159
UNIVERSITE DE LIEGE Faculté des Sciences Appliquées LES RESEAUX LOCAUX INDUSTRIELS Dr. Ir. H. LECOCQ Professeur

LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

UNIVERSITE DE LIEGE Faculté des Sciences Appliquées

LES RESEAUX LOCAUX INDUSTRIELS

Dr. Ir. H. LECOCQ

Professeur

Page 2: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

– Dernières mises à jour 2004 –

Page 3: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 1

Chapitre 1

CONCEPT CIM

(Computer Integrated Management) 1.1. CONTEXTE INDUSTRIEL

Du point de vue de la gestion et de l'automatisation, on classe généralement les

entreprises industrielles en deux grandes catégories : les entreprises de procédés continus (process industries) et les entreprises manufacturières (manufacturing industries).

Dans les premières, la production est décrite en termes de débits de matières.

C'est typiquement le cas des usines physico-chimiques et pétrochimiques. Le processus de production y est généralement caractérisé par une séquence de réactions physico-chimiques se déroulant de manière continue ou quasi-continue. Il est clair que, dans ce type d'entreprise, la production est strictement figée, tant du point de vue de la nature des produits que du point de vue de l'outil de production.

Dans les secondes, qualifiées de discontinues ou de discrètes, on fabrique des

"objets" dénombrables qui peuvent évidemment être de complexité très diverse. Les industries mécaniques, électriques et électroniques appartiennent à cette catégorie. Le processus de production se présente en général ici comme une succession d'opérations de mise en forme et d'assemblage réalisées manuellement ou à l'aide de machines.

La suite de l'exposé sera principalement consacrée à cette seconde catégorie

d'entreprises. Bien entendu, certaines des notions qui seront présentées ci-après sont également applicables à la première catégorie.

C'est l'évolution du marché qui explique les problèmes rencontrés actuellement

par les entreprises manufacturières, surtout par celles qui s'adressent au grand public. Il y a peu de temps encore, le marché se caractérisait par le fait que le producteur était roi. Il y avait peu de concurrence et peu de produits. Le consommateur n'était pas difficile et achetait ce qui était disponible. Qu'on se rappelle la Ford T du début du siècle qui fut produite à un million d'exemplaires par an pendant seize ans ! C'est pour ce genre de production que Taylor avait développé sa philosophie: spécialisation des équipements et spécialisation du personnel à qui on ne demandait que des travaux élémentaires et répétitifs.

Actuellement, le marché se caractérise plutôt par le fait que le client est devenu

roi. La concurrence s'est considérablement accrue et mondialisée, rendant le consommateur plus difficile et beaucoup plus critique, notamment au niveau de la qualité des produits. Le cycle de vie des produits s'est également considérablement raccourci : trois à quatre ans pour une automobile, parfois beaucoup moins pour un ordinateur. En termes de production, cela signifie une grande variété de produits à cycle de vie très court et en petites séries. Cette situation peut être résumée par le diagramme de la figure 1.1.

Page 4: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2

Figure 1.1. Position et structure de la production manufacturière

Des 30 % représentés par la production manufacturière dans l'activité industrielle globale, 40 % concernent une production par lot et seulement 15% une production de masse. Des 40 % de production par lot, 75 % concernent des lots de moins de 50 pièces ! Pour survivre, les entreprises doivent donc arriver à produire vite, bien et bon marché, tout en étant capables de s'adapter rapidement à l'évolution des produits. 1.2. LES NOUVELLES REGLES DE PRODUCTION

Les nouvelles règles de production qui répondent à la question peuvent être résumées, de manière imagée, par cinq zéros : zéro défaut, zéro panne, zéro stock, zéro délai et zéro papier. La signification des quatre premiers zéros est claire; le cinquième indique la volonté de supprimer le transfert manuel d'informations qui alourdit trop souvent le travail du personnel et est cause de nombreuses erreurs. Idéalement, on devrait d'ailleurs encore y ajouter deux zéros : zéro accident et zéro problème social.

Plus techniquement, ces nouvelles règles de production relèvent d'une philosophie

appelée "Juste-à-Temps" (Just-in-Time ou JIT en anglais) aussi connue sous le nom de "production à flux tendus" [Béranger, 1987].

Il s'agit d'un principe d'organisation industrielle, apparu au début des années 80,

qui préconise d'acheter ou de produire seulement ce dont on a besoin, quand on en a besoin. Ceci devant être respecté aussi bien au niveau des produits finis (ne fabriquer que ce qui est commandé) qu'au niveau des pièces constitutives de ces produits.

Le premier résultat en est évidemment une réduction drastique des stocks, et partant, une diminution sensible des charges financières de l'entreprise. Il ne s'agit cependant pas là du but principal recherché. En réalité, la réduction des stocks n'est que l'amorce d'une réaction en chaîne qui conduit à des bouleversements en profondeur du fonctionnement de l'entreprise.

En effet, pour produire sans stock tout en garantissant des délais de livraison

normaux, il est nécessaire d'avoir des temps de fabrication très courts, une grande flexibilité pour pouvoir suivre la demande (en variété et en quantité) et une haute fiabilité

30 %

40 % 15 %

75 %

Production

Par lots De

Taille des lots < 50

PRODUCTION TOTALE

PRODUCTION

PRODUCTION PAR LOTS

Page 5: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 3

de production afin d'éviter les aléas. Au niveau de l'organisation de la production, cela implique :

- la division de l'usine en cellules permettant l'enchaînement rapide des opérations

concernant une même pièce ou un même produit de manière à éviter les stockages intermédiaires;

- la limitation des déplacements accélérant le travail et facilitant le suivi de production; - la flexibilité des cellules en question : changement rapide d'outils et de programmes de

fabrication; - le contrôle et la maîtrise de la qualité à chaque étape de la fabrication afin de ne pas

enrayer le processus; - la fiabilité des machines, pour les mêmes raisons que ci-dessus, ce qui suppose la

mise en place d'une politique rigoureuse de maintenance préventive; - la polyvalence et l'augmentation de la qualification des opérateurs qui deviennent

responsables de la quantité et de la qualité des pièces ou produits fabriqués, voire même du bon fonctionnement des machines;

- des relations nouvelles avec les fournisseurs afin qu'ils entrent aussi dans le

processus, tant au niveau des délais que de la qualité des produits fournis.

Remarquons que, jusqu'à présent, il n'a encore été question ni d'automatisation ni d'informatisation. C'est qu'en effet la philosophie du Juste-à-Temps concerne avant tout l'organisation de la production.

Il faut en effet considérer la production comme une chaîne dont les maillons doivent tous être de même résistance : il ne sert en effet à rien, globalement, de renforcer à l'extrême certains maillons, s'il en est d'autres qui demeurent fragiles.

Une saine démarche consistera donc à analyser les flux de matières et

d'informations associés au processus de production, à les rationaliser et à les simplifier au maximum dans l'optique du Juste-à-Temps. Ce n'est qu'alors, et alors seulement, que l'opportunité d'automatiser ou d'informatiser telle ou telle partie du processus apparaîtra clairement.

En l'occurrence, l'automatisation permettra d'accélérer la fabrication et/ou de

garantir la constance de la qualité. Pour les raisons qui ont été exposées ci-dessus, l'automatisation devra être flexible. Cette flexibilité doit se traduire au niveau de la structure des machines qui seront aussi polyvalentes et adaptatives que possible, avec une gestion d'outils et une alimentation en pièces complètement automatisées. A cet égard, le robot apparaît évidemment comma la machine flexible par excellence.

Cette flexibilité doit aussi se retrouver au niveau du système de commande des

machines dont les modes de fonctionnement devront pouvoir être facilement modifiés. Ce dernier point ne pose plus actuellement de réel problème dans la mesure où pratiquement toutes les nouvelles machines de production sont commandées par des dispositifs à base de microprocesseurs, avec programme enregistré. De plus, des portes de communication existent presque toujours sur ces machines qui permettent de

Page 6: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 4

télécharger et de modifier les programmes à partir d'autres ordinateurs. L'informatisation, quant à elle, a pour but d'améliorer la manipulation des

informations relatives au processus de production. Ces informations concernent non seulement la fabrication proprement dite mais aussi la conception des produits, la gestion technique, financière et administrative de l'usine, le management, le marketing, ...

Ces différentes facettes de la production ont déjà fait, de longue date, l'objet de

développements informatiques spécifiques. Cependant, dans la plupart des cas, ceux-ci ont été menés indépendamment les uns des autres, avec des ordinateurs différents, des systèmes d'exploitation différents, des moyens de communication différents; on parle d'îlots d'automatisation.

Il en résulte que d'importants flux d'informations continuent de circuler par la voie

manuelle (papiers, plans, réencodage, etc.) tandis que des informations similaires se retrouvent dans des bases de données différentes, avec tous les risques d'incohérence que cela comporte. Cette situation est représentée à la figure 1.2.

Les nouvelles règles de production évoquées dans ce paragraphe (et en particulier

le "zéro papier") conduisent tout naturellement à préconiser l'intégration des moyens informatiques d'une entreprise. Le terme intégration recouvre ici non seulement l'interconnexion physique des ordinateurs par des réseaux de communication mais aussi, et surtout, leur interconnexion logique. On entend par là que le système informatique distribué initial apparaît à l'utilisateur comme un système informatique centralisé et homogène; les effets recherchés étant essentiellement l'unicité et la disponibilité des informations.

En d'autres termes, l'intégration offre à chacun l'accès direct à l'information

voulue, au moment voulu et à l'endroit voulu. C'est ce qu'on appelle le CIM : Computer Integrated Management. La figure 1.3. symbolise cette situation idéale.

D'un point de vue technique, le CIM implique donc :

- l'existence d'un système de communication ouvert permettant à des systèmes

informatiques et de contrôle hétérogènes de communiquer entre eux - une architecture informatique ouverte et distribuée permettant aux utilisateurs de

collecter, de stocker et de récupérer des données pertinentes sur le processus de production et cela de manière transparente, c'est-à-dire, sans avoir rien à connaître du système de communication

- un ensemble de progiciels de contrôle et de gestion capables d'exploiter les données

mentionnées ci-dessus.

Dans le présent volume, on s'intéressera essentiellement aux deux premiers de ces trois points.

Page 7: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 5

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1 C el l ul e 1

Figure 1.2. Processus de production informatisé et automatisé mais sans intégration

Page 8: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 6

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1

C el l ul e 1 C el l ul e 1

Figure 1.3. Processus de production intégré ou CIM (Computer Integrated Management) 1.3. HIERARCHISATION DES COMMUNICATIONS

La figure 1.4. représente schématiquement toutes les sources d'information que l'on peut trouver dans une entreprise et qui, dans l'optique du CIM, doivent donc pouvoir être accessibles par celui qui en a besoin, où qu'il se trouve dans l'organisation.

Page 9: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 7

PLC

PLC

PLC

PLC

RI/OM

Machine 1 Machine 2 Machine 3

Capteur

Actuateur

Capteur

ActuateurCapteur

Actuateur

Entraînement Panneau Opérateur I/O déportées

Contrôle machines

Conduite

Supervision Suivi de production

C ell ul e 1

C ell ul e 1

Cellule 1

C el lule 1

C ell ul e 1

C ell ul e 1

C ell ul e 1

C el lule 1

C ell ul e 1

C ell ul e 1

C el lule 1C ell ul e 1

C ell ul e 1

C el lule 1

C el lule 1

C ell ul e 1

C el lule 1

C ell ul e 1 C ell ul e 1

C el lule 1

C ell ul e 1

USI

NE

CEL

LU

LEC

APT

EU

R /

AC

TUAT

EUR

ATEL

IER

TER

RA

IN

CO

MPA

GN

IE

0

1

2

3

45

Figure 1.4. Eléments à interconnecter pour réaliser le CIM

Page 10: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 8

1.3.1. GESTION

Au niveau de la gestion administrative et technique, l'information existe en général dans des bases de données situées dans des serveurs ou réparties dans des ordinateurs. Il est clair qu'à ce niveau, les échanges d'information se font par réseaux de communication.

En général, chaque département possède son réseau local (réseau de PC par

exemple) et un réseau dit d'"usine" assure l'interconnexion des différents sous-réseaux de même d'ailleurs que des réseaux d'ateliers (voir § 1.3.2.).

Lorsqu'une entreprise comporte plusieurs sites géographiques, des

communications sont possibles en passant par le réseau public de télécommunications. On parle alors de réseau de niveau "compagnie". Au même niveau, on peut situer les liaisons informatiques directes qui existent de plus en plus souvent entre une entreprise et ses clients et fournisseurs (EDI : Electronic Data Interchange).

1.3.2. FABRICATION

Au niveau de la fabrication la situation est plus complexe. On distingue en

général des ateliers responsables de la fabrication d'un produit ou d'une gamme de produits de même famille. L'atelier, à son tour, est composé de cellules de production qui regroupent des machines fortement interactives.

Les machines de production modernes (CNC, robots, etc.) sont pratiquement

toutes commandées par des automates programmables (notés PLC sur la figure). Ceux-ci commandent les machines par l'intermédiaire d'actuateurs (contacteurs, vannes, etc.) sur base d'informations fournies par des capteurs (détecteurs de fin de course, codeurs de position, thermocouples, etc.) Les informations échangées entre ordinateurs de supervision et automates sont relativement élaborées et ne peuvent se concevoir que par l'intermédiaire de réseaux de communications.

Plus près des machines, on trouve actuellement de plus en plus d'équipements

dits de terrain : entraînements, panneaux opérateurs, entrées/sorties déportées, îlots de vannes, etc. Ces équipements ne possèdent certes que des capacités de traitement limitées mais n'en sont pas moins actionnés par des microprocesseurs, ce qui permet de les relier aux automates par voie informatique (réseau de communication). L'idée est ici de diminuer le volume du câblage, tout en déchargeant les automates de tâches annexes.

Dans le même esprit, la possibilité est apparue récemment de greffer directement

des capteurs et actuateurs dits "intelligents" sur des réseaux de communication en remplacement du câblage fil à fil traditionnel.

1.3.3. LA PYRAMIDE DU CIM

Il est bien certain qu'il serait impensable d'assurer toutes les communications qui

viennent d'être évoquées ci-dessus à l'aide d'un seul et même système de communication, et cela pour des raisons techniques, économiques et pratiques qui apparaissent clairement à la figure 1.5.

Les six niveaux de communications qui ont été introduits ci-avant sont

représentés sous la forme d'une pyramide, la largeur de chaque niveau reflétant le nombre de connexions au réseau.

Page 11: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 9

NIV

EAU

X

HEU

RES

MB

YTE

S

MIN

KB

YTE

S

SEC

BY

TES

MSE

CB

ITS

TEM

PS D

ER

EPO

NSE

VO

LUM

E D

ED

ON

NEE

STY

PED

'EC

HA

NG

EN

IVEA

U D

EC

OM

PETE

NC

E

02345 1

Com

pagn

ie

Cap

teur

s / A

ctua

teur

s

Terr

ain

Cel

lule

Ate

lier

Usi

ne

CYCLIQUEEVENEMENTIEL

INFORMATICIEN

AUTOMATICIEN

ELECTRICIEN

Figure 1.5. Nécessité d'une hiérarchisation des communications

Page 12: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 10

On a placé, en regard, les caractéristiques attendues, à chacun des niveaux, sur le plan du temps de transfert des messages, de la taille des messages, du type d'échange et du niveau de compétence nécessaire pour la mise en œuvre du réseau.

– niveau capteurs/actuateurs et terrain

A ce niveau, les temps de transfert doivent correspondre aux temps de cycle des automates (de l'ordre de 10 ms) puisque le réseau est censé remplacer les anciennes connexions fil à fil vers les cartes d'entrées/sorties des automates.

Heureusement, la taille des messages y est fort réduite puisqu'il s'agit, en gros, de l'état (binaire) de capteurs et d'actuateurs. Ainsi 512 capteurs/actuacteurs ne représenteront jamais qu'un message de 64 bytes.

Comme on l'a déjà dit, les échanges seront en général cycliques et, idéalement, synchronisés sur le cycle des automates.

Enfin, il est de première importance, pour leur acceptation en milieu industriel, que les réseaux de capteurs/actuateurs et de terrain puissent être installés, utilisés, dépannés par le même personnel qui, auparavant installait, utilisait, dépannait les cartes d'entrées/sorties des automates.

– niveau cellule

Ce niveau assure les échanges d'informations nécessaires entre automates au sein d'une cellule. Sans être aussi exigeant que dans le cas précédent au niveau des temps de transfert, on attendra cependant, ici encore, des performances temps réel sous forme de délais de réponse garantis. Les échanges pourront être cycliques ou événementiels selon les applications. La mise en œuvre des réseaux de cellule ne devrait pas poser aux concepteurs d'automatismes beaucoup plus de problèmes que s'ils avaient affaire à un système de contrôle centralisé.

– niveau atelier A ce niveau, le réseau a pour rôle de coordonner le travail des différentes cellules composant l'atelier. Il en assure la supervision générale, il est capable de télécharger des programmes dans les automates et de contrôler leur exécution. La notion de temps est beaucoup moins critique ici. Le réseau d'atelier concernant encore directement la production, il doit impérativement rester sous la responsabilité totale des automaticiens. Il faut cependant être conscient que ceci impliquera en général pour ces derniers, des efforts de formation non négligeables. Les réseaux d'atelier que l'on trouve sur le marché (MAP par exemple) ou, plus exactement, les normes ISO qui y sont utilisées, ont en effet été conçues par des informaticiens et non par des ingénieurs. La terminologie et les modes de raisonnement utilisés apparaissent dès lors souvent comme plutôt abscons.

Page 13: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 11

– niveaux usine et compagnie Ces niveaux relèvent directement de l'informatique et nous ne nous y attarderons donc pas. REMARQUE : Il est bien certain que les niveaux présentés à la figure 1.5. ne sont pas strictement cloisonnés. Ainsi, certains des réseaux de cellule que nous étudierons par la suite peuvent très bien convenir pour des ateliers simples. D'autres peuvent parfois "descendre" au niveau terrain et même au niveau capteurs/actuateurs.

1.4. EVOLUTION DES SOLUTIONS 1.4.1. SOLUTIONS PROPRIETAIRES (années 1980) Les premières tentatives d'implantation du CIM étaient essentiellement basées sur des solutions propriétaires. En l'occurrence, ce sont les constructeurs d'automates programmables qui se sont montrés les plus actifs en la matière. C'est ainsi qu'au milieu des années 80, on trouvait :

– au niveau cellule, des réseaux de communication entre automates, par exemple : - DATA HIGHWAY chez Allen-Bradley - SINEC H1 chez Siemens - TELWAY 7 chez Télémécanique

– au niveau terrain, des réseaux principalement destinés à piloter des blocs

d'entrées/sorties déportées, par exemple : - REMOTE I/O chez Allen-Bradley - SINEC L2 chez SIEMENS - FIPIO chez Télémécanique

– au niveau atelier et usine, des passerelles vers les principaux réseaux

informatiques du moment : - DECNET (accès au monde Digital Equipment) - TCP/IP (accès au monde UNIX). A ces passerelles devaient évidemment correspondre des librairies développées spécifiquement pour les ordinateurs concernés (VAX, HP 9000, etc.) permettant à ces derniers de dialoguer avec les automates. Ces solutions propriétaires avaient le mérite de l'homogénéité pour autant que

l'utilisateur final acceptât de se lier, quasi pour la vie à un constructeur d'automate donné et trouvât chez celui-ci toutes les fonctionnalités dont il avait besoin.

Dans le cas contraire, de sérieux problèmes de compatibilité se posaient, soit à l'utilisateur final, soit à l'ensemblier maître d'œuvre; les constructeurs d'automates se refusant évidemment à assumer la moindre responsabilité dans des solutions où leur matériel était associé à du matériel tiers.

Page 14: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 12

1.4.2. LA VOLONTE D'OUVERTURE (années 1990)

Le souhait des utilisateurs serait évidemment de disposer de systèmes de communication normalisés assurant, aux différents niveaux présentés ci-dessus, une interopérabilité aussi complète que possible entre équipements de marques et de types différents. Au niveau terrain et capteurs/actuateurs, c'est même l'interchangeabilité physique des éléments qui est attendu.

Dans cette optique, des groupements d'utilisateurs se sont constitués avec, pour

but, d'imaginer des systèmes de communication "ouverts" (par opposition à "propriétaires") et de les imposer aux constructeurs. C'est, au départ, le haut de la pyramide qui était visé.

La figure 1.6. présente les solutions retenues et disponibles dès le début des

années 90.

– niveau usine : le FDDI (Fiber Distributed Data Interface) est un réseau à fibres optiques à haut débit (100 Mbits/s). Son coût et ses performances le destine au rôle de fédérateur de sous-réseaux ("backbone") comme indiqué à la figure 1.7.

– niveau atelier : l'étude de la norme MAP a débuté en 1981 et est pratiquement

stabilisée depuis 1989. Elle introduit un concept nouveau pour l'interopérabilité d'équipements hétérogènes : la messagerie industrielle MMS (Manufacturing Message Specification). Celle-ci est basée sur les concepts informatiques modernes d'objets et de relations clients-serveurs. Elle a d'ailleurs été reprise sous une forme simplifiée dans le réseau de terrain PROFIBUS (FMS : Fieldbus Message Specification).

La démarche expliquée ci-dessus ne semble pourtant pas devoir connaître le

succès industriel attendu pour des raisons que nous expliquerons au paragraphe suivant. Elle a cependant induit chez les utilisateurs une exigence d'ouverture que les constructeurs ne peuvent plus ignorer désormais.

C'est ainsi que dans le bas de la pyramide, on a vu apparaître des réseaux définis

de fait par des constructeurs d'automates (p. ex. : PROFIBUS, FIP, DEVICENET, ASI) ou par des constructeurs tiers ( p. ex. : INTERBUS-S, LONWORKS) mais cependant qualifiés d'"ouverts". En réalité, l'ouverture résulte du fait que les spécifications de ces réseaux et, le cas échéant, les circuits intégrés associés sont d'emblée placés dans le domaine public, à la disposition de qui le souhaite.

Comme le montre la figure 1.6., on est cependant encore loin d'un consensus,

chacun essayant évidemment d'imposer sa solution. C'est que l'enjeu est important vu le nombre potentiel de points de raccordement.

Sur la figure 1.7., on a complété la hiérarchie des communications conformément

aux propositions de la figure 1.6. Notons qu'aux niveaux terrain et capteurs/actuateurs, différentes configurations

sont possibles selon les cas : - réseau couvrant les deux niveaux (machine 1) - réseaux différents pilotés à partir de l'automate (machine 2) - réseau de capteurs/actuateurs piloté à partir du réseau de terrain par un

adaptateur approprié (machine 3). Nous y reviendrons en détail au chapitre 9.

Page 15: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 13

NIV

EAU

XPr

opos

ition

s act

uelle

s(a

nnée

s 199

0)E

volu

tion

prob

able

(hor

izon

200

0)

Rés

eau

publ

ic d

e Té

léco

mm

unic

atio

ns

02345 1

Com

pagn

ie

Cap

teur

s / A

ctua

teur

s

Information

Compagnie

Equipement

Terr

ain

Cel

lule

Ate

lier

Usin

e

FDD

IB

ackb

one

MA

Pon

Eth

erne

t

INTE

RN

ET ETH

ERN

ET ? ?

?

ASI

BU

S

PRO

FIB

US

WO

RLD

FIP

CO

NTR

OLN

ET

INTE

RB

US-

SD

EVIC

ENET

(CA

N)

LON

WO

RK

S

Figure 1.6. Evolution des solutions en matière de communication

Page 16: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 14

PLC

PLC

PLC

PLC

RI/OM

Machine 1 Machine 2 Machine 3

Capteur

Actuateur

Capteur

ActuateurCapteur

Actuateur

Entraînement Panneau Opérateur I/O déportées

Contrôle machines

Conduite

C el lule 1

C ell ul e 1

Cellule 1

C ell ul e 1

C el lule 1

C el lule 1

C ell ul e 1

C el lule 1

C ell ul e 1

C ell ul e 1

C ell ul e 1

C ell ul e 1

C ell ul e 1

C ell ul e 1

C el lule 1

C ell ul e 1

C el lule 1

C ell ul e 1 C el lule 1

C el lule 1

C el lule 1

USI

NE

CE

LLU

LEC

APT

EU

R /

AC

TUAT

EUR

ATEL

IER

TER

RA

IN

CO

MPA

GN

IE

0

1

2

3

45

FDDI

MAP

MAP

Backbone

Figure 1.7. Hiérarchie des communications envisagées au début des années 90

Page 17: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 15

1.4.3. LES PERSPECTIVES (horizon 2000) L'échec commercial des réseaux situés dans le haut de la pyramide du CIM et, en

particulier, du réseau MAP, résulte de raisons à la fois internes et externes. Dans le première catégorie, on rangera le caractère extrêmement ambitieux de la

norme MAP qui a eu pour résultat de ralentir considérablement son élaboration (il a fallu près de 10 ans pour arriver à une certaine stabilisation) et de donner lieu à des réalisations matérielles complexes et, partant, fort coûteuses.

Dans le même temps, on assistait à l'évolution foudroyante de la micro-

informatique. Les besoins dans ce contexte ne pouvaient s'accommoder des lenteurs d'une normalisation et c'est donc très logiquement un standard de fait qui fut adopté comme infrastructure de réseaux, à savoir ETHERNET. De plus, l'émergence irrésistible d'INTERNET consacra rapidement TCP/IP, un autre standard de fait, comme protocole de communication.

Ces choix étant arrêtés et stimulés par l'importance du marché, les constructeurs

ont pu donner libre cours à leur imagination pour améliorer les systèmes de câblage (hubs, switching hubs, fibres optiques, ...) et augmenter les vitesses de transmission (100 Mbits/s, 1 Gbits/s annoncé), tout cela à des prix "micro".

Il résulte de cette évolution qu'ETHERNET est en mesure de couvrir efficacement

l'ensemble des besoins en communication, du niveau cellule au niveau usine. L'utilisation d'INTERNET au niveau compagnie s'intègre parfaitement dans l'ensemble.

Bon gré, mal gré, les constructeurs d'automates ont dû se rendre à l'évidence et la

plupart d'entre-eux proposent maintenant, en standard, une interface ETHERNET TCP/IP.

On peut regretter que, si pas MAP, du moins MMS, la messagerie industrielle, n'ait

pas survécu à l'aventure car elle apportait une solution à la fois élégante et puissante au problème d'interopérabilité d'équipements industriels hétérogènes.

D'aucuns préconisent d'ailleurs d'attacher MMS à TCP/IP. C'est pourquoi nous

lui réserverons encore, dans la suite de cet ouvrage, un chapitre particulier. Il ne faut cependant pas se faire trop d'illusions à cet égard car on assiste

actuellement à une remise en question de l'existence même des automates programmables. En effet, l'apparition des réseaux de terrain et de capteurs/actuateurs a rejeté, hors des automates, le traitement des signaux industriels. Ces automates perdent ainsi une bonne part de leur spécificité et les fonctions qu'il leur reste à assurer (traitement et communication) peuvent parfaitement être prises en charge par de simples PC !

L'hétérogénéité des équipements de contrôle s'en trouve ipso facto abolie et il y a

fort à parier que Microsoft, qui commence à s'intéresser de près au marché industriel, proposera bientôt des solutions intégrées dans l'environnement WINDOWS NT pour le contrôle distribué des processus industriels.

Cela étant, les réseaux de terrain et de capteurs/actuateurs vont certainement

subsister à côté d'ETHERNET car ils doivent répondre à des impératifs tout à fait particuliers de connectique, de robustesse, de sécurité, de temps de réponse, de facilité

Page 18: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 16

de mise en œuvre et de maintenance. L'offre (surabondante) actuelle se simplifiera vraisemblablement en abandonnant

toute prétention sur le niveau cellule. L'évolution décrite dans ce paragraphe est résumée à la partie droite de la figure

1.6. On n'y retrouve plus, dans l'usine, que deux niveaux de réseaux : le niveau "information" et le niveau "équipement". Les niveaux fonctionnels du CIM subsistent bien entendu mais, pour ce qui concerne le haut de la pyramide (de cellule à usine), l'adéquation aux besoins de chaque niveau est obtenu par la configuration judicieuse d'un réseau unique (ETHERNET TCP/IP) plutôt que par des réseaux différents. Pour le bas de la pyramide, il faudra encore quelque temps pour que la situation se décante et qu'un (ou plusieurs) standard(s) émerge(nt) définitivement.

Le système de communication qui en résulte aura ainsi l'allure montrée à la figure

1.8.

1.4.4. INTERNET DANS L'INDUSTRIE

Une autre évolution en plein essor concerne l'exploitation industrielle des outils développés dans le cadre d'INTERNET. On remarque en effet que la plupart des nouveaux automates programmables et de plus en plus d'équipements de terrain (variateurs de vitesse par exemple) sont dotés d'un serveur WEB et du protocole TCP/IP. C'est ce qui est schématisé à la figure 1.9.

Le serveur WEB contient des pages HTML (HyperText Mark-up Language) qui sont

donc accessibles à partir de tout ordinateur à l'aide d'un "navigateur" INTERNET tout à fait standard (Explorer par exemple). La communication peut se faire par le réseau interne de l'usine (INTRANET) ou, de n'importe quel point du globe, par INTERNET. Le cas échéant, les équipements peuvent aussi envoyer spontanément des e-mails au personnel compétent en cas d'anomalie.

Les applications potentielles sont nombreuses : télégestion (réglage de paramètres,

voire modification de programmes), télésurveillance (rapatriement d'alarmes), télémaintenance (diagnostic de pannes), téléassistance aux opérateurs locaux, etc.

Comme le montre la figure 1.8., les fonctionnalités de contrôle temps réel du

processus restent évidemment assurées par l'intermédiaire de bus de terrain.

Page 19: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 17

PLC

PLC

PLC

PLC

RI/OM

Machine 1 Machine 2 Machine 3

Capteur

Actuateur

Capteur

ActuateurCapteur

Actuateur

EntraînementPanneau

Opérateur I/O déportées

Contrôle machines

Conduite

C el lul e 1

C ell ul e 1

Cellule 1

C el lule 1

C ell ule 1

C el lule 1

C ellule 1

Cell ul e 1

C ell ule 1

C el lul e 1

C el lule 1

C el lule 1

C ellule 1

C ell ul e 1

C ell ul e 1

C el lule 1

C ell ul e 1

C ell ul e 1 C ell ule 1

C el lule 1

C ell ul e 1

USI

NE

CE

LL

ULE

CA

PTEU

R /

AC

TUAT

EUR

ATEL

IER

TE

RR

AIN

CO

MPA

GN

IE

0

1

2

3

45

EthernetTCP/IP

EthernetTCP/IP

EthernetTCP/IP

EthernetTCP/IP

EthernetTCP/IP

EthernetTCP/IP

EthernetTCP/IP

ETHERNETSWITCHING HUB

SW HUB

SW HUB

FIELDBUS

FIELDBUS

FIELDBUS

Figure 1.8. Hiérarchie des communications basée sur une structuration du réseau Ethernet TCP/IP

Page 20: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 18

PLC

MACHINE

Capteur

Actuateur

OBJECT D

OBJECT A

OBJECT B

Cellule 1

FIELDBUS

M

Entraînement

HTM

WEBSERVER

WEBSERVER

INTERNETINTRANET

HTM

Figure 1.9. Introduction de WEB Serveurs dans les équipements

pour la télégestion et la télémaintenance

Page 21: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 19

Chapitre 2

STRUCTURE D'UN SYSTEME

DE COMMUNICATION 2.1. LES MOYENS DE COMMUNICATION

Comme on sait, l'unité de base en traitement numérique est le bit qui ne peut prendre que deux valeurs : 0 ou 1.

Pour représenter des informations plus complexes, il est dès lors nécessaire d'utiliser un codage faisant appel à un groupe ordonné de plusieurs bits. A l'aide d'un groupe de 8 bits par exemple (= octet = byte), on peut coder une information présentant un maximum de 28 = 256 états. Les caractères de l'alphabet par exemple sont généralement codés sur 7 bits (codage ASCII). La lettre A est représentée par la configuration de bits 1000001. La lettre a est représentée par la configuration de bits 1100001. De la même manière, on peut coder des nombres, des mesures, etc.

Pour transmettre des informations ainsi codées, il existe essentiellement deux techniques : la technique parallèle et la technique série. 2.1.1. COMMUNICATIONS PARALLELES

Tous les bits formant l'information sont transmis en parallèle à l'aide d'autant de

canaux binaires (c'est-à-dire de fils) qu'il y a de bits. C'est la technique utilisée systématiquement au sein des ordinateurs pour les échanges d'informations entre cartes processeurs, cartes mémoires, cartes interfaces, etc.

Pour économiser le câblage, les canaux binaires sont généralement exploités en

mode BUS, c'est-à-dire que les mêmes fils servent, à tour de rôle bien entendu, pour les échanges processeur-mémoire, processeur-interface, interface-mémoire (DMA). Ce mode d'échange est schématisé à la figure 2.1.a.

Les BUS d'ordinateurs peuvent comporter plusieurs dizaines de fils : 61 pour le

MULTIBUS d'INTEL par exemple. Ils permettent de réaliser des vitesses de transfert élevées mais les distances permises sont réduites à quelques mètres au maximum. Au delà, en effet, il faudrait commencer à tenir compte des phénomènes de propagation et utiliser des canaux binaires à hautes performances (coaxes p. ex.) d'un encombrement et d'un prix prohibitif.

On peut cependant faire état de quelques systèmes de communications parallèles

utilisés non plus entre cartes d'un ordinateur mais bien entre un ordinateur et des appareils périphériques.

– le BUS HP-IB développé par Hewlett-Packard au début des années 70 et adopté

comme standard en 1974 sous le sigle IEEE 488. A noter que le standard concerne non seulement les spécifications électroniques et mécaniques du BUS mais aussi les

Page 22: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 20

procédures d'échange d'informations. Le BUS HP-IB permet d'interconnecter jusqu'à 15 appareils sur une distance maximale de 20 m. Les échanges se font par byte (c-à-dire par entité de 8 bits) à des vitesses pouvant atteindre 500 Kbytes/s (1 Mbytes/s sur des distances inférieures à 20 m). Le BUS est matérialisé par 24 fils. Ce moyen de communication est très largement utilisé en instrumentation et dans les laboratoires. Des interfaces IEEE 488 sont d'ailleurs disponibles pour la plupart des ordinateurs. (figure 1.2.b).

– le "standard" CENTRONIC utilisé initialement pour la liaison d'imprimantes aux ordinateurs. Cette liaison se fait à l'aide de 18 fils sur des distances de 10 m maximum. [AXELSON, 1996]. Son usage a été étendu à d'autres périphériques (scanners par exemple).

– le BUS SCSI (Small Computer System Interface) permet de raccorder jusqu'à sept

périphériques à un ordinateur sur des distances maximum de 6 m. Il est couramment utilisé pour des unités de disques externes, des CD-ROM, etc.

a. BUS d'ordinateur

b. BUS HP-IB (IEEE 488)

Figure 2.1. Communications parallèles

INTERFACE Communication

INTERFACE Périphérique

Périphériques Transmission série

MEMOIRE PROCESSEUR

BUS de DONNEE

BUS de CONTROLE

BUS d'ADRESSE

Page 23: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 21

2.1.2. COMMUNICATIONS SERIES Les bits formant l'information sont ici transmis en série, c'est-à-dire l'un après

l'autre, à l'aide d'un seul canal binaire (une paire téléphonique par exemple). Ce canal unique peut dès lors, dans des conditions économiques raisonnables, être doté des performances de vitesse et de distance souhaitées. C'est bien évidemment sur ce type de transmission que sont basés les réseaux de communication.

On distinguera plusieurs manières d'agencer les communications séries :

– type de liaison entre nœuds

- liaison point-a-point (figure 2.2.a) : c'est une liaison physique entre deux et seulement deux noeuds du réseau.

- liaison multipoint ou multidrop (figure 2.2.b) : c'est une liaison physique partagée par plus de deux noeuds. La ligne principale est appelée "trunk line"; les lignes de dérivation "drop lines".

– modes d'exploitation d'une liaison

- simplex (figure 2.3.a) : Dans ce mode d'exploitation, l'échange d'information se fait à sens unique. Il ne demande qu'un canal binaire.

- full duplex (figure 2.3.b) : L'échange d'information a lieu simultanément dans les deux sens. Il nécessite deux canaux binaires. Ceux-ci peuvent être matérialisés par deux lignes physiques distinctes ou par deux canaux de fréquence sur une même ligne physique (figure 2.3.c).

- half duplex (figure 2.3.d) : Dans ce dernier cas, la transmission s'effectue dans les deux sens, mais alternativement, sur un seul canal, par le jeu d'une commutation émetteur/récepteur. Bien entendu, cette commutation se fait par des moyens électroniques.

Cette dernière solution trouve tout son intérêt lorsque l'on doit passer par le réseau public car elle ne nécessite qu'une ligne téléphonique.

Figure 2.2 Type de liaison entre nœuds

A a . Point à point

Trunk line

Drop line

b. Mult ipoin t

B

A B C

Page 24: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 22

Figure 2.3. Modes d'exploitation d'une transmission série

Emetteur Récepteur a. SIMPLEX

Emetteur

Récepteur

Récepteur

Emetteur

b. FULL DUPLEX

Emetteur

Récepteur

Récepteur

Emetteur

MODEM MODEM

Modulateur f1

Filtre f1

Filtre f2

Modulateur f2

f1

f2

c. Multiplexage de fréquences

Emetteur

Récepteur

Récepteur

Emetteur

b. HALF DUPLEX

Page 25: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 23

2.1.3. RESEAUX DE COMMUNICATION : LAN, WAN, MAN

Dès que plusieurs usagers sont interconnectés par des liaisons séries, on parle de réseaux de communication. On peut distinguer deux catégories : les réseaux locaux LAN (Local Area Network) et les réseaux à longue portée WAN (Wide Area Network).

Cette distinction n'est pas réellement une question de distance mais plutôt une

question de réglementation. En effet, dans la plupart des pays d'Europe, les communications, de quelque nature qu'elles soient, qui sortent d'un domaine privé sont régies par les autorités publiques.

On appelle dès lors LAN un réseau de transmission entièrement situé dans un

domaine privé; il y correspond ipso facto une portée limitée, de l'ordre de quelques kilomètres. C'est essentiellement ce type de réseau qui sera étudié dans la suite de l'ouvrage.

On appelle WAN un réseau qui s'étend sur le domaine public. Il faut, dans ce cas,

utiliser des équipements fournis (ou du moins agréés) par les pouvoirs publics compétents ou par leurs concessionnaires et passer par leur infrastructure de communication. De par la vocation de cette dernière, la portée d'un réseau WAN peut être étendue de manière quasi illimitée. Par contre, les performances offertes à l'heure actuelle sont encore relativement limitées. On trouve ainsi (en Belgique) :

– des lignes du réseau téléphonique public commuté présentant une bande

passante de 300 à 3.400 Hz prévue pour la transmission vocale. Pour pouvoir être transmises, les données numériques doivent être transformées en données analogiques par modulation d'une fréquence porteuse (MODEM). Les vitesses de transmission sont limitées par l'étroitesse de la bande passante à 28.800 bits/s maximum. La facturation se fait en fonction de la durée de la communication et de la distance entre les correspondants.

– des lignes louées c'est-à-dire affectées de manière permanente à un abonné et regroupant l'équivalent, en bande passante, de plusieurs lignes téléphoniques simples : vitesse de 64 kbits/s à 2 Mbits/s. La facturation se fait ici en fonction de la distance et de la bande passante allouée.

– un réseau public de transmission de données avec commutation par paquets

DCS (Data Communication Service). Dans ce système, il n'existe plus de liaison directe entre les correspondants comme cela est nécessaire pour la parole. Chacun dépose ses données par "paquets" dans le réseau et celui-ci se charge de les acheminer vers le correspondant. La facturation ne prend plus en compte, ici, que le volume des données transmises; la durée et la distance n'interviennent plus. La vitesse est cependant limitée à 48 kbits/s.

– un réseau numérique à intégration de service (RNIS ou ISDN en anglais :

Integrated Services Digital Network). Comme son nom l'indique, il s'agit d'un nouveau type de réseau où toutes les informations sont numérisées, les données bien sûr, mais aussi la voix. Ces données peuvent être multiplexées sur une même ligne, ce qui permet à un abonné d'utiliser simultanément jusqu'à huit équipements au travers d'un raccordement unique (téléphone, fax, micro-ordinateur, ...). D'autre part, la nature informatique des centraux téléphoniques offre des services annexes multiples : identification de l'appelant, déviation d'appel,

Page 26: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 24

diffusion multiple, télé-alarme incendie ou effraction, etc.

Le débit de base du RNIS (64 Kbits/s) est cependant assez faible et il risque fort d'être dépassé avant même que sa mise en place ne se soit généralisée. Ce n'est certainement pas avec le RNIS que l'on bâtira les "autoroutes de l'information" de demain. Pour plus de détails sur les réseaux WAN, on consultera [TANENBAUM, 1992] et

[HALSALL, 1994]. Il existe encore une troisième catégorie de réseaux, les MAN (Metropolitan Area

Network) ou réseaux urbains. Ils sont constitués de câbles coaxes à large bande passante (400 MHz) et leur utilisation première est la télédistribution. [NUSSBAUMER I, 1987]. Des expériences sont actuellement menées pour permettre aux abonnés de se connecter à INTERNET par leur intermédiaire avec, évidemment, des performances largement supérieures à celles du réseau public de communication.

Il s'agit cependant de tentatives isolées qui risquent de rester sans lendemain

étant donnée l'émergence d'une nouvelle technologie, l'ATM (Asynchronous Transfer Mode). Il s'agit, en gros, d'un RNIS à large bande puisque la vitesse de base est de 155 Mbits/s ! – [HALSALL, 1994] – [FRASER, 1996]. Notons que cette technologie est encore loin d'être universellement adoptée [STEINBERG, 1996]. 2.2. LES RESEAUX LOCAUX

Le développement des WAN est de loin antérieur à celui des LAN. Il s'ensuit que les premiers LAN (en particulier ceux utilisés dans l'industrie) firent largement appel aux matériels, procédures et standards développés pour les WAN.

Sous la formidable poussée du marché de la bureautique, les LAN ont cependant

progressivement pris leurs distances vis-à-vis des WAN. Libérés, en effet, des contraintes décrites au paragraphe précédent, les réseaux locaux ont pu être repensés avec, uniquement en vue, l'adéquation aux besoins et les performances. Un moment dépassés, les constructeurs de réseaux industriels ont maintenant entrepris d'intégrer dans leurs produits les concepts nouveaux apparus en bureautique. Comme on l'a montré au chapitre 1, le domaine est actuellement en pleine ébullition. Quelques années seront certainement encore nécessaires pour que la situation se stabilise.

D'une manière générale, les éléments à prendre en compte pour l'évaluation d'un réseau local sont les suivants :

– la vitesse de transmission : celle-ci doit être suffisante pour assurer l'ensemble des échanges d'information entre les nœuds du réseau dans les délais requis par l'application.

A noter qu'il faut bien faire la différence entre la vitesse brute nominale du réseau et le temps que prend effectivement l'échange d'un message entre deux correspondants.

En bureautique, le nombre de nœuds peut être très élevé (quelques centaines typiquement) ce qui exige des vitesses de transmission élevées (10 Mbits/s typiquement).

Page 27: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 25

En industriel, le nombre de nœuds sera en général moins élevé; par contre se pose ici l'exigence du temps réel. Celle-ci stipule qu'un nœud qui a une information urgente à transmettre (une alarme par exemple) doit pouvoir le faire dans un délai spécifié garanti (20 ms p. ex.) et cela, quelle que soit la charge instantanée du réseau.

– la fiabilité : les communications devraient idéalement se faire avec une fiabilité au

moins aussi bonne que celle des équipements de traitement eux-mêmes. Cette caractéristique est particulièrement importante dans les applications industrielles.

– la flexibilité : les systèmes de communication doivent se prêter souplement à des

extensions et à des modifications de la répartition géographique des équipements de traitement.

– la disponibilité : constituant l'épine dorsale d'un système de traitement distribué,

le système de communication doit présenter une disponibilité élevée. En particulier, les extensions et modifications doivent se faire avec une interruption de service minimale. De même, des défauts locaux doivent pouvoir être isolés automatiquement sans interruption du service.

– la transparence : la décentralisation ne doit entraîner, pour l'utilisateur, aucune

complication sur le plan de la programmation. L'accès au système de communication doit se faire avec un formalisme et à un niveau d'abstraction cohérents avec le contexte d'utilisation local.

– le coût : le coût du raccordement à un réseau local (interface, contrôleurs, etc.)

doit, en toute logique, être faible vis-à-vis du coût de l'équipement raccordé. La baisse continuelle du prix de ces derniers impose, à cet égard, des conditions particulièrement sévères.

– la compatibilité : idéalement, un réseau local devrait permettre d'interconnecter

des équipements de tous types et de toutes marques; il devrait également être capable de se connecter à d'autres réseaux, locaux ou à longues distances (WAN).

Ce dernier point pose la question fondamentale de la standardisation des réseaux.

Le problème du coût évoqué ci-dessus lui est d'ailleurs intimement lié : ce n'est que pour des standards largement adoptés qu'il sera possible de produire des circuits intégrés de communication en grande série et donc à faible coût. Nous l'aborderons dans le paragraphe suivant.

2.3. MODELE OSI DE L'ISO

La conception des systèmes de communication se réfère quasi universellement, à

l'heure actuelle, au modèle OSI proposé par l'ISO au début des années 80. OSI = Open System Interconnection. ISO = International Organisation for Standardisation. Comme montré à la figure 2.4., le modèle préconise d'organiser un système de

communication de manière hiérarchisée, en 7 couches ou niveaux. A chaque niveau correspond une mission spécifique de mise en forme spatiale et/ou temporelle des données et de mise en œuvre de procédures de test et de correction. Il s'agit donc, à

Page 28: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 26

l'émission, de transformer un message abstrait et synthétique du niveau utilisateur en un flot de bits au niveau physique. Réciproquement, à la réception, le flot de bits incident doit être restitué à l'utilisateur destinataire au même degré d'abstraction et de synthèse. On retrouve donc ici, la notion de "transparence" mentionnée au point 2.2. : le but est d'établir un canal de communication virtuel direct entre utilisateurs à leur niveau d'abstraction. Ces utilisateurs peuvent ainsi tout ignorer du fonctionnement réel du

système de communication.

Figure 2.4. Architecture stratifiée de l'ISO

Tiré de [NUSSBAUMER, 1991] Par exemple, l'utilisateur A transférera un fichier FILE à l'utilisateur B par une

simple commande du type :

TRANSFER A : FILE > B : FILE

sans avoir à se soucier aucunement des détails pratiques de la transmission (vitesse, contrôles, etc.). Cette commande "TRANSFER" est un service mis à la disposition de l'utilisateur par la couche application du système de communication. Pour remplir ce service, la couche application mettra en œuvre une certaine procédure appelée protocole faisant elle-même appel à des services offerts par la couche présentation et ainsi de suite, de proche en proche. En d'autres termes, chaque couche du nœud A est en communication virtuelle avec la

Présentation

Session

Transport

Réseau

ApplicationApplication

Présentation

Session

Liaison de données

Transport

Réseau

Physique Physique

Usager A Usager B

Protocoled'application

Protocolede présentation

Protocolede session

Protocolede transport

Protocolede réseau

Protocolede liaison de données

Liaison de données

Page 29: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 27

couche homologue du nœud B.

La figure 2.5. donne une idée de la manière dont les choses se passent pratiquement. Trois couches successives quelconques y sont représentées.

Figure 2.5. Mécanisme d'échange de données entre couches homologues du modèle OSI

Les couches homologues échangent des blocs d'informations appelés PDU

(Protocol Data Unit) : exemple la couche (n+1) de l'utilisateur A échange un (n+1) PDU avec la couche (n+1) de l'utilisateur B.

Pour ce faire, la couche en question utilise des services offerts par la couche

immédiatement inférieure, en l'occurrence n. L'accès à ces services se fait par un point d'accès appelé SAP (Service Access Point). La valeur de ce SAP est liée à la nature des services utilisés. De même, si des services identiques doivent être utilisés simultanément, il faudra employer des SAP différents car certaines ressources nécessaires (mémoire tampon par exemple) devront être dupliquées.

Le PDU de la couche n+1 est transmis à la couche n sous la forme d'un SDU

(Service Data Unit). Celle-ci y ajoute un bloc de contrôle propre PCI (Protocol Control Information) contenant, entre autres, la valeur du nSAP. L'ensemble nPCI et nSDU forme alors le nPDU, c'est-à-dire le PDU échangé au niveau des couches n.

(n+1)PDU

nSDUnPCI

nPDU

(n-1)SAP

nSAP

(n+1)PDU

nSDUnPCI

nPDU

(n-1)SAP

nSAP

(n+1)PDU

nPDU

UTILISATEUR A UTILISATEUR B

COUCHE (n+1)

COUCHE n

COUCHE (n-1)

PDU : Protocol Data Unit

SAP : Service Access Point

SDU : Service Data Unit

PCI : Protocol Control Information

Page 30: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 28

Les avantages de cette organisation hiérarchique des systèmes de communication

sont les suivants : - elle introduit une structuration propice à la standardisation - elle crée une indépendance des protocoles supérieurs vis-à-vis des protocoles

inférieurs qui permet de s'adapter facilement aux progrès technologiques (qui concernent surtout les couches inférieures).

2.3.1. DESCRIPTION DES COUCHES DU MODELE

La figure 2.6. schématise le rôle des différentes couches.

– COUCHE APPLICATION Elle réalise l'interface entre le système de communication et l'utilisateur. Elle

fournit à ce dernier des commandes de haut niveau synthétique pour : - l'échange d'informations - la signalisation d'erreurs de transmission - la synchronisation d'applications

– COUCHE PRESENTATION Elle convertit le mode de représentation de l'information du niveau application

vers un mode de représentation commun au réseau (codes, structures de fichiers, ...)

– COUCHE SESSION Elle réalise la gestion, à haut niveau fonctionnel, du dialogue entre deux

applications : - établissement de la communication - gestion des échanges

– COUCHE TRANSPORT Elle constitue l'interface entre les aspects informatiques et les aspects

transmissions d'un système de communication. Son rôle est d'assurer le contrôle bout-en-bout de l'acheminement d'un message entre deux utilisateurs du réseau :

- segmentation éventuelle des messages en paquets; - contrôle des flux de messages pour éviter la saturation; - réalisation d'une fiabilité hors tout imposée (quelle que soit la qualité du réseau) - sélection d'un réseau dans le cas de réseaux redondants.

– COUCHE RESEAU Elle s'occupe des problèmes de routage des messages au travers du réseau de

communication. Cette couche forme un rôle primordial dans les réseaux publics en général très ramifiés tel INTERNET. Par contre, elle est plutôt réduite dans les réseaux locaux dont la topologie est en général fort simple.

Page 31: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 29

Figure 2.6. Rôle des différentes couches du modèle ISO

– COUCHE LIAISON DE DONNEES Elle assure la transmission correcte sur la ligne d'un message entre deux nœuds

du réseau. On la divise généralement en deux sous-couches.

Page 32: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 30

* LLC (Logical Link Control) qui prend en charge :

- la sérialisation/désérialisation de l'information; - la mise en œuvre de codes détecteurs d'erreur; - la synchronisation au niveau des messages;

* MAC (Medium Access Control) qui s'occupe du contrôle d'accès au réseau.

– COUCHE PHYSIQUE Elle réalise le couplage électromécanique avec la ligne de transmission : - synchronisation au niveau des bits; - modulation éventuelle (MODEM); - contrôle de qualité du signal:

REMARQUE : Selon les réalisations, les couches définies ci-dessus peuvent être plus ou moins sophistiquées. Ce qui est sûr, par contre, c'est que pour qu'une communication soit possible, il est indispensable que les sept couches soient identiques chez tous les interlocuteurs.

2.3.2. PROTOCOLES DE BOUT-EN-BOUT ET PROTOCOLES RELAIS

Les protocoles des couches "transport" et supérieures sont appelés protocoles de bout-en-bout (peer-to-peer) dans la mesure où ils concernent uniquement le nœud d'origine et le nœud de destination d'un transfert d'information.

Les autres protocoles peuvent éventuellement intervenir pour propager

l'information de nœud en nœud à travers le réseau. C'est en principe le cas de tous les réseaux où une forme de routage existe. Dans ce cas, l'information qui transite par les nœuds relais reste dans les couches inférieures et ne "remonte" pas vers les utilisateurs des nœuds en question.

Cette situation est symbolisée à la figure 2.7.

Page 33: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 31

Figure 2.7. Protocoles bout-en-bout et protocoles relais 2.3.3. PROTOCOLES AVEC ET SANS CONNEXION Un protocole est dit avec connexion si l'envoi d'information d'un nœud à un autre doit être précédé d'un dialogue destiné à contrôler la présence du correspondant et sa capacité à recevoir des messages. Il y a ainsi, en quelque sorte, ouverture d'un canal de communication entre les nœuds en question. Ce canal restera établi pendant toute la durée des échanges et sera ensuite fermé, pour libérer les ressources mobilisées, par un dialogue dual de celui d'ouverture. L'analogie du réseau téléphonique permet de bien comprendre le principe : avant de pouvoir parler avec un correspondant, l'usager doit former le numéro de téléphone de ce dernier et attendre qu'il décroche, s'il est présent. Dans cet exemple, le canal de communication a une existence physique. Avec les réseaux, il s'agira plutôt de canaux "virtuels" mais la philosophie reste la même. Un protocole est dit sans connexion si les messages destinés à un correspondant sont envoyés dans le réseau sans vérification préalable de la disponibilité dudit correspondant. On peut ici faire l'analogie avec les service postal : quand une lettre est déposée dans une boîte postale, on n'a aucune information immédiate sur la bonne fin de sa réception.

Présentation

Session

Transport

Réseau

Application

Liaisonde données

Physique

Présentation

Session

Transport

Réseau

Application

Liaisonde données

Physique

Réseau

Liaisonde données

Physique

système relaisCouche

support physique OSI

Page 34: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 32

Dans le modèle OSI, on rencontrera simultanément des couches fonctionnant avec

des protocoles sans connexion et d'autres avec des protocoles avec connexion. Les protocoles réseaux relèvent souvent de la seconde catégorie tandis que les protocoles de transport appartiennent de préférence à la première. La justification de ces choix sortirait du cadre du cours.

Des exemples bien connus de tous peuvent cependant être mentionnés qui

concernent la couche application :

– la messagerie électronique (e-mail) est typiquement un protocole sans connexion (SMTP = Simple Mail Transport Protocol)

– la "navigation" sur le Web, au contraire, met clairement en œuvre un protocole avec

connexion (HTTP = HypperText Transfer Protocol).

2.3.4. NORMALISATION

Comme indiqué ci-dessus, le modèle OSI sert actuellement de référence aux travaux de normalisation.

La figure 2.8. présente les principaux organismes de normalisation et la portée de

leurs travaux. Le CCITT s'intéresse essentiellement aux réseaux publics. Pour ce qui est des

réseaux locaux, les couches hautes ont été traitées par l'ISO tandis que les couches basses sont du ressort de l'IEEE.

Il est également édifiant de présenter, en regard d'un réseau normalisé comme

MAP, quelques réseaux non normalisés couramment utilisés en pratique (figure 2.9.). On peut sans peine imaginer le casse-tête que représente l'interopérabilité dans un tel contexte.

Page 35: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 33

OSI LAYER

EIA

IEEE

NBS

ISO

CCITT 7

APPLICATION

ISO

FILE XFER

6

PRESENTATION

ISO

PRESENT.

PROTOCOL

5

SESSION

ISO

SESSION

PROTOCOL

4

TRANSPORT

ISO

Class 2,4

TRANSPORT PROTOCOL

3

NETWORK

INTERNET

2

DATA LINK

802 LAN

HDLC

1

PHYSICAL

RS 232 RS 449

X.25 ⏐ ⏐ ⏐ ↓

X.21 V.24

OSI : Open System Interconnection EIA : Electronic Industries Association IEEE : Institut of Electrical and Electronics Engineers NBS : National Bureau of Standards ISO : International Organisation for Standardisation CCITT : Comité Consultatif International pour le Télégraphe et le Téléphone CEI : Commission Electrotechnique Internationale

Figure 2.8. Aperçu des travaux de normalisation

Page 36: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 34

couche Nom

du réseau ou du stack

de protocoles 7b 7a

6

5

4

3

2b

2a

1

MAP 3.0

ISO MMS

ISO ACSE

ISO Présentation

Kernel

ISO Session Kernel

ISO Transport Class IV

ISO Connexionless

Network Protocol

IEEE

802.4

Broadband

Carrierband

IEEE 802.2

IEEE 802.3

10 base 5 10 base 2

IEEE 802.2

NETBIOS

vide

NETBIOS

IEEE 802.3 802.5

… … …

TCP/IP

FTP TELNET TFTP …

TCP

IP

Diverses possibilités

SINEC AP/TF

SINEC

TF

SINEC AP Siemens

ISO Transport Class IV

ISO Connexionless

Network Protocol

IEEE 802.2

IEEE 802.3

10 base 5

F.O.

SINEC L1

Siemens RS485 9,6 kbps

SINEC L2 vide Siemens SINEC-L2

Transport Inactif DIN 19245 part 1

RS485 Modem FSK

NOVELL NET

Netware Diverses possibilités

DECNET DEC DATAHIGH

WAY II Allen-Bradley

DATAHIGH WAY PLUS

Allen-Bradley

UNITELWAY UNI-TE Télémécanique X-WAY UNITELWAY LINK

RS485 9,6 kbps

TELWAY LINK UNI-TE Télémécanique X-WAY TELWAY

LINK 10 V – diff 19,2 kbps

MAPWAY UNI-TE Télémécanique X-WAY IEEE 802.2

IEEE 802.4

Carrier Band

Figure 2.9. Structure de quelques réseaux courants non normalisés

Page 37: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 2 – STRUCTURE D'UN SYSTEME DE COMMUNICATION 35

2.4. COUCHES INTERESSANT L'UTILISATEUR FINAL Dans la mise en œuvre d'un système de communication, l'utilisateur final est

principalement concerné par les couches supérieures et inférieures :

– la couche application, car c'est par elle qu'il accède au système de communication

– les couches liaison de données et physique (sans oublier le support physique des transmissions parfois appelé couche 0) car ce sont elles qui conditionnent les performances du réseau ainsi que les problèmes pratiques d'installation (câblage). Notons également que, sans aller jusqu'à concevoir des réseaux de

communication, l'utilisateur industriel est souvent amené à réaliser lui-même des liaisons informatiques simples avec des équipements qui ne disposent pas de moyens de communication évolués (automates, robots ou autres CNC). Pour ce faire, une connaissance minimale des outils proposés dans les couches 1 et 2 peut s'avérer très utile.

C'est dans cet esprit que les chapitres 3 à 6 de cet ouvrage ont été rédigés.

Page 38: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 36

Chapitre 3

SUPPORT PHYSIQUE

ET CIRCUITS DE TRANSMISSION Notons que les circuits de transmission relèvent déjà de la couche physique du modèle OSI.

3.1. LIAISONS METALLIQUES

On regroupe, dans cette catégorie, les supports physiques constitués de

conducteurs électriques.

3.1.1. PAIRES OUVERTES Cette solution simple (figure 3.1.a.) consiste en deux fils isolés placés côte à côte.

Elle est en général utilisée pour des liaisons multiples (cf. § 3.4.1.), l'un des fils servant de masse commune.

Ce type de support ne permet que des liaisons à faible distance (15 m maximum)

et à faible vitesse (19,2 Kbits/s) pour les raisons suivantes :

– les fils étant séparés, les perturbations électromagnétiques ambiantes les affectent différemment et se marquent donc dans le signal reçu

– d'autre part, si plusieurs signaux sont véhiculés simultanément sur des fils différents avec une masse commune, il se produit des interférences entre signaux par couplage capacitif et résistif (crosstalk).

3.1.2. PAIRES TORSADEES (twisted pair) Les fils véhiculant les signaux sont cette fois torsadés par paires (figure 3.1.b.) et

se trouvent de ce fait très proches l'un de l'autre. Les perturbations sont dès lors captées quasi identiquement par les deux fils et, comme la réception se fait généralement de manière différentielle (cf. § 3.4.2.), leur influence sur le signal reçu est considérablement réduite. Le même raisonnement s'applique au crosstalk entre d'éventuelles paries voisines dans un même câble.

On peut encore améliorer la situation en entourant chaque parie d'un blindage

métallique, on parle alors de shielded twisted pair (STP) tandis que ci-dessus il s'agissait d'unshielded twisted pair (UTP).

La paire torsadée est le support physique de loin la plus utilisée actuellement dans

les réseaux locaux pour sa facilité d'installation et ses performances tout à fait honorables.

Exemple : 100 m à 10 Mbits/s (ETHERNET 10 BASE T).

Page 39: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 37

Les performances dépendent en fait de différents facteurs [VINCENT, 1997] les principaux étant la résistance linéique des conducteurs ainsi que la nature et la structure de l'isolant. (cf. § 3.3.)

Page 40: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 38

Figure 3.1. Supports physiques des transmissions

Page 41: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 39

On classe les câbles en 5 catégories selon leur bande passante (et leur prix) [CUNNINGHAM, 1995] :

Catégorie 1 : téléphonie classique Catégorie 2 : téléphonie numérique (RNIS) Catégorie 3 : 16 MHz – convient pour ETHERNET 10 Base T ( et 100 Base T4) Catégorie 4 : 20 MHz – convient pour ETHERNET 100 Base T4 Catégorie 5 : 100 MHz – convient pour ETHERNET 100 Base TX

3.1.3. COAXES

– Coaxes à faible diamètre (± 0.5 cm)

Ce type de coaxe offre une bande passante relativement importante et une flexibilité mécanique qui en rend la pose assez facile. Il présente de meilleures performances que les paires torsadées et surtout, par construction, une meilleure immunité aux parasites (figure 3.1.c.)

Exemple : 200 m à 10 Mbit/s (ETHERNET 10 BASE 2)

– Coaxes à gros diamètre (± 1 cm)

Leur bande passante de plus de 400 MHz les destine aux transmissions à large bande (voir § 3.5.). L'installation de ce type de câble est assez malaisée et s'apparente plus à de la plomberie qu'à de l'électricité.

Exemple : 500 m à 10 Mbit/s (ETHERNET 10 BASE 5) 3.2. LA FIBRE OPTIQUE

La fibre optique représente très certainement une solution pleine de promesses

pour la transmission de données en milieu industriel :

– immunité totale aux parasites électromagnétiques – isolation galvanique parfaite – bande passante très élevée – taux d'erreur très faible (10–9 !) ce qui permet en principe de simplifier les méthodes de

détection. Les raisons qui limitent encore l'utilisation des fibres optiques tiennent

essentiellement aux difficultés mécaniques de connexion et de dérivation de câbles à fibre optiques. C'est pourquoi la plupart des applications actuelles se limitent à des liaisons point-à-point.

Le principe d'utilisation d'une fibre optique consiste à transformer l'information à

transmettre en impulsions lumineuses, à envoyer celles-ci dans la fibre et, à la réception, à reconvertir les impulsions lumineuses en impulsions électriques.

On peut à ce stade distinguer deux technologies :

– fibres monomodes Il s'agit de fibres très minces (5 - 10 µm) dans lesquelles la lumière se propage

Page 42: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 40

sans réflexion. L'émission se fait par laser et la réception par diode à avalanche. Les vitesses de transmission peuvent atteindre plusieurs GHz ! Le coût des équipements limite cependant l'utilisation des fibres monomodes aux applications de télécommunication.

– fibres multimodes

On utilise ici des fibres plus grosses (qq. 100 µm) où la transmission s'accompagne

de réflexions (cf. figure 3.1.d.). Le signal émis est de ce fait transmis selon une multitude de chemins optiques de longueurs différentes ce qui provoque finalement un étalement du signal reçu. Il en résulte une bande passante considérablement plus réduite que dans le cas précédent mais qui, par contre, s'accommode de l'utilisation de diodes électroluminescentes (LED) à l'émission et de plototransistors à la réception. La conséquence en est un coût tout à fait compétitif par rapport aux solutions traditionnelles.

Ce sont essentiellement les fibres multimodes qui sont utilisées dans les réseaux

locaux.

On peut encore distinguer deux catégories :

– fibres à saut d'indice de réfraction : (figure 3.2.a)

C'est le cas représenté à la figure 3.1.d.

– fibres à gradient d'indice de réfraction (figure 3.2.b)

On essaye ici de compenser la dégradation du signal de sortie en donnant aux rayons lumineux une vitesse d'autant plus grande (indice de réfraction plus faible) que le chemin qu'ils suivent est plus long.

Le tableau de la figure 3.2.c montre l'efficacité de cette manière de faire.

Exemple : 2 km à 10 Mbit/s (ETHERNET 10 BASE FL)

3.3. FACTEURS LIMITANT LES PERFORMANCES Si nous en revenons aux liaisons métalliques, rappelons qu'une ligne peut être

considérée comme la mise en série de quadripôles élémentaires du type montré à la figure 3.3. et présentant :

– une résistance par unité de longueur R – une induction par unité de longueur L – une capacité par unité de longueur C – une perditance par unité de longueur G

Il en résulte qu'un signal émis en début de ligne va se retrouver considérablement

déformé à l'arrivée comme illustré à la figure 3.4.

Page 43: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 41

Type de fibre Diamètres

(cœur-enveloppe) (microns)

Atténuation (dB/km)

(à 850 nm)

N.A. Bande passante

(MHz.km) (à 850 nm)

Multimode à saut d'indice

a) silice-silice 100 – 140 4 0.21 20

200 - 280 4 0.21 10

b) silice-matière plastique 200 - 380 8 0.40 10 (résine de silicone)

Multimode à gradient d'indice

silice-silice 50 – 125 3 0.21 400

c.

Figure 3.2. Comparaison des performances des fibres à saut à gradient d'indice Tiré de [BLONDEL, 1984]

Figure 3.3. Elément de ligne Les phénomènes qui interviennent dans cette détérioration sont les suivants :

– l'atténuation : due aux pertes ohmiques; elle diminue l'amplitude des signaux reçus et cela, indépendamment de la vitesse de transmission.

50 µm 100 µm

COEUR

ENVELOPPE

n0

n1 n2

n1

n2

a. Fibre à saut d'indice b. Fibre à gradient d'indice

Page 44: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 42

– le bruit : les parasites électromagnétiques affectent nécessairement toute ligne de transmission métallique avec plus ou moins d'intensité selon les solutions adoptées (cf. § 3.1).

Ces deux premiers phénomènes introduisent une limite absolue sur la longueur

d'une ligne : il faut que les signaux soient détectables sans ambiguïté compte tenu du bruit de fond.

Figure 3.4. Sources de détérioration d'un signal Tiré de [HALSALL, 1994]

– la bande passante limitée : la présence d'éléments capacitifs et inductifs limite la bande passante d'une ligne. Cela signifie que les hautes fréquences vont être plus atténuées que les basses fréquences. Il en résulte que les flancs verticaux des signaux, auxquels correspondent des hautes fréquences, sont adoucis et que les temps de montée augmentent.

– les délais de propagation : on peut démontrer (mais cela sortirait du cadre de ce cours) que les fréquences constitutives d'un signal se propagent à des vitesses différentes le long d'une ligne. Il s'ensuit une dissymétrie dans le signal reçu. De plus, les fréquences les plus "rapides" d'un bit risquent d'interférer avec les fréquences les plus "lentes" du bit précédent, si l'écart entre deux bits émis est trop court.

Page 45: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 43

Les deux derniers phénomènes introduisent une limite sur la longueur d'une ligne qui dépend de la vitesse de transmission. En l'occurrence, la règle de bonne pratique consiste à garder la somme des temps de montée et de descente d'un bit reçu inférieure à la moitié de la durée nominale du bit [McNAMARA, 1979]. Cela signifie qu'il reste au moins une zone "plate" équivalente à la moitié de la durée nominale du bit, ce qui permet d'en déterminer la valeur avec une fiabilité suffisante.

3.4. LES CIRCUITS DE LIGNE

Les circuits TTL classiques ne conviennent pas pour envoyer des signaux en ligne car les puissances disponibles sont en général trop faibles et leurs impédances d'entrée et de sortie non linéaires ne permettent pas de s'adapter aux impédances caractéristiques des lignes.

Des circuits spéciaux ont donc été développés, les émetteurs et récepteurs de ligne

(line drivers and receivers). Nous parlerons ci-dessous de ceux qui ont fait l'objet d'une normalisation : RS

232, RS 423, RS 422 et RS 485. Nous rappellerons également le principe des transmissions en boucle de courant.

3.4.1. EMETTEURS/RECEPTEURS RS 232 ET RS 423 La figure 3.5.a. montre le principe d'utilisation des émetteurs/récepteurs RS-232.

On remarquera qu'il s'agit d'une transmission unifilaire (retour commun émetteur/récepteur) ce qui est très défavorable pour l'immunité au bruit et la diaphonie comme expliqué au paragraphe 3.1.1.

La norme limite les vitesses à 20 K bauds sur des distances n'excédant pas 15 m.

En pratique, on peut aller nettement plus loin (cf. figure 3.6.), mais les performances restent néanmoins médiocres.

La norme RS 423 est une version améliorée de la norme RS 232 mais elle en garde

les principaux inconvénients.

Page 46: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 44

Figure 3.5. Transmissions directes sans MODEM

Page 47: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 45

3.4.2. EMETTEURS/RECEPTEURS RS 422

Cette norme plus récente a vraiment été conçue en vue de transmissions directes

sur lignes comme le montre la figure 3.5.b. Les émetteurs/récepteurs se caractérisent par un travail en différentiel permettant d'attaquer des lignes bifilaires adaptées (résistance R)

Les performances correspondantes sont indiquées à la figure 3.6.

3.4.3. TRANSMISSION EN BOUCLE DE COURANT La boucle de courant (20 ou 60 mA) a été conçue, au départ, pour la liaison des

télétypes électromécaniques aux ordinateurs. Elle reste un moyen de transmission de performances modestes (figure 3.6.), mais qui bénéficie d'un certain nombre d'avantages :

– les interfaces sont couramment disponibles, tant du côté ordinateurs que

périphériques (ce qui n'est pas encore le cas de la norme RS 422)

– la transmission est symétrique et présente donc une bonne immunité aux bruits. Les désavantages de la boucle de courant sont les suivants :

– elle n'a fait l'objet d'aucune normalisation, ni du point de vue électrique, ni du point de vue mécanique. Chaque utilisateur définit donc lui-même son mode de connexion, avec les problèmes de compatibilité que l'on devine.

– cette compatibilité est encore compliquée par le fait qu'il faut chaque fois choisir la localisation (à l'émetteur ou au récepteur) de la source de courant nécessaire à l'alimentation de la boucle. La figure 3.5.c. schématise l'organisation d'une transmission en boucle de

courant. On notera qu'avec la boucle de courant, la limite absolue de distance est

repoussée beaucoup plus loin que dans le cas des transmissions en tension. En effet, ce n'est plus la résistance des conducteurs qui provoque l'atténuation du signal reçu (représenté par la valeur d'un courant) mais bien la perditance (cf. § 3.3.) c'est-à-dire, en fait, les fuites dans l'isolant. Celles-ci sont en général extrêmement faibles.

Par contre, les vitesses de transmission sont limitées par le fait qu'avant

d'apparaître au récepteur le courant (très limité) fourni par l'émetteur doit charger complètement la capacité de ligne.

REMARQUE : Les circuits de ligne décrits aux paragraphes précédents possèdent tous

deux canaux binaires, un pour l'émission et un pour la réception. Ils sont prévus pour réaliser des liaisons point-à-point en mode full-duplex.

Page 48: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 46

Figure 3.6. Transmissions directes. Comparaison des performances. [McNAMARA, 1979]

Page 49: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 47

3.4.4. EMETTEURS/RECEPTEURS RS 485

Les circuits RS 485 utilisent les mêmes standards de signaux que les circuits RS

422 (et ont des performances similaires) mais ils ont la particularité que l'émetteur peut être virtuellement désactivé par un signal de commande approprié (en fait, il est placé dans un mode à haute impédance).

Comme montré à la figure 3.7., ils permettent donc de réaliser des liaisons point-

à-point et multipoints en mode half-duplex en n'utilisant qu'un seul canal binaire (c'est-à-dire deux fils).

Pour cette raison, les circuits RS 485 sont utilisés comme couche physique dans

beaucoup de réseaux locaux. REMARQUE : Tous les circuits de ligne décrits dans le paragraphe 3.4. possèdent des

versions à isolation galvanique par opto-couplage. Celles-ci sont hautement recommandées pour des liaisons à longue distance afin de se prémunir contre les problèmes de mode commun (différence de tension existant entre la "terre" d'équipements géographiquement éloignés).

Figure 3.7. Utilisations possibles du circuit de ligne RS 485

Page 50: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 48

3.5. MODULATION

La figure 3.8. présente les principaux types de modulation utilisés dans les

réseaux locaux.

Figure 3.8. Principaux types de modulation

Page 51: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 49

3.5.1. BANDE DE BASE (Baseband)

Dans ce type de transmission, le signal utile est directement envoyé en ligne sans

transposition de fréquence. Les équipements de transmission associés sont de ce fait simples et peu onéreux. Par contre la capacité de la ligne est en général sous-utilisée. C'est en particulier le cas lorsque l'on utilise des coaxes en bande de base (à 10 Mbits/s par exemple) alors que leur bande passante est de 300-400 Mhz !

Les circuits de ligne décrits au paragraphe 3.4. relèvent tous de cette catégorie.

3.5.2. FREQUENCE PORTEUSE (Carrier band) Le signal utile module cette fois une fréquence porteuse par l'intermédiaire d'un

MODEM (MODulateur DEModulateur). Le recours à une fréquence porteuse est parfois indispensable pour faire passer des données numériques dans une fenêtre de fréquence déterminée. C'est typiquement le cas lorsque l'on utilise une ligne téléphonique commutée puisque celle-ci présente une bande passante de 300 à 3.400 Hz. La porteuse sera choisie au milieu de cette plage.

Certains réseaux locaux utilisent également une fréquence porteuse mais pour

d'autres raisons. C'est qu'en choisissant cette fréquence en dehors du spectre des parasites industriels, on obtient une meilleure immunité au bruit que dans le cas de la bande de base.

Le principe des MODEM sera présenté au chapitre 4. Notons d'ores et déjà qu'il existe plusieurs types de modulation de la porteuse

comme cela est montré à la figure 3.9. :

– modulation d'amplitude AM (Amplitude Modulation)

– modulation de fréquence FSK (Frequency-Shift Keying)

– modulation de phase PSK (Phase-Shift Keying)

Les deux dernières méthodes sont évidemment beaucoup moins sensibles aux parasites électromagnétiques que la première.

3.5.3. LARGE BANDE (Broadband)

En utilisant plusieurs fréquences porteuses judicieusement réparties dans la

bande passante, on peut créer l'équivalent de plusieurs canaux de communications sur un seul support physique. C'est ce qui est schématisé à la figure 3.3. Ce procédé permet même de transmettre simultanément des données, des communications téléphoniques, des images TV (cf. figure 3.10.). Evidemment, les équipements de transmission sont ici plus complexes et plus coûteux.

Page 52: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 50

A titre d'exemple, sur un câble ayant une bande passante de 300 MHz on peut placer simultanément :

50 signaux vidéo (6 MHz par signal)

ou 25 réseaux à 10 Mbits/s (12 MHz par réseau)

ou 5.000 communications vocales (60 kz par communication)

ou un mélange des précédents.

Figure 3.9. Types de modulation Tiré de [HALSALL, 1994]

A la fin des années 1980, un courant s'était dessiné en faveur de l'emploi de la

modulation large bande pour les communications industrielles, avec l'émergence du protocole MAP (voir chapitre 7).

En fait, la solution a été rapidement abandonnée en raison des difficultés

d'installation, de réglage de diagnostic et de maintenance des équipements nécessaires, sans parler du coût de ceux-ci.

Page 53: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 3 – SUPPORTS PHYSIQUES ET CIRCUITS DE TRANSMISSION 51

Figure 3.10. Illustration des possibilités d'une transmission à large bande

Page 54: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 52

Chapitre 4

SERIALISATION DE L'INFORMATION

ET EQUIPEMENTS DE TRANSMISSION Les notions présentées dans ce chapitre relèvent pour une part de la couche

liaison de données du modèle OSI (sérialisation) et pour une autre part de la couche physique (MODEM).

On a cependant jugé utile de les regrouper car elles ont des implications assez

directes les unes sur les autres.

4.1. TRANSMISSIONS ASYNCHRONES

4.1.1. PRINCIPE DE LA SERIALISATION/DESERIALISATION La sérialisation/désérialisation de l'information se fait par un dispositif (circuit

intégré) appelé USART (Universal Synchronous Asynchronous Receiver Transmitter) qui constitue le cœur des cartes d'interface de communication série. Son fonctionnement de principe est montré à la figure 4.1.

Emission : en chargeant le registre à décalage RD, le calculateur provoque

automatiquement sa mise en mouvement sous le contrôle de l'horloge H qui définit le rythme de la transmission (Baud rate). Le registre RD place ainsi successivement les bits du mot à émettre sur la ligne série de sortie.

Notons que l'information utile se complète d'un bit de démarrage (BD = 1), d'un bit

de parité éventuel (BP) et de un ou deux bits d'arrêt (BA = 0). La présence de ces bits BD et BA permet de réaliser une transition (1 → 0) en début d'émission qui servira à synchroniser le récepteur. L'allure qui en résulte pour le message sérialisé est montrée à la figure 4.1.b. Lorsque le nombre de bits prévu a été émis le processus est arrêté et un flag de fin d'émission est enclenché indiquant au calculateur la bonne fin du transfert (ce flag peut, par exemple, servir à provoquer une demande d'interruption).

Réception : à la réception, la ligne série est testée en permanence. Dès qu'une

transition (1 → 0) est détectée, les bits incidents sont dirigés vers un registre à décalage sous le contrôle de l'horloge H. Lorsque le nombre de bits prévu a été reçu, le processus est arrêté en même temps qu'un flag de fin de réception est enclenché (provoquant par exemple une interruption). Le calculateur a alors le loisir de procéder à la lecture du mot reçu, provoquant automatiquement le réarmement du système.

Page 55: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 53

Figure 4.1. Principe fonctionnel d'un USART

Page 56: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 54

REMARQUES * Le Baud rate définit la vitesse de modulation telle que fixée par l'horloge H. Dans le

cas présent, elle correspond à la vitesse de transmission exprimée en bit/s. Nous verrons plus loin que ce n'est pas toujours le cas.

* Les valeurs usuelles du Baud rate en transmission asynchrone sont : 50, 75, 110,

134.5, 150, 300, 600, 1.200, 1.800, 2.000, 2.400, 3.600, 4.800, 7.200, 9.600 et 19.200.

* Le nombre de bits utiles d'un message (encore appelé "caractère") peut être choisi

parmi les valeurs 4, 5, 6, 7 et 8. * Le nombre de bits d'arrêt (STOP BITS) peut être fixé à 1, 1.5, 2. (Il s'agit en fait d'un

délai entre deux caractères successifs). * Pour le contrôle de parité, les options sont les suivantes :

NONE : pas de bit de parité SPACE : bit de parité toujours à 0 MARK : bit de parité toujours à 1 EVEN : parité paire : le bit de parité est positionné de sorte que le nombre de

bits à 1 du message soit pair ODD : parité impaire : cas inverse du précédent. Signal BREAK : le signal BREAK consiste à envoyer en ligne des bits pendant un

temps supérieur à l'envoi d'un caractère normal (plus les bits de contrôle). Les USART sont en général capables d'engendrer un tel signal et de le détecter. Dans ce dernier cas, un flag est positionné qui peut être exploité par l'ordinateur (en provoquant une interruption par exemple). Ce signal est souvent utilisé pour des initialisations.

Notons enfin qu'outre l'USART, les cartes d'interface série comportent

généralement encore les circuits de contrôle et d'amplification relatifs à la norme EIA RS232 (= CCITT V24) permettant, par exemple, d'attaquer un MODEM standard (voir paragraphe 4.5.)

4.1.2. LIMITATIONS DES TRANSMISSIONS ASYNCHRONES

Comme on l'a vu au paragraphe précédent la sérialisation des données (à

l'émetteur) et leur désérialisation (au récepteur) se font à partir de deux horloges distinctes. Bien entendu, ces horloges sont réglées sur une même fréquence nominale (Baud rate) mais il est bien certain que de légères différences sont inévitables.

Pour comprendre les inconvénients de cette situation, il est nécessaire de détailler

quelque peu la manière dont un bit incident est détecté avant d'être introduit dans le registre à décalage.

Comme le montre la figure 4.2.a, on utilise en fait une horloge 16 fois plus rapide

Page 57: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 55

que le "Baud rate" pour échantillonner le signal arrivant au récepteur. Dès que la transition de départ est détectée, on procède à un échantillonnage

après 8 temps de l'horloge rapide, c'est-à-dire en principe au milieu du bit; la valeur trouvée à ce moment détermine la valeur attribuée au bit reçu et est envoyée dans le registre à décalage. On procède ensuite à un nouvel échantillonnage après 16 temps d'horloge et ainsi de suite.

Sur la figure 4.2, on a introduit une différence grossière entre les fréquences

d'émission et de réception : ainsi, après 3 bits seulement, on assiste à une désynchronisation totale de l'émetteur et du récepteur, ce qui conduit à un signal reçu complètement erroné.

La réalité n'est pas si défavorable, mais le problème n'en subsiste pas moins. La

conclusion est que la longueur d'un message asynchrone doit obligatoirement être limitée. En pratique, on ne dépasse pas 10 bits. Sur ces 10 bits, il y a deux (parfois trois) bits de "service" (départ et arrêt) si bien que le rendement d'une transmission asynchrone est limité à 80 %.

C'est là le principal reproche que l'on peut faire à ce type de transmission avec,

aussi, une sensibilité aux distorsions due à la manière "aveugle" dont est réalisée la désérialisation. En effet, toute la réception est basée sur la détection du START bit. Si celui-ci est déformé, c'est la détection de tous les autres bits qui en sera affectée.

4.2. TRANSMISSIONS SYNCHRONES Dans le cas de transmissions synchrones la désérialisation s'effectue à partir

d'une horloge synchrone avec celle de l'émetteur. On procède ici aussi à un échantillonnage au milieu des bits, mais, cette fois, sans aucune ambiguïté (cf. figure 4.2.b).

Le problème consiste évidemment à amener au récepteur, l'horloge de l'émetteur.

Cela peut se faire de deux manières :

– par voie directe, à l'aide d'une ligne spéciale (courtes distances).

– par synchronisation permanente de l'horloge du récepteur sur base des transitions existant dans le signal reçu. Encore faut-il qu'il en contienne suffisamment. Nous verrons, au paragraphe suivant des méthodes pour y parvenir. Cela étant, on peut envoyer des messages contenant un nombre en principe

quelconque de bits avec donc un meilleur rendement potentiel de la transmission. Un autre problème qui se pose alors est la synchronisation au niveau des

messages : comme il n'y a plus ici de bits de démarrage et d'arrêt, il importe de trouver un autre moyen d'informer le récepteur du début et de la fin d'un message utile. Cette forme de synchronisation relève des protocoles de liaison de données que nous examinerons au chapitre 5.

Page 58: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 56

Figure 4.2. Transmissions séries. Principe de la désérialisation.

Page 59: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 57

En conclusion, on notera que les transmissions synchrones sont :

– potentiellement plus efficaces puisqu'il n'y a pas de bit de démarrage et d'arrêt associé à chaque caractère.

– moins sensibles aux distorsions puisque les signaux d'horloge sont compris dans

le message et sont donc soumis aux mêmes distorsions. C'est ainsi que les transmissions synchrones sont généralement préférées lorsqu'il

s'agit de réaliser des vitesses de transmissions élevées ( > 2.400 bauds). Par contre, les deux problèmes évoqués plus haut conduisent a des réalisations

matérielles plus complexes et, partant, plus coûteuses.

4.3. SYNCHRONISATION DU RECEPTEUR Rien n'oblige le signal émis de contenir des transitions fréquentes. De longues

suites de bits à 0 ou à 1 peuvent très bien constituer une information tout à fait normale (états de contacts, par exemple, dans une application industrielle).

Il est donc nécessaire de transformer les messages à l'émission afin qu'ils

contiennent un nombre suffisant de transitions pour éviter une dérive de l'horloge de réception. On s'impose généralement d'avoir au moins une transition tous les 5 bits.

Deux méthodes sont utilisées : le codage et le brouillage.

4.3.1. CODAGE

Différents codages sont envisageables pour résoudre le problème des transitions. Nous présentons, à la figure 4.3., deux parmi les plus utilisés [HALSALL, 1994] – [MACCHI, 1979].

– codage NRZI (Non Return to Zero Inverted) : un bit à 0 du signal utile provoque

un changement d'état du signal émis, un bit à 1 laisse l'état inchangé. Des transitions existent donc dans le cas de suites de 0 mais pas dans le cas de suites de 1. Ce type de codage est destiné à être utilisé avec le protocole de liaison de données HDLC (cf. chapitre 5) où les suites de 1 sont obligatoirement limitées à 5 bits du fait du "bit stuffing".

– codage Manchester différentiel : il y a toujours un changement d'état au milieu

du bit. Au début du bit, il y a changement d'état si le bit est à 0 et pas de changement si le bit est à 1. Les techniques de codage se retrouvent dans beaucoup de réseaux locaux. La

seconde est aussi utilisée dans les MODEM en bande de base (cf. § 4.4.3.). Remarquons que, pour ces deux codages, la polarité des signaux peut être

inversée selon la situation de départ. Le décodeur y est évidemment insensible, ce qui met l'utilisateur à l'abri d'erreurs de branchement des fils.

Page 60: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 58

Horloge

Message

CodageNRZI

CodageManchesterDifférentiel

0

1

0

1 1

0

1

0 0 0

Figure 4.3. Exemples de codage pour la transmission en bande de base.

Page 61: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 59

4.3.2. BROUILLAGE

Le principe de cette opération est illustré à la figure 4.4. Le signal émis E est obtenu à partir du signal utile U par l'intermédiaire d'un

dispositif logique, comportant essentiellement un registre à décalage, et qui réalise l'équation (figure 4.4.a) :

E = U ⊕ E–6 ⊕ E–7

avec ⊕ OU exclusif E–6 signal retardé de 6 temps d'horloge

E–7 signal retardé de 7 temps d'horloge La théorie de l'algèbre de Boole montre que le signal E ainsi obtenu présente des

caractéristiques pseudo-aléatoires qui donnent lieu à une répartition quasi homogène de transitions (au moins une tous les 5 bits) même si le signal utile U n'en comporte pas. La figure 4.4. met cela en évidence sur un exemple concret.

A la réception, on pratique l'opération inverse dans un montage symétrique (figure

4.4.b) :

U* = E ⊕ E–6 ⊕ E–7 Par comparaison avec l'équation relative à l'émetteur, on trouve

U* = U ⊕ ( E–6 ⊕ E–6 ) + ( E–7 ⊕ E–7 ) soit en vertu de la définition de OU exclusif

U* = U

Cela est bien confirmé par l'exemple de la figure 4.4.

4.4. MODEM Les MODEM que nous présenterons dans ce paragraphe sont essentiellement

destinés à la transmission des données par le réseau téléphonique public. Une modulation est requise dans ce cas en raison de la fenêtre de fréquences limitée dont on dispose (300 – 3.400 Hz).

4.4.1. MODEM ASYNCHRONES

Les MODEM asynchrones travaillent par modulation (en amplitude, fréquence ou

phase) et démodulation d'une fréquence porteuse judicieusement positionnée par rapport à la bande passante des canaux téléphoniques (300 - 3.400 Hz). La figure 4.5.a en schématise la structure.

Page 62: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 60

Figure 4.4. Principe du brouillage d'un message

1 2 3 4 5 6 7 1 2 3 4 5 6 7 U

E E

U*

a. Emetteur b. Récepteur

E

U

U*

U E U*

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0

0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0

0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0

Page 63: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 61

Figure 4.5. Principe des MODEM

Page 64: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 62

4.4.2. MODEM SYNCHRONES Les MODEM synchrones travaillent fondamentalement comme les précédents,

mais en plus, comme on l'a dit au paragraphe 4.3., ils doivent reconstituer, à la réception, l'horloge de l'émetteur. Cela se fait, en pratique, en synchronisant une horloge locale contenue dans le MODEM à partir des transitions de bit existant dans le signal utile, grâce à une technique d'asservissement de phase (phase locked loop).

C'est en général la technique du brouilleur qui est utilisée ici car la bande

passante nécessaire est alors la même que celle relative au signal utile (ce qui n'est pas le cas du codage Manchester).

4.4.3. MODEM EN BANDE DE BASE

Ce sont des MODEM synchrones ou asynchrones qui travaillent sans fréquence

porteuse, directement au niveau du signal utile (figure 4.5.c). Ils ne peuvent donc s'utiliser que sur lignes privées ou sur des lignes

téléphoniques louées très particulières appelées "liaisons métalliques". Ces liaisons métalliques sont possibles entre abonnés raccordés à un même

concentrateur. Il est en effet possible dans ce cas de raccorder directement les lignes des abonnés au niveau de ce concentrateur sans passer par les circuits d'amplification téléphoniques qui sont responsables des limitations de la bande passante. On se trouve en fait dans la même situation qu'avec une ligne privée excepté qu'un découplage par transformateur est exigé.

Dans les transmissions synchrones, c'est dès lors la technique du codage qui sera

utilisée (plutôt que celle du brouillage) puisque, d'une part, elle permet d'utiliser des transformateurs de ligne et que, d'autre part, il n'y a pas de limitation particulière de la bande passante.

4.4.4. MODEM A HAUTE VITESSE DE TRANSMISSION

Les MODEM décrits ci-dessus sont des MODEM classiques à basse vitesse (4.800

bits/s maximum) où la vitesse de modulation (baud rate) est égale à la vitesse de transmission (bits/s).

Afin de tirer le maximum de parti de la bande passante téléphonique de 300 à

3.400 Hz, il est possible de sophistiquer la modulation de manière à transmettre plusieurs bits sur un seul temps de modulation (baud).

La figure 4.6. donne un aperçu de ces techniques dans le cas d'une modulation de

phase. Deux bits sont ici codés par baud.

Page 65: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 63

Figure 4.6. Modulation de phase. Transmission de 2 bits par baud. Tiré de [HALSALL, 1994]

On a la relation suivante :

Déphasage Valeurs des bits 0

90° 180° 270°

00 01 10 11

Des combinaisons plus complexes peuvent être envisagées mêlant modulations d'amplitude et de phase. Leur description sortirait cependant du cadre de cet ouvrage.

De toute façon, il existe une limite dans cette voie résultant de la loi de Shannon-Hartley [HALSALL, 1994] :

⎟⎠⎞

⎜⎝⎛ +=

NSBC 1log 2

C : capacité de transmission en bits/s B : bande passante de la ligne en Hz S : puissance du signal en watts N : puissance du bruit en watts

Pour une ligne téléphonique standard (bande passante 3.100 Hz et NS

≈ 100), C est de

l'ordre de 30 Kbits/s. 4.5. STANDARDS D'INTERFACE POUR LES MODEM

Rappelons que, dans le jargon des télécommunications, un MODEM est appelé

DCE (Data Circuit Equipment) ou ETCD (Equipement Terminal de Circuit de Données) tandis que l'équipement qui lui est raccordé (ordinateur, terminal d'ordinateur, etc.) est désigné par DTE (Data Terminal Equipment) ou ETTD (Equipement Terminal de Transmission de Données).

Page 66: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 64

La connexion DTE-DCE est complètement normalisée tant du point de vue fonctionnel (rôle des signaux) que du point de vue électrique (niveau des signaux) et connectique (type et câblage des connecteurs). Les standards ont été définis par l' EIA et le CCITT.

4.5.1. STANDARD RS 232 - V24

Ce standard est le plus ancien et le plus connu. Il correspond aux "portes séries que l'on trouve sur les ordinateurs.

– Spécification fonctionnelle RS 232 (EIA) – V28 (CCITT)

La figure 4.7.a décrit les différents signaux et leur fonction. Selon le type de

MODEM utilisé, on aura besoin d'un nombre plus ou moins grand de ces signaux. La figure 4.8. donne un exemple.

A côté des circuits de données proprement dites :

102 - SGD = Signal Ground 103 - TD = Transmitted Data 104 - RD = Received Data

On trouve des signaux de contrôle et, notamment, – Signal d'intérêt général

107 : DSR = Data Set Ready. Origine DCE.

Indique que le MODEM est opérationnel. – Signaux servant aux liaisons half duplex 105 : RTS = Request To Send. Origine DTE.

Indique que le terminal (l'ordinateur dans notre cas) désire émettre. 106 : CTS = Clear To Send. Origine DCE.

Indique que le MODEM est prêt à émettre (après commutation appropriée). 109 : DCD = Data Carrier Detect. Origine DCE.

Indique que le MODEM reçoit un signal. – Signaux servant aux liaisons synchrones

113 : Serial Clock Transmit. Origine DCE.

Horloge de l'émetteur local.

115 : Serial Clock Receive. Origine DCE.

Horloge du récepteur (synchronisée sur celle de l'émetteur éloigné).

Page 67: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 65

– Signaux servant aux liaisons commutées

125 : RI = Ring Indicator. Origine DCE.

Indique la présence d'un signal d'appel (sonnerie) sur la ligne. 108 : DTR = Data Terminal Ready. Origine DTE.

Indique que le terminal est opérationnel et que la liaison peut être établie en réponse à un appel.

Data Control Timing Pin

number

EIA RS232C Interchange

circuit

CCITT V.24

equivalent

Description from

DCE to

DCE from DCE

to DCE

from DCE

to DCE

1 7 2 3 14 16

AA AB BA BB SBA SBB

101 102 103 104 118 119

Protective ground Signal ground/common return Transmitted data Received data Secondary tranmitted data Secondary received data

SGD TD RD

X

X

X

X

4 5 6 20 22 8 21

CA CB CC CD CD CD CG

105 106 107 108.2 125 109 110

Request To Send Clear To Send Data Set Ready Data Terminal Ready Ring indicator Received-line signal detector Signal quality detector

RTS CTS DSR DTR RI CD

X X

X X X

X

X

19 13 12 23 23 24 15 17

SCA SCB SCF CI CH DA DB DD

120 121 122 112 111 113 114 115

Secondary Request To Send Secondary Clear To Send Secondary Received-line signal detector Data-signal rate selector (DCE) Data-signal rate selector (DTE) Tranmitter-signal element timing (DTE) Tranmitter-signal element timing (DCE) Receiver-signal element timing (DCE)

X

X

X

X

X X

X

a. Spécifications fonctionnelles

b. Spécifications mécaniques

Figure 4.7. Standards RS 232 – V24

ORDINATEUR ORDINATEURMODEM MODEM

DTE DCE DCE DTE

Page 68: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 66

Figure 4.8. Standards RS 232 – V24. Rôle des différents signaux

– Spécifications connectiques Les connecteurs utilisés sont des connecteurs 25 pins normalisés. La figure 4.7.a.

en précise le câblage. A noter que la polarité des connecteurs est également normalisée (figure 4.7.b).

- le connecteur DTE doit être un connecteur mâle - le connecteur DCE doit être un connecteur femelle

– Spécifications électriques

On a repris ici les circuits de lignes RS 232 définis au paragraphe 3.4.1. La figure 4.9. en précise les spécifications. Rappelons que ces dernières limitent en principe les vitesses à 20 Kbauds et les distances à 15 m.

Page 69: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 67

Figure 4.9. Caractéristiques électriques du standard V28 ou RS 232 Tiré de [McNAMARA, 1977]

Page 70: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 68

4.5.2. STANDARDS RS 449 ET RS 530

Le besoin est apparu d'interfaces DTE-DCE plus performantes en vitesse et en distance que le RS 232. Les standards RS 449 et RS 530 ont été proposés dans cette optique.

Ils sont basés sur les circuits de ligne RS 423 et RS 422 avec les performances

décrites au paragraphe 3.4. La principale différence avec le RS 232 est qu'il faut maintenant deux fils au lieu d'un par signal.

La figure 4.10. compare les spécifications fonctionnelles et connectiques des

nouveaux standards par rapport au RS 232. Sans entrer dans les détails, on peut faire les remarques suivantes :

– le standard RS 449 reprend toutes les fonctionnalités du RS 232 et en ajoute même quelques unes. Avec deux fils par signal, cela conduit à une connectique assez volumineuse constituée d'un connecteur principal à 37 pins et d'un connecteur auxiliaire à 9 pins;

– le standard RS 530 ne reprend que les principales fonctionnalités du RS 232 , ce qui lui permet de se contenter d'un connecteur 25 pins analogue à celui du RS 232.

4.6. UTILISATION DU STANDARD RS 232 POUR DES COMMUNICATIONS

LOCALES Comme on sait, les standards RS232 - V24 sont couramment utilisés pour des

liaisons directes entre ordinateurs ou entre ordinateurs et périphériques en l'absence de tout MODEM.

4.6.1. PRINCIPE DU RACCORDEMENT (NULL-MODEM)

Dans l'esprit des normes précitées, les deux correspondants constituent tous deux

des DTE. Ils devraient dès lors comporter tous les deux des connecteurs mâles. Dans ce cas, le raccordement s'effectuera par un dispositif simulant, du point de vue des connexions, une paire de MODEM. C'est ce qu'on appelle un NULL-MODEM (figure 4.11.a). Cette manière de faire assure une compatibilité parfaite de tous les équipements : dès que les connecteurs sont compatibles mécaniquement, on est certain que la liaison sera compatible fonctionnellement et électriquement.

En pratique, pour simplifier le câblage, on place souvent un connecteur femelle du

côté terminal. Cela est licite pour autant que les signaux aux bornes de celui-ci représente la situation que l'on aurait à la sortie d'un NULL-MODEM (il faut en fait imaginer le NULL-MODEM incorporé à l'équipement, cf. figure 4.11.b).

PINOUT TABLE FOR EIA RS-232/CCITT V.24, EIA RS-530, EIA RS-449, AND CCITT V.35 INTERFACES

RS-449 Interface RS-530 Interface RS-232 Interface 37-pin 25-pin 9-pin

Aux. A B

EIA RS-449 Circuit

RS-449 description A B

EIA RS-530Circuit

RS-530 Description

25-pin

EIA RS-232 Circuit

CCITT V.24

Circuit

RS-232 Description

1 1 Shield 1 Shield 1 AA 101 Protective Ground

Page 71: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 69

5 19 SG Signal Ground 7 AB Signal Ground 7 AB 102 Signal Ground/ Common Return

9 6

37 20

SC RC

Send Common Receive Common

102a 102b

DTE Common DCE Common

4 22 SD Send Data 2 14 BA Transmitted Data 2 BA 103 Transmitted Data 6 24 RD Receive Data 3 16 BB Receive Data 3 BB 104 Receive Data 7 25 RS Request to Send 4 19 CA Request to Send 4 CA 105 Request to Send 9 27 CS Clear to Send 5 CB Clear to Send 5 CB 106 Clear to Send 11 29 DM Data Mode 6 22 CC DCE Ready 6 CC 107 Data Set Ready 12 30 TR Terminal Ready 20 23 CD DTE Ready 20 CD 108.2 Data Terminal Ready 15 IC Incoming Call 22 CE 125 Ring Indicator 13 31 RR Receiver Ready 8 10 CF Received Line Signal

Detector 8 CF 109 Received Line Signal

Detector 33 SQ Signal Quality 21 CG 110 Signal Quality Detector 16 SR Signal Rate Detector 23 CII 111 Data Signal Rate

Selector (DTE) 2 SI Signal Rate Indicator 23 CI 112 Data Signal Rate

Selector (DCE) 17 35 TT Terminal Timing 24 11 DA Transmitter Signal

Element Timing (DTE) 24 DA 113 Transmitter Signal

Element Timing (DTE) 5 23 ST Send Timing 15 12 DB Transmitter Signal

Element Timing (DCE) 15 DB 114 Transmitter Signal

Element Timing (DCE) 8 26 RT Receive Timing 17 9 DD Receiver Signal

Element Timing (DCE) 17 DD 115 Receiver Signal

Element Timing (DCE) 3 SSD Secondary Send Data BA Transmitted Data 14 SBA 118 Secondary Tranmitted

Data 4 SRD Secondary Receive Data BB Receive Data 16 SBB 119 Secondary Receive Data 7 SRS Secondary Request to

Send 19 SCA 12 Secondary Request to

Send 8 SCS Secondary Clear to Send 13 CB Clear to Send 13 SCB 121 Secondary Clear to Send 2 SRR Secondary Receiver

Ready DB Transmit Signal

Element Timing (DCE) 12 SCF 122 Secondary Received

Line Signal Detector 10 LL Local Loopback 18 LL Local Loopback 18 141 Local Loopback 14 RL Remote Loopback 21 RL Remote Loopback 21 140 Remote Loopback 18 TM Test Mode 25 TM Test Mode 25 142 Test Indicator 32 SS Select Standby 116 Select Standby 36 SB Standby Indicator 117 Standby Indicator 16 SF Select Frequency 126 Select Transmit

Frequency 28 IS Terminal in Service 34 NS New Signal

Figure 4.10. Comparaison des standards RS 232, RS 449 et RS 530

Page 72: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 70

En particulier : - PIN 2 : entrée, données reçues - PIN 3 : sortie, données transmises - PIN 6 : sortie, terminal sous tension - PIN 20 : entrée, ordinateur sous tension Cette solution est néanmoins à éviter car elle peut introduire une certaine

confusion dans la nomenclature des signaux. On rencontre aussi, malheureusement, des équipements dotés d'un connecteur

femelle dont le câblage est en fait celui du connecteur mâle normalement requis (figure 4.11.c). Cette solution est à proscrire radicalement. Il est conseillé dans ce cas, soit de remplacer le connecteur en question par un connecteur mâle soit de réaliser un boîtier d'adaptation fixé à l'équipement et rétablissant une situation plus saine.

4.6.2. CONTROLE DU FLUX D'INFORMATION

Le NULL-MODEM décrit à la figure 4.11. permet d'utiliser des interfaces de

communication pour le raccordement de terminaux d'ordinateur. En réalité, des interfaces beaucoup plus simples sont suffisantes. Pour un écran par exemple, 3 fils suffisent : 2, 3 et 7. Pour des terminaux plus lents (imprimantes par exemple), il faudra en général prévoir un moyen de suspendre temporairement le flux des informations venant du calculateur (tampon de caractères remplis, plus de papier, etc.). Il n'existe actuellement aucune standardisation en la matière.

On peut faire état de deux types de méthodes :

– Méthode par caractère de contrôle (XON - XOFF) Le flux d'information est suspendu par l'envoi d'un caractère de contrôle vers le

calculateur. XOFF (ASCII DC3) : suspend l'émission XON (ASCII DC1) : relance l'émission Cette méthode permet d'utiliser des interfaces sans aucune ligne de contrôle c'est-

à-dire réduits à 3 fils. Elle oblige cependant le terminal à gérer une voie d'émission série, le cas échéant uniquement pour cela (c'est le cas des imprimantes).

– Utilisation de lignes de contrôle

On utilise, dans ce cas une des lignes de contrôle prévues par la norme RS 232C-

V24. La plus logique est la ligne DTR (Pin 20).

Page 73: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 4 – SERIALISATION DE L'INFORMATION ET EQUIPEMENTS DE TRANSMISSION 71

Figure 4.11. Utilisation du standard RS 232 – V24 pour des communications locales

Page 74: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 72

Chapitre 5

PROTOCOLES DE LIAISON DE DONNEES Comme on l'a expliqué au paragraphe 2.3.1., la couche liaison de données du

modèle OSI comporte une sous-couche LLC (Logical Link Control) et une sous-couche MAC (Medium Access Control).

La sous-couche LLC a en charge :

- la sérialisation/désérialisation des données - la synchronisation des messages - la détection et la correction des erreurs de transmission - la gestion de la communication.

Le premier aspect a été étudié au chapitre précédent et nous aborderons donc ici les autres aspects. Nous nous limiterons cependant à des protocoles simples auxquels l'utilisateur non spécialiste pourrait éventuellement être confronté pour la réalisation de liaisons point-à-point ou de réseaux à gestion centralisée.

Les méthodes d'accès au réseau (MAC) feront l'objet du chapitre suivant.

5.1. SYNCHRONISATION DES MESSAGES En mode asynchrone, la synchronisation se fait au niveau des caractères, à l'aide

de bits de démarrage et d'arrêt (procédé dit "start-stop"). Les interfaces asynchrones standard effectuent généralement aussi un contrôle de parité sur base d'un bit rajouté à chaque caractère. Le dépouillement d'un tel protocole correspond bien à la vocation de simplicité et d'économie des transmissions asynchrones. Bien entendu, chaque utilisateur a le loisir d'introduire des protocoles plus élaborés, notamment au niveau du contrôle, mais ces protocoles doivent alors faire l'objet de développements logiciels et/ou matériels spécifiques.

En mode synchrone, la synchronisation est prévue au niveau des messages, ces

messages pouvant avoir des longueurs quelconques et d'ailleurs variables d'un message à l'autre. Les protocoles associés sont donc d'emblée plus complexes. Afin de pouvoir en déléguer la plus grande partie à des interfaces standard, il aurait évidemment été souhaitable de disposer d'un standard de protocole. Ce n'est pas encore le cas actuellement. Dans les paragraphes qui suivent, nous en décrirons deux parmi les plus utilisés, le protocole BISYNC (ou BSC) et le protocole HDLC. Le second sert de base à beaucoup de réseaux locaux. Des circuits intégrés existent d'ailleurs qui peuvent le prendre complètement en charge.

5.1.1. PROTOCOLES ORIENTES CARACTERES (BSC)

Dans ce type de protocole, on utilise des caractères spéciaux (appartenant au jeu

de caractères ASCII) afin de délimiter les différentes parties d'un message et de contrôler la communication (cf. § 5.3.1.).

Page 75: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 73

Le format typique d'un message dans le protocole BISYNC (encore appelé BSC = Binary Synchronous Communications) est montré à la figure 5.1.a.

On y distingue les éléments suivants :

SYN : caractère de synchronisation. Deux caractères successifs indiquent le début du message

SOH : Start of Header : indique le début d'une en-tête éventuelle du message

(optionnel) HEADER : en-tête (optionnelle) STX : Start of Text. Indique le début du texte TEXT : texte formé de caractères ETX : End of Text. Indique la fin du texte BCC : Block Check Character. Un ou deux caractères pour le contrôle de la

transmission (voir paragraphe 5.2.4) La structure qui vient d'être décrite convient parfaitement pour la transmission de

données alphanumériques telles qu'on les rencontre dans le domaine de la gestion. En effet, les données en question sont alors constituées exclusivement de caractères ASCII différents des caractères de contrôle.

Par contre, dans le domaine du contrôle de processus, les informations échangées

seront le plus souvent des nombres (mesures, commandes) ou des configurations de bits relatifs à des entrées/sorties binaires. Il peut alors très bien arriver que certaines de ces données aient un codage correspondant à un caractère de contrôle (ETX par exemple), ce qui perturbera évidemment complètement la réception du message.

On peut cependant se prémunir contre cette éventualité en travaillant en mode dit

"transparent" sous le contrôle du caractère spécial DLE (Data Link Escape). Ce mode sera annoncé au récepteur en ouvrant le texte par la paire DLE/STX au

lieu de STX (figure 5.1.b). Dans ce cas, le récepteur interprétera tous les caractères qui suivent comme des données même s'il s'agit de caractères de contrôle. On repassera en mode normal, non transparent, par la paire DLE/ETX. Un problème se pose encore si le caractère DLE lui-même apparaît dans le texte du message, car il pourrait très bien être suivi d'un code ETX ce qui aurait pour effet de tronquer le message. La solution adoptée consiste, à l'émission, à introduire dans le message un deuxième caractère DLE accolé au premier de manière à signaler le danger au récepteur. Celui-ci, à la réception d'un DLE le mémorise temporairement et attend le caractère suivant. S'il s'agit d'un DLE, il inclut ce dernier au message utile et écarte le premier; sinon, il considère le premier comme un caractère de contrôle. C'est ce qu'on appelle la méthode du "character stuffing".

REMARQUE : Les interfaces séries synchrones comportent généralement la logique

nécessaire à la détection des deux caractères successifs SYN de début de message, assez souvent, aussi, elles sont en mesure d'engendrer et de tester le ou les caractères de contrôle (BCC).

Page 76: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 74

Figure 5.1. Protocoles de transmission. Format des messages.

a. BISYNC (BSC) b. BISYNC mode transparent

c. HDLC

Figure 5.2. Détection des erreurs de transmission par parité verticale (VRC) et horizontale LRC)

Page 77: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 75

5.1.2. PROTOCOLES ORIENTES BITS (HDLC) Dans ce type de protocole, on ne fait plus appel à la notion de caractère. La figure

5.1.c, par exemple, donne le format d'un message correspondant au protocoles HDLC (High Level Data Link Control). On y distingue les champs suivants :

F : flag de début de message A : adresse du destinataire C : contrôle de la communication (voir paragraphe 5.3.) I : informations utiles FCS : Frame Check Sequence. Contrôle de la transmission (voir paragraphe

5.2.) F : flag de fin de message (identique au flag de début). Un problème de "transparence" se pose également pour le protocole HDLC. En

effet, si dans la suite des bits du message utile, il se présente une configuration analogue à celle d'un flag F, le message sera tronqué prématurément par le récepteur. Pour éviter cela, l'émetteur intercale systématiquement un bit 0 après cinq bits à 1. Ce bit 0 est automatiquement éliminé par le récepteur. C'est la méthode du "bit stuffing".

REMARQUE : Les interfaces séries synchrones comportent généralement la logique

nécessaire à la détection du flag de début de message; assez souvent, aussi, elles sont en mesure d'engendrer et de tester le champ de contrôle (FCS) et de procéder aux opérations liées au "bit stuffing".

5.2. DETECTION DES ERREURS DE TRANSMISSION Dans ce paragraphe, nous décrirons les trois méthodes les plus couramment

utilisées pour la détection des erreurs de transmission.

5.2.1. PARITE VERTICALE (ou VRC : Vertical Redundancy Check) Il s'agit d'un simple contrôle de parité généralement pratiqué au niveau du

caractère : selon le nombre pair ou impair de 1 présent dans un caractère, on ajoute à ce dernier un bit valant 0 ou 1 (parité paire) ou le contraire (parité impaire). A la réception, on recalcule la parité du caractère reçu et on vérifie si elle correspond au bit de parité reçu en même temps que le caractère.

5.2.2. PARITE HORIZONTALE (ou LRC : Longitudinal Redundancy Check)

La parité horizontale porte sur un ensemble donné de caractères : on calcule la

parité relative aux bits de même rang dans les caractères et on obtient ainsi un caractère de parité que l'on joint au message. A la réception, on procède de même et l'on compare avec le caractère de contrôle reçu en bout de message. Le contrôle LRC s'utilise en général en combinaison avec le contrôle VRC. La figure 5.2. illustre les deux techniques (voir aussi le tableau comparatif de la figure 5.3.)

Page 78: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 76

5.2.3. CODES CYCLIQUES (ou CRC : Cyclic Redundancy Check) La justification de cette méthode fait appel à la théorie des polynômes booléens et

sort du cadre de ce cours. Nous nous contenterons dès lors ici d'en décrire la mise en œuvre. La figure 5.4. se rapporte au cas du CRC 16. Notons que les normes IEEE prévoient un CRC 32.

Le message utile augmenté de 16 bits 0, est considéré comme un polynôme

booléen. On procède alors à la division de ce polynôme par un polynôme bien choisi appelé "générateur" (en l'occurrence X16 + X15 + X2 + 1). Le reste de la division (16 bits) forme le bloc de contrôle (cf. BCC et FCS) que l'on joint au message utile.

A la réception, on effectue la division du polynôme formé du message utile et du

reste par la même polynôme générateur. S'il n'y a pas eu d'erreur de transmission, le reste de cette deuxième division doit être nul.

Notons que la mise en œuvre pratique de cet algorithme se fait de manière

relativement aisée à l'aide d'un registre à décalage muni de rétroactions adéquates (figure 5.4.a). A l'émission par exemple, on envoie simultanément le message utile en ligne et à l'entrée du dispositif diviseur; le reste de la division est tout simplement le contenu du registre à décalage lorsque le dernier bit du message a été émis. Il suffit alors d'envoyer ce contenu en ligne pour compléter le message.

Le tableau de la figure 5.3. rend compte des performances relatives des différentes

méthodes.

Figure 5.3. Comparaison des méthodes de détection d'erreurs

Fréquences d'erreurs non détectées

Méthode Amélioration Lignes commutées Lignes louées

sans VRC VRC + LRC CRC 16

1 10 103 105

10-4

10-5

10-7

10-9

10-6

10-7

10-9

10-11

Page 79: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 77

Figure 5.4. Mise en œuvre du code détecteur d'erreur CRC16

Page 80: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 78

5.2.4. CORRECTION DES ERREURS DE TRANSMISSION Les méthodes décrites au paragraphe précédent permettent de détecter un taux

d'erreur plus ou moins élevé. Elles ne donnent cependant aucune indication sur la nature des erreurs.

Il existe des codes qui permettent d'effectuer a la fois la détection et la correction

d'erreurs. La mise en œuvre est cependant tellement lourde qu'ils ne sont guère utilisables en pratique courante.

La méthode de correction qui est alors utilisée quasi universellement consiste tout

simplement à demander la répétition du message dans lequel une erreur a été décelée. Elle relève donc de la gestion de la communication (cf. paragraphe 5.3.) 5.2.5. PROPOSITIONS DE NORMES CEI

CEI = Commission Electrotechnique Internationale La CEI a défini trois classes A, B, C relatives à la fiabilité des transmissions de la

manière indiquée à la figure 5.5. En abscisse se trouve le taux d'erreur "naturel" de la ligne utilisée et en ordonnée le taux d'erreur résiduel souhaité pour les transmissions.

Le tableau de la figure 5.6. présente les choses de manière plus parlante. On

constate que, pour ce cas de figure, les méthodes VRC + LRC et CRC16 se situent toutes les deux dans la classe A.

5.3. GESTION DE LA COMMUNICATION

La gestion de la communication comporte les points suivants :

– Etablissement de la liaison Ce premier point concerne uniquement le cas de lignes commutées du réseau

téléphonique public. Le protocole doit ici effectuer toutes les opérations nécessaires pour établir la liaison téléphonique : commande de l'unité automatique d'appel (à l'émission), détection de l'appel (à la réception), mise en ligne des MODEM, etc. (cf. paragraphe 4.5.).

– Etablissement de la communication

Envoi d'un avis d'émission (ou de réception), interrogation d'état (prêt, occupé),

contrôle des délais de réponse. Nous détaillerons ces opérations aux paragraphes 5.3.1. et 5.3.2.

– Transmission des données

Activation du protocole de transmission des données (paragraphe 5.1.).

– Fin de la communication Acquittement de bonne fin de transmission. Le cas échéant, demande de répétition

si des erreurs ont été détectées.

Page 81: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 79

Figure 5.5. Définition de trois classes pour la fiabilité des systèmes de transmission

(CEI)

Page 82: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 80

– Déconnexion de la liaison Opérations inverses du premier point dans le cas de lignes commutées.

Figure 5.6. Performance des trois classes dans les conditions :

- taux d'erreur de la ligne p = 10–4

- vitesse de transmission 1.200 bauds

5.3.1. EXEMPLE DU PROTOCOLE BSC Comme on l'a dit au paragraphe 5.1.1., le contrôle de la communication se fera,

dans ce type de protocole, à l'aide de caractères spéciaux du type suivant : ENQ : Enquiry. Interrogation d'état ACK : Acknowledge. Accusé de réception positif. NAK : Accusé de réception négatif. EOT : End of transmission. Fin de la transmission. L'organisation d'une communication prendra alors l'allure montrée à la figure 5.7.

(cas d'un transfert pilote - satellite sur ligne privée).

Reliability Class

Residual error rate

R

Meantime between undetected errors

T Typical application

A

B

C

10-6

10-10 10-14

1 day 26 years 260.000 years

Cyclic updating systems; telemetering Even initiated transmission; teleindication, telecounting Critical information transmission; Telecommands

Page 83: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 81

Figure 5.7. Protocole BSC. Gestion de la communication.

5.3.2. EXEMPLE DU PROTOCOLE HDLC Dans ce type de protocole, la gestion de la communication se fera à l'aide du

champ de contrôle à 8 bits prévu dans la structure du message (cf. figure 5.1.c). Le tableau de la figure 5.9. résume l'ensemble des fonctions.

Par exemple, une transmission station pilote vers station satellite aura l'aspect

montré à la figure 5.8. Remarquons que grâce aux compteurs de messages Nr et Ns, l'accusé de réception

d'un message ne doit pas suivre immédiatement celui-ci. Une accumulation maximum de 8 messages est possible.

L'accusé de réception RR (Nr) indique alors le nombre (Nr) de messages qui ont été

reçus correctement (2 dans le cas de l'exemple).

Station pilote Station satellite

STX/ADR + AVIS EMISSION/ETX → ; adressage du satellite et avis d'émission

ENQ → ; interrogation d'état

← STX/ADR/ETX ; identification

← ACK ; prêt à recevoir

STX/message/ETX → ; transmission du message

(1) ← ACK ; message bien reçu, pas d'erre

EOT → ; fin de la transmission (1) En cas de détection d'une erreur, la séquence devient :

← NAK ; erreur détectée, prière de répéter

STX/message/ETX → ; nouvel essai

← ACK ; plus d'erreur

EOT → ; fin de la transmission

Page 84: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 82

Figure 5.8. Protocole HDLC. Gestion de la communication

SNRM → ; initialisation ← NSA ; accusé de réception positif Message 1 → ; envoi du message 1 Message 2+P → ; envoi du message 2 ; demande d'accusé de réception (P) ← RR+F (Nr=2) ; message 1 et 2 bien reçus continuez (F) DISC → ; fin de transmission ← NSA ; merci !

Page 85: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 5 – PROTOCOLES DE LIAISON DE DONNEES 83

Figure 5.9. Protocole HDLC. Fonctions de gestion de la communication.

Contrôle

Type 0 1 2 3 4 5 6 7 ABREV Fonction

0

0

0

P/F

0

0

1

1

NSI

Pas d'information séquentielle

0 0 0 F 0 1 1 1 RQI Demande d'initialisation par SIM

0 0 0 P 0 1 1 1 SIM Initialisation

1 0 0 P 0 0 1 1 SNRM Mise en mode réponse normal

0 0 0 F 1 1 1 1 ROL La station a été mise off-line par DISC

0 1 0 P 0 0 1 1 DISC Place la station off-line

0 1 1 F 0 0 1 1 NSA Accusé de réception

1 0 0 F 0 1 1 1 CMDR Instruction erronée

Non séquentiel

0

0 1 P 0 0 1 1 ORO Demande de transmission

Nr

P/F

0

0

0

1

RR

Prêt à recevoir

Nr P/F 0 1 0 1 RNR Pas prêt à recevoir

Surveillance

Nr

P/F 1 0 0 1 REJ Rejet (erreur de transmission)

Information

Nr

P/F

Ns

0

I

Suite d'information

Nr : totalisateur de messages du récepteur Ns : totalisateur de messages de l'émetteur P : POLL (bit 3 = 1).

Dans un message pilote → satellite, indique que la station pilote demande une réponse F : FIN (bit 3 = 1).

Dans un message satellite → pilote, indique que la station satellite a terminé sa réponse.

Page 86: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 84

Chapitre 6

TOPOLOGIES ET

CONTROLE D'ACCES DES RESEAUX Les méthodes de contrôle d'accès à un réseau font partie de la couche liaison de

données (sous-couche MAC : Medium Access Control). La topologie ne fait pas à proprement parler partie de cette couche mais elle y a

des implications très directes, ce qui justifie de les associer dans l'exposé.

6.1. TOPOLOGIE La figure 6.1. présente les principales topologies des réseaux de communication.

6.1.1. RESEAUX INTERCONNECTES ET MAILLES Chaque nœud du réseau est relié à tous les autres nœuds par une liaison

point-à-point propre. Ce type de réseau donne lieu à une gestion particulièrement simple des communications qui se limitent, en fait, à un ensemble de communications bilatérales. Moyennant une gestion nettement plus complexe, il est possible de conférer aux nœuds des possibilités de routage des messages reçus c'est-à-dire de réémission de ces messages vers d'autres nœuds. On obtient ainsi un réseau à très grande disponibilité puisqu'il existe plusieurs chemins possibles d'un nœud vers un autre.

Les réseaux maillés constituent une version dégradée du cas précédent où

l'interconnexion n'est plus complète. Bien entendu, dans ce cas, les nœuds doivent obligatoirement assurer un routage des messages. Il est clair que les structures interconnectées ou maillées sont très coûteuses en lignes de transmission et très difficiles à étendre. Elles s'utilisent dans les réseaux publics de transmission (EX : EURONET, SWIFT, DCS, ...) mais ne conviennent assurément pas pour les réseaux locaux où le nombre de nœuds est en général très important.

6.1.2. RESEAUX EN ETOILE

Cette structure est très bien adaptée au cas où le plus gros des communications a

lieu entre les nœuds périphériques et le nœud central (terminaux vers ordinateurs par exemple, supervision de processus, etc.). Dans les autres cas, le nœud central doit router les messages incidents vers les nœuds destinataires. Remarquons que ce rôle de "commutateur" peut parfaitement être tenu par un central téléphonique privé de type électronique (PBX = Private Branch Exchange). C'est une solution fréquemment utilisée en bureautique où l'on se sert alors du réseau téléphonique interne de l'entreprise.

D'une manière générale, on peut dire que la structure en étoile est plus

économique en lignes que la structure maillée mais elle est aussi plus fragile étant donné la centralisation qui est opérée : une panne de liaison isole complètement le nœud concerné, une panne du nœud central paralyse tout le réseau.

Page 87: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 85

Les réseaux "cluster" constituent une généralisation du cas précédent.

6.1.3. RESEAUX BUS Dans un réseau BUS, les nœuds sont tous greffés en parallèle sur un câble unique

(liaison multipoint). Les connexions au BUS se font par exemple en se "piquant" sur le câble sans coupure de ce dernier et donc, aussi, sans interruption du service. On se trouve en fait dans une situation pratiquement analogue à celle du réseau de distribution d'énergie électrique. Le câblage d'un site peut ainsi se faire à l'avance sans connaissance a priori des besoins en communications. Ces qualités de souplesse et d'extensibilité constituent les principaux atouts des réseaux BUS et expliquent leur succès. (Le réseau ETHERNET appartient à cette catégorie). La panne d'un nœud n'affecte pas le reste du réseau; une coupure du câble, par contre, isole une partie plus ou moins importante du réseau.

Les réseaux en arbre constituent une généralisation du cas précédent.

6.1.4. RESEAUX EN ANNEAU L'anneau est composé d'un ensemble fermé de liaisons point-à-point entre nœuds.

Un message émis d'un nœud vers un autre doit donc transiter par tous les nœuds intermédiaires. A chaque passage dans un nœud, le message est régénéré ce qui permet des distances plus importantes que dans le cas précédent. Chaque nœud doit être capable de router les messages incidents. Il s'agit cependant d'une opération beaucoup plus simple que dans le cas des réseaux maillés puisqu'il n'y a qu'un seul routage possible : vers le nœud suivant de l'anneau.

On retrouve dans les réseaux en anneau un peu de la souplesse des réseaux BUS,

un peu seulement car l'ajout d'un nœud oblige de couper le câble et d'interrompre le service. Dans les structures en anneau simples, la panne d'un nœud ou d'une liaison paralyse totalement le réseau. Il est cependant assez facile de se prémunir contre une panne de nœud en prévoyant un court-circuitage automatique des nœuds défaillants par un relayage électromécanique (à l'intervention d'un "watch dog"). Pour certaines classes d'application, l'anneau présente des avantages au niveau de 1a gestion des communications : celle-ci est en effet déterministe tandis qu'elle est statistique dans la plupart des réseaux BUS (voir § 6.2.). Il sera par exemple plus simple ici de répondre aux contraintes de temps réel propres au contrôle de processus industriel.

6.2. CONTROLE D'ACCES AU RESEAU Sauf dans le cas de réseaux complètement interconnectés, les communications

entre nœuds devront nécessairement emprunter des chemins communs. Des conflits d'accès risquent donc de se poser. Les méthodes présentées ci-dessous ont pour but de les résoudre. En principe ces méthodes peuvent s'appliquer à n'importe quelle topologie de réseau mais il est bien certain qu'il en est qui sont mieux adaptées que d'autres. Nous le signalerons chaque fois.

Les méthodes de contrôle peuvent être fondamentalement classées en deux

catégories : les méthodes déterministes et les méthodes statistiques.

Page 88: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 86

Figure 6.1. Topologie des réseaux

Interconnecté Maillé

WAN

Bus Arbre

Anneau

Etoile

LAN

Cluster

Page 89: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 87

METHODES DETERMINISTES 6.2.1. POLLING

Un nœud maître interroge cycliquement les autres nœuds qualifiés d'esclaves et

donne successivement l'autorisation d'émettre aux nœuds qui le souhaitent (figure 6.2.). Cette méthode est principalement utilisée avec un maître fixe dans les topologies étoiles ou BUS. L'intérêt est, dans ce cas, de simplifier considérablement les fonctions de communication au sein des nœuds esclaves. par contre, la panne du nœud maître paralyse complètement le réseau.

Dans certains réseaux évolués, si le nœud maître est défaillant, n'importe quel

esclave peut prendre le relais et devenir maître à son tour. Remarquons que cette méthode d'accès n'a pas été retenue par la norme IEEE (cf. § 6.3.). Exemple : FIP.

Figure 6.2. Technique du polling 6.2.2. JETON (token passing)

Le "jeton" est un message particulier circulant de nœud en nœud et représentant

une autorisation d'émettre. Le nœud qui désire émettre attend le passage du jeton et retient celui-ci. Il devient alors provisoirement maître du réseau et peut établir les communications qu'il souhaite. Lorsqu'il a terminé, il remet le jeton en circulation. Il n'y a donc pas ici de maître fixe, tous les nœuds sont pareils. Le réseau peut ainsi continuer de fonctionner, même en cas de panne d'un (ou plusieurs) nœud, pour autant que celui-ci puisse être électroniquement court-circuité (figure 6.3.). Exemple : IBM (IEEE 802.5).

En configurant la taille des messages en fonction du nombre de nœuds du réseau,

on peut garantir, pour cette méthode, un temps minimal (aucun nœud n'a de message à émettre) et un temps maximal (tous les nœuds ont un message à émettre) pour la circulation du jeton.

La technique du jeton est particulièrement bien adaptée à la topologie en anneau.

En effet, le nœud qui libère le jeton doit simplement le transmettre au nœud adjacent sans rien connaître de ce dernier. Il existe cependant une certaine tendance à utiliser le jeton également pour les réseaux en BUS. Dans ce cas, le nœud qui libère le jeton doit explicitement connaître l'adresse du nœud auquel il faut le retransmettre. On constitue ainsi ce que l'on appelle un anneau logique (figure 6.4.). On conçoit que ceci puisse

POLL LIST 1. A 2. B 3. C

MASTER

A ?

A B C

B ?C ?

Page 90: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 88

considérablement compliquer les procédures de reconfiguration automatique du réseau

en cas de panne, d'ajout ou de retrait de nœuds.

Figure 6.3. Anneau à jeton Considérons par exemple le cas de la défaillance d'un nœud. Pour pouvoir recréer

un anneau logique, il faut que chaque nœud contienne une table avec son adresse, l'adresse de son prédécesseur et l'adresse de son successeur. Lorsqu'un nœud (par exemple le nœud 1 sur la figure) renvoie le jeton, il faut qu'il surveille la réaction de son successeur (en l'occurrence le nœud 3), soit que celui-ci renvoie le jeton à son tour, soit qu'il émette un message. Si rien ne se passe, c'est que le nœud 3 est hors service. Le nœud 1 prend alors l'initiative d'envoyer un message spécial "who follows" contenant son adresse et l'adresse de son successeur. Tous les nœuds reçoivent ce message (on est sur un BUS). Le nœud 2 va reconnaître l'adresse de son prédécesseur (n° 3) dans le message et va en déduire que le nœud 3 est en défaut. Il va alors renvoyer sa propre adresse au nœud 1 afin que celui-ci change dans sa table le numéro de son successeur qui devient 2 au lieu de 3. En même temps, le nœud 2 modifie dans sa table le numéro de son

Page 91: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 89

prédécesseur qui devient 1 au lieu de 3.

Exemples : MAP (IEEE 802.4), PROFIBUS.

Figure 6.4. Bus à jeton Tiré de [NUSSBAUMER, 1991]

6.2.3. TRAME VIDE (empty slot)

Cette méthode s'applique exclusivement aux anneaux, la plupart du temps avec

maître fixe. Le nœud maître met en circulation sur l'anneau un certain nombre de trames vides (c'est-à-dire de messages sans contenu informatif). Lorsqu'un nœud désire émettre, il attend le passage d'une trame vide qu'il remplit avec son message. Le

destinataire extrait le message et libère la trame (figure 6.5.).

Page 92: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 90

Figure 6.5. Méthode la trame vide

6.2.4. TEMPS PARTAGE (TDMA = Time Division Multiple Access)

Le nœud maître alloue cycliquement un temps de parole fixe à chaque nœud du

réseau. Cette méthode s'utilise généralement avec un maître fixe dans une topologie en anneau. On peut la considérer comme un cas particulier de la précédente où il circulerait au moins autant de trames dans l'anneau que celui-ci comporte de nœuds. La méthode est strictement déterministe et permet donc de connaître avec certitude le temps de transfert d'un message. Par contre, elle peut conduire à un gaspillage des ressources dans la mesure où les nœuds n'utilisent pas nécessairement leur temps de parole à chaque cycle. Exemple : INTERBUS-S.

METHODE STATISTIQUE

6.2.5. CONTENTION (CSMA/CD)

CSMA/CD = Carrier Sense Multiple Access with Collision Detection C'est une méthode qui s'applique uniquement aux réseaux en BUS. Chaque nœud

"écoute" la ligne (figure 6.6.); si celle-ci est libre, il peut émettre spontanément. La ligne devenant alors occupée, les autres nœuds sont empêchés d'émettre. Un problème peut se poser si, la ligne étant libre, plusieurs nœuds se mettent à émettre en même temps ou, plus exactement, dans un délai correspondant au temps de propagation de messages entre les nœuds en question. Dans ce cas, appelé collision, les messages émis sont perturbés. Les nœuds émetteurs, qui "écoutent" toujours la ligne, en sont avertis en constatant que le message en ligne diffère du message émis. L'émission est alors arrêtée et une nouvelle tentative est faite après un délai fixé par une loi aléatoire.

Cette méthode de contrôle d'accès est particulièrement simple à mettre en œuvre.

Elle assure de plus une récupération automatique des modifications de configuration du réseau. Les reproches qui lui sont faits touchent surtout à sa nature statistique qui ne permet pas de connaître, ni a fortiori, de garantir les temps de transfert des messages. Il n'empêche qu'elle est devenue un standard de fait en bureautique aussi bien qu'en industrie. Exemples : ETHERNET, MAP (IEEE 802.3), DEVICENET.

6.3. NORMALISATION

Comme on l'avait signalé au paragraphe 2.3.3., l'IEEE a entrepris de normaliser la couche liaison de données des réseaux locaux. La figure 6.7. rend compte des résultats.

On y constate que, pour toute sorte de raisons techniques, politiques,

commerciales (pression des constructeurs), il n'a pas été possible de se mettre d'accord sur un standard unique. La couche liaison de données a ainsi été divisée en deux sous-niveaux.

– LLC : Logical Link Control (Standard IEEE 802.2)

C'est un sous-niveau commun à tous les standards qui définit de manière unifiée,

Page 93: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 91

la structure des données, les mécanismes d'adressage, les procédures de transfert des messages. Il est inspiré du protocole HDLC.

Page 94: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 92

Figure 6.6. Contrôle d'accès par contention et détection de collisions (CSMA/CD)

Figure 6.7. Portée des travaux de l'IEEE

Page 95: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 93

– MAC : Media Access Control

C'est un sous-niveau qui, avec le niveau physique qui lui est attaché, dépend de la topologie et de la méthode de contrôle d'accès choisie pour le réseau. Les standards suivants ont été définis [HOSTE - 1983] :

IEEE 802.3 : BUS à accès CSMA/CD Coaxe Bande de base : 1, 5, 10, 20 Mbits/s Large bande : 10 Mbits/s dans des canaux de largeur 6 MHz IEEE 802.4 : BUS à jeton Coaxe Bande de base : 5, 10 Mbits/s Large bande : 5, 10 Mbits/s dans des canaux de largeur 6 MHz.

10, 20 Mbits/s dans des canaux de largeur 12 MHz

IEEE 802.5 : Anneau à jeton Bande de base Paires torsadées : 1.4 Mbits/s Coaxe : 4, 20, 40 Mbits/s IEEE 802.6 : MAN (Metropolitan Area Network) Projet de réseau à l'échelle d'une cité (encore à l'étude).

6.4. PERFORMANCES COMPAREES Comme on l'aura constaté dans les paragraphes qui précèdent, la polémique

tourne essentiellement autour des binômes contention-jeton, bus à jeton-anneau à jeton, bande de base-large bande.

6.4.1. CONTENTION - JETON

L'opposition contention - jeton reflète en fait une opposition ETHERNET (DEC -

XEROX - INTEL) - IBM. Les arguments objectifs sont les suivants :

– Avantages du CSMA/CD par rapport au jeton - Simplicité du contrôle d'accès qui a d'ores et déjà donné lieu à des réalisations

en circuits intégrés. - Présence concrète sur le marché

– Désavantages du CSMA/CD par rapport au jeton - Une adaptation d'impédance assez soigneuse du câble est nécessaire pour

éviter les réflexions qui pourraient déclencher le mécanisme de détection de collision.

- Les messages échangés doivent avoir une longueur minimale dépendant de la

Page 96: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 94

distance entre stations (de l'ordre de 512 bits en pratique)

En effet si deux stations émettent simultanément, il faut que les messages soient assez longs pour qu'au moins une partie des messages entre en collision et que cette collision soit détectée avant la fin de l'émission par les deux stations. Cette contrainte est assez défavorable pour les applications industrielles où les messages sont en général relativement courts.

- Les performances d'un réseau CSMA/CD décroissent très rapidement lorsque

la charge du réseau augmente. Cela résulte du fait que les collisions et le temps perdu pour les résorber augmente avec cette charge. La figure 6.8.a. met le phénomène clairement en évidence dans un cas typique de contrôle de processus (échanges cycliques).

- Même à faible charge, la nature aléatoire du contrôle d'accès ne permet pas de

garantir le délai de transfert. La figure 6.8.b. montre ainsi un cas de charge relativement légère et la distribution cumulée des temps de transfert. On remarque que 68 % seulement des messages sont arrivés dans un délai de 20 ms caractéristique du temps réel critique.

- Impossibilité d'envoyer des messages prioritaires.

6.4.2. BUS A JETON - ANNEAU A JETON

– Avantages de l'anneau à jeton - Simplicité relative de la gestion du jeton qui passe séquentiellement de nœud

adjacent en nœud adjacent sans nécessiter d'adressage explicite. - Dans le bus à jeton, le transfert du jeton s'effectue pratiquement comme un

échange de message d'information normal avec donc une perte potentielle de performance.

– Avantages du Bus à jeton

- Simplicité du câblage et des raccordements. - Possibilité d'un transfert plus sélectif du jeton aux nœuds qui ont réellement

des informations à transmettre en tenant compte, le cas échéant, de priorités.

6.4.3. BANDE DE BASE - LARGE BANDE

– Avantages des réseaux large bande - Possibilité d'avoir, sur un même câble, des canaux utilisés comme réseaux, des

canaux réservés à des liaisons point-à-point pour des transmissions critiques, des canaux vocaux et vidéo.

- Plus longue portée (emploi de coaxes de gros diamètre)

– Avantages des réseaux bande de base - Simplicité des équipements de transmission

Page 97: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 95

Figure 6.8. Performances comparées des méthodes d'accès Tiré de [BOULLART, 1984]

Page 98: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 96

6.5. SYSTEMES DE CABLAGE ETHERNET Du fait de son statut de standard de fait, ETHERNET bénéficie de nombreux

systèmes de câblage et d'interfaces peu coûteuses. Nous les passerons rapidement en revue dans les paragraphes qui suivent. 6.5.1. CABLAGE 10 BASE 5

(10 pour 10 Mbits/s - 5 pour 500 m) C'est le câblage standard initial d'ETHERNET. Il utilise du "gros" coaxe (diamètre

± 1 cm). Certaines limitations assez contraignantes sont reprises sur la figure 6.9. :

- longueur maximum du segment : 500 m - longueur maximum du câble de connexion (transceiver cable) : 50 m.

Notons que les connecteurs (transceivers) sont des éléments actifs. C'est en particulier à leur niveau que se fait la détection des collisions (figure 6.14.). Il s'agit donc d'éléments assez coûteux (± 10.000 FB). Les câbles de connexion, qui doivent aussi amener l'alimentation au transceiver, comportent 4 paires soit 8 fils.

- nombre maximum de transceivers par segment : 100.

Notons que, comme montré à la figure 6.9., des concentrateurs peuvent être utilisés qui multiplient le nombre d'usagers du réseau sans multiplier le nombre de transceivers.

- distance minimale entre transceivers : 2,50 m.

Figure 6.9. ETHERNET – 10 BASE 5

Si la longueur de 500 m n'est pas suffisante, il est possible d'utiliser des répéteurs

pour chaîner des segments. Cependant, comme montré à la figure 6.10., on ne peut chaîner au maximum que 5 segments à l'aide de 4 répéteurs pour autant que 2 des 5 segments ne comportent aucune station connectée. Dans le cas contraire, seuls 3

Page 99: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 97

segments peuvent être chaînés. Il y correspond des longueurs maximales du réseau de 2.500 et 1.500 m respectivement. Remarquons que si les segments sans connexion sont réalisés en fibres optiques, leur longueur peut atteindre 2 km ce qui porte 5,5 km la longueur maximale. 6.5.2. CABLAGE 10 BASE 2

(figure 6.10.) Ce système de câblage utilise du coaxe mince. Des limitations analogues à celles

mentionnées ci-dessus sont d'application : les segments sont ici limités à 185 m et le nombre de connexions par segment ne peut dépasser 30. De même, 4 répéteurs maximum peuvent être placés en série dans les mêmes conditions que celles de la figure 6.10.

Une différence importante avec le cas précédent est que les stations doivent être

directement raccordées au coaxe par un connecteur en T (BNC) (cf. figure 6.14.) dans la mesure où la détection des collisions se fait au niveau des cartes d'interfaces. Il n'y a donc pas ici de câbles transceiver. Il s'ensuit que le précâblage du réseau est difficile à réaliser puisque l'ajout d'une nouvelle station oblige à prolonger et à dévier le coaxe jusqu'à elle. De plus, le câble se trouve exposé à tout espèce d'accrochages, d'arrachages ou d'écrasements involontaires.

Figure 6.10. ETHERNET – 10 BASE 2

6.5.3. CABLAGE 10 BASE T

(figure 6.11.) (T pour Twisted Pair) Il s'agit ici d'un câblage en étoile vers un concentrateur, appelé "hub", à l'aide de

paires torsadées de 100 m maximum. Les hubs peuvent être empilés localement (480 portes maximum) ou chaînés à

l'aide de paires torsadées (distance de 100 m maximum), de coaxes minces (distance de 185 m maximum) ou de fibres optiques (distance de 2 km maximum).

Il s'agit assurément ici d'un système de câblage à la fois très souple et très fiable

car la déconnexion d'une station ne perturbe en rien le fonctionnement du réseau.

Page 100: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 98

Figure 6.11. ETHERNET – 10 BASE T 6.5.4. CABLAGE 10 BASE FL

(figure 6.12.) (FL pour Fiber Link) Il s'agit d'un câblage en tout point analogue au précédent excepté que les paires

torsadées sont remplacées par des fibres optiques. Les distances maximales entre stations et hub sont de 2 km.

Ce système de câblage peut s'avérer très intéressant en milieu industriel fortement

perturbé. Il faut cependant mentionner que les cartes d'interface ETHERNET standard ne possèdent pas (encore) de prise pour fibre optique. Un adaptateur relativement coûteux est donc nécessaire.

Figure 6.12. ETHERNET – 10 BASE FL

Page 101: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 99

6.5.5. CABLAGE 100 BASE T et 100 BASE F

Depuis peu sont apparus des réseaux Ethernet à 100 Mbits/s utilisant des techniques de câblage avec hubs similaires à celles présentées ci-dessus. On trouve des versions à paires torsadées (100 BASE T) ou à fibres optiques (100 BASE F).. 6.5.6. SEGMENTATION DU RESEAU (Switching Hub) Avec les hubs classiques, tout message arrivant sur une porte d’entrée d’un hub est automatiquement transmis vers toutes les portes de sortie de ce hub et peut donc entrer en collision avec un message émis par n’importe quelle autre station. Une solution plus efficace est maintenant possible grâce à l’existence de switching hubs. Ceux-ci sont capables de mémoriser par apprentissage la configuration du réseau. Ainsi, un message arrivant sur une porte d’un tel switching hub ne sera transmis qu’à la porte de sortie à laquelle est attaché le destinataire du message. Comme montré à la figure 6.13., un câblage judicieux permettra de segmenter un réseau Ethernet en regroupant sur des hubs standards les stations fortement interactives. Leurs échanges ne seront pas « vus » par les autres stations ce qui réduit évidemment très fort les probabilités de collisions tout en n’empêchant pas des stations appartenant à des groupes différents de communiquer entre elles si nécessaire. De plus, ces switching hubs peuvent interconnecter des segments Ethernet travaillant à des vitesses différentes : par exemple 10baseT ou 100baseT selon la configuration des portes.

Figure 6.13. Segmentation d'un réseau par un switching hub

Page 102: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 100

6.5.7. Connectique

La connectique associée aux différents systèmes de câblage décrits ci-dessus est montrée à la figure 6.14.

Page 103: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 6 – TOPOLOGIES ET CONTROLE D'ACCES DES RESEAUX 101

Figure 6.14. ETHERNET – Connecteurs pour les différents systèmes de câblage

Page 104: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 102

Chapitre 7

LE RESEAU D'ATELIER MAP/MMS 7.1. LE CONCEPT MAP/TOP ET SON EVOLUTION

MAP : Manufacturing Automation Protocol TOP : Technical Office Protocol MMS : : Manufacturing Message Specification Vers le début des années 1980, la firme GENERAL MOTORS s'est rendu compte

que ses usines perdaient leur compétitivité face aux concurrents japonais et qu'un intense effort dans le sens de l'automatisation devait être accompli pour remonter le courant (40 milliards de $ d'investissement prévus !).

Automatisation doit être compris ici non seulement dans son sens classique

(robotisation, régulation, etc.) mais encore, et surtout, dans le sens d'une coordination des différents outils de production et de leur mise en symbiose, sur le plan informatique, avec les outils de conception, de gestion, de contrôle de qualité (CIM : Computer Integrated Manufacturing).

Cette volonté d'automatisation s'est cependant rapidement heurtée au problème de

la communication entre systèmes "intelligents" de nature et de constructeurs différents (ordinateurs, automates programmables, machines-outils, robots, ...). Une étude effectuée en 1981 a révélé que les dépenses directement liées à ce problème de communication (matériel + logiciel + formation) pouvaient atteindre 50 % des frais entraînés par l'automatisation !

Ceci a amené GENERAL MOTORS à définir un protocole de communication

général, capable de répondre à ses besoins, et à imposer ce protocole à ses différents fournisseurs; c'est le MAP ou Manufacturing Automation Protocol. On estime que l'intégration rendue possible par MAP pourrait réduire le prix d'une voiture de quelque 2.000 $ et raccourcir de près de 2 ans le délai d'introduction d'un nouveau modèle, tout cela sans compter l'amélioration de la qualité des produits.

L'intérêt quasi unanime qu'a suscité MAP, tant du côté des utilisateurs que du

côté des constructeurs, s'explique par :

– le poids commercial de GENERAL MOTORS : plus de 100.000 systèmes intelligents actuellement en service;

– la conformité des spécifications de MAP avec le modèle OSI de l'ISO et avec les

normes en vigueur (IEEE 802.2 et 802.4 notamment). MAP peut ainsi prétendre à une vocation universelle et ouvre de ce fait la voie à la

réalisation de circuits VLSI spécifiques et d'interfaces standards.

– le fait que MAP ait été défini par un utilisateur, ce qui permet aux constructeurs de s'y aligner sans perdre la face.

Page 105: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 103

De nombreux utilisateurs d'importance se sont d'ailleurs rapidement ralliés au concept MAP. Parmi les plus importants, on trouve : BOEING, DUPONT, FORD MOTOR, ICAM (U.S. AIR FORCE), MCDONNELL DOUGLAS, EASTMAN KODAK, INLAND STEEL, DEERE, PROCTOR AND GAMBLE.

Pour ce qui est des constructeurs, citons : Allen-Bradley, DEC, GOULD, IBM,

Motorola, Concord Data Systems, ASEA, ATT, Honeywell, NCR, Siemens, Cincinnati-Milacron, Fairchild, Foxboro, Square D, General Electric, Fisher Controls, Westinghouse, Apollo, Bailey Controls, Struthers-Dunn, etc.

D'un autre côté, à l'initiative de la firme BOEING cette fois, une démarche

analogue à celle de GENERAL MOTORS a été rendue publique en juin 1984 pour les communications au niveau gestion de l'usine, c'est le projet TOP (Technical Office Protocol). Les niveaux supérieurs sont identiques à ceux de MAP sauf, bien entendu, la couche application. Un plus large éventail de solutions est prévu pour les couches inférieures.

Le projet MAP/TOP apparaît comme particulièrement ambitieux puisqu'il envisage

la normalisation des 7 couches du modèle OSI, y compris la couche application. De fait, il a fallu attendre 1985 pour trouver les premières installations industrielles aux Etats-unis et 1986 pour réaliser les premières démonstrations en Europe et pour assister à la naissance de l'EMUG (European Map User Group).

Force est cependant de constater que MAP n'a pas réalisé la percée industrielle à

laquelle on aurait pu s'attendre. Les raisons de ce qu'il faut bien appeler un insuccès sont, à notre sens, de deux ordres :

– la complexité des protocoles utilisés qui, d'une part, grève assez lourdement les

performances du réseau et, d'autre part, rebute les industriels qui craignent de se retrouver sous la dépendance d'informaticiens pour la gestion de leur réseau;

– la complexité du système de câblage retenu (coaxe large bande) comportant des

modems et des amplificateurs non seulement très coûteux, mais aussi très délicats à régler, à tester, à maintenir.

Pour répondre à la première critique, les concepteurs de MAP ont défini, dès 1984,

une version allégée du protocole, mini-MAP, destinée à des échanges de données en temps réel, mais toujours avec le même système de câblage.

Une réponse à la seconde critique a été apportée par l'EMUG en proposant "MAP

sur Ethernet", c'est-à-dire, plus précisément, en remplaçant dans les couches inférieures du réseau, la norme 802.4 par la norme 802.3. De ce fait, MAP disposait d'emblée de tout le système de câblage d'Ethernet, simple, bien connu, bon marché et offrant, entre autres, une version à fibre optique intéressante dans le contexte industriel.

Bien entendu, l'abandon du 802.4 s'accompagnait de l'abandon du caractère

déterministe du réseau, excluant donc toute utilisation de type temps réel. Il faut cependant bien être conscient qu'au niveau (atelier) où se situe MAP dans la hiérarchie des réseaux, il serait assez peu rationnel d'y placer des échanges critiques du point de vue des délais. C'est en effet aux réseaux de terrain, voire de cellule, qu'il convient de les confier.

Les constructeurs se sont dès lors assez facilement ralliés à cette évolution.

Page 106: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 104

Enfin, le pas vers Ethernet ayant été franchi, beaucoup se demandent si le pragmatisme ne devrait pas être poussé plus loin encore en abandonnant la lourdeur du modèle OSI au profit du réseau TCP/IP. Ce dernier, bien que non normalisé, constitue un standard de fait en informatique de gestion, avec tous les avantages pratiques afférents à une large diffusion.

Il ne resterait plus dans ce cas du MAP initial que la couche application, à savoir

la messagerie industrielle MMS (Manufacturing Message Specification). C'est en fait le seul point qui intéresse vraiment l'utilisateur industriel puisque c'est lui qui constitue la clé de l'interopérabilité.

La définition de cette messagerie a demandé des efforts considérables, car elle vise

à fournir à l'utilisateur des services génériques lui permettant de couvrir l'essentiel des applications possibles en milieu industriel. Stabilisée depuis 1989, elle fait l'objet d'une normalisation par l'ISO.

On constate qu'elle séduit de plus en plus les concepteurs d'automatismes par la

solution efficace et moderne qu'elle apporte au problème de l'interfonctionnement d'équipements hétérogènes. Ainsi, elle est maintenant complètement intégrée dans l'environnement WINDOWS. De plus, elle a été reprise, sous une forme simplifiée, dans le bus de terrain PROFIBUS. Certes, elle fait intervenir des concepts nouveaux (machine virtuelle, relation client-serveur) mais ceux-ci ne devraient pas être trop difficiles à assimiler par des automaticiens. Nous essayerons d'en apporter la preuve dans les paragraphes qui suivent.

7.2. ARCHITECTURE DU RESEAU MAP

La figure 7.1. décrit l'architecture du réseau MAP dans sa forme initiale. On constate que toutes les couches correspondent bien à des normes ISO ou

IEEE. Nous n'entrerons pas dans le détail du fonctionnement de celles-ci. Seule la couche application sera quelque peu approfondie dans le paragraphe 7.3. Remarquons qu'une gestion du réseau est prévue et également normalisée.

La figure 7.2. présente la version MAP sur ETHERNET; seules les couches basses

(1 et 2) du système de communication ont dû être modifiées.

Page 107: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 105

Figure 7.1. Architecture de MAP Tiré de [NUSSBAUMER, 1991]

Page 108: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 106

Figure 7.2. Architecture de MAP sur ETHERNET Tiré de [NUSSBAUMER, 1991]

Page 109: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 107

7.3. LA MESSAGERIE INDUSTRIELLE MMS

MMS : Manufacturing Message Specification Le but de la messagerie industrielle est donc d'offrir au concepteur

d'automatismes des outils à sa portée pour la réalisation d'applications de contrôle distribuées faisant intervenir des équipements hétérogènes.

Sur le plan fonctionnel, MMS fait appel à deux concepts nouveaux (pour

l'automaticien) : celui d'équipement virtuel de fabrication VMD (Virtual Manufacturing Device) et celui de relation client/serveur.

7.4. L'EQUIPEMENT VIRTUEL DE FABRICATION VMD La figure 7.3. montre le schéma fonctionnel d'un système de contrôle distribué vu

par l'utilisateur. Les différents équipements, que l'on suppose ici hétérogènes, accèdent au système de communication par l'intermédiaire de la messagerie industrielle MMS.

A supposer que l'interconnexion soit établie, pour pouvoir dialoguer avec ses

collègues, chaque équipement devrait tenir compte de la structure interne particulière de chacun des autres, de sa syntaxe d'adressage des variables internes, des entrées/sorties, du mode de codage des nombres, etc.

On conçoit que cette manière de faire pourrait rapidement se révéler d'une

lourdeur prohibitive. De plus, tous les programmes de tous les équipements devraient être modifiés si l'un quelconque de ces équipements était ultérieurement remplacé par un autre d'une marque différente.

PRINCIPE DE LA VMD La solution proposée ici consiste à décrire la structure et le fonctionnement des

différents équipements réels à l'aide d'objets standards, communs à l'ensemble du réseau. Chaque équipement physique aura donc ainsi son correspondant virtuel, la VMD; les transactions se feront alors de manière homogène entre ces VMD plutôt qu'entre les équipements réels. La figure 7.4. montre comment les choses se présentent dans cette nouvelle optique.

Page 110: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 108

Figure 7.3. Schéma fonctionnel d'un système de contrôle distribué vu par l'utilisateur

Page 111: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 109

Figure 7.4. Principe de l'équipement virtuel de fabrication : VMD

Page 112: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 110

Pour que cela puisse fonctionner, deux conditions sont nécessaires : – il doit exister, au sein du processeur de communication, un mécanisme qui fait en

sorte que toutes les manipulations effectuées sur la VMD à partir du réseau soient immédiatement répercutées dans l'équipement physique et vice versa;

– il faut que les objets standards proposés par MMS pour constituer les VMD soient

susceptibles de décrire tous les équipements de fabrication présents et à venir, du robot à l'automate en passant par la machine-outil à commande numérique.

Par hypothèse, la première condition est évidemment remplie. Pour ce qui est de

la seconde, la liste des objets standards actuellement disponibles est donnée à la figure 7.5.

Figure 7.5. Objets MMS standards Tiré de [NUSSBAUMER, 1991]

– Variables : ce sont évidemment les objets les plus utilisés. Il en existe de

plusieurs types mais nous n'entrerons pas ici dans les détails. – Domaine : cet objet peut représenter un programme ou une partie d'un

programme ou des données d'un programme que l'on peut par exemple télécharger ou sauver individuellement.

Nom français Nom anglais

Variable nommée Accès dispersé Liste nommée de variables Type nommé Sémaphore Condition événementielle Action événementielle Enregistrement d'événement Journal Domaine Instance de programme Station opérateur

Named variable Scattered access Named variable list Named type Semaphore Event condition Event action Event enrollment Journal Domain Program invocation Operator station

Classes d'objets nommés

Nom français Nom anglais

Transaction Automate de sauvegarde Variable anonyme Rubrique de sémaphore

Transaction Upload state machine Unnamed variable Semaphore entry

Classes d'objets anonymes

Page 113: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 111

– Instance de programme : il ne s'agit pas à proprement parler d'un objet mais plutôt d'une structure de contrôle portant sur l'exécution d'une tâche obtenue par la réunion d'un ou plusieurs domaines (création de la tâche, démarrage, arrêt, …).

– Sémaphore : utilisé pour coordonner l'accès à des ressources communes. – Evénement : information émise spontanément par la VMD lorsqu'une condition

prédéfinie se produit. – Station opérateur : cet objet permet d'inclure dans la VMD des fonctions

élémentaires de dialogue opérateur. – …

7.5. LA RELATION CLIENT-SERVEUR 7.5.1. Principe

Une fois constituée la VMD associée à un équipement physique, tous les autres équipements connectés au réseau peuvent y accéder par l'intermédiaire de services MMS appropriés. Ces services doivent bien entendu être activés par les programmes tournant dans les équipements en question. Cette situation est symbolisée à la figure 7.6.

On remarque que l'équipement de gauche joue, par VMD interposé, un rôle

essentiellement passif : on parle dans ce cas de SERVEUR. C'est l'équipement de droite qui prend toutes les initiatives, c'est pourquoi il est qualifié de CLIENT.

Plus généralement, la notion client/serveur est un modèle de relation entre

partenaires qui dépasse le simple échange de données. Un client peut, par exemple, demander à un serveur d'exécuter une opération prédéfinie sur des données locales. Une fois l'opération réalisée, le serveur communique au client le résultat de l'opération sous forme de données en retour ou sous forme d'un simple compte-rendu.

Il est à noter que la qualité de client ou de serveur n'est pas attachée

physiquement à un équipement. Il peut très bien se faire qu'à un moment un équipement joue le rôle de client et à un autre moment celui de serveur. 7.5.2. EXEMPLES DE SERVICES MMS On a repris aux figures suivantes, des exemples des principaux services MMS afin de donner une idée de toute la puissance du concept

– Lecture et écriture de variables (figure 7.7.à – Gestion des domaines (figure 7.8.) – Gestion des instances de programme (figure 7.9.)

Page 114: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 112

Figure 7.6. L'architecture client/serveur de MMS

Page 115: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 113

Figure 7.7. Services MMS pour la lecture et l'écriture de variables

Tiré de [NUSSBAUMER, 1991]

Primitive Paramètres Fonction Read req/ind Read rsp/cnf

Argument Spécification demandée dans

résultat Spécification de l'accès aux

variables

Résultat (+) Spécification de l'accès aux

variables Liste des résultats d'accès

Résultat (–) Type d'erreur

Lecture par le client de valeurs de variables du serveur

InformationReport req/ind Argument Spécification de l'accès aux

variables Liste des résultats d'accès

Notification au client par le serveur de la valeur de variables

Write req/ind Argument Spécification de l'accès aux

variables Liste de données

Résultat (+)

Liste des résultats d'écriture Succès Erreur d'accès aux données

Résultat (–) Type d'erreur

Ecriture par le client de variables du serveur

Page 116: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 114

Figure 7.8. Services MMS de gestion des domaines

Tiré de [NUSSBAUMER, 1991]

Page 117: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 115

Figure 7.9. Services MMS de gestion des instances de programme

Tiré de [NUSSBAUMER, 1991]

Page 118: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 116

7.6. ETAPES DE LA MISE EN OEUVRE

On décrit enfin, dans ce paragraphe, les étapes de la mise en œuvre d'un système

de contrôle distribuée basé sur MMS.

7.6.1. OPERATIONS A EFFECTUER DANS CHAQUE STATION

– Définition de l'application locale

Définition de la VMD (si la station est destinée à travailler en mode serveur)

– Liste des applications distantes

Etablir la liste des entités d'applications distantes avec lesquelles la station locale est appelée à travailler.

La manière d'introduire ces paramètres dépend de chaque constructeur. Pour les

détails, nous renvoyons le lecteur aux manuels correspondants.

7.6.2. UTILISATION DES SERVICES MMS

En mode client, les services MMS doivent être activés à partir des programmes développés par l'utilisateur.

– Dans les automates programmables

- Les services MMS sont intégrés dans les langages propres aux différents constructeurs. Par exemple : FB de communication chez SIEMENS, OFB chez TELEMECANIQUE, blocs textes chez ALLEN-BRADLEY.

– Dans les PC

- Les services sont disponibles dans des librairies pour langage C - Des langages spécifiques plus abordables par des automaticiens ont également

été développés (Easy MAP par exemple). Ils sont d'un niveau de complexité semblable au BASIC.

Plus récemment, MMS a été intégré dans WINDOWS par l'intermédiaire du DDE

(Dynamic Data Exchange). L'accès à MMS est ainsi ouvert à tous les programmes tournant sous WINDOWS et supportant DDE : EXCEL, VISUAL BASIC et tous les superviseurs industriels du marché (FACTORY LINK, IN TOUCH, PC VUE, ...). 7.6.3. EXEMPLE D'APPLICATION A compléter ultérieurement.

Page 119: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 117

Chapitre 8

Le réseau TCP/IP 8.1. HISTORIQUE

Comme le passé l'a souvent montré, la normalisation est une entreprise lourde et longue, assez peu compatible avec une dynamique de marché, surtout quand le secteur concerné est en expansion rapide comme c'est le cas des réseaux de communication.

Des solutions existantes émergent alors, plus ou moins par hasard, et, focalisant

l'essentiel des développements, deviennent des standards de fait par effet boule de neige. Il en est ainsi de TCP/IP.

TCP (Transmission Control Protocol)/IP (Internet Protocol) est un concept

d'interconnexion de réseaux développé, dans les années 70, par le DARPA (Defense Advanced Research Project Agency – USA).

Prévu initialement pour des besoins militaires, le concept a été étendu à la

communauté universitaire dès le début des années 80. A partir des années 90, il s'est ouvert au grand public pour donner lieu à l'INTERNET tel que nous le connaissons actuellement.

De plus, les protocoles TCP/IP, du fait de leur large diffusion, ont également été

adoptés au niveau des réseaux locaux alors que ce n'était pas du tout leur vocation première. Ils y sont en général associés à Ethernet, un autre standard de fait, pour constituer ce que l'on appelle un INTRANET.

Enfin, au plan industriel maintenant, on a indiqué, au chapitre 1, que TCP/IP –

Ethernet descendait de plus en plus bas dans la pyramide du CIM et atteignait déjà les équipements de terrain ! 8.2. L'ARCHITECTURE TCP/IP

La figure 8.1. situe l'architecture TCP/IP par rapport au modèle OSI [PUJOLLE,

1998]. En gros, on peut dire que le protocole IP correspond à la couche réseau et le protocole TCP à la couche transport. Notons qu'au même niveau que TCP, on trouve le protocole UDP (User Datagram Protocol) qui assure des services transports très simplifiés (cf. § 8.3.2.) Les protocoles situés au-dessus de TCP-UDP sont de type applicatif et proviennent, pour la plupart, du monde UNIX.

Page 120: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 118

Application

TCP (Transmission Control Protocol)

IPInternet Protocol

Diverses

possiblités

Présentation

Session

Liaison de données

Physique

Réseau

UDPTransport

FTP

SMTP

HTTP

TFTP

BOOTP

SNMP

USER

USER

TELNET

OSI TCP/IP

Figure 8.1. Architecture TCP/IP et modèle OSI

8.3. LE PROTOCOLE TCP/UDP 8.3.1. LE PROTOCOLE TCP

Le protocole TCP est un protocole de transport fiable avec connexion. A l'émission, TCP segmente les messages en paquets ou datagrammes. Ces

datagrammes sont alors routés individuellement dans le réseau par le protocole IP; le cas échéant, ils peuvent suivre des chemins différents et arriver ainsi en ordre dispersé.

A la réception, le protocole TCP replace les datagrammes dans l'ordre correct et les

assemble pour restituer le message initial. En cas d'erreur de transmission ou de pertes de datagrammes, TCP prend les

mesures correctives nécessaires qui consistent, en général, à demander la réémission des datagrammes en défaut.

La technique de segmentation a pour but d'éviter que des messages de grande

taille (fichier, plans, etc.) ne puissent accaparer le réseau trop longtemps au détriment d'autres messages.

Page 121: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 119

Les datagrammes constitués par TCP ont la structure montrée à la figure 8.2.

1 8 16 24 32

Octet 1 Octet 2 Octet 3 Octet 4

TCP Source Port TCP Destination Port

Sequence Number

Acknowledgment Number

WindowHeaderlength

Checksum Urgent Pointer

USERDATA

UR

AK

PS

RS

SY

FI

Figure 8.2. Structure d'un datagramme TCP Sans entrer dans tous les détails, notons les points suivants :

– les numéros de porte identifiant les programmes applicatifs qui utilisent, à un moment donné, l'accès au réseau. Il peut y en avoir plusieurs simultanément et les numéros de porte permettent de les distinguer. Ces numéros correspondent au TSAP du modèle OSI (cf. § 2.3.).

– le numéro de séquence spécifie le numéro d'ordre du datagramme à l'émission. Il

permet de replacer les datagrammes dans l'ordre correct à la réception. Notons que la numérotation se rapporte plus exactement aux octets du message. Ainsi, si les datagrammes sont de 500 octets, le premier recevra le numéro 0, le deuxième 500, le troisième 1500 et ainsi de suite.

– le checksum est un code de détection d'erreur couvrant le datagramme envoyé (cf.

§ 5.2.) – le champ "URG" = urgent permet de demander de traiter en urgence une donnée

particulière, en général relative à un événement asynchrone (la frappe d'un caractère de contrôle par exemple). La donnée en question est repérée dans le message par le champ "Urgent Pointer".

Un datagramme émis par un nœud du réseau peut aussi contenir des

informations relatives à la réception par ce nœud de messages en provenance de son correspondant. Ainsi :

Page 122: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 120

– le champ "Aknowledgment Number" indique que le nombre d'octets reçus correctement;

– le champ "Window" sert au contrôle de flux entre les deux correspondants. Il

indique le nombre d'octets que l'émetteur est capable de traiter en réception. Si ce nombre tombe à zéro, le correspondant doit suspendre momentanément ses envois. 8.3.2. LE PROTOCOLE UDP

Le protocole UDP (User Datagram Protocol) est également un protocole de niveau transport mais beaucoup plus simple que TCP. Il travaille en effet en mode non connecté, sans reprise sur erreur, sans acquittement, sans reséquencement des messages et sans contrôle de flux. Il présente, de ce fait, un temps d'exécution beaucoup plus court que TCP.

UDP est utilisé pour des applications où la vitesse prime sur la sécurité :

consultations d'annuaire par exemple. Le format d'un datagramme UDP est montré à la figure 8.3. n On constate qu'il

met pratiquement l'application en "prise directe" sur IP.

1 8 16 24 32

Octet 1 Octet 2 Octet 3 Octet 4

UDP Source Port UDP Destination Port

Length Checksum

USERDATA

Figure 8.3. Structure d'un datagramme UDP

8.4. LE PROTOCOLE IP

Le protocole IP est un protocole de niveau réseau sans connexion (cf. § 2.3.3.) et dont la sécurisation est assez faible (pas de détection de paquets perdus ni de reprise sur erreur). Comme expliqué au paragraphe 8.3., c'est TCP qui a pour mission de fiabiliser la communication.

Page 123: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 121

En fait, IP a pour rôle principal de trouver un chemin dans le réseau pour les

datagrammes qui lui sont transmis par TCP. Avec l'expansion foudroyante d'Internet, le protocole IP original (actuellement

dénommé IP version 4 ou IPv4) se trouve à bout de souffle, notamment au niveau de la capacité d'adressage. C'est pourquoi une nouvelle génération du protocole IP, IPv6, est en cours d'introduction. 8.4.1. LE PROTOCOLE IPv4

Les paquets envoyés par IPv4 (NDPU en terminologie OSI – cf. § 2.3.) ont l'allure montrée à la figure 8.4. On y retrouve bien sûr tel quel le datagramme TCP (TSDU en terminologie OSI) précédé d'un certain nombre d'informations nécessaires au routage (NPCI en terminologie OSI).

1 8 16 24 32

Octet 1 Octet 2 Octet 3 Octet 4

Version IHL Type of Service Total Length

Header Checksum

Fragment OffsetIdentification

Time to Live Protocol

IP Source Address

IP Destination Address

D M

TCP Source Port TCP Destination Port

Sequence Number

Acknowledgment Number

WindowHeaderlength

Checksum Urgent Pointer

USERDATA

UR

AK

PS

RS

SY

FI

HEADER

HEADER

IP

TCP

Figure 8.4. Structure d'un paquet IPv4

Page 124: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 122

Parmi celles-ci, on trouve bien sûr l'adresse de destination et l'adresse source. Cette dernière est nécessaire pour que le destinataire sache d'où vient le datagramme car, rappelons-le, le protocole IP travaille sans connexion. Sans entrer dans le détail, mentionnons encore :

– version : renseigne la version du protocole utilisée pour le datagramme. – type de service : c'est une indication au réseau du type de service désiré qui peut

avoir une influence sur les algorithmes de routage utilisés. Ainsi, pour des messages vocaux, on privilégiera la vitesse par rapport à la fiabilité et l'inverse pour l'envoi de fichiers.

– durée de vie : c'est un compteur qui est décrémenté à chaque passage par un

nœud intermédiaire. Lorsque ce compteur arrive à zéro, le paquet est détruit. Le but est d'éviter l'établissement accidentel de boucles infinies dans le réseau.

– protocole : renseigne sur le protocole de transport duquel relève le paquet. En

effet, d'autres protocoles que TCP peuvent utiliser IP. – contrôle d'en-tête : c'est un code de détection d'erreur qui couvre uniquement l'en-

tête IP du message (PPCI). Il fiabilise les opérations de routage. 8.4.2. FORMATS D'ADRESSAGE EN IPv4

L'adressage IPv4 s'effectue sur 32 bits soit 4 octets. Pour la facilité, on décrit généralement une adresse IP en considérant l'équivalent décimal des octets successifs séparés par des points. Exemple : 10000000 00000011 00000010 00000011 ≡ 128.3.2.3 Différents formats d'adressage sont possibles dépendent de la valeur des premiers bits. Ils sont montrés à la figure 8.5. [CRIHAN ATM Course – 1999]

Page 125: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 123

1 8 16 24 32

Octet 1 Octet 2 Octet 3 Octet 4

hostid

hostid

hostid

netid

netid

netid

multicast address

réservé pour besoins futurs

0

0

0

0

0

1

1

1

1 1

1 11

1

1

A

B

C

D

E

Figure 8.5. Formats d'adressage IPv4 Les caractéristiques respectives sont les suivantes :

A : 128 réseaux, 16.777.216 hôtes par réseau B : 16.384 réseaux, 65.535 hôtes par réseau C : 2.097.152 réseaux, 256 hôtes par réseau D : adresses de groupe : diffusion de messages à des groupes d'hôtes E : réservé pour des besoins futurs

Les équipements susceptibles de communiquer au travers de l'Internet doivent posséder une adresse IP unique. Celle-ci est attribuée par un organisme international, l'Internet Assigned Numbers Authority (IANA). Cet organisme a également défini des plages d'adresses utilisables pour des réseaux strictement locaux avec, évidemment, perte de toute garantie d'unicité : 10.0.0.0 - 10.255.255.255 172.16.0.0 - 172.31.255.255 192.168.0.0 - 192.168.255.255 8.4.3. LE PROTOCOLE IPv6

Le format d'un paquet IPv6 est montré à la figure 8.6. [PUJOLLE – 1998]. On y retrouve des champs analogues à IPv4. Ainsi, le champ "en-tête suivant" indique le protocole de transport situé au-dessus de IP (cf. champ "protocole" de IPv4).

Page 126: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 124

1 8 16 24 32

Octet 1 Octet 2 Octet 3 Octet 4

Version Priority Flow Label

Next Header Hop LimitPayload Length

IPv6 Source Address(16 octets)

IPv6 Destination Address(16 octets)

Figure 8.6. Structure de l'en-tête d'un paquet IPv6 Par contre on remarquera que les adresses sont, cette fois-ci, codées sur 16 octets (128 bits) au lieu de 4 ! Elles seront décrites ici par groupes de 16 bits (2 octets) séparés par des doubles points, chaque groupe étant représenté par son codage hexadécimal. Un exemple est montré à la figure 8.7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

OCTETS D'ADRESSE IPv6

123 FC3A 1024 A23B 0 0 24 FEDC: : : : : : :

Figure 8.7. Codage d'une adresse IPv6 La capacité d'adressage est cette fois phénoménale puisque le nombre d'adresses potentielles dépasse 1023 (10.000 milliards de milliards) pour chaque mètre carré de la surface terrestre !

Page 127: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 125

L'utilisation rationnelle d'une telle capacité d'adressage n'est pas sans poser de sérieux problèmes. La figure 8.8. donne un exemple de proposition.

Binary Prefix Type Of Address 0000 0000 Reserved (Ipv4 Compatible) 0000 0001 Reserved 0000 001 NSAP Addresses 0000 010 IPX Addresses 0000 011 Reserved 0000 100 Reserved 0000 101 Reserved 0000 110 Reserved 0000 111 Reserved 0001 Reserved 001 Reserved 010 Provider-Assigned Unicast 011 Reserved 100 Reserved For Geographic 101 Reserved 110 Reserved 1110 Reserved 1111 0 Reserved 1111 10 Reserved 1111 110 Reserved 1111 1110 10 Link Local Use Addresses 1111 1110 11 Site Local Use Addresses 1111 1111 Multicast

Figure 8.8. Formats d'adressage IPv6

8.5. PROTOCOLES D'APPLICATION DE L'ARCHITECTURE TCP/IP

Nous mentionnerons ici quelques protocoles d'application généralement associés à l'architecture TCP/IP.

FTP (File Transfer Protocol) : protocole de transfert de fichier

TELNET (Terminal virtuel) : permet de connecter un terminal à une machine distante à travers une machine locale de manière transparente

SMTP (Simple Mail Transfer Protocol) : protocole gérant la messagerie électronique (e-mail)

SNMP (Simple Network Management Protocol) : protocole intervenant dans la gestion du réseau

HTTP (HyperText Tranfer Protocol) : protocole utilisé pour la navigation sur le World Wide Web (www)

TFTP (Trivial File Transfer Protocol) : normalement associé à UDP, ce protocole est utilisé pour des transferts rapides de fichiers dans des réseaux locaux où la fiabilité intrinsèque des liaisons est beaucoup meilleure que sur Internet.

Page 128: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 126

8.6. TCP/IP SUR ETHERNET

Comme on l'a indiqué au paragraphe 8.1., la plupart des réseaux locaux actuels, aussi bien bureautiques qu'industriels, associent TCP/IP pour les couches transport et réseau à Ethernet pour les couches liaison de données et physique. 8.6.1. LA TRAME ETHERNET Dans le contexte précité, la trame Ethernet a la structure montrée à la figure 8.9. On remarquera que, fort logiquement, cette trame encapsule les paquets IP qui, eux-mêmes encapsulent des datagrammes TCP. Le code de détection d'erreur est du type CRC 32 et porte sur l'ensemble de la trame. 8.6.2. ADRESSE PHYSIQUE ET ADRESSE IP

Les adresses Ethernet sont physiquement inscrites dans les cartes réseaux. Elles sont codées sur 6 octets soit 48 bits. On les décrit par le codage hexadécimal des octets séparés par des points (figure 8.10.) C'est l'organisation IEEE qui gère l'attribution des adresses et plus particulièrement des 3 premiers octets qui désignent de manière unique les constructeurs de cartes (Exemple : 08.00.20 pour SUN). Les constructeurs attribuent ensuite eux-mêmes un numéro unique à chaque carte fabriquée par l'intermédiaire des 3 derniers octets.

Page 129: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 127

1 8 16 24 32

Octet 1 Octet 2 Octet 3 Octet 4

Ethernet destination address (first 32 bits)

Dest. address (last 16 bits)

Frame Length (46<L<1500 octets)

Source. address (first 16 bits)

Ethernet source address (last 32 bits)

Version IHL Type of Service Total Length

Header Checksum

Fragment OffsetIdentification

Time to Live Protocol

IP Source Address

IP Destination Address

D M

TCP Source Port TCP Destination Port

Sequence Number

Acknowledgment Number

Ethernet Checksum

WindowHeaderlength

Checksum Urgent Pointer

USERDATA

UR

AK

PS

RS

SY

FI

HEADER

HEADER

HEADER

IP

Ethernet

TCP

Figure 8.9. Structure d'une trame Ethernet Cependant, lorsqu'un équipement est incorporé dans un réseau TCP/IP, seule compte son adresse IP. Or il n'y a, a priori, aucune correspondance numérique entre l'adresse Ethernet et l'adresse IP d'un équipement donné. Une association doit donc être établie entre les deux. Des mécanismes automatiques ou semi-automatiques ont été prévus pour ce faire. L'adresse IP constitue donc en quelque sorte l'adresse logique de l'équipement. Il est ainsi parfaitement possible de changer une carte de communication défectueuse (et donc l'adresse physique de l'équipement) sans changer d'adresse logique.

Page 130: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 128

1 2 3 4 5 6

OCTETS

08 00 20 1A 0 B3. . . . .

Codeconstructeur

Numérocarte

Figure 8.10. Codage d'une adresse Ethernet 8.7. TCP/IP ET INTEROPERABILITE

Bien qu'il en ait été maintes fois question, la messagerie industrielle MMS ne semble finalement pas devoir être portée sur TCP/IP. Reste donc à savoir, alors, comment assurer l'interopérabilité d'équipements industriels hétérogènes au travers de TCP/IP.

Une solution semble se concrétiser autour d'OPC (OLE for Process Control), un

produit relevant de l'environnement Microsoft Windows. Il ne s'agit donc pas d'un standard au sens strict du terme, comme l'était MMS, mais force est de constater qu'il rallie de plus en plus de suffrages dans le marché industriel. 8.7.1. LE SERVEUR OPC

OPC est un "objet", au sens informatique du terme, qui s'inscrit dans la philosophie COM (Component Object Model) /DCOM (Distributed Component Object Model) autour de laquelle Windows semble (après bien des hésitations !) se stabiliser.

La description de l'approche COM/DCOM sortirait du cadre de ce cours. Elle est

par contre au cœur du cours "Microinformatique industrielle" du même auteur. En se référant à MMS, on peut dire qu'OPC est une sorte de VMD (Virtual

Manufacturing Device) qui offre, de l'extérieur, une vue standardisée et homogène sur les équipements de contrôle sous-jacents. Notons qu'OPC ne permet l'accès qu'aux données et aux variables encapsulées à l'exclusion donc des programmes.

Les figures 8.11. et 8.12. permettent d'en comprendre le principe dans deux cas de

figure.

Page 131: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 129

PLC

RI/O

PROCESS

Capteur

Actuateur

I/O déportées

OBJECT D

OBJECT A

OBJECT B

Cellule 1OBJECT B

OPC

OPC OBJECT

(OLE for ProcessControl)

FIELDBUS

EthernetTCP/IP

Figure 8.11. Principe de l'objet OPC : encapsulation d'un PLC Dans le premier cas, un automate programmable (PLC) est utilisé en front-end. Dans le second, le PC est directement connecté au processus par l'intermédiaire d'un bus de terrain. L'accès à OPC peut se faire, sous la forme d'une relation client/serveur, de l'intérieur du PC hôte ou de tout autre PC connecté au premier par un réseau TCP/IP. C'est le système d'exploitation Windows qui prend en charge les problèmes de communication, de manière tout à fait transparente tant pour le développeur de l'application que pour son utilisateur.

Page 132: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 8 – LA MESSAGERIE INDUSTRIELLE MMS 130

PROCESS

Capteur

Actuateur

I/O déportées

OBJECT D

OBJECT A

OBJECT B

Cellule 1OBJECT B

OPC

OPC OBJECT

(OLE for ProcessControl)

FIELDBUS

EthernetTCP/IP

RI/O

Figure 8.12. Principe de l'objet OPC : attaque directe d'un bus de terrain 8.7.2. LE SERVEUR WEB

OPC a manifestement été conçu dans une optique d'interopérabilité fonctionnelle temps réel. Il ne permet pas d'accéder aux programmes de contrôle éventuellement encapsulés pour la mise au point à distance ou du téléchargement.

Une solution "standard" à cet aspect du problème pourrait peut-être s'envisager

par l'intermédiaire des serveurs WEB qui, comme on l'a signalé dans l'introduction (cf. § 1.4.4.), sont de plus en plus souvent intégrés dans les équipements de contrôle.

Les programmes des automates pourraient ainsi apparaître sous forme de pages

WEB avec des modes d'édition et de visualisation dynamique analogues à ceux que l'on trouve sur les consoles de programmation actuelles.

Mais ceci n'en est encore qu'au stade de la pure conjecture.

Page 133: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 131

Chapitre 9

LES RESEAUX DE TERRAIN

9.1. ANALYSE DU MARCHE

Si l'on se réfère à la pyramide du CIM (cf. figure 9.1.), le langage courant désigne par "réseaux de terrain", des réseaux qui se situent en fait aux niveaux cellule, terrain ou capteurs/actuateurs. L'amalgame résulte du fait que la plupart des réseaux considérés (cf. figure 9.2.) recouvrent plusieurs des niveaux en question, et, pour la majorité d'entre eux, le niveau terrain.

NIVEAUX

HEURES MBYTES

MIN KBYTES

SEC BYTES

MSEC BITS

TEMPS DEREPONSE

VOLUME DEDONNEES

TYPED'ECHANGE

NIVEAU DECOMPETENCE

0

2

3

4

5

1

Compagnie

Capteurs / Actuateurs

Terrain

Cellule

Atelier

Usine

CYC

LIQ

UE

EVEN

EMEN

TIEL

INFO

RM

ATIC

IEN

AU

TOM

ATIC

IEN

ELEC

TRIC

IEN

Figure 9.1. Hiérarchisation des réseaux locaux industriels

En fait, les réseaux de terrain s'efforcent de concilier deux propositions

antagonistes :

- éviter la multiplication des niveaux de réseaux pour des raisons pratiques de formation, d'installation, de maintenance, etc.

- limiter les performances et la complexité à ce qui est strictement nécessaire à

chaque niveau pour diminuer le coût et la facilité du raccordement.

Page 134: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 132

NIVEAUXRéseau public de Télécommunication

0

2

3

4

5

1

Compagnie

Capteurs / Actuateurs

Terrain

Cellule

Atelier

Usine

FDDIBackbone

MAPon Ethernet

ASI BUS

PROFIBUSWORLDFIP

INTERBUS-SDEVICENET

Figure 9.2. Principales propositions actuelles

Contrairement à ce qui se passe au niveau usine et atelier, la confusion est ici

extrême; de multiples réalisations ont vu le jour dont la figure 9.2. ne donne qu'un petit aperçu. C'est que l'enjeu économique est important vu le nombre de raccordements potentiels à ce type de réseau (capteurs-actuateurs par exemple).

Chaque constructeur essaie donc frénétiquement de rallier un maximum d'utilisateurs à sa solution de manière à l'imposer comme standard de fait.

La figure 9.3. montre les résultats d'un sondage réalisé récemment (1995) sur la perception qu'ont les utilisateurs de l'avenir des différents réseaux de terrain. On constate que tous semblent encore avoir leur chance.

Page 135: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 133

Figure 9.3. Perception par le public de l'avenir des réseaux de terrain Tiré de "Mesures", Septembre 1995

Cependant, si l'on examine les statistiques relatives aux 8.000 réseaux de terrain

installés en Europe en 1994, on est forcé de reconnaître une nette prédominance de PROFIBUS et d'INTERBUS-S (figure 9.4.).

Page 136: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 134

Figure 9.4. Répartition des 8.000 réseaux de terrain installés en 1994

Tiré de "Mesures", Septembre 1995

Enfin, pour être complet, on met en évidence sur la figure 9.5. l'explosion actuelle en matière de réseaux ainsi que leur nature fermée ou ouverte et leur origine privée ou institutionnelle.

Page 137: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 135

Figure 9.5. Explosion des propositions en matière de réseaux locaux industriels

Page 138: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 136

9.2. LE RESEAU PROFIBUS (PROcess FIeld BUS) 9.2.1. POSITION SUR LE MARCHE

Le réseau PROFIBUS est en fait une émanation directe de SIEMENS. Comme on

l'a signalé ci-avant, il l'emporte largement actuellement sur le marché européen. La figure 9.9. donne une idée des offreurs, tandis que la figure 9.7. présente

quelques références impressionnantes.

PROFIBUS, un standard ouvert reconnu par les offreurs

soutenu internationalement par plus de 200 constructeurs et ingénieries

compte plus de 50 constructeurs directement offreurs

savoir faire largement répandu auprès des ingénieries et intégrateurs

s'intègre dans tous les progiciels d'exploitation stands du marché, sous Windows ou OS/2

dispose d'une large offre ouverte, plus de 250 produits sont disponibles pour les utilisateurs sur le marché :

périphérie décentralisée

. Bosch . EuroPEP . Omron . Phoenix Contact . Weidmueller . Wieland . Saia . Siemens . Turck . …

commandes d'axes

. Elau . Falma Control . Gelma . KEBA . Kuhnke . Siemens . …

variateurs de vitesse . ABB . AEG . Bauer . Danfoss . Siemens . …

systèmes d'identification

. Balogh . Pepperl & Fuchs

électrovannes et distributeurs pneumatiques . Atlas Copco Automation . Bosch . Buerkert . Crouzet . Joucomatic . Festo . Kuhnke . Mannesmann Rexroth . …

contrôleurs de moteurs

. Kloeckner-Moeller . Siemens

Page 139: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 137

Figure 9.6. Offre disponible sur PROFIBUS

Normalisé et (re)connu DIN 19245, bientôt EN 50170 et norme ANSI

multivendor (60 fournisseurs)

multisystème

230.000 nœuds installés mondialement

Profibus est choisi par GME comme standard pour ses usines

SIMATIC : 11.000 maîtres DP

SIMATIC : 50.000 ET200U/B/C installés

PROFIDRIVE : 10.000 entraînements sur Profibus

Figure 9.7. Quelques références de PROFIBUS

9.2.2. CARACTERISTIQUES TECHNIQUES La figure 9.8. montre la structure du réseau PROFIBUS. On peut faire les

commentaires suivants :

– le réseau ne comporte que 3 couches du modèle OSI : 1, 2 et 7 (application). Aucune de ces couches n'est normalisée au sens de l'ISO ou de l'IEEE

– la couche 7 comprend en fait 3 protocoles :

- le protocole DP (Distributed Periphery) correspond aux besoins d'un réseau de

niveau terrain (voir § 9.2.3.) - le protocole FMS (Fieldbus Message Specification) correspond au niveau

cellule. Il est directement inspiré de la messagerie industrielle MMS (voir § 9.2.4.)

- le protocole DDL est utilisé dans le domaine du process control et nous ne

l'étudierons donc pas ici.

Page 140: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 138

Figure 9.8. Structure du réseau PROFIBUS

Page 141: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 139

– support physique : paire torsadée (la fibre optique est également mentionnée) – topologie : BUS – couche physique : bande de base (drivers RS485), vitesses de 9,6 à 12.000 kbits/s,

segments de 100 m (à la vitesse maximale), 32 utilisateurs maximum par segment, 3 répéteurs maximum en série

– couche liaison de donnée : méthode du jeton pour le niveau cellule (FMS), polling

pour le niveau terrain (DP) 9.2.3. PROTOCOLE DP (Distributed Periphery)

Comme on l'a explicité sur la figure 9.1., il est essentiel qu'au niveau du terrain

(de même d'ailleurs qu'à celui des capteurs/actuateurs) la mise en œuvre d'un réseau ne soit pas plus compliquée que la mise en œuvre de cartes d'entrées/sorties.

La figure 9.9. correspond au cas d'entrées/sorties déportées. Les mots de périphérie du coupleur PROFIBUS sont mis en correspondance avec

les entrées/sorties respectives des stations d'entrées/sorties au cours d'une phase de configuration (cf. figure 9.10.).

Lors d'une écriture dans un mot de périphérie de "sorties", le réseau PROFIBUS

transmet directement les valeurs de celles-ci dans les sorties physiques correspondantes de la station distante.

De même, les entrées d'une station distante sont automatiquement transmises par

le réseau PROFIBUS dans le mot de périphérie correspondant du coupleur où l'utilisateur n'a plus qu'à venir les chercher.

Tout se passe donc pratiquement, pour le programmeur, comme si les

entrées/sorties déportées appartenaient à la périphérie locale.

9.2.4. PROTOCOLE FMS (Fieldbus Message Specification) Le protocole FMS est essentiellement destiné à des échanges au niveau cellule. Le

principe est en tout point semblable à celui de MMS examiné au chapitre 8 :

– équipement de terrain virtuel VFD (Virtual Fieldbus Device) composé d'objets standards (variables, domaines, ...)

– relation client-serveur – associations d'application

Remarquons que, dans le cas de PROFIBUS, on peut en plus donner un caractère cyclique à certaines communications sans avoir à le programmer explicitement.

Page 142: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 140

Figure 9.9. Principe de la programmation avec PROFIBUS-DP

Page 143: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 141

Figure 9.10. PROFIBUS-DP – Configuration des plages d'entrées/sorties

Page 144: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 142

9.3. LE RESEAU FIP (Factory Instrumentation Protocol) Il s'agit d'un réseau d'origine française possédant déjà quelques solides références

(cf. figure 9.11.)

Figure 9.11. Quelques références du réseau FIP Tiré de "Terrain" n° 1

Page 145: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 143

9.3.1. CARACTERISTIQUES TECHNIQUES Nos informations sur FIP sont assez fragmentaires et nous n'avons aucune

expérience pratique de ce réseau. Nous nous bornerons dès lors à en présenter quelques éléments caractéristiques qui s'écartent assez fortement de tout ce que nous avons vu jusqu'ici.

– Structure du réseau

La figure 9.12. montre la structure du réseau. On constate que, comme

PROFIBUS, elle ne comporte que 3 couches 1, 2 et 7. Aucune des couches n'est normalisée au sens de l'ISO ou de l'IEEE.

Figure 9.12. Structure du réseau FIP

– la couche application (7) comprend trois sous-ensembles principaux :

- ABAS : services application d'arbitrage de bus (voir § 9.3.2.) - MPS : services périodiques/apériodiques variables (voir § 9.3.2.) - sub MMS : sous-ensemble de services de messagerie

Nous n'avons pu recueillir aucune information sur cette messagerie qui, comme son nom l'indique, semble être un sous-ensemble de MMS.

– le support physique de transmission est la paire torsadée blindée (la fibre optique

est également mentionnée) – topologie : BUS ou étoile – la vitesse standard est de 1 Mbits/s (5 Mbits/s sur fibre optique) – longueur du réseau : 2 km – nombre maximum de nœuds : 250

Page 146: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 144

– couche liaison de donnée (MAC) : méthode du polling par nœud maître. A noter

qu'en cas de défaillance du nœud maître, n'importe quel autre nœud peut prendre le relais de manière automatique.

9.3.2. PRINCIPES DE FONCTIONNEMENT Le fonctionnement du réseau est schématisé à la figure 9.13.

Figure 9.13. Principe de fonctionnement du réseau FIP L'arbitre de BUS est responsable du polling. Notons que ce polling est réalisé sur

base non des stations mais des variables à transmettre. Ainsi, par exemple, à un moment donné l'arbitre de BUS émet l'identificateur de la variable "a". Celui-ci est reconnu par le producteur de la variable en question (P sur la figure) et le ou les consommateurs de ladite variable (C1, C2, C3 sur la figure). Le producteur place alors la valeur de la variable sur le BUS et le ou les consommateurs en font l'acquisition.

Ce polling se fait sur base d'une table établie dans une phase de configuration et

qui a l'allure montrée à la figure 9.14.

Page 147: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 145

Figure 9.14. Configuration du polling

On voit que la scrutation de la variable A est demandée toutes les 5 ms et que le

temps nécessaire à sa lecture (compte tenu de son type) est de 170 µs. De même, la scrutation de la variable B est demandée toutes les 10 ms et ainsi de suite.

On va dès lors instaurer, pour le cycle de base du polling, une valeur de 5 ms. A

chaque cycle, on procédera à la lecture de A, tous les deux cycles à celle de B, tous les trois cycles à celle de C et ainsi de suite.

La charge qui en résulte pour le réseau est montrée à la figure 9.15.

Figure 9.15. Exemple de charge du réseau

On constate que les 5 ms prévus pour le cycle de polling ne sont pas

complètement utilisés, même lors des pointes de charge. Le temps qui reste libre peut alors être utilisé pour des échanges non périodiques de variables ou de messages. Le cas échéant, ces messages pourront être étalés sur plusieurs cycles de base.

Page 148: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 146

9.4. LE RESEAU INTERBUS-S Le réseau INTERBUS-S a été conçu par la firme PHOENIX CONTACT mais

l'utilisation en est complètement libre (cf. figure 9.5.). Plus de 200 sociétés proposent déjà du matériel de terrain compatible INTERBUS-

S.

9.4.1. CARACTERISTIQUES TECHNIQUES – support physique : paire torsadée RS 485. Sont aussi mentionnés : fibre optique,

infrarouge – topologie : anneau – vitesse de transmission : 500 kbits/s – longueur : 400 m maximum entre stations, 13 km maximum au total, 256 stations

maximum – contrôle d'accès : méthode TDMA (Time Division Multiple Access) (cf. chapitre 6,

§ 6.2.4.) pilotée par un coupleur. Ce dernier étant installé dans un automate ou dans un ordinateur.

La figure 9.19. montre une configuration caractéristique du réseau INTERBUS-S.

Les principaux coupleurs disponibles actuellement y sont indiqués.

Page 149: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 147

Figure 9.16. Architecture typique du réseau INTERBUS-S

Page 150: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 148

9.4.2. PERFORMANCES COMPAREES Comme on l'a expliqué au chapitre 6. l'intérêt du TDMA est d'être complètement

déterministe. De plus, dans le cas d'un bus de terrain, les échanges sont cycliques et la longueur des messages connue et fixe. Il n'y a donc ici aucun "gaspillage" lié au TDMA.

La figure 9.17. montre l'avantage de la méthode TDMA par rapport à une méthode

plus classique (en l'occurrence PROFIBUS-DP) dans le cas particulier du rafraîchissement d'entrées/sorties déportées. On constate en effet que les indications de "service" sont réduites au minimum dans l'INTERBUS-S.

Figure 9.17. Comparaison des messages PROFIBUS-DP et INTERBUS-S Cet avantage est chiffré à la figure 9.18.

Page 151: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 149

Figure 9.18. Mise en évidence de l'efficacité d'INTERBUS-S Ainsi, pour un même nombre d'entrées/sorties global, l'efficacité d'un réseau de

type PROFIBUS-DP va décroître avec le nombre de stations concernées puisque, pour chaque station supplémentaire, c'est un protocole complet d'échange qui doit être ajouté dans le cycle de rafraîchissement. Dans le cas d'INTERBUS-S au contraire, la trame reste strictement inchangée quel que soit le nombre de stations.

Page 152: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 150

9.4.3. PROGRAMMATION DES ECHANGES Comme c'était déjà le cas pour PROFIBUS-DP (cf. § 9.2.3.), les coupleurs

INTERBUS-S pour automates sont "vus" par le programmeur comme des entrées/sorties locales, ce qui en rend la mise en œuvre particulièrement facile.

9.5. LE RESEAU DEVICENET (CAN) Le réseau DEVICENET a été conçu par la firme Allen-Bradley mais l'utilisation en

est complètement libre (cf. figure 9.5.). Le cœur de DEVICENET (couches 1 et 2 du modèle OSI) est en fait constitué du standard CAN (Controller Area Network) initialement développé pour l'utilisation en automobile (Mercedes Série S notamment).

Plus de 100 fournisseurs de matériel de terrain et/ou de capteurs et actuacteurs

ont déjà annoncé une offre en DEVICENET.

9.5.1. CARACTERISTIQUES TECHNIQUES

La figure 9.19. décrit la structure du réseau DEVICENET. On y a mis en évidence la partie empruntée à CAN.

Figure 9.19. Structure du réseau DEVICENET Tiré de "Terrain" n° 1

– support physique : double paire torsadée (une pour l'alimentation des nœuds du réseau, une pour les données)

– topologie : BUS – couche physique : bande de base, vitesse de125 à 500 kbits/s, 64 noeuds

maximum par réseau – couche liaison de données : méthode CSMA/CR (Carrier Sense Multiple

Access/Collision Resolve). 9.5.2. LA METHODE D'ACCES CSMA/CR

Page 153: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 151

Il s'agit d'une méthode dérivée du CSMA/CD expliqué au § 6.2.5. La trame CAN est montrée à la figure 9.20.

Figure 9.20. Constitution de la trame CAN

Remarquons que le champ "identification" de la trame ne constitue pas une

adresse mais bien un identificateur de variable comme c'était déjà le cas avec FIP (cf. § 9.3.2.). Cette manière de faire évite l'envoi systématique de la même donnée si celle-ci doit être utilisée par plusieurs équipements.

Le mécanisme "Collision Resolve" est expliqué à la figure 9.21. Il est basé sur la

notion de bit récessif et bit dominant. En l'occurrence, les bits 1 sont "écrasés" par les bits 0.

Figure 9.21. Exemple d'arbitrage "CR" (Collision Resolve)

Page 154: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 152

Ainsi, si un nœud (nœud 2 sur la figure) s'aperçoit qu'un des bits qu'il émet est écrasé par un bit zéro, il stoppe immédiatement sa transmission tandis que l'autre nœud (nœud 1 sur la figure) continue d'émettre, contrairement à ce qui se passe avec le CSMA/CD classique.

Cette manière de faire, d'une part, évite toute perte de temps liée à une collision

et, d'autre part, permet d'instaurer un système de priorité en jouant sur le numéro d'identification.

9.6. LE RESEAU ASI (Actuator/Sensor Interface)

Il s'agit d'un réseau strictement dévolu à l'interconnexion de capteurs et actuateurs. Il a été défini par un consortium détaillé à la figure 9.22., fortement soutenu par SIEMENS.

Figure 9.22. L'association ASI 9.6.1. CARACTERISTIQUES TECHNIQUES

– support physique : câble bifilaire non blindé servant à la fois pour les données et l'alimentation. La structure de ce câble est montrée à la figure 9.23.

On remarquera qu'il est profilé de manière à éviter l'inversion de polarité. D'autre part, il est réalisé en caoutchouc auto-obturant ce qui permet d'effectuer les raccordements par prises "vampires" (cf. figure 9.24.)

– topologie : BUS à structure arborescente libre. Un exemple en est montré à la

figure 9.25.

Page 155: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 153

Figure 9.23. Câble ASI

Figure 9.24. Technique de raccordement

Page 156: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 154

Figure 9.25. Exemple d'un réseau ASI – couche physique : longueur maximale 100 mètres, 31 nœuds maximum (4 bits

d'information par nœud).

Un codage spécial des signaux est utilisé pour pallier la vulnérabilité du câble (non torsadé, non blindé) aux parasites électromagnétiques : le codage MIA en sinus carré (cf. figure 9.29.) Les propriétés annoncées sont les suivantes :

* pas de composante continue - données et énergie sur un seul câble * impulsions en sinus carré

- spectre de fréquence étroit - peu de rayonnement, faible réflexion

* nombreuses impulsions - synchronisation aisée - reconnaissance performante des erreurs . redondance des impulsions . parité implicite, ...

d'où une robustesse extrême malgré l'absence de faradisation du câble.

– couche liaison de données : contrôle d'accès par polling avec un temps de cycle de

Page 157: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 155

5 ms.

Figure 9.26. Encodage des signaux 9.6.2. MISE EN ŒUVRE PRATIQUE

– Programmation : le réseau est piloté par un coupleur qui se place normalement dans un PC ou un automate. Dans ce dernier cas, le coupleur ASI est "vu" comme des entrées/sorties locales de l'automate ce qui en rend la programmation tout à fait transparente.

– Raccordement des capteurs/actuateurs : certains capteurs/actuateurs sont déjà

capables de se greffer directement sur l'ASI-BUS (BERO par exemple, cf. figure 9.25.). Pour les autres, des modules avec deux ou quatre connecteurs standards ont été prévus (cf. figures 9.24. et 9.27.).

Page 158: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 156

Figure 9.27. Modules utilisateur IP67

9.7. CONCLUSIONS 9.7.1. DE LA CONFORMITE A L'INTERCHANGEABILITE

Avec les réseaux de capteurs et d'actuateurs, c'est l'interchangeabilité des

équipements qui est souhaitée. Rappelons quelques définitions :

- conformité : respect des spécifications édictées par les normes - interopérabilité : nombreuses options et paramètres libres dans les normes

(exemple : vitesse de transmission, type de parité, ...) interopérable seulement si mêmes options et paramètres

partout - interfonctionnement : nombreux paramètres dans les équipements (exemple :

capteur de pression en bar et régulateur en Pascal) interfonctionnement seulement si mêmes paramètres

partout - interchangeabilité : possibilité de remplacer physiquement un capteur par un

autre d'une marque ou d'une version différente sans aucune modification du système

Page 159: LES RESEAUX LOCAUX INDUSTRIELS - cours, examens...LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ Chapitre 1 – CONCEPT CIM (Computer Integrated Management) 2 Figure 1.1. Position

LES RESEAUX LOCAUX INDUSTRIELS – 2004 – H. LECOCQ

Chapitre 9 – LES RESEAUX DE TERRAIN 157

9.7.2. CONDITIONS NECESSAIRES POUR LA PERCEE INDUSTRIELLE

– coût du raccordement – facilité du raccordement (plug-and-play !) – facilité de la mise en œuvre (comme des entrées/sorties locales) – facilité de maintenance (auto-diagnostic total)

9.7.3. EFFETS ATTENDUS ET INATTENDUS DES RESEAUX DE TERRAIN

– diminution des coûts de câblage (c'était le but initial) – réduction du temps de mise en service car les tests d'une architecture

décentralisée peuvent se faire sur plate-forme qui peut ensuite être démontée et remontée facilement chez le client

– les capteurs et actuateurs comportant de l'électronique (pour le raccordement au

réseau), on peut en profiter pour lui confier des fonctions de prétraitement des données et de diagnostic local susceptibles de révolutionner la maintenance (exemple : comptage du nombre de basculement d'un relais !)

– la disparition des cartes d'entrées/sorties remet en cause l'hégémonie des

automates programmables. La périphérie décentralisée sur réseau peut parfaitement être gérée depuis un simple PC avec des coûts plus avantageux et des possibilités de traitement plus étendues.