E + 3

1,4E + 4

4.6E + 3

9.3E + 3

2,7E + 5

7.5E + 2

1.5E + 4

9.8E + 3

Xi

9.5E + 0

2.4E + 2

1,7E + 1

2,5E-1

2,8E + 1

1.5E + 2

3,1E + 0

1.5E + 1

4,8E + 0

3,0E + 1

2.3E + 2

2 .1E+1

1.2E + 5

1.5E + 1

4.5E + 3

5,1E + 1

2.2E + 2

1.5E + 3

2,1E + 1

1.7E + 1

1,1E + 3

621

0,15

0,04

0,07

0,21

0,09

0,07

0,12

0,06

0,04

0,03

0,11

0,18

0,24

0,16

0,06

0,05

0,10

0,44

0,21

0,15

0,11

£31

0,01

0,03

0,03

0,10

0,04

0,03

0,02

0,01

0,01

0,01

0,01

0,01

0,09

0,01

0,04

0,01

0,02

0,03

0,04

0,01

0,04

£32

0,09

0,62

0,40

0,46

0,45

0,39

0,18

0,18

0,29

0,33

0,07

0,05

0,40

0,05

0,56

0,11

0,16

0,07

0,17

0,03

0,34

Global

pol.

coeff.

0 , 9 4

0 ,99

0 ,98

0 ,85

0 ,97

0 ,98

0 ,95

0 ,99

0 ,99

1,00

0,96

0,91

0,83

0,93

0,98

0,99

0,97

0,59

0,87

0,94

0,96

Oblate.

coeff.

0 , 9 7

0 , 9 3

0 , 9 2

0 , 7 8

0 , 8 9

0 , 9 3

0 , 9 4

0 , 9 7

0 , 9 6

0 , 9 7

0 , 9 8

0 , 9 8

0 ,79

0 , 9 8

0 , 9 0

0 ,99

0 , 9 6

0 ,93

0,91

0 ,99

0 , 9 0

Page 116: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Oblate. J Global

pol.

|

H1-H2-H3 4550 Oblate. Global Z-H2-H3 4550

o

pol.

§

coeff. | | coeff.

eg

Ci u

CO to

eg u

fj

S

3 coeff. coeff.

r-i

ro u u

CM U

<<

es <<

3 I map

0,97 | 0,98 0,13 0,01

0,92 | 0,99 0,71

EO'O

0,79 1 1 0,83 0,39 0,09

eo 1 * t

O O CM

o"| d d

CM

+

LU

m cd 2.2E + 4

9 + 38'£

0,97

1.1E + 2

CM +

LU

CO

CM

9 + 3fr'l g6'o

0,99

0,99

0,17 0,01 0,06 4,0E + 2

fr + 39'l 9 + 39'£ -

0,33

ZO'O

0,05

+

LU

1-

CM +

UJ

CO

CO

in

+

UJ

CO

eg

CO

+

UJ

in

*t" 3,0E + 4 5.3E + 5 0,79 0,83

Ifr'O

0,09

EZ'O

4,8E + 3

fr + 36'Z in

+

UJ

CO

in

CO

0,93 | 0,93 0,16

EO'O

0,16

z+39'8

3,2E + 4

CO +

UJ eo 0,94 0,93 0,16

ZO'O

0,15

CM +

UJ 2.9E + 4 1.3E + 6

*t

0,86 | 0,98 0,74 0,05 0,07

fr + 3fr'Z +

UJ

CO

t

9 + 38'8

0,89 0,98 0,62 0,04 0,07

fr + 39'l fr + 36'E

8,8E + 6

in

0,88 | 0,97 0,47 0,05 0,10 1.4E + 4

•<fr +

UJ

tn

CD

9 + 38'9

0,87 0,97 0,58 0,05 0,09

+

UJ 4,9E + 4

co + UJ

r-co

CD

0,92 | | 0,90 0,18

EO'O

0,19

CM +

UJ

CD

fr + 30'Z in

+

UJ

CO

in

06'0

0,90

EZ'O

0,04 0,18

Z + 36'8

1.7E + 4

m +

LU

m

I 96'0 66'0

0,38

ZO'O

0,04

+

LU

CO

TJ-"

Z + 30'£ m +

LU

in 0,95

86'0

0,23

ZO'O

0,08

l + 3fr'fr

8.6E + 2 1,4E + 5

00

0,95 | 0,99 0,29

ZO'O

0,06 5,9E+1

Z + 36'9 g + 36'l

0,96 0,97 0,14 0,01 0,10

l+39'E E + 38'l

1.9E + 5

en

0,93 | 0,96

EZ'O

0,03 0,12 5,3E + 1

Z + 36'6

7,2E + 4 0,94 0,97 0,23

ZO'O

0,11 4.2E+1 7.9E + 2 7,1E + 4

o

0,88 | 0,99 0,79 0,04 0,05

l + 36'E l + 3fr'9

2,2E+4 0,88

66'0

0,79 0,04 0,05

l+36'E

6.2E + 1

fr+3Z'Z *—

| 88'0

0,88 0,25

0,91 | 0,98 0,45

0,05

0,03

0,20 8.9E-1

l + 39'l Z + 39'£

0,89 0,89 0,25 0,05 0,19 8,9E-1

l + 39'l Z + 30'fr CM

0,07

+

UJ

q

l+3£'9 1.2E + 4 0,91

66'0 0,56 0,03 0,06

l + 39'l +

UJ

r» T* 1,3E + 4

00

0,86 | 0,96 0,57 0,05 0,09

O + 39'Z o +

LU

eo r-Z + 39'8

0,85 0,97 0,71 0,06 0,08

O + 39'Z 0 + 30'g

8,3E + 2

TJ-

0,91 | 0,98 0,40

EO'O

0,08

o + LU

q

od 5,0E + 1 7.8E + 3 0,92 0,98 0,37 0,03 0,08

0 + 38'9 l+30'g

7,4E + 3

m

0,93 | 1,00 0,89 0,02 0,03 7.5E + 2

CM +

LU

m

OJ 1.4E + 6 0,93

66'0

0,73

EO'O

0,04 8,4E + 2

E + 39'l

1.2E + 6

eo

0,92 | 0,96 0,28 0,03 0,11 7.5E + 0 9.8E + 1 co + LU

00

r» 0,92 0,97 0,33

EO'O

0,09 7.4E + 0

+

UJ

co

E + 3Z'8 r~

0,87 | 0,96 0,47 0,05 0,11 1.2E + 1

l+39'g £ + 39'fr

| 06'0

0,99 0,65 0,04 0,06 7,7E + 3

fr + 38'L 9 + 3fr'9

0,87

0,93

0,98 0,66 0,05 0,07 1.1E + 1

l+39'Z co + UJ

0,54 0,08 0,04 0,48 1,3E + 3

in

+

LU

CM

g + 38'8

oo | en o

CM

0,91 |

66'0

0,64

EO'O

0,05

Z + 39'6

2,4E + 3

in

+

LU

en en 0,93 | 0,99 0,58 0,03 0,04

CM +

LU

r» co

CO +

LU

O CM

CO +

UJ

O CM

| 06'0

0,91

EZ'O

0,94 | 0,99 0,41

0,04

0,02

0,17

Z + 39'6

1,7E + 4

9 + 30'9

0,90 0,92 0,24 0,04 0,16

Z + 30'6 fr + 39'l g + 30'9 CM

CM

0,05

0 + 36'l +

UJ

CM

E + 36'fr

0,95 0,99 0,32

ZO'O

0,06

O + 36'l L + 36'l co + LU

CO

m co cg

0,94 | 0,99 |

| Ofr'O

0,02 0,06

co + LU

q co"

+ UJ 1,2E + 7 0,92 0,99 0,50

EO'O

0,06

E + 30'6 fr + 39'£

1,1E + 7

CM

0,77 | 0,90 0,59 0,09 0,16

0 + 36'fr

1.4E + 1

Z + 39'9

0,74

88'0

0,65 0,11 0,17

o +

UJ en m +

UJ 4,7E + 2

m

CM

0,87 | 0,98 | 0,75 0,05 0,06

l + 36'l

3.4E + 1

£ + 39'8

0,95 0,99 0,26

ZO'O

0,06

0 + 39'Z l + 38'E E + 3Z'6 co CM

1,00 | 0,97 0,02 0,00 0,10

l-39'fr

1.8E + 3 1,7E + 5 0,98 0,95 0,05 0,01 0,13

o +

LU

CO 2.7E + 3

m +

LU

CO

eg

0,92 | 0,97 0,30 |

EO'O

0,10

+

UJ

q ci

CM +

UJ o

CO 2,9E + 4 0,94 | 0,97 0,21 0,02

Ol'O

1,3E + 1

Z + 38'Z

2,7E + 4

eo CM

Page 117: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

on

map

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

4550

M

4,6E + 3

5,7E + 2

2,0E + 3

1.0E + 5

4,8E + 4

2,1E + 5

1/7E + 6

4 ,3E + 6

1.4E + 6

3.7E + 6

1,3E + 5

2,8E + 1

2.0E + 3

7.0E + 2

2.4E + 4

1.3E + 4

8.0E + 4

2 , 5E+2

2.0E + 2

1.2E + 2

1,9E + 2

4,1E + 1

5.3E + 4

1.1E + 6

1.5E + 2

2.2E+4

2.1E + 6

Z - H 2 - H 3

X2

4,7E+1

1.5E + 1

2.5E + 1

1,2E + 3

1,1E + 2

1.5E + 3

6.9E + 4

4.5E + 4

4.7E + 4

5.2E + 3

2.3E + 3

5.6E + 0

1.1E + 1

1.5E+1

1,1E + 3

4.7E + 3

9,5E + 2

4,5E + 0

3,5E + 0

6,3E + 0

3,5E + 0

5,3E + 0

1,9E + 2

6,2E + 2

6,4E + 0

1,3E + 2

1,3E + 4

\3

9,5E + 0

2.0E + 0

4,5E-1

1,8E + 0

4,3E + 0

7.9E + 1

6,4E + 2

1.2E + 4

5,9E + 3

8.4E + 2

6 .0E+1

5,5E-1

5.4E-1

1,2E + 0

1.2E + 2

1,3E+1

7,4E + 0

3,9E-1

8,9E-1

3,6E-1

1.8E + 0

4.4E-1

3,2E + 1

2,2E + 2

1.1E + 0

3,4E + 1

2,0E + 3

E21

0 ,10

0 ,16

0,11

0,11

0,05

0,08

0 ,20

0 ,10

0,18

0 ,04

0,13

0 ,44

0,07

0,15

0,21

0 ,60

0,11

0,13

0,13

0 ,23

0 ,14

0,36

0,06

0,02

0,21

0,08

0 ,08

631

0,05

0,06

0 ,02

0 ,00

0,01

0 ,02

0 ,02

0 ,05

0 ,06

0,01

0 ,02

0 ,14

0 ,02

0 ,04

0 ,07

0 ,03

0,01

0 ,04

0 ,07

0,05

0 ,10

0 ,10

0 ,02

0,01

0,09

0 ,04

0,03

E32

0,45

0 ,36

0 ,14

0 ,04

0 ,20

0 ,23

0 ,10

0,51

0 ,35

0 ,40

0 ,16

0,31

0 ,22

0 ,28

0 ,33

0 ,05

0 ,09

0 ,30

0,51

0 ,24

0,71

0 ,29

0,41

0 , 6 0

0,41

0,51

0 ,38

Global

pol.

coeff.

0 ,96

0 ,92

0 ,96

0 ,97

0 ,99

0 ,98

0 ,89

0 ,96

0 ,90

1,00

0,95

0,55

0,98

0,93

0,86

0,41

0,97

0,94

0,94

0,85

0,92

0,67

0,99

1,00

0,86

0,98

0,98

Oblate.

coeff.

0 ,88

0 ,86

0 ,96

0,99

0 ,97

0,95

0 ,95

0,86

0,85

0,96

0 ,94

0 ,74

0,95

0 ,90

0 ,83

0 ,94

0 ,97

0 ,90

0 ,83

0 ,87

0,76

0,79

0,93

0,96

0 ,80

0 ,90

0,92

4550

XI

4,2E + 3

3.4E + 3

2.1E + 4

1.1E + 5

4,5E+4

2.1E + 5

1,7E + 6

4,5E + 6

1.4E + 6

3.8E + 6

1.4E + 5

1.5E + 2

2.2E + 3

6,6E + 2

2.4E + 4

5.3E + 2

8.7E + 4

1.8E + 3

1,8E + 2

1,1E + 2

1.8E + 2

4.0E + 2

5,5E + 4

1.2E + 6

6,8E+1

2.2E + 4

2.1E + 6

H 1 - H 2 - H 3

X2

3.9E+1

3.1E + 1

2,1E + 2

5.6E + 2

9,6E + 1

2.0E + 3

7 . 6 E + 4

4.5E + 4

4 . 2 E + 4

5,2E + 3

2.4E + 3

5.0E + 0

5,7E + 0

1.0E + 1

1.3E + 3

1.4E + 0

5,8E + 2

4.7E + 0

2.3E + 0

4,5E + 0

3.8E + 0

4.6E + 0

3,8E + 2

5,5E + 2

6,8E + 0

1.4E + 2

1.3E + 4

X3

1.2E + 1

1,2E+1

4,7E + 0

2.2E+1

1.4E + 0

1,4E + 2

7.0E + 2

1.6E + 4

6.6E + 3

2,6E + 3

1.1E + 2

7,1E-1

1,2E + 0

9,8E-1

1,1E + 2

1.2E + 0

1.4E + 1

3.0E + 0

1,4E + 0

. 3.0E-1

9,2E-1

2.1E + 0

3 . 1 E + 1

1.1E + 2

1,2E + 0

4 .3E + 1

4 ,4E + 3

E21

0,10

0 ,10

0 ,10

0,07

0,05

0 ,10

0,21

0 ,10

0,17

0 ,04

0,13

0,18

0 ,05

0,13

0 ,23

0,05

0 ,08

0 ,05

0,11

0 ,20

0 ,15

0,11

0,08

0 ,02

0,32

0,08

0,08

E31

0,05

0,06

0,02

0,01

0,01

0,03

0 ,02

0 ,06

0,07

0,03

0 ,03

0,07

0,02

0 ,04

0,07

0,05

0,01

0 ,04

0,09

0,05

0,07

0,07

0,02

0,01

0,13

0 ,04

0 ,05

e32

0,55

0 ,62

0 ,15

0 ,20

0 ,12

0 ,27

0 ,10

0 ,60

0 , 4 0

0,71

0,21

0 ,38

0 ,45

0,31

0 ,30

0,91

0,15

0 ,80

0 ,78

0 ,26

0 ,49

0 ,67

0 ,29

0,45

0 ,42

0 ,56

0 ,58

Global

pol.

coeff.

0 ,96

0 ,96

0 ,97

0,98

0,99

0,97

0 ,88

0 ,96

0 ,90

0,99

0,95

0 ,89

0 ,99

0,95

0 ,85

0,99

0 ,98

0 ,99

0 ,94

0 ,88

0 ,92

0 ,95

0 ,98

1,00

0,71

0,98

0,97

Oblate.

coeff.

0 ,86

0 ,85

0 ,96

0 ,96

0 ,98

0 ,93

0 ,95

0 ,84

0 ,83

0 ,93

0 ,93

0 ,83

0 ,94

0 ,90

0 ,84

0 ,87

0 ,97

0 ,89

0 ,78

0 ,88

0 ,82

0 ,82

0 ,94

0 ,97

0 ,72

0 ,88

0 ,88

Page 118: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

on

map

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

4550

U

5.4E + 4

3.8E + 5

2,0E + 4

2.7E + 1

1.7E + 4

2.2E + 5

6.3E + 3

1.3E + 5

3.0E + 4

3.3E + 5

3,4E + 6

2.4E + 5

1.4E + 7

2.3E + 5

3.8E + 6

2.0E + 6

9,2E + 5

1.6E + 6

1.9E + 4

7.6E + 5

7.8E + 5

Z - H 2 - H 3

12

4.1E + 2

1.2E + 3

5.5E + 2

1.7E + 0

2,3E + 2

3.3E + 3

9 .6E+1

1.0E + 3

6,4E + 2

3.3E + 3

1.0E + 4

1.9E + 3

1.9E + 5

4.3E + 3

1.2E + 4

4,1E + 3

9.4E + 3

8.6E + 4

2,4E + 2

3,5E + 3

8.4E + 3

M

1.5E + 1

6.9E+1

3,7E+1

5.2E-1

3.6E + 1

4.2E + 2

1.5E + 0

6.5E + 1

3.9E + 0

4.6E + 0

4.5E + 2

1,8E + 0

1.1E + 4

1.1E+1

4.2E + 3

9,6E + 2

1.5E + 2

1,3E + 3

2.7E + 1

2 .2E+1

1.8E + 2

e21

0,09

0,06

0,16

0,25

0,12

0,12

0,12

0,09

0,15

0,10

0,06

0,09

0,12

0,14

0,06

0,05

0,10

0,24

0,11

0,07

0,10

£31

0,02

0,01

0,04

0,14

0,05

0,04

0,02

0,02

0,01

0,00

0,01

0,00

0,03

0,01

0,03

0,02

0,01

0,03

0,04

0,01

0,02

e32

0,19

0,24

0,26

0,55

0,39

0,36

0,12

0,25

0,08

0,04

0,21

0,03

0,24

0,05

0,60

0,48

0,13

0,12

0,33

0,08

0,15

Global

pol.

coeff.

0 ,98

0 ,99

0 ,92

0 ,78

0 ,95

0 ,95

0 ,95

0 ,98

0 ,94

0 ,97

0 ,99

0 ,98

0 ,96

0 ,95

0 ,99

0 ,99

0 ,97

0 ,85

0 ,96

0 ,99

0 ,97

Oblate.

coeff.

0 ,95

0 ,96

0 ,89

0 ,70

0 ,88

0,89

0 ,96

0 ,94

0 ,97

0 ,99

0 ,97

0 ,99

0,93

0 ,98

0,91

0 ,94

0 ,97

0 ,93

0 ,90

0 ,99

0 ,96

4550

XI

5,8E + 4

3.5E + 5

2,1E + 4

1.6E + 2

1.5E + 4

2.2E+5

6,2E + 3

1.4E + 5

3.5E + 4

3.6E + 5

3,7E + 6

1,8E + 5

1.3E + 7

1.4E + 5

2.2E + 6

1.9E + 6

9,3E + 5

1.1E + 6

9.8E + 3

5,6E + 5

7.5E + 5

H 1 - H 2 - H 3

X2

5.5E + 2

8.5E + 2

3.5E + 2

1.8E + 0

1.9E + 2

2,7E + 3

8.7E + 1

1,4E + 3

5,7E + 2

1.9E + 3

3,3E + 4

9,1E + 2

Î.2E + 5

4.7E + 3

1.3E + 4

3.7E + 3

8.5E + 3

6.3E + 4

2,3E + 2

2.8E + 3

5.1E + 3

X3

9,9E + 0

7.1E + 1

5.6E+1

8.3E-1

3,4E + 1

2.0E + 2

6.2E + 0

2.7E + 1

5,1 E-1

5,7E + 0

2.8E + 2

7,3E + 0

7.3E + 3

1,1E+1

4.3E + 3

5.6E + 2

1,6E + 2

1,6E + 3

2.5E + 1

2,0E + 1

3.0E + 2

e21

0,10

0,05

0 ,13

0 ,10

0,11

0,11

0,12

0 ,10

0,13

0,07

0,09

0,07

0 ,10

0 ,18

0 ,08

0 ,04

0 ,10

0 ,24

0,15

0 ,07

0 ,08

E31

0,01

0,01

0,05

0,07

0,05

0,03

0,03

0,01

0,00

0 ,00

0,01

0,01

0,02

0,01

0 ,04

0,02

0,01

0,04

0,05

0,01

0,02

e32

0,13

0,29

0 ,40

0,69

0 ,43

0 ,27

0 ,27

0 , 1 4

0 ,03

0 ,06

0 ,09

0 ,09

0 ,24

0 ,05

0 ,58

0 ,39

0 ,14

0 ,16

0 ,33

0 ,08

0 , 2 4

Global

pol.

coeff.

0,97

0 ,99

0 ,94

0 ,95

0 ,96

0 ,96

0 ,96

0,97

0 ,95

0 ,98

0 ,97

0 ,99

0,97

0,91

0,98

0,99

0,97

0,85

0,93

0,99

0,98

Oblate.

coeff.

0,96

0,96

0 ,87

0 ,82

0 ,88

0 ,92

0 ,92

0,96

0,99

0,99

0 ,98

0,98

0 ,94

0,98

0 ,88

0,95

0,96

0,91

0,87

0 ,98

0,95

Page 119: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

on

map

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

N° file & evt.

17 EVT 177

18 EVT 230

18 EVT 269

19 EVT 20

19 EVT 183

19 EVT 194

23 EVT 255

23 EVT 313

23 EVT 433

25 EVT 26

25 EVT 152

25 EVT 224

25 EVT 304

25 EVT 349

25 EVT 354

26 EVT 33

26 EVT 87

26 EVT 91

26 EVT 108

26 EVT 164

26 EVT 171

26 EVT 179

26 EVT 194

26 EVT 202

26 EVT 274

26 EVT 291

26 EVT 302

26 EVT 377

4601

XI

1.4E + 6

1,2E + 5

1,3E + 4

9.7E + 3

7.8E + 4

1,4E + 6

3 . 0 E + 4

5,7E + 4

1.4E + 5

1.9E + 5

1.4E + 2

1,4E + 3

3,0E + 3

3,7E + 3

1.3E + 5

1.4E + 2

3,9E + 4

1,8E + 2

8.2E + 4

1.2E + 4

3,4E + 3

4,0E + 5

3,5E + 3

1.2E + 4

1,1E + 4

1.9E + 5

Z -H1 -H2

X2

5.5E + 4

9,8E + 3

3,7E + 3

4,3E + 3

8.4E + 2

1.8E + 4

7.5E + 3

3,4E + 3

1.2E + 4

8,7E + 4

2.1E + 1

7.4E + 2

1.6E + 3

9,2E + 2

4,1E + 4

4 .2E+1

6.8E + 3

1,1E + 2

1,7E + 4

4,5E + 3

2.3E + 2

2 , 7 E + 4

1.7E + 3

5,5E + 2

4,6E + 3

2,0E + 4

X3

1.0E + 3

5,0E + 2

7.3E + 0

9,0E + 0

4,0E + 1

5,3E + 3

4,4E + 1

3.7E + 1

3 ,2E + 1

8.4E + 2

1.7E + 0

1,9E + 1

1.9E + 1

1.7E + 1

2 ,2E+1

5,2E + 0

1,3E + 1

9,6E + 0

2.4E + 1

7,7E + 0

1.9E + 0

1,4E+1

4,2E + 0

1.2E + 1

1,5E+1

2,1E + 1

E21

0 ,20

0 ,28

0 ,53

0 ,67

0 ,10

0,11

0 ,50

0 , 2 4

0 ,29

0 ,68

0 ,38

0 ,73

0 ,73

0 ,50

0 ,57

0 ,55

0 ,42

0 ,78

0 ,45

0,61

0 ,26

0 ,26

0 ,70

0,21

0 ,66

0 ,33

£31

0,03

0 ,06

0 ,02

0 ,03

0 ,02

0 ,06

0 , 0 4

0 ,03

0 ,02

0 ,07

0,11

0 ,12

0 ,08

0 ,07

0,01

0 ,19

0 ,02

0 ,23

0 ,02

0 ,03

0 ,02

0,01

0 ,03

0 ,03

0 , 0 4

0,01

£32

0 , 1 4

0 ,23

0 , 0 4

0 ,05

0 ,22

0 , 5 4

0 ,08

0,11

0 ,05

0 ,10

0 ,29

0 ,16

0,11

0 ,13

0 ,02

0 ,35

0 ,04

0 ,30

0 , 0 4

0 , 0 4

0 ,09

0 ,02

0 ,05

0 ,15

0 ,06

0 ,03

Global

pol.

coeff.

0 ,89

0 ,79

0,49

0 ,36

0 ,97

0 ,95

0,51

0 ,84

0 ,78

0 ,35

0 ,64

0,31

0,31

0 ,52

0 ,45

0,41

0 ,62

0,25

0 ,58

0 ,40

0 ,82

0 ,82

0 ,34

0 ,87

0 ,36

0 ,74

Oblate.

coeff.

0 ,93

0 ,86

0 ,95

0 ,95

0 ,94

0 , 8 4

0 ,93

0 ,94

0 ,97

0 ,89

0 ,78

0,81

0 ,87

0 ,87

0 ,98

0 ,67

0 ,96

0 ,65

0 ,96

0 ,95

0 ,95

0 ,99

0 , 9 4

0 ,92

0 ,93

0 ,98

4601

XI

1.4E + 6

1.3E + 5

1,3E + 4

9.4E + 3

7.9E + 4

1,4E + 6

3.0E + 4

5.7E + 4

1,4E + 5

1.9E + 5

1,6E + 2

1,2E + 3

3,0E + 3

3,3E + 3

1.2E + 5

1,3E + 2

3;5E + 4

1.8E + 2

7,8E + 4

1.1E + 4

3.3E + 3

4.1E + 5

3.5E + 3

1,1E + 4

1.1E + 4

1.9E + 5

Z-H1-H3

X2

4,7E + 4

8,4E + 3

2,9E + 3

3,0E + 3

7.0E + 2

1.4E + 4

6,1E + 3

2.8E + 3

1.0E + 4

7,0E + 4

2.1E + 1

6,8E + 2

1.3E + 3

9.1E + 2

3,9E + 4

6 .4E+1

6,8E + 3

7.7E + 1

1.4E+4

3,7E + 3

2,3E + 2

2.2E + 4

1.2E + 3

5,5E + 2

4.0E + 3

1.6E+4

X3

4.2E + 2

2,5E + 2

2.0E + 1

4.4E + 0

3,8E + 1

4,6E + 3

5,4E + 0

2.0E + 1

6,5E + 1

1,9E + 2

2,1E + 0

1.8E + 1

4.3E + 0

5,3E + 0

3,3E+1

1.3E + 0

4,5E + 0

5.3E + 0

8.9E + 0

2,4E + 0

2,5E + 0

1.4E + 2

3,1E + 0

1,1E+1

4,4E+1

8,1E + 0

£21

0,18

0,26

0,47

0,57

0,09

0,10

0,45

0,22

0,27

0,60

0,36

0,75

0,66

0,52

0,57

0,71

0,44

0,65

0,42

0,57

0,26

0,23

0,60

0,22

0,62

0,30

E31

0,02

0,04

0,04

0,02

0,02

0,06

0,01

0,02

0,02

0,03

0,11

0,12

0,04

0,04

0,02

0,10

0,01

0,17

0,01

0,01

0,03

0,02

0,03

0,03

0,06

0,01

e32

0,09

0,17

0,08

0,04

0,23

0,57

0,03

0,08

0,08

0,05

0,31

0,16

0,06

0,08

0,03

0,14

0,03

0,26

0,03

0,03

0,10

0,08

0,05

0,14

0,10

0,02

Global

pol.

coeff.

0,91

0 ,82

0 ,56

0 ,45

0 ,97

0 ,96

0 ,58

0 ,86

0,81

0,41

0 ,67

0 ,29

0 ,36

0 ,49

0 , 4 4

0 ,32

0 ,59

0 , 3 4

0 ,62

0 , 4 4

0,81

0 ,85

0 ,42

0 ,86

0 ,39

0 , 7 8

Oblate.

coeff.

0 ,96

0 , 9 0

0 ,92

0 ,96

0 , 9 4

0 ,85

0 ,97

0 ,96

0 ,95

0 , 9 4

0 , 7 7

0 , 8 0

0 ,93

0 ,92

0 , 9 7

0 ,83

0 ,98

0 ,72

0 ,98

0 ,97

0 , 9 4

0 ,96

0 ,95

0 ,93

0 ,89

0 ,98

Page 120: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

I Oblate. 1 1 Global Z-H1-H3 4601 Oblate. Global | Z-H1-H2 4601

o Z

pol. pol.

o Z c o

| coeff. | | coeff.

CM ro u

ro u u

ro <<

<<

s coeff. coeff. |

CM ro u

ro u

CN u

ro

S 3 file & evt. | map |

0,88 I I 0,87 0,23 0,05 0,21

CM +

LU

es co" 5,6E + 3

9 + 3£'l

0,90 0,86 0,19 | 0,04 0,23

CM +

LU

q

CM

E + 39'9 in

+

UJ CO 26 EVT 420

cn CM

0,70 I 0,28 0,27 0,19 0,73

0 + 39'fr

6,5E + 1 1,2E + 2 0,80

Ofr'O

0,19 0,11 0,60 2.0E + 0 5,8E+1

3 + 39'l

26 EVT 438

o

CO

0,85 I I 0,33 0,12 0,09 0,69

o +

UJ

in

cn"

CM

+

UJ CN

eo"

CO

+

UJ

CO 0,80 0,34 0,18 0,12 0,68

+

UJ

q

CM"

3 + 33'¿

1.6E + 3 26 EVT 452

CO

0,96 I 0,32 0,03 0,02 0,73

o +

UJ

Tt

cn

CO +

UJ

q en"

fr + 36'l

0,97 0,31 0,03 0,02 0,75 7,7E + 0 1.1E + 4 1.9E + 4 26 EVT 488

CM CO

0,93 I 0,49 0,07 0,04 0,53 1.4E + 2 2,5E+4

fr + 30'6

0,88 0,42 0,12 0,07 0,59 4,3E + 2 3,1E + 4

T*

+

UJ

o en 26 EVT 513

CO CO

0,98 I 0,33 0,01 0,01 0,70

o +

UJ

q

fr+36'£

7,9E+4 0,98 0,35 0,02 0,01 0,69 1.4E+1 4.2E + 4

fr + 36'8

27 EVT 10

Ti­co

0,98 I 0,38 0,02 0,01

0,97 I 0,64 0,03 0,01

0,64

0,40

O +

UJ

CD

fr + 3g'3 fr+3fr'g

0,96 0,36 0,04 0,02 0,67

l + 36'E T*

+

UJ

eo

Tt +

UJ o 27 EVT 18

in CO

8,6E + 1 7.2E + 4

9 + 3g'fr

0,98 0,62 0,02 0,01

Ifr'O

3.6E + 1 7.7E + 4

9 + 3g'fr

27 EVT 60 I

eo CO

0,99 I 0,95 0,03

OO'O

0,13 6.4E-1

CM +

UJ

r->"

fr + 33'fr

0,99 0,95 |

£0'0

0,00 0,14 9,0E-1

CM +

UJ

00

fr + 3E'fr

27 EVT 153

r-s eo

0,98 I 0,41 0,02 0,01 0,60

o + LU

m oo"

1-+

UJ LO CM"

Tt +

UJ o 0,98 0,39 0,02 0,01 0,63 8,8E + 0

T*

+

UJ

cn CN 7.3E + 4 27 EVT 254

00

CO

0,99 I 0,55 0,01 0,00 0,47 8,7E-1

CO

+

UJ

en

+

UJ

Tt 0,98 0,57 0,02 0,01 0,46

0 + 39'fr CO

+

UJ

cn

fr + 39'fr

27 EVT 339

cn eo

30 EVT 19

o

Tt

Tt

0,84 I 0,61 0,19 0,08 0,42

o +

UJ CO

en

CM

+

UJ

r» CM

CO +

UJ

m 0,86 0,63 0,17 0,07

Ifr'O o +

LU

q 2.7E + 2

CO

+

UJ

CO 30 EVT 73

CM

Tt

0,84 I 0,57 0,18 0,08 0,45

o +

UJ to CO

CM +

UJ

^-

CM

+

UJ

eo m 0,78 0,55 0,26 0,12 0,46 7,2E + 0

CM +

LU

CM +

LU CO

m 30 EVT 78

CO

t

0,84 I 0,36 0,14

60'0

0,65 6,1E+1

co + UJ

o

CO

co + UJ 0,83 0,37 0,16 0,10 0,64 7.6E + 1

E + 3L'£ co + UJ

CO 30 EVT 112

Tt

Tt

0,88 I 0,44 0,11 0,06 0,57 1.7E + 1

co + LU CO

£ + 3l'fr

0,89 0,39

Ol'O

0,06 0,62

+

UJ

eo + UJ CO

CO

+

UJ

CM

Tt 30 EVT 159

in

Tt

0,98 I 0,83 0,04 0,01 0,25 2.7E + 1

fr + 36'l 9 + 36'3

0,98 0,82

EO'O

0,01 0,26

l + 38'l fr + 30'3 g + 36'3

30 EVT 200

CD

Tt

0,84 I 0,62 0,20 0,08

Ifr'O

1.1E + 0

l + 30'£ CM +

UJ

00 0,76 0,65 0,32 0,12 0,37

0 + 30'E

3,0E+1

3 + 33'3

30 EVT 283

Tt

0,86 I 0,25 0,10 0,10 0,94 2.6E + 0

CM +

UJ

t

CM 2.7E + 2 0,87 0,26 0,10 0,09 0,87 2,3E + 0 2.4E + 2

3 + 33'£

30 EVT 284

oo Tt

0,79 1 0,30 1 0,18 0,13 0,73

o +

UJ

o

in

CM

+

UJ in

3 + 36'3

0,33 0,15 0,69 0,49 0,71

l + 30'8

1,7E + 2 3,4E + 2 30 EVT 288

en t

0,81 I 0,44 0,19

ll'O

0,56

o +

UJ to

Tt

CM +

LU CO

CM +

UJ

o

Tt 0,70 0,34 0,29 0,18 0,64

l + 39'l CM +

LU

00 4,4E + 2 30 EVT 290

o

in

0,83 I 0,51 0,18 0,09 0,49

O + 33'l

3,8E + 1

3 + 39'l

0,70 0,52 0,35 0,16 0,46

0 + 39'fr +

UJ 00 CO

CM +

UJ 00

T— 30 EVT 303

*-•

m

0,94 I 0,79 0,09 0,03 0,29 1,2E + 2

Tt +

UJ

Tt 1.8E + 5 0,96 0,77 0,05 0,02 0,30 4.3E+1

fr + 39'l

1.8E + 5 30 EVT 322

CM in

0,95 I 0,84 I 0,09 I 0,02 0,24 9,0E+1

Tt

+

LU

in

+

LU

en 0,97 0,82 0,05 0,01 0,26

+

LU

q

CM" 1.3E+4

in +

LU en 30 EVT 353

co in

30 EVT 367

Tt

m

0,86 I 0,66 I 0,18 0,07 0,38

0 + 38'L +

UJ eo LO

Z + 36'£

0,79 0,57 0,25 0,11 0,44

o +

LU m

Tt 7.3E+1

CM +

LU

00

CO I 30 EVT 379

in

m

0,83 | 0,70 | 0,23 0,08 0,34 4.3E + 4 8.1E + 5

9 + 36'9

0,78 0,63 0,28 0,11 0,39

fr + 33'8 co + UJ

o co

+ UJ

00

CO 30 EVT 429

co m

Page 121: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Oblate. 1 Global Z-H1-H3 | 4601 Oblate. Global Z-H1-H2 4601

o 2

pol. pol.

o 2

11 I coeff. I I coeff.

eg

to

u u

(N

u

<<

3

3 coeff. coeff.

CM

to

u

to

u

eg

u

to

<<

CS

7<

file & evt. | map

0,97 |

frfr'O EO'O

0,02 0,57 2,5E + 0

CO

+

Ul

t

eg

CO

+

LU

CO

!•> 0,93 0,45 0,07

0,85 | 0,43

frl'O

0,08 0,57 4,6E + 3

in

+

LU

CO

CM

in +

ai

O 0,85 0,38 0,14

0,04

0,09

0,56 1,3E + 1

CO

+

LU

in

eg

CO

+

LU

O CO 33 EVT 1

m

0,63

CO +

ai

CO

in

in

+

LU

CO

eg

in

+

LU

O 33 EVT 120

CO

in

I 0.74 | 0,34 0,24 0,16

99'0

9.9E + 0

eg

+

LU

3 + 30'fr 08'0

0,33 0,17 0,12 0,69 5.6E + 0

CM +

LU

CO

3 + 30'fr

33 EVT 196

o> in

33 EVT 221

o

CO

0,91 | | 0,36

| 0,98 | 0,52

0,08

0,02

0,05 0,66 3,4E+1 5,2E + 3

fr + 33'l

0,88 0,35 0,10 0,07 0,68

l + 39'9

5.7E + 3

+

LU

CO 33 EVT 310

CO

0,01 0,50 1,3E + 0 3,1E + 3

fr + 33'l co en O 0,53 0,04 0,02 0,49

o + LU

m co + ai

CO 1.3E + 4 33 EVT 385

eg

CO

0,92 I 0,41 0,07 0,05 0,60

O +

ai

CO

CM +

ai

CO

in

CO +

LU

in 0,77 0,32 0,20 0,14 0,69 2.4E + 1

CM +

LU

m

CO

+

LU

CM 45 EVT 11

CO

CO

0,93 | 0,85 0,12 0,03 0,24

L + 30'l

7.0E + 2 1.3E + 4 0,93 0,82 0,11

EO'O

0,26

+

LU 8,4E + 2 1.3E+4 45 EVT 34

CO

0,91 | 0,87 0,16 0,04 0,22

0+36'l +

LU

CO

CO 1,5E + 3 0,85 0,83 0,26 0,06 0,25 6.5E + 0

+

LU

Ol

CO

+

ai

co 45 EVT 120

m

CO

0,85 | 0,85

en CM

ö 0,07 0,23 7.6E + 0

+

ai

O

Ol 1.7E + 3 0,70 0,76 0,51

frl'O 0,27 3,7E+1

CM +

LU

CO +

LU

Ol 45 EVT 337

CO

CO

0,95 | 0,84 0,08 0,02 0,24 9.4E + 2 1.4E + 5 2.4E + 6 0,97 0,83 0,06 0,01 0,26

3 + 33'fr +

LU

t CO

+

LU

CM 45 EVT 408

CO

en O 0,92 0,15 0,03 0,16

+

LU -

CO 1.4E + 3 5.5E + 4 0,95

69'0

0,07 0,03 0,36

+

LU

CO

co + ai

CM

fr+30'3

63 EVT 1

CO

CO

0,87 | 0,81 0,21 0,06 0,26

CM +

LU

Ol

eg

CO

+

LU

CO

fr + 33'6

0,85 0,69 0,20 0,07 0,35

eg

+

LU

CO

CM 6,2E + 3

fr + 30'9

63 EVT 38

CO

0,86 | 0,71 0,19 0,06 0,34

0 + 33'l

3,3E + 1

eg

+

LU

cn CM 0,78 0,72 0,33

ll'O

0,32

o +

al

eg

l + 36'l eg

+

LU

Ol 63 EVT 40

o

0,87 | 0,81 0,23 0,06 0,26 3.2E + 1 6.2E + 2

CO +

LU

cn CO 0,82 0,71 0,25 0,08 0,34 3,5E+1 5,8E + 2

CO

+

LU

O

LO 63 EVT 41

0,92 | 0,61 0,09 0,04 0,42 3,1E+1 3.6E + 3

fr+30'3 Ol

o 0,79 0,04 0,01 0,29

o +

ai

CM

CO +

ai 1.7E+4 63 EVT 96

CM

0,93 I 0,83

ll'O EO'O

0,25 9,1E+1

E + 36'9 in

+

LU 0,93 0,87 0,14 0,03 0,22

+

ai

Ol

CO 3.8E + 3

fr + 30'8

63 EVT 152

CO

0,94 | 0,87

ll'O

0,02 0,22

l + 39'L

1,4E + 3

fr + 38'3

0,89 0,65

frl'O

0,05 0,39 2.4E + 1

CO

+

LU

CO 8.4E + 3 63 EVT 176

0,75 | 0,80 0,46 0,12 0,25

+

LU

CO

CO

CM

+

ai

eg

CO 5,0E + 3 0,77 0,61 0,28 0,12

Ifr'O +

LU -CM

eg

+

LU

CO

eg

e+39'i

63 EVT 209

LO

0,96 | 0,91 | 0,09 | 0,02 0,18

+

LU

r-.

CO

+

LU

Ol

in

+

LU

CM 0,87 0,68 0,16 0,06 0,37 2.4E + 2

CO +

ai

CM

cn

fr + 38'9

63 EVT 243

CO

0,98 | 0,76

| EO'O

0,01 0,31

O + 38'l

2.3E + 3

+ Ul

CO

eg 0,96 0,75 0,06 0,02 0,32

o +

LU

m

in

CO +

ai

LO

+

LU

in 63 EVT 250

Page 122: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Oblate. 1 Global H1-H2-H3 4601 Oblate. Global Z-H2-H3 4601

0

2

pol. pol. i

coeff. | coeff.

CM

CO

ro

u

CM

u

CO

S

3 coeff. coeff.

CS

CO

u

cn

u

CM

u

<<

CS

<<

S | map

0,96 I 0,88 0,08 0,02 0,21

Z + 3Z'fr fr + 39'9 co + LU

in 0,96 0,86 0,07 0,02 0,23

Z + 38'E

7.0E + 4 1.4E + 6

0,89 I 0,77 0,16 0,05 0,30

Z + 30'£

1.2E + 4

in

+

LU

CO 0,90 0,73 0,15 0,05 0,33 2.7E + 2 1,3E + 4 1,2E + 5

CM

0,94 I 0,49 0,05

EO'O

0,52 1,2E + 1

CO

+

LU

05

CO 1.4E + 4 0,93 0,44 0,07 0,04

89'0 L + 30'Z

4,3E + 3

fr + 3£'L CO

0,96 I 0,32 0,03 0,02 0,73 4.4E + 0 4,8E + 3

£ + 30'6

0,96 0,36 0,03 0,02

CO

o 0 + 39'fr co + LU

m 1-

fr + 30'l t

0,95 0,96 0,17 0,02 0,11 2.9E + 1

Z + 39'6

8,2E + 4 0,94 0,96 0,19 0,02 0,11

l + 39'E Z + 36'6

7.7E + 4

in

0,85 1 0,94 0,46 0,06 0,13 5,1E + 3

fr + 3fr'Z 9 + 39'l

0,85 0,94 0,45 0,06 0,13

E + 30'9 fr + 39'Z 9 + 3fr'l CO

| 86'0

0,50 0,02 0,01 0,51 4,9E + 0 8,4E + 3

+

LU

CM

CO 0,98 0,46 0,02 0,01 0,56 4.0E + 0

E + 30'6 fr + 36'Z r

0,96 I 0,81 0,06 0,02 0,27 1,6E+1

CO

+

LU

CO

t +

LU

05

in

96'0

0,78 0,06 0,02

6Z'0

1,5E + 1

CO

+

LU

00

fr+39'g oo

0,97 I 0,76 0,04 0,01 0,31

+

LU

CO

CM 1.4E + 4

in +

LU

t 0,96 0,74 0,05 0,02 0,33

+

LU

CO

CO 1,5E + 4

m +

LU

05

0,93 I 0,36 0,06 0,04 0,66

CM +

LU

CO

CO 9.1E + 4 2.1E + 5 0,95 0,32 0,04 0,03 0,73 1.8E + 2 1.0E + 5

LO +

LU

en

o

0,90 I 0,58

0,82 I 0,27

0,11

0,14

0,05 0,45 3,4E-1 2.9E + 1

Z + 39'l

0,79 0,57 0,25 0,11 0,44 1,3E + 0

l+33'3

1,1E + 2

-

0,12 0,81 1.8E + 1 8,7E + 2

E + 3E'L

0,82 0,33 0,16 0,11

69'0

1.8E+1 7,3E + 2 1.5E + 3

CM

0,93 I 0,29 0,06 0,05 0,79

o + LU

O

CO 1.8E + 3

E + 30'£ 0,94 0,30 0,05 0,04 0,76

0 + 3E'fr £ + 38'L 3.1E + 3

CO

•*

0,91 I 0,48 0,09 0,05 0,53

o +

LU

oo 1.0E + 3

co +

LU

m co 0,93 0,54 0,07 0,04 0,48 5,1E+0

3 + 3fr'6

4,0E + 3

in

0,98 I 0,39 0,02 0,01 0,63

l + 39'L fr + 30'9

1,3E + 5

86'0

0,48 0,02 0,01 0,53

L+36'l

4.3E + 4 1.5E + 5

CO

0,78 I 0,46 0,22 0,12 0,54 1,7E + 0 3.5E + 1

3 + 33'L

0,79 0,50 0,22 0,11 0,50 1.7E + 0

l + 39'E

1.4E + 2

r~ oo

| 66'0

0,61 0,01 0,01 0,43

0 + 39'L

7.4E + 3

+ LU

O

66'0

0,67 0,02 0,01 0,38

O + 39'l CO +

UJ

o> CO 4,7E + 4

05

0,76 1 0,33 0,22 0,15 0,68

o +

LU

CM

in 1.1E + 2 2,4E + 2 0,75 0,23 0,19 0,17 0,91 5,1E + 0

CM +

LU 1.7E + 2

o

CM

| 86'0

0,51 0,02 0,01 0,50 1.0E + 1

fr + 36'l

7,6E + 4 0,98 0,58 0,02 0,01 0,45 8,3E + 0 1.7E + 4

fr + 39'8 CM

0,97 1 0,33 0,02 0,02 0,71 2,7E + 0

CO

+

LU

CO

m 1.1E + 4 0,97 0,42 0,02 0,01 0,60 2.4E + 0

co + LU

CO 1,3E + 4

CM

CM

0,98 | 0,48 0,02 | 0,01 0,54

o +

LU

00

E + 39'E

1,3E + 4 0,93 0,82 0,11

EO'O

0,26

0 + 30'E

2,3E + 2

CO +

LU

in

CO

CO

CM

0,98 I 0,80 0,04 0,01 0,28

l+36'fr +

LU

CO

CO

in

+

LU

CM

t 0,97 0,77 0,05 0,01 0,30

L + 30'8

3.6E + 4

in

+

LU

05

CO

1-

CM

| 96'0

0,32 0,04 |

EO'O

0,73 2.4E + 0

E + 38'L CO

+

LU

CO

CO 0,95 0,32 0,04

EO'O

0,73 3.7E + 0

E + 36'l £ + 39'E m

CM

0,91 | 0,25 0,07 0,06 0,94 1.1E + 2

fr + 3fr'3 +

LU

CM 0,93 0,88 0,14

EO'O

0,21

+

UJ 5,5E + 2 1.3E + 4

CO

CM

0,92 | 0,36 | 0,07 0,05 0,66

l+3fr'3 E + 30'9 fr + 33'L

0,91 0,31 0,07 0,05 0,75 3,0E + 1 5.7E + 3

fr + 30'l CM

0,98 | 0,70 | 0,02 0,01 0,35

o +

LU

00

CO 2,3E + 4

in

+

LU

CO 0,99 0,74 0,02 0,01 0,33

0 + 39Y

2.1E + 4 2,0E + 5

00

CM

Page 123: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Oblate. J Global H1-H2-H3 4601 Oblate. Global

| pol. pol.

|

Z-H2-H3 4601

o 2 c o

coeff. | coeff.

CM

PO

u

ro

u

eg

u

ro

CM

7<

coeff. coeff.

CM

CO

u

PO

(0

eg

u

ro

CM

3 | map

|. 0,89 | 0,83 0,19 0,05 0,25

3 + 38'Z CO +

ai

00 1.3E + 5 0,88 0,85 0,21 0,05 0,23 3,2E + 2

CO +

ai

q

P-*

in +

ai

CO

en CM

0,89 | | 0,61 0,13 0,05 0,42 1.3E+1

CM +

LU

'S-00

CO

+

ai

-0,73 0,47 0,29 0,15 0,51

o +

ai

CO

t 5.6E + 1

CM +

LU

CM

O

CO

0,90 | | 0,30 0,08 0,06 0,77 1.5E + 2 2.4E + 4 4.0E + 4 0,88 0,38

LL'O

0,07 0,64

O +

ai

03

00

CM

+

ai q

p^

£ + 38'l CO

0,97 | 0,27 0,02 0,02 0,86 5,2E + 0

+

ai

CO 1.8E + 4 0,97 0,30 0,02 0,02 0,77 6,3E + 0 1,2E + 4

'S-+

LU

CM

eg

CO

0,92 | 0,38 0,07 0,05 0,64

Z + 36'l 'S-+ ai

CO 9.0E+4 0,93 0,40 0,06 0,04 0,61 1,2E + 2

+

ai

d +

Ul

03

CO

CO

0,98 | 0,31 0,01 0,01 0,75

O +

LU

q

d

'S-+ LU

oo 8.5E + 4 0,98 0,37 0,01 0,01 0,66

o + LU

00

p-4,2E + 4

+

LU

r-03

CO

0,98 | 0,31 0,01 0,01 0,75

O +

LU

CO

p«^

1-+ ai

CO

CO

+

LU

in

CD 0,99 0,39 0,01

LO'O

0,63

O +

ai

1-+

ai q d

+

ai

p*-

in

co

0,98 | 0,57 0,03 0,01 0,46

+ ai q

\à 9,3E + 4

in +

LU 'S-'S-0,98 0,58 0,03 0,01 0,45

+

ai

CD 9,1E + 4

in

+

LU

CD

CD

CO

0,99 | 0,94 0,02 0,00 0,14 4,6E-1

CM

+

ai

1-00 4.1E + 4 0,99 0,95 0,04 0,01 0,14

0 + 3l'l

7.9E + 2

+

ai

SI­'S-

p«. co

0,98 | 0,34

LO'O LO'O

0,70

O +

ai q

t +

ai -

co

'S-+ ai en CD 0,98 0,39 0,02 0,01 0,63 1.1E + 1

+

ai q

d 7.6E + 4

00

co

0,99 | 0,52 0,01 0,00 0,50 7.6E-1 1.1E + 4

1-+ ai

SI­'S-0,99 0,59 0,01 0,00 0,44

0 + 33'L ro + ai q d

'S-+ ai

O m

03

co O ?

0,85 | 0,67 0,20

0,82 | 0,61 0,22

0,84 | 0,34 0,14

P» I C3 I

03

O O O

o~| d d

0,37

0,42

O +

ai

en 00 2,2E + 2

E + 39'l

0,83 0,63 0,21 0,08 0,40

+

LU

CM

CM

+

ai

CM 1.7E + 3

CM

4,3E + 0

L + 3L'6 CM +

LU

q

là 0,85 0,57 0,17 0,08 0,45 3.3E + 0

CM

+

ai

CM

+

ai

co m co 'S-

0,68 6,3E + 1

co + LU

•«s-co

co +

ai q

p->" 0,85 0,38 0,14 0,09 0,63 5.9E + 1 3,1E + 3 7.9E + 3

t

0,91 | 0,36 0,08 0,05 0,67

+

LU

E + 38'L co +

LU

'S"" 0,89 0,37 0,10 0,06 0,65

+

LU

P>-

CO +

ai

00

co +

ai

co t m 'S"

0,98 | 0,78

EO'O

0,01 0,29

l+30'3 •«s-+ ai

m

CM

m +

LU

q

eî 0,98 0,78 0,03

LO'O

0,29 2,1E+1

+ LU

m

CM

9 + 36'3 CD

0,85 | 0,70 0,20 0,07 0,35 1.2E + 0

L + 36'Z

2,4E + 2 0,82 0,68 0,24 0,09 0,36

O +

ai

PN 3,0E+1 2,3E + 2

PN

'S-

0,89 | 0,28 0,09 0,07 0,81 1,7E + 0 2,1E + 2 3,3E + 2 0,86 0,27 0,10 0,09 0,83 2.7E + 0 2,4E + 2

Z + 39'E 00

t

0,85 | 0,37 0,13 0,08 0,64

o +

ai

en co

CM +

ai

co CM

CM

+

ai

m d 0,81 0,36 0,17 0,11 0,65

o+30'g 3 + 39'l CM

+

ai

en co

en

0,88 | 0,28 0,10 0,08 0,81 2.2E + 0

CM

+

ai

co CM

CM

+

ai

q d 0,85 0,37 0,13 0,09 0,65

O +

ai

p--

co

CM +

LU

CM

CM +

UJ

in

O m

0,82 | 0,66 | 0,24 0,09 0,37

o +

ai

co

+

ai co CM 1.7E + 2 0,82 0,57 0,21 0,09 0,45

0 + 39'L +

ai

co

CM +

LU

00

m

0,96 | 0,74 | 0,06 I

30'0

0,33

L + 3E7. +

ai

O

CM 1,9E + 5 0,95 0,70 0,06 0,02 0,35

+

ai

r» 00 2.2E+4

m +

LU

CM

m

0,96 | 0,79 | 0,06 | 0,02 0,28 5,8E + 1 1.6E+4

9 + 30'3

0,96 0,78 0,07

ZO'O

0,30 7,1E + 1 1,7E + 4

m +

ai

en

co m

0,87 | 0,57 0,14 0,06 0,45

0 + 38'L L + 30'6

4.4E + 2 0,88 0,48 0,12 0,07 0,53

0 + 39'L Z + 30'L CM +

LU

eo co

in

in

0,83 | 0,63 | 0,21 | 0,09 | 0,40 5,2E+4

co + LU 7,1E + 6 0,84 0,61 0,19 0,08 0,41 4.1E + 4

eo + LU

9 + 39'9 co m

Page 124: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Oblate. J Global H1-H2-H3 4601 Oblate. Global Z-H2-H3 4601

o Z

O

a

"5

a

coeff. | O

U

Ol

u

u

CN U

fO

3

¿2

V O u a> o u

CM

to

U

m u

c

o

es

u

s 3 a.

co

E

" 0,97 |

eo

co O o*

CM O O*

en m O 2.3E+0

eo +

ai q ci

co + ai

co

r-. en

d d

CO

o d

CM

O

d

in

O

O +

ai

q oî 2.5E + 3 8,4E + 3

m

0,86 |

co co

d

Ol

d

co o d

CO

CD

o

CO

+

ai

m +

ai

co

m + ai

CM

p>*

co oo d

CD

CO

d

CM

d

00

o

d CO

CO

d

CO +

LU

in

in +

ai

O

CO

m +

LU

O)

d

00

m

0,89 J

in

CO

d

C5

O

o

CO

o

d oo CO

o

o +

ai

p» 2.0E + 2

CM +

ai

CD

00

d

00

Ol

d

O

05

O

o*

o]

00

d 3.1E + 0

Ol

+

ai

CO

Ol 4.0E + 2

en in o

CO

0,91 I

CO

d

CO

o d

co o d

CO

r«. o +

ai

co* 6.4E + 3

+ ai

Ol

Ol

en d

CD

CO

d

p~ O d

in

O d

p-

co d +

ai

q ci 5,8E + 3

<* + LU

CO

CD

| 86'0 d

CS

o

o'

o o

m O •

ai

co 3.4E + 3

+ ai

co

05

en d

p» m O

CN

O

d

o

CO

o"

q

p-~

co + ai

co 1,5E+4

0,88 |

co co o"

o d

p» o d

o

o +

ai q

d

Z + 36'8 co + ai

eo

en o

m

O r«. o O CO

o

O o

en o o + ai q

m 7.9E + 2

Ol

+

ai

en

i CN

I CO

CO

CO

0,97 |

<*

d in O d

CM O d

co co o

o +

ai

co 1.3E + 3

+

ai

Ol

CO

CJ5

d

CJ5

r«. O*

in

o d

CM

o

d

00

CM

d

o +

ai

ci

CM

+

ai

m

00

+

ai

CD

0,92 |

o

CO

o'

co

d

t o

d CO

CM

o

o +

ai

CM_

ci

CM

+

ai q

eo + ai

05

d

o o>

d

05

d

o

d en

d

o +

LU

r--oî

+ ai

CD

r» 2,1E + 3

m co

0,81 |

en co

d co CM

d

en o o"

m co o +

ai

q

CM

+

ai

q ci

co + ai

CM

ci

co d

05

d

o

m d

co o d

CD

d +

ai

q +

ai

CM

CD 2.6E + 3

co co

0,97 |

co oo d r». o d o d o CM

o

CM

+

ai

q

LO

+

ai

CM

CD

+

ai

05

CN

in

en d

en p»

d

co O d CM

O o"

co CN

d

CM +

LU

»-» CO

in +

ai

CM

CD

+

LU

in

i^

co

0,96 |

o"

CD

o

CN O o"

O CO

o

+

ai q 4.6E + 3

+

LU

O

in

co d

o

m

d eo

d O d

in

d +

ai

CM

p>~

co + ai

1-+

ai

co

oo co

0,92 |

'S-

Ö

o

o d

p« m o

CM

+

ai

q +

ai -_

ci

+

ai

co co d

eo d

in

o"

o

co o"

CN

+

ai

q

eo" 1.6E + 4

+

ai

en co

en CD

0,90 |

CM

d

O o"

CD

O m co o i

LU

cj

CN

+

ai

q

CM

+

ai

CN

CM

oo d

CD

eo d O*

CI) O

d in

co

d o +

ai q +

ai

co

CN +

ai

en

o

0,97 |

CM

m d

co o d

CM O d

o

in

O 0 + 30'Z E + 38'l co + ai

CD

d

d.

m

CM

o"

eo T—

d in m o"

+

LU

q d 1,1E + 3

eo + ai

00

co

r

0,95 |

o co d

i-o o"

CO

o

o

p-

o

+

ai

co + ai

p^ d 1,7E + 4

en o"

eo co d

O*

o d

5

o"

+

ai

m

E + 39'Z +

ai

co

CN

0,98 |

co CO

d

CM O d

o d

5

°

o +

ai q

in

+

ai

q +

ai

m d

Ol

05

d

m

O

05

O O*

O o"

o

m o +

ai

CO

co + ai

co

+ ai

co

co p»

0,92 |

o en

d

00

d

co o d

00

o +

ai q

Z + 30'6 +

ai

Ol

d

CD

d

en CM

d

Ol

d

d

Ol

+

ai

CM

CO +

ai

CO +

ai

CM

00

-a-p»

0,73 |

co 00

d

o

CO

d

CM

o"

o

CM

O

+

ai

CM

+

ai q

ci

co + LU

CM

m

5

eo O*

CD

p^

d

CD

CO

d

PN

d

CM

+

ai

q

CM +

ai

CM

co

co + ai

m

0,95 |

05

Ö

d

CM O

Ö

00

o +

ai

d

co + ai q

p>"

m +

LU

O 00

d

CO

CO

d

CM

d

o

d

CO

o"

CM

+

ai q d

co + ai

CM

en 6.7E+4

co p«

0,97 |

d

CO

o

d

OI

o d

00

m O 4,8E + 0 6,8E + 3 2.1E + 4

05

d

05

CO

o"

CM O

d o

d CM

co d

o +

ai q

CM

co + ai

P*

co

co +

ai

t en

Page 125: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

APPENDIX 6

EXAMPLES OF SISMOGRAMS AND ASSOCIATED P-WAVE POLARIZATION PATTERNS

Page 126: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

Nh fi-T camp I as : First, last paint: 1 163B4 Event : Tir Schlun

time »calei IBB ra/dw

full scale: 3Î36 us

•4616-hl- - - m t x - l S B . - ? - u- •

• 4 6 1 6 - h g -

• l B S u v < d i v i -nax»355 : I • u- •

•4S16-h3 amp^nay348 . -6 - u-1S1 u ^ » '

-^^-f\fyj\fij~Mflfnks~if)f~j^\fiä/^

' • l •ax-799.•^•u••

•42B uA i iv -

*4S5B-ft> wtp •raME"3~4g.-5- uj

•2B4ii/<J>v-- ' w v A A A i O w ^ V ^ Y V ^ w y V y ' - ^ ' Y W ' A N ^ ^

•4S50-h2- • a m p J M J C 4 - B 8 •• I • U' • a U u ^ - d i v . i~-\l^(VV^l\S*-V*V^^

' • « s e - M -

•233-uy-dtv- -£ïï : -~ ¡~ -«^v^A<i^r^pWAWVA<V i ^^^^

• 4 6 B I - X - • «ftpjraax-1-46 ; Z - u- •

• 7 E . 7 . u /d iv- -

' -4SBI-M w p -fnax-1-ga .-3- u- •

• • 6 7 M - u/dlv-<

•4BBI-hg awp -WBX-l-t

• 6 2 . 2 u / d i v -

•468]-h3 a»pj»»*-99.-92- u- • •52.5-u¿div

^hydrophone- i- •

9118- u/dlv-<

•iinp^wse"l74*.9- -u;

Figure 1 - Sismograms of the Schlumberger calibration shot.

Page 127: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

PROBE 4616

PROBE 4550

PROBE 4601

fîrîî.'ÏSl'î..»« 273B.Î88B Event : Tir Schlun,

4516-z MPJMX-E19.5 i)

4B16-M upjiax-228.3 u

4616-K2 »p_iux-2E2.2 H

1616-M up jw-315 .6 •

FÍr:.,K,:...tÍ JÍM.Í7« Event : Tir Schlun,

45S0-I »Bp_r».«"413. I •

4550-hI ftMp_nu>2S7.l u

45S0-h2 upj iw-HS. I i

45Se-h3 wp_»w-lB8.7 i

N» ei iMtlil i 151 First, Itst point: 2350.3108 Event : Tir Schi um

4EBI-Z upntx-42.42 •

4EBI-M iapjiu-aa.99 •

4CBI-H2 upjtu-ll.Se ti

46B1-+3 wpjtu-21.73 •

tiM »cale: lBiM/div

full scale: 23.82 as

tía« Mi lu IB M'div

Full »calo: 29.62 as

ttao »ettlsi IB M / 4 W

full scale: 29.B2 ax

Figure Ibis - Sismograms of the Schlumberger calibration shot.

Page 128: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

z-hl-h2 z-hl-h3 z-h2-h3 hl-h2-h3

P R O B E 4616

X-Y

PI in Ri-Z

;.

• :

X-Y 1

PI an Ri-Z

j- - X !•/

x-Y :

P I » ftt-Z

•\-i

::

PROBE 4550

x-Y :

P l m Px-Z

: /

^^^K---

I j i ;

X-Y 1

PI in Hl-Z

1 (1 i i

^y^r^- —

Í •

V| PROBE 4601

X-Y

P l w R E - Z

S i

x-Y : ; :

PI in Ri-Z 1

Figure 2 - P-wave polarization patterns of the Schlumberger calibration shot.

Page 129: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

z-hl-h2 z-hl-h3 z-h2-h3 hl-h2-h3

x-Y :

PI m Ri-Z

#x

X-Y

PI in Rt-Z

! 1 i i * vi

B X-Y

Plan Rz-Z

! i

•—Ví

\ )

X-Y :

Plan Ri-Z

X-Y

Plan Rt-Z

1 \ !

H Figure 2bis - Probe 4550: Examples of P-wave polarization patterns for various time window lengths.

First point - Last point: A : 2645, 2662; B : 2645, 2665; C : 2645, 2670.

Page 130: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

PROBE 4616 fÍrS/ÍSiT....: áSí.W3 Event s I7evl77 7 Sep 1333 16:22:1? J™ ~¡¡; |[ ~ t iM «calei le iw'dx

461S-I wBJ»*x-Ha30 u

4616-hl W B J » W - S 1 7 2 u

4ElS-h2 i*p_nw-9 146 u

4616-h3 upjtt.-DK? t

PROBE 4550 nrîi.'ÎA.nti 2?73.3m Event : 17evl77 ? Sep 1933 16:22:17 tiM »coloi 10 tw/div

full sctle: ei.82 «

4S5Ô-I up_nu-M7ie u

4553-hl up_nu-H29a •

4SSB-h2 »pjiw-ItPQ «

45SD-h3 up »w-9?19 »,

PROBE 4601 » • • • ! " • ! • • . . • 15!. . , „ Event : I7evt77 7 Sep 1333 18:22:17 «-•«•! • • « - " < • First, lut joint: 34E9.3E1! full scale £5.62 «

4EBI-Z up_nuc"S1S6 u

4B8l-hl up nix*3788 u

4EBI-K2 wpjiu-1757 u

4EBI-h3 UPJMV-193S i

Figure 3 - Example of an induced event: 17-177.

Page 131: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

z-hl-h2 z-hl-h3 z-h2-h3 hl-h2-h3

P R O B E 4616

X-Y

PI m Hk-Z

PROBE 4550

X-Y :

PI in Ri-Z : /

V PROBE 4601

X-Y

Pltn ftt-Z

Figure 4 - P-wave polarization patterns of 17-177 event.

Page 132: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

PROBE 4616

PROBE 4550

ïîrS/ralT.».! I H M » E « n t : 2Gev513 " s=p l393 e ? : e a : " | | - u u ..... U M *c«Hí IB na'dn

4EI6-Z M P J M X - 5 9 9 4 u

3lSa u/tfw

4616-hl M B J M X - 1 3 5 8 <

4E16-h£ ».pj»«-4434 >

4ElG-h3 *»pjiM-2t4a «

1330 u/iiv

rîrîi.'Kl'^«,; ¿lsa.Hl« Event : 26evS13 11 Sep 1333 87:8B:23|| ^ ' Z '¿> U M »e«loi IB W d n

4550-z »pj»w«4987 u

4553-hl upjkkx-3717 u

45Sa-h2 up_MU(>344C u

45S0-h3 w p j i w ü « <

PROBE 4601 fïA'îSiT..».! & . « » Event : J6ev5l3 11 Sep 1333 »sMît3| |^ Zt. aZ?

4BB1-I MpjiM-ïlB9 u

4EBl-hl wpjiw-1341 u

4EBI-h2 »jtpj»«-644.l a

4EB)>fc3 »«pjwBS2 u

Figure 5 - Example of an induced event: 26-513.

Page 133: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

z-hl-h2 z-hl-h3 z-h2-h3 hl-h2-h3

PROBE 4616

PROBE 4550

PROBE 4601

X-Y : :

P l w Fa-Z ./J Plan Fb-Z

X-Y

PI m Ftt-Z

! •

X-Y

Plan Ftt-Z

Figure 6 - P-wave polarization patterns of 26-513 event.

Page 134: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

PROBE 4616 nríÍ.'«,*...,,,: &3.MÎ3 E « n t •• 6 3 e * < " 1 S O C t , 9 " M : , 3 : B ful I scale: ¿3.62 as

4516-1 4 B P J » M - 3 3 G 4

45I6-M up IMUC-4450 u

4GIS-h2 %»p_i»w"BÍ9? »

4ClS-h3 upjtM-S.,19 u

PROBE 4550

PROBE 4601

Nb of iinflii : 151 First, lut point: 2978.3128 Event : G3ev4l 15 Oct 1993 14:13:

ttM »etloi IB tw-dw

full seilt: £3.82 M

455B-Z ua_ntx-t345e u

453B-M up_itu-SG5l u

45S0-K2 m»p_n,u<-4Z08 t

45S8-ÍS3 up_nw<9SI 1

£330 u/div

FÎrrt/ÎSttlnt! 3723.3873 E v e n t : 6 3 e v 4 1 1 6 0 c t » " "¡13: t t M »OBloi IB IM^dlV

Pull scale: £3.62 «i

•BDl-i UPJ1U-S18.8 u

4BBI-M aap_nax-732 u

4SBl-h2 »•p_n>mx-5B8.B u

4SB1-h3 upjiM-1183 1

Figure 7 - Example of an induced event: 63-41.

Page 135: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

z-hl-h2 z-hl-h3 z-h2-h3 hl-h2-h3

PROBE 4616

PROBE 4550

PROBE 4601

x-1 :

PI in Rz-Z

- ^ » ^ : ...

X-Y :

PltnHz-Z y

| ;

x-Y :

PI in Ri-2

x-Y :

i^rH^

PlwiRi-Z j*

hi 1

x-Y : j

\ß X \

PI m Br-Z /

i-T

X-Y

PI» P4-Z

x-Y :

PI vi RÏ-Z

X-Y :

: \

Plan Hi-Z

M ") A

X-1

PI m Hi-Z

Figure 8 - P-wave polarization patterns of 63-41 event.

Page 136: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

nr°î."&*pointi 2373.3123 Event : 17ev l77 7 Sip 1933 18:22:47 ti«o »colei IB lu/div

full scale: ES.62 • :

4550-1 up ni*-H7l0 u

7723 u/div

4.5S0-M upjiix-H23e u

4SSB-4.2 » p »»X-1BI7B u

4550-h3 up ntx-9710 u

Nb of sanplcx FlrSt/ÎSt ¡oint! M7B.312B E v e n t : 1 8 e v 2 3 0 8 Sep 1993 09:18: 14

tlM scale: IB ma/div

full scale: £3.82 «s

4550-z ampji«"542? u

2B5B u/div

4550-hl imp n«-4B33 u

4550-h2 up_n4x-321t u

1693 u/div

4558-h3 unp_m&x-ZB48 u

Figure 9 - Signals of induced events: 17-177 and 18-230.

Page 137: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

z-hl-h2 z-hl-h3 z-h2-h3 hl-h2-h3

E V E N T 17-177

x-Y : :

Plan RÏ-Z y

X-Y

•1an Rl-Z

''A tr:

X - Y :

PI m Rz-Z

X-Y

Plan Rz-Z

E V E N T 18-230

X-Y

PI in ni-z

X-Y

•Ian Hi-Z

I k 1

\

x-Y :

Plan Rz-Z

X-Y !

Plan Rz-Z

Figure 10 - P-wave polarization patterns of 17-177 and 18-230 events.

Page 138: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

"Ïríí/ÍSi",*.int! 3723.3873 E v c n t : ^ ^ 1S 0 c t 1 9 « 11:13:08 tike «cole: IB na^div

full scale: ES.82 is

4BB1-I a»p_i«ix-518.B u

4BBl-hl »ip_naW32 u

4EBI-h2 i«p_i»»x>588.8 u

4EBl-h3 up_nox-1103 u

FÏrsÎ."Si"ainti 3551.3781 E v e n t : G 3 í v 9 G IS Oct 1333 15:24:13 tine acolo; IB ru'div

full scale: 23.62 is

4EBJ-Z Mpjiax*E70.5 u

4BBI-M Mpjt«"1154 u

BBS u/div

4EB1-H2 *mp_ra»x-544

4B01-h3 w«p_nw(-1255 u

Figure 11 - Signals of induced events: 63-41 and 63-96.

Page 139: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

z-hl-h2 z-hl-h3 z-h2-h3 hl-h2-h3

E V E N T 63-41

E V E N T 63-96

Figure 12 - P-wave polarization patterns of 63-41 and 63-96 events.

Page 140: L'ENTREPRISE AU SERVICE DE LA TERRE Iinfoterre.brgm.fr/rapports/RR-39025-FR.pdf · 2007-06-14 · I I I I I I I I I I I I I I I I I I I I I BRGM L'ENTREPRISE AU SERVICE DE LA TERRE

BRGM Service Reprographie

Impression et façonnage