14
DELLISE Pauline FACHE Laetitia Lycée des Flandres De l'électrostatique de Thalès de Millet à l'accélérateur de particules XXI ième OLYMPIADES DE PHYSIQUE 2014 1

L'électrostatique de Thales de Millet jusqu'à …...Mais pour lui, seule l'attraction est de nature électrique. S’il a choisi de faire un globe en soufre auquel il a incorporé

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

DELLISE PaulineFACHE LaetitiaLycée des Flandres

De l'électrostatique de Thalès deMillet à l'accélérateur de

particules

XXIième OLYMPIADES DE PHYSIQUE 2014

1

Résumé :

Quels liens peut-on trouver entre les crépitements dans les cheveux quand on enlève un pull et les accélérateurs de particules ? C’est en partant des prémices de l’électrostatique avec Thalès de Millet et en suivant l’évolution des principales idées sur le sujet que nous avons réussi à comprendre comment il est possible d’agir sur des objets chargés pour leur donner de la vitesse. Nous nous sommes efforcées de construire un accélérateur de billes pour faire un parallèle entre ce modèle et les accélérateurs linéaires departicules.

Sommaire :

I – Historique Page 3

II – Notion de champ électrique Page 8

III – Réaliser un accélérateur de particules Page 11

2

I – Historique

« Le terme électricité vient du mot grec elektros qui signifie «ambre», c'est-à-dire une résine d'arbre fossilisée. Les Anciens avaient déjà remarqué qu'un bâtonnet d'ambre frotté avec du tissu attire des débris de feuilles mortes ou des grains de poussière»

En – 600 Thalès de Milet, un philosophe et savant grec, observeaprès avoir frotté de l'ambre jaune que celle-ci attire de l'oxyde defer. Il pense qu'un souffle de vie anime ce caillou jaune.

Illustration : Grâce à une règle on peut attirer des corps légerscomme des boules de sureau.

Pendant 2000 ans, hormis quelques philosophes grecs (Plutarque)qui imaginaient que l'échauffement de l'ambre permettait d'emporterles corps légers par la convection de l'air, l'étrange pouvoir d'attraction de l'ambre n'intéresse plus grand monde. Les investigations reprennent à la fin du 16ème siècle avec le médecin personnel de la reine Elisabeth 1er, William Gilbert. Il découvre que d'autres matériaux tels que le verre, le diamant ou l'alun attirent eux aussi des objets comme les plume, la paille ou la poussière lorsqu'on les frotte... Gilbert nomme cette force d'attraction à distance "électricité".

Illustration : Attraction avec la paille et les plumes grâce à un bâton d'ébonite ou une règle en plexiglas

En 1629, Niccolo Cabeo met en évidence l'attraction et la répulsiondes corps électrisés. Selon lui, ces deux phénomènes s'opèrent par ledéplacement de l'effluvium dans l'air.

Mise en évidence de la répulsion et de l’attraction avec les pailles enPVC en suspension

En 1660 Otto Van Guerrick invente la première machineélectrostatique. À l'époque, la machine est sommaire, ils'agit d'un globe de soufre mis en rotation et frotté par lamain de l'homme, puis par un drap. Le frottement créantune charge électrique sur le globe. Otto Von Guerickeobserve avec ce globe un ensemble de phénomènes quifurent ultérieurement attribués à l'électricité.

3

Mais pour lui, seule l'attraction est de nature électrique. S’il a choisi de faire un globe en soufre auquel il a incorporé quelques minéraux, c’est qu’il veut réaliser un modèle réduit de la Terre dont il cherche à imiter la composition. Il a d'ailleurs cassé le globe de verre ayant servi à mouler le soufre liquide. Guericke pense que toutes les "vertus" manifestées par les planètes ont leur siège dans les corps ordinaires. Parmi ces vertus, celle d'attirer d'autres corps, comme les masses tombant sur la Terre, est la seule qu'il associe à l'électricité. Grâce à une autre "vertu", la Terre tient au contraire à distance certains corps, tels le feu ou la lune, de même que son globe de soufre tient à distance la plume repoussée. D'autres "vertus" encore, comme les vertus lumineuse et sonore (l'éclair, le tonnerre) se trouvent également reproduites en miniature par son globe.

Son globe frotté peut difficilement être considéré comme une machine électrique, même si cette idée de frotter une boule en rotation sera à la base des premières machines électriques.

En 1705, Francis Hauksbee, un scientifique britannique, découvre que s'il placeune petite quantité de mercure dans le verre d'un générateur électrostatique deOtto Von Guericke modifié par ses soins, et qu'il évacue l'air de celui-ci, lorsquela boule est chargée par frottement de la main, une lueur devient visible enplaçant sa main près de la boule, à l'extérieur. Et donc qu'une boule de verre émetde la lumière et attire les objets légers lorsqu'elle est mise en rotation et frottée.L'attraction est alors si forte que les poils se dressent au voisinage du verre ! Lalueur produite était suffisante pour permettre de lire. Il venait d'inventer la lampeà décharge.

En 1729, Stephen Gray découvre la conduction électrique. Les métaux transfèrent les charges pas les isolants

Illustration : Plexis électrisé règle en métal puis bâton de verre pour atteindre un pendule électrostatique

On voit ici que les charges ne sont pas conservées par les métaux : elles sont transmises par ces derniers alors que les matériaux isolant s’électrisent et donc ne conduisent pas les charges électriques

4

En 1733, Charles François de Cisternay Du Fay, un chimiste français, se lance dans une série d'expériences. Il montre d'abord que les métaux peuvent être aussiélectrisés par frottement, à condition de les placer sur un support qui lesisole de la terre. Mais, surtout, il découvre deux sortes d'électricité.Lorsqu'il laisse tomber une feuille d'or très légère sur un tube de verrequ'il a préalablement frotté, celle-ci rebondit sur le tube pour se stabiliseren l'air à 15 cm de distance. S'il approche un bâton de résine, la feuilleest attirée et se colle aussitôt à son extrémité. Ces deux électricités, qu'ilqualifie de "vitrée" et "résineuse" s'attirent l'une l'autre, mais serepoussent lorsqu'elles sont identiques.

Réalisation au lycée :

En 1745, dans la ville hollandaise deLeyde, un magistrat, Andreas Cuneus, s'amuse à charger une bouteille remplied’eau. Il a l'imprudence de poser les doigts sur la tige métallique qui a servi àélectriser le récipient. Il est soudain cloué au sol par une violente douleur qui luisecoue affreusement le corps.

Elle est formée d'une électrode supérieure constituée de feuilles d'or suspendues àl'aide d'une chaîne à l'intérieur d'une bouteille en verre. Une deuxième électrode estune feuille métallique d'étain enveloppant l'extérieur de la bouteille. Reliée à ungénérateur (à friction), la bouteille de Leyde peut accumuler des chargesélectriques.

On constate aussi, dès 1746, que l'on peut augmenter encore la puissance des décharges : - en augmentant la surface des feuilles métalliques en contact avec le verre (on construit d'énormes jarres)

- en diminuant l'épaisseur du verre, - et enfin en groupant les bouteilles en "batteries".

5

Nous en possédons de vieux modèles au lycée, Mais nous en avons réalisé uneavec une bouteille en plastique et de l’aluminium adhésif

En 1747, un ami de Cuneus, le professeur Petrus Van Musschenbroek, refait cette expérience. A Paris, la bouteille de Leyde suscite immédiatement la curiosité de l'Abbé Nollet, une des sommités scientifiques de l'époque. La bouteille semble accumuler et conserver le fluide électrique pendant plusieurs jours. Il se demande pour quelle raison et la nature même du "fluide" est aussi énigmatique. Nollet, comme Gilbert et Gray avant lui, pense que des effluves invisibles se déversent des objets électrisés. Ils seraient responsables des phénomènes de répulsion entre les corps. La force d'attraction, quant à elle, serait due à de l'air qui pénètre dans les objets électrisés et les recharges ainsi en effluves répulsifs.

C'est en 1749 que l'interprétation exacte de leur expérience sera donnée par Benjamin Franklin. Il pense qu'à l'intérieur de la bouteille il y a un trop plein d'électricité qui, à travers le verre, repousse le fluide électrique à l'extérieur du récipient. Il symbolise ce déséquilibre avec un signe + pour l'extérieur de la bouteilleet un signe - pour l'intérieur. Lorsqu'on pose la main sur la tige métallique, on crée une passerelle. Le trop plein de fluide électrique se propage dans le corps humain pour aller compenser le déficit à l'extérieur de la bouteille. Ce transfert de fluide s'accompagne d'une secousse très douloureuse.

En 1782, Alessandro Volta a découvert le principe du condensateur. Il s'était rendu compte de la "condensation" de charges électriques sur les faces de deux lames conductrices rapprochées et reliées aux bornes d'un générateur. (Un condensateur est constitué par deux lames parallèlesséparées par un isolant.)

Le condensateur à lame de Volta est constitué d’un récipient enverre sur lequel repose un plateau en laiton relié à deux lames defeuilles d’or. Il sert à constater qu’un corps est chargé d’électricité,même en très faible quantité. Par frottement, on charge une tige deverre ou d’ambre à manche isolant d’électricité statique, puis onl’approche du plateau en laiton. Le plateau et les feuilles d’or sechargent d’électricité de signe opposé. Les lames de feuilles d’orse repoussent car elles sont chargées de la même électricité.

Les disques avec un manche isolant font partis de la même familleque ce condensateur à lame.

Utilisation de l’électroscope à lames du lycée

6

Dans les années 1780, suite à de nombreuses mesures réalisées grâce à la balance de Coulomb, Charles Augustin Coulomb énonce la loi qui porte son nom : « L'intensité de la force électrostatique entre deux charges électriques est proportionnelle au produit des deux charges et est inversement proportionnelle au carré de la distance entre les deux charges. La force est portée par la droite passant par les deux charges. »

Balance de Coulomb Loi de Coulomb

Dans les années 1870, William Crookes invente le tube de Crookes.

En 1897, en étudiant lesdécharges électriques entre lesdeux électrodes placées dans untube sous vide, le BritanniqueJoseph Thomson détecte deminuscules grains de matière, decharge négative, qui serontnommés "électrons".. Il mesurale rapport de la masse et lacharge de ces corpuscules et endéduisit qu'ils étaient au moins 1000 fois plus légers que l'ion d'hydrogène (le proton), l'objet le plus légeralors connu.

Illustration : Dispositif du lycée

2 électrodes sont chargées avec des signes opposés. Quand les charges deviennent trop importantes des électrons sont émis entre les deux lames pour compenser les différences.

En 1882, l’anglais James Wimshurst invente une machine électrostatiquequi fur historiquement utilisée pour illustrer de nombreux phénomènesd'électricité statique. Deux disques isolants sur lesquels sont fixés dessecteurs conducteurs tournent en sens inverse. Lorsque deux secteurs, unchargé et un neutre, se croisent, celui qui est neutre prend une chargeopposée par influence. Ces charges seront collectées et stockée dans descondensateurs.

7

Dans les années 1920 Van de Graaf construit un générateur électrostatique.C'est une machine électrostatique qui accumule les charges sur unconducteur grâce à un convoyeur mobile.

Conclusion :

Il a donc fallu plus de 2 millénaires d’imagination et de réflexion pour les hommes parviennent à comprendre les phénomènes électriques.

L’introduction de la notion de charge électrique et l’intérêt que l’homme a donné ensuite au stockage de ces charges et aux forces électriques mises en jeu, est à l’origine de la création d’une multitude de dispositifs de la vie quotidienne.

II - Champ électrique

1.Forces électriques

La force électrique est une force qui s'exerce entre des particules chargées.

La force qu’exerce un corps de charge q1 sur un autre corps de charge q2 séparés par une distance r est caractérisée par - point d'application : charge q2

- direction : la droite qui joint les charges

- sens : attraction si les charges sont de signes contraires, répulsion si les charges sont de même signe

- Intensité : ²

10.9 219

r

qqF

××=

2. Notion de champ électrique

Expérience : On approche un corps chargé sur un récipient contenant un ensemble de corps légers (billes de polystyrène recouvertes d’une peinture conductrice)

Observation : Toutes les billes sont toutes soumises à des forces électriques de la part du corps chargé.

Corps chargé

Billes de polystyrène recouvertes de peinture conductrice

8

Conclusion : Le corps chargé exerce une force électrique dans toute une zone qui lui est proche : On dit qu’il crée un champ électrique dans cette zone. Le champ électrique est un vecteur. La norme du champ électrique s’exprime en N.m-1

De façon générale, tout corps chargé électriquement crée dans la zone de l’espace qui l’entoure un champ électrique. Ce champ est généralement noté E

La connaissance de ce champ électrique permet de connaître la direction et le sens de la force électrique qui s’exerce sur un corps chargé placé en un point de l’espace où le champ électrique existe : EqF ×=

où E est lechamp crée en Bpar la charge

placée en A

Ainsi, une charge électrique q > 0 subit une force F dans le même sens

que le champ électrique E et une charge électrique q < 0 subit une force

F dans le sens opposé au champ électrique E .

Application : On peut accélérer ou dévier une particule chargée en la plaçant dans un champ électrique (accélérateur de particules, canon à électrons, …)

Pour représenter le champ électrique dans l’espace, on représente la série de courbes tangentes en chaque point au champ électrique : Les lignes de champ

Expérience avec la machine de Wimshur s t et la cuve à lignes de champ

9

3. Cas du condensateur plan

Un condensateur est un système constitué de deux armatures métalliquesséparées par un isolant. La bouteille de Leyde correspond au premiercondensateur. Ce genre de dispositif présente la propriété de pouvoir stockerdes charges électriques.

Un condensateur plan est formé de deux plaques métalliques parallèlesséparées par un isolant. En imposant une tension U entre les deux plaques, il y a séparation des charges électriques : les charges électriques (-) se rassemblent sur une plaque, alors que les charges électriques (+)se rassemblent sur l’autre plaque. Il se crée alors un champ électrique entre ses deux plaques, et dans leur voisinage.- Sa direction est orthogonale aux plaques.- Son sens va de la plaque chargée « + » vers la plaque chargée « − ».

Expérience avec la machine de Wimshur s t et la cuve à lignes de champ

L’intensité du champ résultant dépend de la tension U entre lesplaques, et de la distance d entre celles-ci.

d

EU = avec E en Vm-1 ; U en V et D en m

Vérification expérimentale : On mesure latension entre le point M et le point A enfonction de la distance AM=d et on traceU=f(d)

10

d U(m) (V)0,09 3,640,08 3,060,07 2,250,06 2,080,05 1,620,04 1,180,03 0,780,02 0,340,01 0,270 0

Conclusion : U est proportionnel à d. Cette relation est en accord avec les résultats précédents. Le champ électrique entre les armatures du condensateur est uniforme : Il a la même direction, le même sens et la même intensité. Ici E=40V.m-1

Ainsi un corps chargé placé à l’intérieur d’un condensateur plan sera soumis à une force électrique sui sera perpendiculaire aux armature et dans un sens qui dépendra de son signe (opposé au champ électrique si q<0 et dans le sens du champ électrique si q>0)

III. Accélérateur de billes

1. Principe de base

Pour donner la vitesse à nos billes nous allons les soumettre à une forceélectrique.Pour cela nous allons construire un condensateur plan pour obtenir unchamp électrique uniforme.La force électrique qui va s’appliquer sur la bille sera donc dans ladirection du champ électrique régnant à l’intérieur du condensateur etson sens dépendra uniquement du signe de la charge de notre bille :

EqF ×=

Dans ces conditions, si la bille est chargée positivement, elle seraentraînée dans le sens du champ électrique, si sa charge est négative, ellesera entraînée dans le sens opposé.

2. Présentation de notre dispositif

2.1. Expérience initiale

Nous avons relier deux canettes en aluminium à un générateur (icides tapettes à mouches en série). Elles se sont donc chargées avecdes signes opposées Entre les deux canettes on place une bille enpolystyrène métallisée. La bille n'est pas reliée aux canettes.

Observation : Lorsque l'on allume le générateur la bille se balanced'une canette à l'autre.

Conclusion : Le corps léger est attiré par la force électrique attractive d’une des deux canettes puis en la touchant, il se charge avec une charge de même signe que la canette et subir une répulsion. Il se dirige ensuite vers l'autre canette portant la charge opposée du corps. Au contact, la charge de notre objet change à nouveau, une nouvelle répulsion a lieu et ainsi de suite. Ce petit dispositif est souvent appelé carillonélectrostatique

Les forces mises en jeu dans cette expériences nous ont donnél’idée de réaliser un premier accélérateur de bille à l’aide deuxarmatures chargées de signe opposé.

11

++++++++++++++

--------------

E

2.2. Premier essai

Nous avons choisi de travailler avec des billes en polystyrène recouvertes d’une peinture conductrice. Nous avons réalisé un condensateur plan à l’aide de deux lames de bois recouvertes d’aluminium. Les lames ainsi formées sont reliées à un générateur constitué de tapettes à mouches électriques en série. Nous allons les utiliser carelles nous permettent d'avoir un générateur produisant une tension suffisamment importante et nous ne possédons pas de générateur adapté au lycée. Chaque tapette permet d’obtenir une tension d’environ 1 000V (d’après les données techniques vues sur Internet).

L'aluminium représente les armatures métalliques de notre condensateur plan. Entre ces deux armatures, on place une bille en polystyrène recouverte de peinture conductrice. Nous avons choisi d'utiliser le polystyrène car c'est un corps léger et nous avons utilisé une peinture conductrice pour que la charge soit bien répartie sur la surface de la bille.

Conclusion : Les forces mises en jeu sont très faibles. Elles sont d’ailleurs d’autant plus faibles que la distance augmente (F=qE=qU/D). D’autre part la charge q de la bille est très faible de l’ordre de quelques

nano coulomb On peut alors estimer F : NF 59 10.502.0

100010 −− =×= . D’autre part le poids d’une bille de

polystyrène est de l’ordre de 10-4 kg P=mg=10-3N

On ne peut pas augmenter U, il faut donc diminuer d pour avoir un champ électrique plus important et donc une force plus grande

2.3. Choix final :

Pour augmenter progressivement la vitesse, nous avons décidé d’utiliser une série de condensateurs qui vont permettre à la bille d’être en permanence entraînée par une force électrique

V

-

+

12

Explications : la bille doit être lancée avec une vitesse faible au départ dansle sens du mouvement pour se charger sur la première armature puis êtresoumise à la force électrique entre les armatures avant de changer de signe ,pour être repousser vers l’électrode suivante, etc.……

Notre première maquette était construite sur une planche d’environ 15cm delargeur. Au cours de son mouvement la bille pouvait être soumise à desforces plus importantes quand elle se rapprochait des bandes latérales quinous servaient à imposer la différence de potentiel et avait un mouvementtrès irrégulier. Pour résoudre ce problème, nous avons choisi de travaillerdans une gouttière pour être sur que notre bille reste dans une zone où lechamp électrique reste uniforme.

2.4. Lien avec les accélérateurs linéaires de particules

Contrairement à nos billes, les particules qui sont accélérés dans les accélérateurs linéaires conservent le même signe. Il n’est donc pas possible d’utiliser notre dispositif tel qu’il a été conçu : il faut l’adapter.

Pour que la force électrique soit toujours orientée dans le même sens, il faut alimenter la série de condensateurs avec une tension alternative de manière à ce que le champ crée varie au cours du temps. Enjouant sur la période de la tension (changement de sens du champ électrique) et sur la distances entre les armatures (la particule va de plus en plus vite, mais le changement de sens se fait à un intervalle de temps régulier), on parvient à accélérer des particules chargées

.

13

Conclusion.

Les accélérateurs de particules sont utilisés dans de nombreux domaines notamment dans la recherche despropriétés de la matière. En effet, pour pouvoir étudier les particules élémentaires qui forment la matière, on crée, dans des conditions parfaitement contrôlées, des chocs entre particules et on regarde ce qui se produit. Le rôle des accélérateurs est de donner suffisamment de vitesse (proches de celle de la lumière), à un faisceau de particules chargées, protons ou ions ou électrons et de les envoyer sur une cible fixe. Lors du choc, des réactions nucléaires ont lieu et les noyaux de la cible sont cassés. On étudie les noyaux résultants de ces interactions, les particules émises (protons, neutrons) et les rayonnements produits pour déterminer la structure interne de la matière.

L’accélérateur de particules du CERN est aujourd’hui le plus grand du monde. De nombreuses personnes y travaillent. Tout comme l’ont fait Thalès de Millet et tous les hommes qui se sont intéressés aux interac-tions électriques, les scientifiques travaillant au CERN ont pu finaliser leur projet à force de réflexion, d’imagination, de patience, de recherche et de curiosité.

14