73
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE HOUARI BOUMEDIENE (U.S.T.H.B) FACULTE DE CHIMIE Domaine : science de la matière Spécialité : CHIMIE Option : Analyse et Contrôle Mémoire de Master Présenté Par : - BENDADA Khiereddine - BOULAKRADECHE Mohamed Walid Soutenu publiquement le : 19/ 06 /2011, devant le jury composé de : Mr. O. BENALI BAITICH Professeur (USTHB) Président Mr. M. AMARA Professeur (USTHB) Encadreur Mr. D.E. AKRETCHE Professeur (USTHB) Examinateur Mme D. DJEBBAR Maitre de conférences (USTHB) Examinatrice Mr. F. SALMI Master (INCC) Invité Optimisation des conditions de dosage par spectroscopie d’absorption atomique (SAAF et SAAET) : Application à la détermination de la pollution et de la bioaccumulation des métaux lourds

mémoire master corrigé

Embed Size (px)

Citation preview

Page 1: mémoire master corrigé

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE

HOUARI BOUMEDIENE (U.S.T.H.B)

FACULTE DE CHIMIE

Domaine : science de la matière Spécialité : CHIMIE

Option : Analyse et Contrôle

Mémoire de Master

Présenté Par : - BENDADA Khiereddine

- BOULAKRADECHE Mohamed Walid

Soutenu publiquement le : 19/ 06 /2011, devant le jury composé de : Mr. O. BENALI BAITICH Professeur (USTHB) Président

Mr. M. AMARA Professeur (USTHB) Encadreur

Mr. D.E. AKRETCHE Professeur (USTHB) Examinateur

Mme D. DJEBBAR Maitre de conférences (USTHB) Examinatrice

Mr. F. SALMI Master (INCC) Invité

Optimisation des conditions de dosage par spectroscopie d’absorption atomique (SAAF et SAAET) : Application à la détermination de la pollution et de la bioaccumulation des

métaux lourds

Page 2: mémoire master corrigé

Remerciements

Ce travail a été réalisé au département de toxicologie de l’institut Nationale

criminalistique et criminologie conjointement avec le laboratoire

d’hydrométallurgie et de chimie inorganique moléculaire de la faculté de chimie

de l’USTHB.

Nous exprimons nos profonds remerciements à notre promoteur, le professeur

AMARA Mourad pour l'aide compétente qu'il nous a apportée, pour sa patience,

sa confiance, son encouragement, et Son œil critique qui nous a été très

précieux pour structurer le travail et pour améliorer la qualité des différentes

sections de notre mémoire, nous le remercions vivement.

Nos vifs remerciements vont au professeur O. BENALI BAITICH pour l’honneur

qu’il nous fait de présider ce jury.

Nous remercions également chaleureusement Monsieur D.E. AKRETCHE,

Madame D. DJEBBAR et Monsieur F. SALMI d’avoir accepté d’examiner ce

travail.

Ensuite nous tenons à remercier la Gendarmerie Nationale Algérienne et Mr.

BOURAMANA Sid Ali pour nous avoir donné la possibilité de manipuler au sein

de L’INCC, ainsi qu’à notre Co-promoteur Mr. ZARITA Bouzid pour nous avoir

permis d’approfondir nos connaissances dans la spectroscopie d’absorption

atomique et pour nous avoir fait profiter de ses connaissances sur les analyses

en toxicologie (physico-chimie).

Nous remercions nos familles pour l'amour qu'elles nous portent et pour la

patience dont elles ont fait preuve surtout que nous travaillons souvent tard le

soir....

Page 3: mémoire master corrigé

L'aboutissement de cette thèse a aussi été encouragé par de nombreuses

discussions avec des collègues et des membres de l’INCC (institut National

criminalistique et criminologie) de disciplines variées. Nous ne citerons pas de

noms ici, pour ne pas en oublier certains.

D'autres personnes nous ont encouragés à finir ce travail par des gestes

d'amitié dont nous sommes reconnaissants. A titre d'exemple, je citerai

Mr.BELOUATI Ali, Mr.C. BISKER, Mr.S. Kharab et Mme GARI pour nous

avoir aidés dans la recherche bibliographique ainsi que pour l’obtention

d’accessoire très utile pour l’avancement de la thèse. Ou encore Mr. R.

BELHADJ pour nous avoir souvent assisté afin de terminer nos analyses et

encouragé dans les moments difficiles.

Page 4: mémoire master corrigé

INTRODUCTION GENERALE ………………………………………..…….1

CHAPITRE I PRESENTATION DES ELEMENTS DE L’ETUDE

I. Généralité sur la spectrométrie d’absorption atomique …………….........3

I.1. Principe …..………………………………………………………………….3

I.2. Appareillage …………………………………………………………………..4

I.2.1. Source lumineuse ……………………………………………………………5

I.2.1.1. Les lampes à cathode creuse ………………………………………………..5

I.2.1.2.Les lampes à décharge électronique …………………………………………6

I.2.1.3. Autres sources lumineuses ………………………………………………….6

I.2.2. Introduction des échantillons en solution ………………….…………………..6

I.2.3. Chambre d’absorption……………….………………………………………7

I.2.3.1. La flamme (atomiseur) …………….……………………………………….7

I.2.3.2. Atomiseur électrothermique (four graphite) ………………………………...8

I.2.4. Monochromateur …………………………………………………………....9

I.2.5. Détecteur et dispositif de mesure ………………………………………………...9

I.3. Les interférences …………………………………………………………….10

I.3.1. Interférences spectrales …………………………………………………….10

I.3.2. Interférences chimiques …………………………………………………….10

I.3.3. Interférences physiques …………………………………………………….11

I.4. Correction de fond pour la SAA ………………………………………………11

I.4.1. Correction des interférences spectrales ……………………………………...11

I.4.1.1. Correcteur au deutérium ………………………………………………....11

I.4.1.2. Correcteur par effet Zeeman ……………………………………………...12

I.4.1.3. Correcteur de Smith-Hieftje ........................................................................13

SOMMAIRE

Page 5: mémoire master corrigé

I.4.2. Correction des interférences physiques ……………………………………...13

I.4.3. Correction des interférences chimiques……..……………………………….13

II. Pollution des eaux maritimes …...………………………………………..14

II.1. Oued El-Harrach …………………………………………………………...14

II.1.1. Topographie ……………………………………………………………...14

II.1.2. Pollution ………………………………………………………………….15

Les métaux lourds dans le milieu marin …………………………………….18

III.1. La toxicité des métaux lourds ……………………………………………….18

III.1.1. Le Cadmium……………………………………………………….…….19

III.1.2. Le Plomb ……………………………………………………………….20

III.1.3. Le Cuivre ………………………………………………………………..20

III.1.4. Le Fer …………………………………………………………………...21

III.1.5. Le Manganèse …………………………………………………………...22

III.1.6. Le Zinc ………………………………………………………………….22

IV. Bioaccumulation ………………………………………………………….23

IV.1. Définition ………………………………………………………………….23

IV.2. Mécanismes de bioaccumulation des métaux-traces chez les organismes

aquatiques ………………………………………………………………………23

IV.3. Le bio indicateur de pollution ………………………………………………24

CHAPITRE II LES TECHNIQUES EXPERIMENTALES

I. Recherche des métaux lourds dans Oued El-Harrach ………………......25

I.1. Echantillonnage ……………………………………………………………..26

I.1.1. Le choix et le mode de lavage du flacon …………………………………......27

I.1.2. Procédure du prélèvement ………………………………………………….27

I.1.2.1. Méthode1 ………………………………………………………………..27

I.1.2.2. Méthode2 ………………………………………………………………..28

I.2. Les paramètres mesurés sur le terrain….……………………………………..28

I.2.1.Température………………………………………………………………..28

Page 6: mémoire master corrigé

I.2.2. Conductivité ……………………………………………………………...28

I.2.3. pH (Potentiel Hydrogène) ………….………………………………………29

I.2.4. Turbidité …………………………………………………………………29

I.3. Préparation de l’échantillon ………………………………………………….30

I.3.1. Appareillage et réactifs …………………………………………………….30

I.3.2. Préparation de verrerie et de plastique ……………………………………...31

I.3.3. Mode de prétraitement et préparation des solutions d’échantillons...................31

I.3.3.1. Méthode A0 ……………………………………………………………...31

I.3.3.2. Méthode A1 ……………………………………………………………...32

I.3.3.3. Méthode A2 ……………………………………………………………...32

II. Recherche des métaux lourds dans le poulpe …………………………...32

II.1. Choix de l’espèce …………………………………………………………...32

II.2. Présentation du modèle biologique ………………………………………...34

II.3. Choix de station de prélèvement …………………………………………….35

II.4. Préparation de l’échantillon ………………………………………………...35

II.4.1. Appareillage et réactifs ……………………………………………………36

II.4.2. Préparation de verrerie et de plastique …………………………………….36

II.4.3. Prise d’essai ………………………………………………………………36

II.4.4. Minéralisation de l’échantillon …………………………………………….36

III. Dosage des métaux lourd par la Spectroscopie d’absorption

atomique ………………………………………………………………………37

III.1. Principe …………………………………………………………………..37

III.2. Appareillage et réactifs ............................................................................38

III.3. Préparation des Solutions ………………………………………………….39

III.4. Etalonnage ………………………………………………………………..40

CHAPITRE III RESULTATS ET DISCUSSIONS

I. Etude qualitative …………………………………………………………..43

Page 7: mémoire master corrigé

II. Etude quantitative ………………………………………………………..46

III. Etude de la bioaccumulation par le poulpe ……………………………53

CONCLUSION GENERALE ……………………………………………….57

LISTE DES REFERENCES.

Annexe.

Page 8: mémoire master corrigé

Figure 1 : Les instruments de base pour la spectrométrie d’absorption atomique.

Figure 2 : Spectrophotomètres de flamme : appareil à simple et double faisceau.

Figure 3 : Cathode creuse : source pour la spectrométrie d’absorption atomique

Figure 4 : Programme électrothermique pour un four graphite

Figure 5 : Principales configurations en spectrométrie Zeeman

Figure 6 : Alger, Bassins versants intérieurs et relief

Figure 7 : Pollution d’Oued El-Harrach

Figure 8 : Cartographie des sites industrielle contaminant Oued El-Harrach

Figure 9 : les deux sites ciblés pour l’échantillonnage

Figure 10 : poulpe commun (Octopus vulgaris)

Figure 11 : Anatomie du poulpe commun

Figure 12 : Photographie de la baie d’Alger montrant les trois sites d’échantillonnages

Figure 13 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A0 pour le point 1

Figure 14 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A1 pour le point 1

Figure 15 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A2 pour le point 1

Figure 16 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A0 pour le point 2

Figure 17 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A1 pour le point 2

Figure 18 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A2 pour le point 2

Figure 19 : Variation des teneurs en Cu / point 1 en fonction de la méthode de minéralisation

LISTE DES FIGURES

Page 9: mémoire master corrigé

Figure 20 : Variation des teneurs en Mn / point 1 en fonction de la méthode de minéralisation

Figure 21 : Variation des teneurs en Zn / point 1 en fonction de la méthode de minéralisation

Figure 22 : Variation des teneurs en Pb / point 1 en fonction de la méthode de minéralisation

Figure 23 : Variation des teneurs en Cd / point 1 en fonction de la méthode de minéralisation

Figure 24 : Variation des teneurs en Fe / point1 en fonction de la méthode de minéralisation

Figure 25 : Variation des teneurs en Cu / point2 en fonction de la méthode de minéralisation

Figure 26 : Variation des teneurs en Mn / point2 en fonction de la méthode de minéralisation

Figure 27 : Variation des teneurs en Zn / point 2 en fonction de la méthode de minéralisation

Figure 28 : Variation des teneurs en Pb / point 2 en fonction de la méthode de minéralisation

Figure 29 : Variation des teneurs en Cd / point 2 en fonction de la méthode de minéralisation

Figure 30 : Variation des teneurs en Fe / point 2 en fonction de la méthode de minéralisation

Figure 31 : Teneur du Cd dans le poulpe en mg /kg

Figure 32 : Teneur du Pb dans le poulpe en mg /kg

Figure 33 : Teneur du Zn dans le poulpe en mg /kg

Figure 34 : Teneur du Fe dans le poulpe en mg /kg

Figure 35 : Teneur du Mn dans le poulpe en mg /kg

Figure 36 : Teneur du Cu dans le poulpe en mg /kg

Page 10: mémoire master corrigé

Tableau 1 : Méthodes d’introduction de l’échantillon en spectroscopie atomique

Tableau 2 : Les unités industrielles recensées par la direction de l’Environnement

Tableau 3 : Guide de la Conductivité d’une eau destinée à la consommation humaine

Tableau 4 : Les différentes classes de turbidité en fonction de la qualité visuelle de l’eau

Tableau 5 : Conditions expérimentales pour le dosage des ions métalliques par SAA

Tableau 6 : Les quantités prélevées de la solution mère et les concentrations des standards

Tableau 7 : Informations générales des conditions d’échantillonnage par la méthode 1

Tableau 8 : Informations générales des conditions d’échantillonnage par la méthode 2

Tableau 9 : Les valeurs de pH et conductivité relevés dans le cas de l’échantillonnage avec la méthode 1

Tableau 10 : Les valeurs de pH, conductivité et turbidité relevés dans le cas de l’échantillonnage avec la méthode 1

Tableau 11 : Teneurs des métaux lourds dans l’eau (méthode de prélèvement 1)

Tableau 12 : Teneurs des métaux lourds présents dans deux prélèvements (méthode 2), pour trois type de minéralisation (A0, A1 et A2)

Tableau 13 : Teneurs des métaux lourds présents dans les trois bio-indicateurs étudiées

LISTE DES TABLEAUX

Page 11: mémoire master corrigé

Introduction Générale

2

INTRODUCTION GENERALE

La spectroscopie d’absorption atomique depuis son avènement comme technique d’analyse

incontournable pour les dosages des espèces métalliques, n’a cessé d’évoluer dans le sens de

l’accroissement de sa sensibilité, sa fiabilité et sa reproductibilité.

Cette technique qui emploie les transitions électroniques à travers l’excitation des électrons en

les transformant en signaux électroniques via un dispositif assez complexe mais performant

et simple d’utilisation, a toujours été associée au dosage des éléments traces métalliques

(ETM) dans leur différentes matrices. Cependant, avec le développement parallèle de

nouvelles techniques concurrentielles comme l’émission atomique par plasma ou la

chromatographie ionique, ou encore l’utilisation des électrodes spécifiques, l’absorption

atomique s’est vu suivre cette évolution par l’introduction de nouveaux systèmes de

nébulisation, d’excitation et de correction d’interférences tels que l’effet Zeeman ou

l’atomisation dans un four à graphite.

La maitrise de la théorie et du principe de fonctionnement d’un équipement de spectrométrie

d’absorption atomique est indispensable pour un chimiste analyste qui souvent est appelé à

réaliser des dosages de minéraux dans des systèmes les contenant comme éléments gênants ou

toxiques. Néanmoins, ces connaissances restent insuffisantes si elles ne sont pas complétées

par une réelle maîtrise des comportements de ces impuretés métalliques dans des solutions

pouvant contenir toutes sortes d’éléments complexant ou interférents.

En effet, quoique le dosage proprement dit, n’est pas très compliqué à mettre en œuvre, c’est

la préparation des échantillons : extraction et séparation qui constitue souvent le réel obstacle

pour son exécution.

Notre étude s’intéresse principalement à l’utilisation de cette technique d’analyse, la

spectroscopie d’absorption atomique, pour le dosage de six ions métalliques présents comme

impuretés au niveau de Oued El-Harrach et par conséquent pouvant se répandre dans

l’environnement avoisinant notamment le bassin méditerranéen dans lequel est déversé.

Cette méthode d’analyse va constituer un outil pour le suivi de la pollution à travers des bio-

indicateurs choisis pour leur grand pouvoir d’accumulation des métaux. Dans notre cas, la

pieuvre a été sélectionnée pour d’une part son accessibilité relativement aisée et d’autre part,

Page 12: mémoire master corrigé

Introduction Générale

2

et c’est le plus important, pour sa sédentarité au niveau de la côte tout au long de la baie

d’Alger. Ce qui lui confère le statut de filtre absorbant ou de barrière à la pollution métallique.

Des prélèvements des échantillons sont opérés dans différents points de l’Oued tout en

gardant à l’esprit l’existence d’usines aux alentours pouvant rejeter ce type de déchets

polluants. Puis, des poulpes sont étudiés en fonction de leur éloignement géométrique du

point de chute de l’Oued.

Par la suite, trois techniques de minéralisation sont examinées et comparées en fonction du

mode d’échantillonnage et de la nature des espèces qui sont présentes.

Ce mémoire s’articule principalement sur trois chapitres :

Le premier chapitre est consacré à la présentation des éléments de l’étude : ions métalliques,

l’espèce marine et l’absorption atomique.

Le deuxième chapitre présente les techniques expérimentales de prélèvement, de

conservation, de traitement des échantillons et de la mise en œuvre du dosage.

Le dernier chapitre contient l’essentiel des résultats obtenus et leur interprétation.

Page 13: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

3

CHAPITRE I

PRESENTATION DES ELEMENTS DE L’ETUDE

II. Généralité sur la spectrométrie d’absorption atomique

I.1. Principe

L'absorption atomique est un processus qui se produit lorsqu’un atome appartenant à

l'état fondamental passe à l’état excité par l’absorption d’une énergie, sous la forme d’un

rayonnement électromagnétique, qui correspond à une longueur d'onde spécifique. Le spectre

d'absorption atomique d'un élément est constitué d'une série de raies de résonance, tous

originaires de l’état électronique fondamentale et finissent dans différents états excités. En

général, la raie de la transition entre l'état fondamental et le premier état excité définie la plus

forte capacité d’absorption, et c'est la raie habituellement utilisé.

Les transitions entre l’état fondamental et l’état excité se produire uniquement lorsque le

rayonnement incident, provenant d’une source lumineuse, est exactement égale à la fréquence

d'une transition spécifique. Une partie de l'énergie de la radiation incidente I 0 est absorbé. Le

rayonnement émis est donné par I

I = I 0e- (εl)

Où ε est le coefficient d'absorption de l'élément à analyser et l est la longueur du trajet

horizontal du rayonnement à travers la chambre d’absorption.

L’absorption atomique est déterminée par la variation de la puissance rayonnante du faisceau

incident en présence et en absence d'atomes analytes dans l’atomiseur. La largeur de la raie

émise par la source lumineuse doit être plus petite que la largeur de la raie absorbée de

l'analyte. La quantité d'énergie absorbée, à partir d’un faisceau de rayonnement pour la

longueur d'onde d'une raie de résonance, augmentera avec l’augmentation du nombre

d'atomes de l'élément sélectionné dans la chambre d’absorption. La relation entre la quantité

de lumière absorbée et la concentration de l'analyte présent dans les standards peut être

déterminée. On peut déterminer les concentrations des échantillons en comparant les quantités

de rayonnement absorbé par ces derniers avec la quantité de radiation absorbé par les

standards. La Lecture de l’instrument peut être calibrée de façon à afficher les concentrations

de l'échantillon directement. [ 1]

Page 14: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

4

I.2. Appareillage

Les instruments de base pour la spectrométrie d’absorption atomique comportent quatre

parties principales:

Le faisceau lumineux issu de la source (1) traverse la chambre d’absorption (flamme ou four)

(2) dans laquelle l’élément se trouve porté à l’état atomique, avant d’être focalisé sur la fente

d’entrée d’un monochromateur (3) qui sélectionne un intervalle très étroit de longueurs

d’onde. Le trajet optique se termine sur la fenêtre d’entrée du détecteur (4) (Figure1). [ 1]

Figure 1 : Les instruments de base pour la spectrométrie d’absorption atomique.

Il existe également deux types de spectromètre : le Mono faisceau et le double faisceau, le

deuxième est plus performant que le premier comme le montre le schéma suivant (figure 2).

La lecture dans le cas du double faisceau représente le rapport de l’échantillon et de faisceau

de référence, ceci permet de gagner une meilleure stabilité du signal. [2,3]

Page 15: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

5

Figure 2 : Spectrophotomètres de flamme : (a) appareil à simple faisceau (b) appareil à

double faisceau. [4]

I.2.1. Source lumineuse

Elle consiste à émettre une radiation de résonance par l’élément même qu’on veut

doser.

Les sources d’émission doivent être stables dans le temps, présenter une luminance élevée

pour le spectre de l’élément avec un fond continu faible et enfin avoir une durée de vie assez

longue. Elles sont généralement constituée de lampe à cathode creuse ou lampe à décharge

électronique. [5]

I.2.1.1. Les lampes à cathode creuse

Elle existe pratiquement pour tous les éléments métalliques, notamment les métaux

lourds. Dans une lampe à cathode creuse commerciale (figure 3), la cathode possède une

forme cylindrique creuse, fermée sur un côté. La lampe est scellée et contient un gaz rare

(Argon ou Néon) à une pression de quelques mbar. Pour une intensité électrique de 10 mA (à

environ 500 V) on a :

Une émission d’électrons hautement énergétiques à la cathode qui provoque une ionisation du

gaz de remplissage (Argon ou Néon), les cations formé bombarderont ensuite la cathode ce

qui provoquera éjection d’un atome de métal excité, le retour à l’état fondamental de ce

dernier s’accompagnera d’une émission d’énergie sous forme d’une radiation spécifique. [2]

Page 16: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

6

Figure 3 : Cathode creuse : source pour la spectrométrie d’absorption atomique [6]

I.2.1.2. Les lampes à décharge électronique

Les lampes à décharge ont été surtout utilisées pour l’analyse des éléments alcalins et

volatils. Elles sont remplacées, à l’heure actuelle, par les lampes à cathode creuse ou les

lampes sans électrode. [ 7]

I.2.1.3. Autres sources lumineuses

•) Lampe à décharge sans électrode •) Super lampe et ultra lampe •) Lampe à vapeur de

mercure.

I.2.2. Introduction des échantillons en solution

Nébuliseur pneumatique : En général, les échantillons destinés à une analyse par

spectrométrie atomique sont pour la plupart dissouts en milieu aqueux et introduit dans

l’atomiseur par un nébuliseur, celui-ci aspire l’échantillon liquide à travers un capillaire par

un flux de gaz à haute pression qui s’écoule autour de l’extrémité du tube (effet Bernoulli). Ce

mécanisme de transport du liquide est appelé aspiration. La vitesse très élevée du gaz

provoque la rupture du liquide en fines gouttelettes de dimension variées, qui sont alors

entrainées dans l’atomiseur. [4]

Le tableau 1 montre les différents autres types d’introduction de l’échantillon en fonction de

sa nature.

Page 17: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

7

Tableau 1 : méthodes d’introduction de l’échantillon en spectroscopie atomique. [4]

Méthode type d’échantillon

Nébulisation pneumatique Solution ou boue

Nébulisation par ultrasons Solution

Vaporisation électrothermique Solide, liquide, solution

Production d’hydrure Solution de certains éléments volatils

Insertion directe Solide, poudre

Ablation laser Solide métal

Ablation par arc ou par étincelle Solide conducteur

Erosion par décharge luminescente Solide conducteur

I.2.3. Chambre d’absorption

Les chambres d'absorption les plus utilisées en spectrométrie sont la flamme et le four

graphite qui sont capables, à partir d'éléments présents en solution, de fournir des atomes

libres en proportion suffisante pour utiliser la technique d'absorption.

Il existe également la méthode FIAS (Flow Injection Atomic Spectrometry) et FIAS

Hydrures/Mercure dans certains cas particuliers.

I.2.3.1. La flamme (atomiseur)

En SAA par flamme, les solutions d'échantillon sont généralement nébulisatés grâce à un

capillaire et un venturi dans une chambre de pulvérisation et l'aérosol produit est conduit,

accompagné de la combustion résultant du mélange gaz et oxydant, dans un brûleur

approprié.

Il faut noter que seulement 10% de la solution se retrouvent dans la flamme et qu'après des

phénomènes complexes de vaporisation, dissociation, recombinaison, on obtient une

proportion plus ou moins forte d'atomes libres susceptibles d'absorber le rayonnement.

C'est pour cela que l'on est obligé de préparer des étalons ayant une composition (une matrice)

aussi voisine que possible que celle des échantillons afin de maîtriser au mieux les

phénomènes physico-chimiques (nébulisation, vaporisation, réactions chimiques) qui

interviennent dans l'obtention des atomes libres à l'état fondamental. [2,3]

Page 18: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

8

I.2.3.2. Atomiseur électrothermique (four graphite)

Après insertion de l'échantillon sur une plate-forme montée dans l’atomiseur

électrothermique, une séquence de chauffage est initiée, le tube est chauffé par effet Joule. Le

procédé d’atomisation se déroule en trois étapes (figure 4).

• Séchage où l'échantillon est chauffé pendant 20 à 30 s à 110 ° C afin d’évaporer les

solvants ou des composant très volatile de la matrice.

• La décomposition s’effectue à une température intermédiaire (souvent 500 ° C) pour la

volatilisation des composants réfractaire de la matrice ainsi que la pyrolyse des

composés organiques (les graisses et les huiles). La température de calcination ne doit

pas être trop élevée ou maintenue trop longtemps, sinon il y a risque de perdre

l’analyte.

• Dans l'atomisation, la puissance maximale est appliquée pour monter la température

du four aussi rapidement que possible à la température d'atomisation sélectionnée. Le

résidu analyte se volatilise et se dissocie en atomes libres qui absorbent la lumière de

la source SAA. Le signal d'absorption transitoire doit être mesuré rapidement.

L’atomiseur électrothermique offre plusieurs caractéristiques intéressantes par rapport à

la flamme :

•••• Une faible quantité d’analyte de l’ordre de (10-6 à 10-8 g) est nécessaire.

•••• Les phases solides peuvent être analysées directement, très souvent, sans

prétraitement.

•••• Le niveau de bruit de fond est très bas.

•••• Augmentation de la sensibilité car la production d’atomes analytes libres est plus

importante que dans la flamme. [ 1]

Page 19: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

9

Figure 4: Programme électrothermique pour un four graphite. [ 1]

I.2.4. Monochromateur

Le faisceau incident (source émise) est un spectre de raies qui contient : les raies de

l’élément à doser et les raies du gaz de remplissage, les raies d’éventuelles impuretés ainsi

que les raies de l’atomiseur (flamme) par conséquent, c’est une lumière polychromatique. Le

rôle du monochromateur consiste à éliminer toute la lumière, quelle que soit son origine,

ayant une longueur d’onde différente de celle à laquelle on travaille pour avoir un faisceau

monochromatique. [3]

I.2.5. Détecteur et dispositif de mesure

Dans les méthodes physiques d'analyse, l'appareil utilisé fournit un résultat qui sera le

plus souvent un signal électrique représentatif de la grandeur à mesurer : le détecteur est donc

un "transformateur" qui fournit un courant ou une tension à partir d'une caractéristique

physico-chimique.

En spectrophotométrie d’absorption, la grandeur physique observée est le flux lumineux reçu

par un détecteur de photons. Il existe trois types de détecteurs:

• Les détecteurs thermiques

• Les détecteurs pyroélectriques

• Le photomultiplicateur. [3]

La plupart des spectromètres modernes utilisent comme détecteur un photomultiplicateur relié

à un étage d'amplification, que nous allons décrire ci-dessous :

Page 20: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

10

Le flux lumineux reçu par le photomultiplicateur n’est pas directement proportionnelle à la

concentration de l’élément à doser. En effet l’absorbance n’est proportionnelle à la

concentration que dans un domaine analytique limité et qu’au-delà d’une certaine concentration

la droite s’incurve. Les appareils modernes comportent généralement un microprocesseur

permettant une correction mathématique. Cependant au-delà d’une certaine concentration

dépendant de l’élément et de la matrice, toute mesure devient illusoire en raison de son

imprécision. La flamme n’étant pas un milieu très stable, il est préférable de moyenner

plusieurs mesures, prises sur une durée assez longue, plutôt que de prendre une mesure

instantanée. Généralement la méthode de mesure utilisée sur les instruments automatiques est

l’intégration durant quelques dizaines de milliseconde, des informations prisent toutes les 0.5 à

1 seconde. [8]

I.3. Les interférences La mesure d'absorption spécifique à un élément peut être perturbée par des absorptions

non spécifiques et différentes interactions qui peuvent être corrigées ou compensées par

différentes méthodes.

I.3.1. Interférences spectrales (absorptions non spécifiques)

Phénomènes ayant leur siège dans la source d’atomisation et affectant la mesure

spectrale d’absorbance de l’analyte :

• Par superposition (chevauchement) de raies

• Par la présence de bandes d’absorption moléculaire

• Par la diffusion de la lumière incidente sur des particules solides ou liquides présentes

dans l’atomiseur.

Elles se traduisent souvent par une translation de la droite d’étalonnage établie en milieu

complexe, par rapport à celle obtenue en milieu simple (interférences additives). [4]

I.3.2. Interférences chimiques (effets de matrice)

Les interférences chimiques résultent des modifications, dans la source d’atomisation,

des processus de dissociation, d’oxydoréduction ou d’ionisation. Elles altèrent la densité de

vapeur atomique ou sa vitesse de formation. [9]

Page 21: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

11

I.3.3. Interférences physiques (interférences de transport)

Les interférences physiques sont généralement liées aux propriétés physiques des

solutions étudiées (changement de viscosité entre les étalons et les échantillons). [9]

I.4. Correction de fond pour la SAA

La correction de fond est souvent nécessaire pour les éléments ayant des raies de

résonance appartenant à la région ultraviolet lointain et est essentielle pour atteindre une

grande précision dans la détermination des faibles concentrations d'éléments dans des

matrices complexes.

I.4.1. Correction des interférences spectrales

I.4.1.1. Correcteur au deutérium

Les modèles utilisant ce mode de correction comportent une seconde source, continue,

constituée par une lampe à deutérium. Les mesures reposent sur l’emploi d’un miroir

tournant. On commence d’abord par régler le monochromateur sur la raie choisie pour le

dosage de l’élément à évaluer. Quand la lampe à deutérium est sélectionnée, sachant que

l’échantillon est nébulisé dans la flamme, on évalue pratiquement le seul fond d’absorption

car la bande passante est d’une centaine de fois plus large que la raie d’absorption choisie.

Quand la lampe à cathode creuse est sélectionnée, on mesure cette fois l’absorbance totale

Les interférences chimiques et physiques entraînent un changement de pente de la droite d’ajout par rapport à la droite d’étalonnage établie en milieu simple (interférences multiplicatives).

Page 22: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

12

(fond d’absorption et absorption de l’analyte. Les absorbances étant additives, la différence

entre les deux mesures permet de connaître l’absorption due au seul élément. [10]

I.4.1.2. Correcteur par effet Zeeman

Pour corriger l’absorbance non spécifiques, en particulier en absorption atomique

électrothermique, l’utilisation de l’effet Zeeman est une solution valable pour ce problème.

C’est le phénomène de décomposition des raies spectrales que l’on observe lorsqu’un

rayonnement est émis ou absorbé par des atomes ou des molécules placés dans un champ

magnétique. Les raies d’émission (ou d’absorption) du spectre sont « divisées » en

multiplets à répartition symétrique par rapport à la fréquence de la raie pour laquelle le

champ magnétique est nul.

Un champ magnétique modulé (à la fréquence de l’amplificateur de mesure) est appliqué

à la source d’atomisation perpendiculairement au flux émis par la source d’émission

(effet Zeeman inverse + effet Zeeman transversal). Le flux issu de la source d’atomisation

est polarisé à l’aide d’un polariseur fixe. Le récepteur reçoit, en l’absence du champ, la

radiation totale λ qui permet la mesure de l’absorbance totale, et lorsque le champ est

établi, les radiations σ permettent de mesurer I ‘absorbance non spécifique.

L’absorbance spécifique est ici A λ – Aσ. [10, 11]

Figure 5 : Principales configurations en spectrométrie Zeeman. [11]

a) Source d’émission c) Champ magnétique e) Monochromateur

b) Source d’atomisation d) Polariseur f) Récepteur de mesure

Page 23: mémoire master corrigé

Chapitre I Présentation des éléments de l’étude

13

I.4.1.3. Correcteur de Smith-Hieftje pour les composés volatiles. [1]

I.4.2. Correction des interférences physiques

Par vérification de la viscosité de la solution à analyser on s’assure de la similitude de

composition (solvant, concentration en acide, teneur en sels...) entre les solutions

d’étalonnage et d’échantillons.

Ne pas confondre la nébulisation des échantillons en solution organique aux étalons aqueux.

I.4.3. Correction des interférences chimiques

Dans ce cas d’une combinaison de l’atome, les remèdes généraux consistent à

employer, soit des flammes plus réductrices ou plus chaudes, soit un correcteur d’interaction

(le calcium est libéré par addition de lanthane). Pour éviter la formation des carbures dans le

système sans flamme, on peut utiliser des fours avec revêtement pyrolytique ou les traiter à

l’hydroxyde de tantale (ces traitements sont en particulier recommandés pour le dosage de

l’étain).

On peut aussi faire l’économie des ces artifices qui permettent de supprimer les interactions

de type chimique en soumettant l’échantillon à analyser à un traitement préliminaire :

séparation sur résines, extraction par solvant,…etc.

Il existe un grand nombre de recettes pour modifier la matrice d’un échantillon, pour chaque

cas sa solution. [9]

Page 24: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

14

III. Pollution des eaux maritimes

De nombreux produits chimiques sont rejetés dans l’environnement aquatique. Les

courants marins les répandent d'un bout à l'autre de la planète. La pollution des eaux est un

facteur de destruction bien plus important pour l'écosystème marin, que la pêche industrielle à

outrance, elle-même plus dévastatrice que la petite pêche artisanale.

Si les marées noires ont un impact direct sur l'opinion publique elles n'en demeurent pas

moins très limitées géographiquement avec des effets à court terme.

Les pollutions les plus néfastes pour l'équilibre fragile de la vie marine ne sont pas les plus

visibles. Bien au contraire, ce sont celles qui se voient le moins. Les métaux lourds (le

Mercure, le Plomb, le Cadmium et d'autres produits chimiques toxiques) et rejets divers,

provenant des usines du bassin méditerranéen rejetant des produits très dangereux sous forme

organique mais aussi sous forme de plastique, de peinture, de pâte à papier, de pille et certains

fongicides, sont souvent illicites, constituent la plus grande menace pour la survie des

mammifères marins et la préservation de l’environnement. Ces contaminants y demeurent

pendant des années et s'accumulent dans le corps des espèces marines et des êtres humains. Ils

peuvent causer le cancer, des dommages au foie, des problèmes de reproduction et des

malformations congénitales ainsi que d’autres fléaux dangereux.

Parmi les eaux maritimes exposées à ce type de problème on cite en Algérie la baie d’Alger,

menacée par la pollution d’Oued El-Harrach.

II.1. Oued El-Harrach II.1.1. Topographie

Oued El-Harrach est situé dans le bassin côtier de l’Algérois qui couvre une superficie

de 1236.28 km2 et qui s’étend sur 51 km du sud au nord et 31 km d’est en ouest, traverse la

plaine de la Mitidja depuis Bougara et irrigue les zones agricoles tout autour, grâce

notamment à ses affluents, les Oued Djemaa, Oued Bâba Ali et Oued El Terreau. Mais son

principal affluent est Oued Smar qui traverse le long de la zone industrielle de la banlieue

d'Alger (figures 6 et 7) [12].

Page 25: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

15

II.1.2. Pollution

Autrefois Oued El-Harrach, rivière claire et agréable, faisait la joie des citadins du

XVIII ème arrondissement d’Alger. Aujourd’hui devenu un égout à ciel ouvert, cet Oued

empoisonne la vie des riverains et est devenu un véritable problème pour l’ensemble de la

commune d’El-Harrach. L’état actuel de l’Oued est calamiteux, et son influence sur la côte

algéroise conséquente.

La pollution de Oued El-Harrach est le résultat d’une absence de traitement des déchets

provenant de trois sources principales, agricole avec l’utilisation de produits pesticides

chimiques, urbaine causée par les rejets d’eaux usées domestiques, et industrielle en raison du

déversement des unités industrielles avoisinantes de déchets toxiques (figure 8, tableau 2).

L’Oued en question renferme des déchets nocifs comme le Plomb, le Chlore, le Zinc, le

Chrome, l’Arsenic et bien sûr le Mercure.

Figure 6 : Alger, Bassins versants intérieurs et relief. [13]

Page 26: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

16

Figure 7 : Pollution d’Oued El-Harrach.

Page 27: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

17

Figure 8 : Cartographie des sites industriels contaminant Oued El-Harrach. [13]

Tableau 2 : Les unités industrielles recensées par la direction de l’Environnement. [14]

Dénomination Activité location V eau rejetée (m3/j)

Lieu de rejet

ENPC 1 Plastique Mohamadia - Oued El-Harrach

ENPC 2 Plastique Mohamadia - Oued El-Harrach

EMB 1 Trans Fer blanc Gue Constantine 320 Oued El-Harrach

BAG Bout à gaz Gue Constantine 100 Oued El-Harrach

Ets KAHRI Tannerie Gue Constantine 0.027 Oued El-Harrach

AGNOR Métaux précieux Baraki 3000 Oued El-Harrach

Raff d’Alger Pétrole Baraki 7 Oued El-Harrach

SOACHLORE Prod Chlore Baba Ali - Oued El-Harrach

Page 28: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

18

IV. Les métaux lourds dans le milieu marin

Un métal est un élément chimique dont la masse volumique dépasse 5 g/cm3, bon

conducteur de chaleur et d’électricité, ayant des caractéristiques de dureté et de malléabilité,

se combinant aisément avec d’autres éléments pour former des alliages utilisés par

l’homme depuis l’Antiquité.

Dans le milieu aquatique, un métal sera défini comme un élément chimique qui peut former

des liaisons métalliques et perdre des électrons pour former des cations. [15]

Ceux-ci sont présents le plus souvent dans l'environnement sous forme de traces : Mercure,

Plomb, Cadmium, Cuivre, Arsenic, Nickel, Zinc, Cobalt, Manganèse. Les

plus toxiques d'entre eux sont le Plomb, le Cadmium et le Mercure.

L’origine des métaux présents dans le milieu marin est double. Naturellement présents dans la

biosphère, ils proviennent, d’une part, de l’érosion mécanique et chimique des roches et du

lessivage des sols [15]. D’autre part, la contribution d’origine anthropique issue des rejets

industriels et domestiques, l’activité minière et les eaux d’écoulement contaminées par les

engrais et les pesticides utilisés en agriculture sont autant de sources ayant contribué à

l’augmentation des concentrations de métaux lourds dans le milieu marin et surtout en zone

côtière .[16]

Les métaux lourds présents dans l’eau et dans les sédiments sont absorbés par les plantes et

les animaux marins, le dépassement d’une quantité donnée dans ces espèces provoque leur

accumulation dans les organismes et tout au long de la chaîne alimentaire. Ils peuvent

atteindre des concentrations menaçant la survie de certaines populations naturelles et

présenter des dangers pour le consommateur de produits marins du fait de leur possibilité de

concentration dans les espèces marines, de leur élimination difficile et de leur large répartition

dans le milieu aquatique.

Déjà dans les années 50, leurs effets hautement nocifs ont été mis en évidence suite à

l'intoxication mortelle survenue à Minamata au Japon. Les habitants avaient mangé du

poisson contaminé par des rejets Mercuriels d'une usine située à proximité. Cette maladie s'est

ensuite propagée à toute la jeune génération par le lait maternel. [17]

III.1. La toxicité des métaux lourds

Les métaux sont généralement séparés en deux catégories selon leur caractère

essentiel ou non pour les êtres vivants. En effet, ils peuvent s’avérer indispensables au

Page 29: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

19

déroulement des processus biologiques (oligo-éléments), c’est le cas du Fer (Fe), du Cuivre

(Cu), du Zinc (Zn), du Nickel (Ni), du Cobalt (Co), du Vanadium (V), du Sélénium (Se), du

Molybdène (Mo), du Manganèse (Mn), du Chrome (Cr), de l’Arsenic (As) et du Titane (Ti).

Dans ce cas, leurs concentrations dans les organismes doivent répondre aux besoins

métaboliques de ces derniers. Dans le cas contraire, une carence ou un excès de ces éléments

essentiels peut induire des effets délétères.

D’autres ne sont pas nécessaires à la vie, et peuvent être même préjudiciables comme le

Mercure (Hg), le Plomb (Pb), le Cadmium (Cd) et l’Antimoine (Sb). [18]

Dans la présente étude six métaux ont été étudiées en particulier : le Cadmium, le Plomb, le

Cuivre, le Fer, le Zinc et le Manganèse.

Pourquoi le choix ces six métaux ?

Les deux premiers (Pb et Cd) ont la propriété de transport et changent de forme chimique, ils

ont une conductivité électrique élevée qui expliquent leur utilisation dans de nombreuses

industries. Enfin, ils présentent une certaine toxicité pour l’homme. Les éléments Cu, Fe, Zn

et Mn seront aussi évoqués. En effet, contrairement aux deux précédents, ces quatre métaux

sont considérés comme oligo-éléments et sont indispensables au déroulement des processus

biologiques dans le métabolisme et ne deviennent toxiques qu’au-delà d’un certain seuil.

III.1.1. Le Cadmium

Le Cadmium a une grande résistance à la corrosion ; son point de fusion est bas ; il a

une bonne conductivité de l’électricité ; ses produits dérivés ont une bonne résistance aux

fortes températures ; il présente des caractéristiques chimiques proches de celles du Calcium,

en particulier le rayon ionique, facilitant ainsi sa pénétration dans les organismes.

Les activités industrielles telles que le raffinage des métaux non ferreux, la combustion du

charbon et des produits pétroliers, les incinérateurs d’ordures ménagères et la métallurgie de

l’acier constituent les principales sources de rejet du Cadmium dans l’atmosphère.

Dans l’eau, le Cadmium provient de l’érosion naturelle, du lessivage des sols (engrais

phosphatés) ainsi que des décharges industrielles et du traitement des effluents industriels et

des mines.

Le Cadmium fait également partie des métaux lourds les plus dangereux. Même à de faibles

concentrations, il tend à s’accumuler dans le cortex rénal sur de très longues périodes (50 ans)

où il entraîne une perte anormale de protéines par les urines (protéinurie) et provoque des

dysfonctionnements urinaires chez les personnes âgées. [18]

Page 30: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

20

III.1.2. Le Plomb

Le Plomb est présent dans la croûte terrestre et dans tous les compartiments de la

biosphère.

Dans l'air, les émissions de Plomb provenant de poussières volcaniques véhiculées par le vent

sont reconnues d'une importance mineure. Les rejets atmosphériques sont principalement

anthropiques, ils proviennent d'abord des industries de première et deuxième fusion du plomb,

et au niveau urbain ou routier, des rejets des véhicules à moteur. [19]

Les rejets aquatiques les plus importants proviennent de la sidérurgie.

Les teneurs dans les eaux côtières sont à peine plus élevées qu’en zone océanique à cause de

l’ampleur de l’enlèvement dans les zones où les concentrations en matières en suspension

sont fortes. Des eaux côtières, dont les teneurs sont inférieures à 50 ng.L-1 peuvent être

considérées comme non contaminées [18]

Ces composés liquides sont extrêmement volatils et pénètrent facilement dans l’organisme par

la voie respiratoire mais aussi par la peau. Comme ils sont très liposolubles, ils passent

immédiatement dans le sang et, par leur capacité de bioaccumulation, ils vont, dans un

premier temps, se stocker dans le foie. Pour s’en débarrasser, le foie va leur retirer, grâce à

des enzymes d’oxydation, un de leurs quatre groupements alkyles. Ainsi, le plomb tétraéthyle

va conduire au plomb triméthyle qui, grâce au sang, va se répartir dans tout l’organisme et se

stocker préférentiellement dans le cerveau où il va entraîner des processus inflammatoires très

graves qui vont aboutir à une encéphalite parfois mortelle.

Parmi les aliments qui peuvent être riches en Plomb, citons les champignons de Paris (500

µg/kg) et les abats comme le foie et surtout les rognons (jusqu’à 0,2 µg/kg). [20]

III.1.3. Le Cuivre

Le Cuivre est l'un des métaux les plus employés à cause de ses propriétés physiques et

particulièrement de sa conductibilité électrique et thermique.

Il est très largement employé dans la fabrication de matériels électriques (fils, enroulements

de moteurs, dynamos, transformateurs), dans la plomberie, dans les équipements industriels,

dans l'automobile et en chaudronnerie.

Il est présent dans l’environnement, sa concentration dans l'écorce terrestre est estimée à

environ 70 ppm (30 à 100 ppm).

Page 31: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

21

Le transport par le vent des poussières de sol, les éruptions volcaniques, les décompositions

végétales, les feux de forêts et les aérosols marins constituent les principales sources

naturelles d'exposition. Dans les eaux, le Cuivre provient pour la majeure partie de l'érosion

des sols par les cours d'eau : 68 % ; de la contamination par le Sulfate de Cuivre : 13 % ; et

des rejets d'eaux usées qui contiennent encore du Cuivre, même après traitement.

Le Cuivre est un élément essentiel chez l'homme et l'animal (oligo-élément), impliqué dans

de nombreuses voies métaboliques, notamment pour la formation d'hémoglobine et la

maturation des polynucléaires neutrophiles. De plus, il est un co-facteur spécifique de

nombreuses enzymes et métalloprotéines de structure. Cependant le Cuivre en excès produit

des radicaux libres responsables de lésions cellulaires au niveau de l'ADN et d'organites tels

que les mitochondries ou les lysosomes. [21]

III.1.4. Le Fer

Le Fer (Fe) est un métal essentiel, entre dans la composition de nombreux alliages dont

les aciers inoxydables. Il est utilisé dans les machines et ustensiles divers utilisés

quotidiennement ainsi que dans les infrastructures du monde moderne. Le Fer est classé au

quatrième rang des éléments de la croûte terrestre par ordre d'abondance, sa présence dans

l'eau peut avoir diverses origines : lessivage des terrains avec dissolution des roches et des

minerais contenus dans le sous-sol ; rejets industriels (pollutions minières, métallurgiques,

sidérurgiques) ; corrosion des canalisations métalliques (en fonte ou en acier) ou existence de

dépôts antérieurs.

La régulation du Fer dans le sang est contrôlée par deux protéines d'absorption

et d'exportation. La carence ou l'excès en Fer peut être potentiellement toxique pour

les cellules, c’est pourquoi son transport est rigoureusement contrôlé. Un faible niveau de Fer

chez l’homme cause l’anémie, l’un des problèmes de santé publique les plus répandus qui

peut être imputable à des causes d’ordre nutritionnel, notamment la carence en Fer, à des

troubles inflammatoires ou infectieux et à des pertes de sang.

Le mécanisme toxique principal du Fer réside dans sa capacité à induire la formation de

radicaux libres, avec, pour conséquence, une peroxydation lipidique. Classiquement,

l’intoxication au Fer est décrite comme évoluant en cinq phases : troubles digestifs,

amélioration clinique transitoire, toxicité systémique avec choc, acidose métabolique, coma,

toxicité hépatique avec coagulopathie, séquelles digestives à type de sténose. Le traitement

comporte, hormis le traitement symptomatique, la décontamination digestive avec irrigation

Page 32: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

22

intestinale et traitement chélateur par déféroxamine. Le charbon activé est inefficace.

L’exposition chronique au Fer est principalement d’origine professionnelle et se traduit par

une pneumoconiose de surcharge consécutive à l’inhalation de poussières et d’oxydes de Fer.

La sidérose oculaire est une pathologie chronique grave pouvant aboutir à la perte de la vision

de l’oeil touché. Elle survient lorsqu’un corps étranger contenant du Fer se retrouve dans

l’oeil ou à son contact. [20,22]

III.1.5. Le Manganèse

L'essentiel du minerai est utilisé pour la fabrication des ferro-alliages : ferromanganèse

carburé ou affiné et silico-manganèse. Les oxydes sont les principaux minerais. La quasi-

totalité des grandes concentrations économiques de Manganèse correspond à des gisements

stratiformes syngénétiques, sédimentaires ou hydrothermaux-sédimentaires (surtout en milieu

détritique, mais aussi en milieu carbonaté) ou volcano-sédimentaires, résultant d’une

précipitation chimique en milieu aqueux, sous conditions physico-chimiques favorables.

Le Manganèse est un minéral qui intervient dans l'activité de nombreux enzymes impliquées

dans la protection des cellules contre les radicaux libres.

Une carence en Manganèse se traduit par des affections allergiques ORL, des palpitations, de

la tachycardie, des atteintes articulaires, de l'irritabilité et de l'agitation. L’intoxication aiguë

au Manganèse cause divers syndromes pulmonaires : fièvre des métaux, pneumonie au

Manganèse ou intoxication aigu par ingestion. Selon les résultats d'une étude sur cet oligo-

élément menée par des chercheurs canadiens une concentration élevée de manganèse dans

l'eau potable conduit à la réduction du quotient intellectuel (QI) des enfants. [20,23]

III.1.6. Le Zinc

Le Zinc entre naturellement dans l’atmosphère à partir du transport par le vent de

particules du sol, des éruptions volcaniques, des feux de forêts et d’émission d’aérosols

marins.

Les apports anthropiques de Zinc dans l’environnement résultent des sources minières

industrielles (traitement minerai, raffinages, galvanisation du Fer, gouttières de toitures, piles

électriques, pigments, matières plastiques, caoutchouc), des épandages agricoles (alimentation

animaux, lisiers) et des activités urbaines (trafic routier, incinération ordures). Dans les zones

portuaires, le Zinc est introduit à partir de la dissolution des anodes destinées à la protection

des coques de bateaux contre la corrosion, et est contenu dans certaines peintures

antisalissure. [18]

Page 33: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

23

Le Zinc est un oligo-élément nécessaire au métabolisme des êtres vivants, essentiel pour

de nombreux métallo enzymes et les facteurs de transcription qui sont impliqués dans divers

processus cellulaires tels que l'expression des gènes, transduction du signal, la transcription et

la réplication.

Le Zinc est un des métaux les moins toxiques et les problèmes de carence sont plus fréquents

et plus graves que ceux de toxicité. Les risques tératogènes, mutagènes et cancérigènes sont

pratiquement nuls aux doses utilisées chez l'homme. Si les signes digestifs aigus

n'apparaissent qu'à dose élevée, une anémie sévère par interaction avec le Cuivre peut

survenir avec des doses peu supérieures aux apports recommandés. En outre, des problèmes

non résolus persistent dans des domaines importants en santé publique: maladie d'Alzheimer,

patients diabétiques ou séropositifs. [20,24]

V. Bioaccumulation

IV.1. Définition

La bioaccumulation est le processus par lequel un organisme vivant absorbe une

substance à une vitesse plus grande que celle avec laquelle il l’excrète ou la métabolise. Elle

désigne donc la somme des absorptions d’un élément par voie directe et alimentaire par les

espèces animales aquatiques ou terrestres. [18,25]

Les organismes vont absorber ces contaminants et les composés les plus hydrophobes seront

stockés dans des tissus riches en lipides où ils auront tendance à s’accumuler en raison de leur

caractère persistant. Si les contaminants sont lentement métabolisés, ils vont également

pouvoir s’accumuler à chaque niveau de transfert entre proie et prédateur.

IV.2. Mécanismes de bioaccumulation des métaux-traces chez les organismes aquatiques

Pendant tout processus physiologique d’échange avec le milieu environnant, les

molécules exogènes pénètrent à travers les barrières biologiques séparant l’environnement

interne de l’organisme du milieu externe. Quand la contamination se fait, ces barrières

(cutanées et respiratoires pour la contamination directe, et intestinale pour la contamination

trophique) montrent des propriétés biologiques liées à leur structure et aux conditions

physico-chimiques de l’environnement (température, pH, électrolytes, etc.). La membrane

plasmique est la structure primaire impliquée dans ces processus. Les métaux traces sont

piégés par les organismes aquatiques par deux voies principales, à partir de l’eau (voie

Page 34: mémoire master corrigé

Chapitre I Présentation des éléments d’étude

24

directe) et à partir de la nourriture (voie trophique). La pénétration des métaux traces nécessite

donc le franchissement de structures biologiques spécifiques comme le revêtement extérieur

et surtout l’épithélium branchial pour les contaminants présents dans l’eau, et l’ensemble du

tractus digestif pour les métaux associés aux particules ou contenus dans les proies ingérées.

Toutes ces voies sont possibles pour un même métal et leur importance relative est fonction

de la forme chimique sous laquelle le métal est dans le milieu. C’est la coexistence de ces

mécanismes et la dynamique de la spéciation qui rend si complexe la notion de

biodisponibilité. Les caractéristiques de l’interface Environnement - Organisme ont une

influence importante sur la forme métallique accumulée. Cette interface est une membrane

lipidique, non polaire, imprégnée de molécules qui vont intervenir dans le transport de

substances polaires essentielles à travers la membrane. [18,26]

IV.3. Le bio indicateur de pollution

Par définition le bio indicateur est une espèce vivante qui, par sa présence, son absence

ou sa rareté, permet d’évaluer la qualité de l'environnement. C’est le principe des « bio

indicateurs quantitatifs » basé sur le fait que les organismes marins concentrent les

contaminants, en particulier les métaux lourds, en relation avec les concentrations présentes

dans le milieu. [18]

Les céphalopodes sont de très bons indicateurs de pollution pour les eaux côtière, ils sont

connus pour leur faculté à accumuler les polluants.[27] Les glandes digestives ou

hépatopancréas (l’homme ne la consomme généralement pas) sont un site majeur de stockage

pour ces éléments. Les céphalopodes sont une source importante de cadmium pour les

mammifères marins et les oiseaux qui les consomment. Les taux mesurés dans ces organes

sont supérieurs à ceux mesurés dans la chair. [28]

Page 35: mémoire master corrigé

Chapitre II Les techniques expérimentales

25

CHAPITRE II

LES TECHNIQUES EXPERIMENTALES

I. Recherche des métaux lourds dans Oued El-Harrach

La quantification des éléments à l'état de traces dans l'environnement n'est pas aisée.

Elle a été une source de nombreuses erreurs. Dans de nombreux cas, l'analyse des métaux

traces a pour but la surveillance de la qualité du milieu aquatique. La première démarche

consiste à choisir le compartiment où se fera l'échantillonnage toute en tenant compte d'un

certain nombre de paramètres (accessibilité, sécurité de l'échantillonneur, ..).

En fonction de ces paramètres, nous avons pu cibler dans Oued El-Harrach deux sites pour

nos prélèvements (figure 9).

Point1 : le premier site est situé prés d’un chantier de métro où l’eau est instable (existence

d’un petit courant d’eau).

Point 2 : se situe à environ 400 mètre du premier site, l’eau dans ce compartiment semble être

moins perturbée voire même stable.

Afin de suivre la variation des teneurs métallique d’Oued El-Harrach en fonction de plusieurs

paramètre physico-chimique (climat, l’heure du prélèvement, pH, température, conductivité

…), plusieurs prélèvements ont étés effectués selon deux méthodes (décrites dans la partie

procédure de prélèvement) à différentes dates.

Page 36: mémoire master corrigé

Chapitre II Les techniques expérimentales

26

Figure 9 : les deux sites ciblés pour l’échantillonnage.

I.1. Echantillonnage

Pour tous types d’eaux, en particulier les eaux superficielles, les eaux résiduaires et les

eaux souterraines d'échantillons, sont susceptibles de se modifier par suite de réactions

physiques, chimiques ou biologiques. Les erreurs potentielles sont plus nombreuses sur le

terrain, c'est à dire lors du prélèvement de l'échantillon, du type de flacon servant à le

contenir, de la présence ou non de matières en suspension, des conditions et du temps de

stockage de l'échantillon, qu'au niveau du laboratoire où les principales erreurs potentielles se

situent lors de la préparation, du dosage de l'échantillon et lors du calcul de la concentration

de l'élément.

Au niveau du conditionnement et du transport, le flaconnage a une grande importance. Les

facteurs principaux sont le matériau et le mode de lavage du flacon. Le matériau du flacon

peut interférer par des phénomènes d'adsorption ou de réaction. Le type de flacon sera

fonction de l'élément : pour la plupart des métaux le verre et le polyéthylène sont

recommandés tandis que pour le Mercure le verre se révèle indispensable. Le lavage des

flacons devra être efficace sans amener de risque de pollution secondaire avec le liquide de

lavage. Le pH de lavage doit être plus faible (pH 0) que celui de stockage (pH 2).

Page 37: mémoire master corrigé

Chapitre II Les techniques expérimentales

27

I.1.1. Le choix et le mode de lavage du flacon

Pour le dosage des métaux lourds (dans notre cas Cd, Pb, Zn, Fe, Mn et le Cu) il

convient d’utiliser des récipients en matière de verre pour éviter toute contamination possible.

Il est préférable de préparer les récipients la veille du prélèvement selon le mode opératoire

suivant :

• Laver le récipient et le bouchon avec une solution diluée de détergent et d’eau du

robinet.

• Rincer abondamment avec l’eau du robinet.

• Rincer avec une solution aqueuse d’acide Nitrique à 10%.

• Vider et remplir complètement avec une solution aqueuse d’acide Nitrique 10%.

• Fermer avec le bouchon et laisser reposer pendant au moins 24h.

• Vider le récipient, rincer avec de l’eau d’une qualité appropriée (eau ultra pure), et

replacer immédiatement le bouchon. [29]

I.1.2. Procédure du prélèvement

Pour le prélèvement et le stockage des échantillons, nous avons utilisé deux méthodes :

I.1.2.1. Méthode 1

Une corde de 15m est attachée à un sceau (volume = 10L) pour faciliter le remplissage.

Le sceau est rincé trois fois avant l’échantillonnage.

Les récipients (de 200 ml) sont ensuite rincés avec l’eau du sceau trois fois puis remplis

complètement jusqu’à l’extrémité puis scellés de manière à faire éviter des réactions

interférentes avec l’air.

Les récipients contenant les échantillons sont étiquetés de façon claire.

Après la mesure des paramètres in situ (température, pH…) l’ajout dans chaque récipient, de

2mL de substance conservatrice qui est dans notre cas l’acide Nitrique 65% est effectué. Les

récipients sont conservés dans un réfrigérant à 6°C. [29]

Page 38: mémoire master corrigé

Chapitre II Les techniques expérimentales

28

I.1.2.2. Méthode 2

La même procédure que pour la méthode 1, mais réalisée à des intervalles de temps

réguliers pendant une même journée. Ce qui correspond à un minimum 5 prélèvements pour

chaque point.

Les paramètres sont notés in situ (température, pH….) pour chaque récipient remplie puis

une addition de 2mL d’acide Nitrique 65% est réalisée afin d’éviter toute dégradation des

échantillons lors de leur stockage.

Les 5 prélèvements sont ensuite mélangés dans un même conteneur afin de procéder au

rinçage et remplissage des flacons de conservation après homogénéisation.

Les récipients contenants les échantillons sont étiquetés de façon précise puis conservés dans

un réfrigérant à 6°C.

I.2. Les paramètres mesurés sur le terrain I.2.1. Température

La température de l’eau est mesurée in situ à l’aide d’un thermomètre incorporé à un

instrument de mesure (pH mètre). Elle renseigne sur l’origine et l’écoulement de l’eau (eau

souterraine ou eau de surface). Elle est aussi indispensable pour la correction des autres

paramètres d’analyse qui lui sont étroitement dépendants (conductivité, pH…).

I.2.2. Conductivité

Elle renseigne sur la capacité de l’eau à conduire le courant électrique. On se sert d’un

appareil appelé conductimètre muni de deux électrodes. La mesure de la conductivité

renseigne sur la teneur en matières dissoutes dans l’eau sous forme d’ions chargés

électriquement. La température de l’eau influence la conductivité qui sera d’autant plus

importante que la température est élevée. Les résultats de mesure de la conductivité sont

toujours présentés en termes de conductivité équivalente à 20 ou 25°C. La conductivité doit

être mesurée dans le terrain .Elle est très utile pour mettre en évidence la qualité de l’eau. La

conductivité est généralement mesurée en micro-Siemens par cm (µS/cm).

Page 39: mémoire master corrigé

Chapitre II Les techniques expérimentales

29

Tableau 3 : Guide de la conductivité d’une eau destinée à la consommation humaine.

Conductivité à 20°C (µS/cm) Qualité de l’eau

50 à 400 Qualité excellente

400 à 750 Bonne qualité

750 à 1500 Qualité médiocre mais eau utilisable

>1500 Minéralisation excessive

I.2.3. pH (Potentiel Hydrogène)

Le pH mesure la concentration en ions H+ de l'eau. Il traduit ainsi la balance entre acide

et base sur une échelle de 0 à 14. La valeur 7 correspond à la neutralité. Le domaine entre 0 et

7 constitue le milieu est acide, et entre 7 et 14 le milieu est basique. Le pH renseigne sur

l’origine de l’eau. Par exemple, les eaux de surface ont un pH compris entre 7 et 8. Les eaux

souterraines ont un pH situé entre 5,5 et 8. Un pH très basique témoigne d’une évaporation

intense. Le pH d'un lac ou d'un étang dépend de son âge et des déchets déversés. Lors de sa

formation, un lac a un pH basique (ou alcalin) et progressivement il s'acidifie (fermentation de

matériaux organiques, dissolution de dioxyde de carbone avec formation d'ions

bicarbonates,...). [30]

I.2.4. Turbidité

Elle permet de préciser les informations visuelles de la couleur de l'eau. La turbidité est

causée par les particules en suspension dans l'eau (débris organiques, argiles, organismes

microscopiques...). Les désagréments causés par une turbidité auprès des usagers est relative:

certaines populations habituées à consommer une eau très colorée n'apprécient pas les qualités

d'une eau très claire. Cependant, une turbidité forte peut permettre à des micro-organismes de

se fixer sur les particules en suspension: la qualité bactériologique d'une eau turbide est donc

suspecte.

Elle se mesure sur le terrain à l'aide d'un turbidimètre. Unités: 1 NTU (Nephelometric

Turbidity Unit) = 1 JTU (Jackson TU) = 1 FTU (Formazin TU). Les classes de turbidités

usuelles sont montrées dans le tableau 4.

Page 40: mémoire master corrigé

Chapitre II Les techniques expérimentales

30

Tableau 4 : les différentes classes de turbidité en fonction de la qualité visuelle de l’eau

[31]

Turbidité NTU Qualité de l’eau

NTU < 5 eau incolore

5 < NTU < 30 eau légèrement trouble

NTU > 50 eau trouble

I.3. Préparation de l’échantillon

L’eau d’Oued EL-Harrach est chargée en matières organiques ce qui rend la

minéralisation de l’échantillon une étape importante avant l’analyse. Pour le traitement de

chaque échantillon nous avons utilisé trois types de minéralisation A0, A1 et A2 par digestion

acide (décrites dans Prétraitement et préparation des solutions d’échantillons).

La mesure des concentrations en métaux dans chaque échantillon est réalisée par

spectroscopie d’absorption atomique.

I.3.1. Appareillage et réactifs • Dispositif de filtration à membranes de porosité 0,45 µm.

• Solution acide Nitrique 65% pour l’analyse des traces (V.W.R).

• Solution d’acide Sulfurique (V.W.R).

• Solution d’acide Chlorhydrique 37% (V.W.R).

• Peroxyde d’hydrogène 32 % pour analyse des traces (V.W.R).

• Plaque chauffante.

• Eau de Oued El-Harrach fraîchement prélevée.

• Eau pure.

• Eau ultra pure (conductivité égale à 0,0054µS/Cm).

• Fioles jaugées classe A.

• Micropipettes réglable, de capacité 1 ml.

• Béchers, Classe A.

• Purificateur d’eau (TKA-GEN PUR).

Page 41: mémoire master corrigé

Chapitre II Les techniques expérimentales

31

• Etuve (THERMO-SCIENTIFIC).

I.3.2. Préparation de verrerie et de plastique

Toute la verrerie du laboratoire est lavée au détergeant ensuite rincé par l’eau pur puis

immergée dans l’acide Nitrique 10% pendant 24h suivi d’un rinçage à l’eau ultra pure et

sécher à l’aide d’une étuve avant utilisation. [32]

NB. Aucun plastique de couleur ne devrait être utilisé.

I.3.3. Mode de prétraitement et préparation des solutions d’échantillons

À côté de la simple dilution, la minéralisation s’impose dans la majorité des cas pour les

eaux résiduaires fortement polluées. Cette étape de digestion essentielle limite les

interférences liées aux matières organiques. Elle peut être réalisée par voie sèche ou par voie

humide. Cette dernière, en utilisant un milieu acide, permet de limiter les pertes de certains

métaux par volatilisation. On retrouve classiquement dans la littérature, la digestion par des

acides seuls ou en mélange (HNO3, H2SO4, HCl) en présence ou non d’un agent oxydant

comme l’eau oxygénée. La minéralisation assistée par micro-ondes est actuellement

largement décrite en utilisant des réacteurs fermés en téflon. Une méthode alternative utilisant

une solution alcaline d’hydroxyde de tétraméthylammonium est également décrite.

Il est primordial d’être particulièrement vigilant à la préparation des échantillons pour

l’analyse de métaux en tenant compte de la matrice utilisée, de la méthode d’analyse choisie

et du type de métal à doser.

Les différentes méthodes de préparation que nous avons utilisée pour le dosage des métaux

lourds ciblé dans l’eau d’Oued El-Harrach sont :

I.3.3.1. Méthode A0

Acidifier l’échantillon dès que possible après l‘échantillonnage en ajoutant 1 ml d’acide

Nitrique (65%) par litre d’échantillon. Si nécessaire, rajouter de l’acide pour assurer un pH

inférieur à 2. Homogénéiser l’échantillon, par exemple, en le secouant énergiquement.

Introduire 100 ml de l’échantillon homogénéisé dans un bécher de 250 ml. Ajouter 1 ml

d’acide Nitrique (65%) et 1 ml de peroxyde d’hydrogène (32%). Chauffer le bécher sur une

plaque chauffante afin de concentrer le mélange, jusqu’à environ 0,5 ml. II est essentiel que

l’échantillon ne soit pas réduit à sec.

Page 42: mémoire master corrigé

Chapitre II Les techniques expérimentales

32

En cas d’importante contamination organique de l’échantillon d’eau, du peroxyde

d’hydrogène est ajouté avec précaution. Le résidu est dissout dans 1 ml d’acide Nitrique

(65%) et un peu d’eau ultra pure. L’ensemble est Transféré dans une fiole jaugée de 100 ml

puis complété au volume avec de l’eau ultra pure. [32]

I.3.3.2. Méthode A1

Ajouter 5ml d’acide Chlorhydrique (37%) par prise d’essai de 100ml. Chauffer à l’aide

d’une plaque chauffante jusqu'à réduction du volume entre 15 et 20 ml. Veiller à éviter toute

ébullition de l’échantillon.

Laisser refroidir, Laver le filtre plusieurs fois avec l’acide Nitrique 1% et filtrer l’échantillon

de façon à retenir sur le filtre les matériaux insoluble susceptible de boucher le nébuliseur.

Recueillir le filtrat dans une fiole jaugée de 100 ml.

Laver le filtre plusieurs fois avec de l’eau ultra pure, Puis continuer le volume jusqu’à 100ml.

[33].

I.3.3.3. Méthode A2

Ajouter 5ml d’acide Sulfurique par prise d’essai de 100ml. Chauffer à l’aide d’une

plaque chauffante jusqu'à réduction du volume entre 15 et 20 ml. Veiller à éviter toute

ébullition de l’échantillon.

Laisser refroidir, laver le filtre plusieurs fois avec l’acide Nitrique 1% et filtrer l’échantillon

de façon à retenir sur le filtre les matériaux insolubles susceptibles de boucher le nébuliseur.

Recueillir le filtrat dans une fiole jaugée de 100 ml.

Laver le filtre plusieurs fois avec de l’eau ultra pure, Puis continuer le volume jusqu’à 100ml.

II. Recherche des métaux lourds dans le poulpe

II.1. Choix de l’espèce

Un bon indicateur biologique de pollution doit être choisi en fonction de sa distribution

géographique, pour sa durée de vie (relativement longue de préférence), pour sa taille, et pour

la facilité de son échantillonnage. Il faut également qu’il soit abondant et tolérant aux eaux

saumâtres car ce sont les eaux côtières qui sont les plus susceptibles d'être polluées.

Pour ce travail, nous avons choisi la pieuvre comme bio indicateur (figure 10). Le choix de

cette espèce est intéressant par ce qu’elle est bio-indicatrice. Elle présente aussi l'intérêt

d'être un important filtreur d'eau et donc susceptible d'accumuler d'importantes quantités

Page 43: mémoire master corrigé

Chapitre II Les techniques expérimentales

33

de polluants contenus dans l'eau de mer. Elle nous renseigne donc sur la salubrité aussi

bien du milieu que des produits halieutiques.

Plusieurs caractéristiques contribuent à faire de certaines espèces de meilleurs indicateurs que

d’autres. L’abondance, l’accessibilité, la longévité ainsi qu’une taille facilitant les

manipulations sont quelques-unes des caractéristiques recherchées.

Dans le milieu marin, les poulpes remplissent la plupart de ces conditions :

• Par leur mobilité, Les poulpes sont représentatifs des perturbations à l’échelle de

portions de bassin versant.

• Les poulpes sont présents dans le milieu assez longtemps pour fournir une image

représentative de la qualité de ce dernier, elles ont des cycles d’au moins plusieurs

mois et en général d’un an à deux ans.

• Ils ont un rôle clé dans de nombreux écosystèmes marins et sont également d'un intérêt

croissant pour la pêche à travers le monde, consommés par les humains, leur

utilisation comme bio indicateur permet l’évaluation de contaminants présents dans

leurs tissus (glande digestive).

•••• Ils permettent d’évaluer le potentiel de pêches récréatives et commerciales.

Ils jouent aussi un rôle central dans le transfert des métaux dans les réseaux trophiques

marins. Cette particularité écologique, couplée à leur importance économique évoquée

Précédemment, a fait émerger l’intérêt d’étudier leur métabolisme vis-à-vis des métaux.

[34,35]

Figure 10 : poulpe commun (Octopus vulgaris).

Page 44: mémoire master corrigé

Chapitre II Les techniques expérimentales

34

Les poulpes et les calamars semblent accumuler toute leur vie certains métaux dans les

glandes digestives [36] (figure 11). Les taux mesurés dans ces organes sont supérieurs à ceux

mesurés dans la chair. Les glandes digestives contiennent 90% du Cd total de l’animal. [37]

Figure 11 : Anatomie du poulpe commun.

Au vu de ces données, la glande digestive paraît être un bon indicateur de l’exposition des

poulpes aux contaminants métalliques.

II.2. Présentation du modèle biologique

Le poulpe (Octopus spp, Octopodes) est un mollusque céphalopode dépourvu de

coquille qui habite le creux des rochers près des côtes de la mer. Il se cache dans les trous et

les crevasses s'il est attaqué. Il est apparenté au calmar et à la seiche. C'est le membre le plus

imposant de la famille, pouvant atteindre près de 9 mètre, se caractérise par ses huit bras

pouvant comporter chacun jusqu'à plus de 200 ventouses , le corps est entièrement mou

hormis un bec comparable à celui des perroquets et leur relative intelligence. Il chasse en se

déplaçant plutôt au ras du sol, qu'il effleure à peine de la pointe de ses tentacules. Doublant

son poids presque tous les trois mois, la pieuvre ne se rassasie jamais. Surtout friande de

crabes et de coquillages, elle en rejette les carapaces et coquilles. La bouche qui s'ouvre entre

les tentacules, est armée d'une paire de mandibules cornées normalement invisibles. Certaines

espèces ont une espérance de vie de six mois, alors que la pieuvre géante peut vivre cinq ans

si elle ne se reproduit pas. [38, 39]

Page 45: mémoire master corrigé

Chapitre II Les techniques expérimentales

35

Pêcher de mai à août dans les eaux côtières et pré-côtières alors qu'il remonte vers les cours

d'eau pour frayer.

II.3. Choix de station de prélèvement

Afin de s’assurer que la contamination métallique de la baie d’Alger provient

principalement du Oued El-Harrach, nous avons choisi trois stations différentes. Ces stations

se situent comme indiqué sur la figure 12 :

Station 1 : LA BAIE D’ALGER;

Station 2 : BORDJ EL-BAHRI;

Station3 : BOUHAROUNE.

Figure 12 : Photographie de la baie d’Alger montrant les trois sites d’échantillonnages.

II.4. préparation de l’échantillon

Cette méthode consiste à minéraliser l’échantillon par voie humide (four à micro-onde)

à l’aide d’acide Nitrique concentré et de Peroxyde d’Hydrogène. Les échantillons sont

analysés par spectrophotométrie d’absorption atomique de flamme.

Page 46: mémoire master corrigé

Chapitre II Les techniques expérimentales

36

II.4.1. Appareillage et réactifs

• Acide Nitrique 65% pour l’analyse des traces (V.W.R).

• Solution de Peroxyde d’Hydrogène 32% pour analyse des traces (V.W.R).

• Eau pure.

• Eau ultra pure (conductivité égale à 0,0054µS/Cm).

• Verrerie (Fioles jaugées classe A, becher classe A, Pipettes jaugées Classe A).

• Balance analytique (précision : 0.001g) METTLER TOLEDO.

• Bain ultra son (FISHER SCIENTIFIC).

• Purificateur d’eau (TKA-GEN PUR).

• Four à micro-ondes (1000W).

• Etuve (THERMO-SCIENTIFIC).

II.4.2. Préparation de verrerie et de plastique

Toute la verrerie du laboratoire est lavée au détergeant ensuite rincé par l’eau pur puis

immergée dans l’acide Nitrique 10% pendant 24h suivi d’un rinçage à l’eau ultra pure et

sécher à l’aide d’une étuve avant utilisation. [32]

NB. Aucun plastique de couleur ne devrait être utilisé.

II.4.3. Prise d’essai

En ce qui concerne les échantillons biologiques, la première opération consiste à

débarrasser l'échantillon des particules externes. Ceci est particulièrement important pour les

échantillons ayant un contact avec les sols et les sédiments.

Après la dissection des pieuvres, les glandes digestives retirées ont été préalablement

séchées à 80 °C. Puis 0,5 à 1 g de chaque glande a été extraite comme prise d’essai.

II.4.4. Minéralisation de l’échantillon

Cette étape doit permettre l'élimination des matières organiques tout en stabilisant

l'analyte.

Page 47: mémoire master corrigé

Chapitre II Les techniques expérimentales

37

La minéralisation a été effectuée à partir d'un four à micro-onde modifié d’une

puissance de 1000 W.

On met la prise d'essai avec précaution dans un ballon à fond plat puis on rajoute 5 ml

d'acide Nitrique supra pur à 65 % plus 3 ml d’eau Oxygénée, On laisse reposer jusqu'à

dissolution de l'échantillon avant la minéralisation. Puis on met le ballon dans le four

micro onde à une puissance de 300 w pondant 20mn.

Puis on récupère le minéralisât dans une fiole jaugée de 50 ml que l'on complète avec de

l’eau ultra pure, puis on transfère la solution dans une fiole ou tube en plastique.

Parfois on met les échantillons dans un bain à ultras son ou on les filtre si nécessaire.

Il est essentiel de procéder à la même opération pour le blanc. [40]

III. Dosage des métaux lourds par la Spectroscopie d’absorption atomique

III.1. Principe

Le principe consiste à aspirer l'échantillon sous forme liquide dans une flamme à une

température de l'ordre de 1 700 à 2 550 °C, de sorte qu’il se forme une vapeur atomique

(atomes neutres, libres et a l'état fondamental). On irradie cette vapeur avec une lampe

spectrale à cathode creuse. Ces lampes émettent des raies de transition des atomes recherchés.

Seuls les atomes recherchés absorbent la radiation excitatrice. Ce qui nous permet de lier

l'absorption lumineuse à la concentration des atomes étudiées. Cependant il y a toujours une

absorption non spécifique si minime soit-elle. Cette dernière est significativement diminuée

par l'emploi d'une lampe au Deutérium (correcteur de bruit de fond). En plus de la simple

dilution ou de la minéralisation par voie humide souvent décrite, on préconise l’utilisation

d’une solution de modificateur de matrice qui permet de transformer l’élément à doser en ses

formes les plus stable thermiquement : composés oxydes, formes réduites ou phosphates, ... .

La formation des atomes neutres est réalisée par la vaporisation et l'atomisation dans une

flamme air-acétylène.

L’analyse des métaux lourds dans l’eau de Oued El-Harrach ainsi que dans les poulpes a été

réalisé dans les même conditions spectrales et pour les mêmes courbes d’étalonnages afin de

mieux interpréter les résultats obtenus.

Page 48: mémoire master corrigé

Chapitre II Les techniques expérimentales

38

III.2. Appareillage et réactifs

• Solution standard à 1,000 g/l de chaque élément à doser (Cd, Fe, Pb, Zn, Mn, Cu).

• Solution d’acide Nitrique 65% pour l’analyse des traces (V.W.R).

• Solution acide Nitrique > 69% pour l’analyse par four (V.W.R).

• Solution d’acide Chlorhydrique 37%.

• Solution minéralisée de la glande digestive du poulpe.

• Eau de Oued El-Harrach minéralisé.

• Eau pure.

• Eau ultra pure (conductivité égale à 0,0054µS/Cm).

• Nitrate d’Ammonium (NH4NO3).

• Chlorure de Palladium (PdCl2).

• Chlorure Stanneux (SnCl2) (M =225,63 g.mol-1

) (MERCK).

• Micropipettes réglable, de capacité 1 ml.

• Fioles jaugées classe A.

• Le spectrophotomètre utilisé est un (Thermo AAS-Spectrometer Solaar MQZ Zeeman.

Double beam optic).programmé par un ordinateur et comprend :

- une source d'émission primaire : une tourelle qui peut contenir six lampes pour un

dosage successif ;

- une source d'atomisation constituant la cellule d'absorption (aspirateur

d'échantillon, nébuliseur, une flamme) ;

- un sélecteur de radiations : monochromateur ;

- un four à graphite à injection et dilution intelligente avec correcteur par effet Zeeman

(effet Zeeman inverse + effet Zeeman transversal).

Les conditions opératoires du spectromètre sont présentées dans le tableau 5:

Page 49: mémoire master corrigé

Chapitre II Les techniques expérimentales

39

Tableau 5: conditions expérimentales pour le dosage des ions métalliques par SAA

Eléments

Paramètres

Cd Pb Zn Fe Mn Cu

Longueur d’onde

(nm) 228,8 217,0 213,9 248,3 279,5 324,8

Fente (nm) 0,5 0,5 0,2 0,2 0,2 0,5

Temps de lecture

en (S) 4,0 4,0 4,0 4,0 4,0 4,0

Flamme Air-acétylène Air-acétylène Air-acétylène Air-acétylène

Air-

acétylène

Air-

acétylène

Type stœchiométrique stœchiométrique stœchiométrique stœchiométrique Oxydante Oxydante

III.3. Préparation des Solutions

• Préparation de la solution de dilution 1 % de HNO3

On place 1 ml de HNO3 à 65 % (à l'aide d'une micro pipette graduée à 1ml) dans une

fiole de 100 ml et on complète la fiole jusqu'au trait de jauge avec de l'eau ultra pure.

• Modificateur de matrice pour le dosage par spectroscopie d’absorption atomique

électrothermique.

Dissoudre 1,0 g de poudre de Chlorure Palladium dans 3 ml d’acide Nitrique 65% et 20

ml d’acide Chlorhydrique (ρ=1.19 g/ml), tout en chauffant légèrement sur une plaque

chauffante, puis diluer à 100 ml avec de l’eau.

Dissoudre 10 g de Nitrate d’Ammonium (NH4NO3) dans de l’eau et diluer à 100 ml avec

de l’eau.

Page 50: mémoire master corrigé

Chapitre II Les techniques expérimentales

40

Mélanger 15 ml de la solution de Palladium et 15 ml de la solution de Nitrate

d’Ammonium dans une fiole de 100 ml et compléter au volume avec de l’eau. 10 µl de

cette solution contiennent 15 pg de Pd et 150 pg de NH4NO3. [32]

• Préparation de la solution de modificateur de matrice biologique (SnC12)

On prélève 20 ml de HCl concentré (37 %) que 1'on dilue dans une fiole de 100 ml

(solution de HC1 concentrée à 20 %) ;

Dissoudre 25 g de SnC12 (M = 225,63 g.mol-1) avec les 100 ml de HCl à 20 % et ceci

dans un bécher de 600 ml ;

Compléter le bécher jusqu'à 300 ml et chauffer à l'aide d'un chauffe-ballon pour avoir

une solution limpide et on laisse refroidir quelques instants avant de passer au dosage.

[41]

III.4. Etalonnage

Pour chaque élément à doser on prépare une gamme d’étalons à différentes

concentrations (en fonction du type de métal), à partir d'une solution mère de 1000 ppm,

dans des tube de 50 mL en complétant le volume avec la solution de dilution 1% d’acide

Nitrique. Les quantités prélevées dans cette solution pour la préparation et les concentrations

des standards de chaque métal sont indiquées dans le tableau 6.

NB

� Les standards du Cadmium sont préparés à partir d’une solution intermédiaire de

concentration égale à 100 ppm.

La solution intermédiaire est préparée elle aussi à partir d'une solution mère de 1 000

ppm par prélèvement de 10 ml qu'on dilue dans une fiole de 100 ml avec l’acide

Nitrique 1%.

� Afin d’éviter d’éventuelle interférences dus à la matrice, chaque standard (S1, S2, S3) est

préparé par un mélange de concentration des différents éléments.

Page 51: mémoire master corrigé

Chapitre II Les techniques expérimentales

41

Tableau 6 : les quantités prélevées de la solution mère et les concentrations des

standards.

Standard 1 Standard 2

Standard 3

Métal [C] en (ppm)

[V] en (µL)

[C] en (ppm)

[V] en (µL)

[C] en (ppm)

[V] en (µL)

Cd 0,6 300 1,8 900 3,6 1800

Pb 3 150 9 225 18 900

Zn 0,5 25 1,5 75 3 150

Fe 2 100 6 300 12 600

Mn 1 50 3 150 6 300

Cu 1.5 75 4.5 225 9 450

[C] concentration du standards en ppm; [V] volume prélevé de la solution mère pour la

préparation des standards en µL.

On fait passer les différents standards à travers le spectrophotomètre. A chaque concentration

correspond une absorbance et l’ordinateur trace la courbe. A partir de cette courbe,

l'ordinateur donne par lecture, après mesure de l'absorbance de chaque échantillon, la

concentration du métal étudié dans la solution préparée (en mg .L-1) . [42]

NB :

� En ce qui concerne l’analyse des poulpes par la SAAF la solution de modificateur de

matrice biologique a été ajoutée.

� Les teneurs en métal dans les tissus sont déterminés en mg/kg selon l’équation

suivante :

Page 52: mémoire master corrigé

Chapitre II Les techniques expérimentales

42

C (mg/kg) =

C: Concentration finale en métal

Cs: Concentration en métal dans la solution en mg.L-1

Cb : Concentration en métal dans le blanc en mg.L-1

Fd : Facteur de dilution (dans notre cas Fd = 5)

PE : Prise d’essai en g (poids frais) de l’échantillon. [40]

Sachant que : 0,6 ; 0.9 ; 0.7 g sont respectivement les poids des trois prises d’essais :

station 1, 2 et 3.

� La spectroscopie par absorption atomique avec flamme SAAF n’a pas pu détecter la

faible teneur du Cadmium présent dans l’Eau de Oued El-Harrach minéralisé, nous

avons effectué une analyse par spectroscopie par absorption atomique avec

atomisation électrothermique SAA-ET dont le principe est l’injection d’un

échantillon acidifié dans un tube graphite chauffé électriquement. [32]

a) Préparation des étalons pour l’analyse de Cadmium par SAA-ET

• préparation de la solution standard intermédiaire de Cadmium (50 µg/L) : prélever

0.5ml de la solution mère et compléter à 100ml avec de l’acide Nitrique 1M.

• La courbe d’étalonnage pour le Cadmium est réalisée à partir des

concentrations suivantes : 10µg/L ; 20µg/L ; 30µg/L grâce à l’option dilution

intelligente.

b) programmation du four

- Température de séchage : 110°C pendant 30s

- Température de décomposition : 450 °C pendant 20s

- Température d’atomisation : 1300°C pendant 3s

- Température de lavage : 1900°C pendant 3s

- La mesure de l’absorbance s’effectuera à une longueur 228.8nm, 10µl d’une solution

modificatrice de matrice est ajoutée au cour du dosage.

Les résultats obtenu des différents dosages sont présentés et discutés dans le chapitre suivant.

Page 53: mémoire master corrigé

Chapitre III Résultats et Discussions

43

CHAPITRE III

RESULTATS ET DISCUSSIONS

L’étude expérimentale réalisée sur les différents échantillons prélevés le long de l’Oued et les

spécimens de pieuvres représentant les trois sites sélectionnés pour ce travail sont donnés

dans ce chapitre sous formes graphiques ou tableaux.

L’étude a été menée durant la période du premier semestre de l’année 2011 et plus

précisément, les prélèvements ont été effectués au cours du mois de mars et avril. Période très

indiquée pour une accessibilité facile à l’échantillonnage.

IV. Etude qualitative

Le tableau 7 récapitule les principales informations et éphémérides des conditions

d’échantillonnages des liquides effectués le long de l’Oued El-Harrach de la wilaya d’Alger.

Cet échantillonnage est valable pour la méthode 1, décrite dans le chapitre précédent.

Tableau 7 : Informations générales des conditions d’échantillonnage (méthode 1) Point de Prélèv Info.

Point1 Point1 Point1 Point1 Point2 Point2

Code de l’échantillon

1 2 3 4 1’ 2’

Date de prélèvement

16/03/2011 22/03/2011 29/03/2011 05/04/2011 29/03/2011 05/04/2011

Heure de prélèvement.

10h05 10h30 11h33 12h10 11h45 12h21

Temps

Nuageux ensoleillé Nuageux Ensoleillé Nuageux Ensoleillé

Odeur Supportable

Supportable

Supportable

Forte

Fort Nauséabonde

Fort Nauséabonde

Couleur Marron clair Marron Marron clair Marron foncé Noire Noire

Température de l’air (°C)

21 21 19 25 19 25

Observation

Le lendemain d’une journée

pluvieuse (niveau de

l’oued élevé)

L’eau de l’oued était

calme

l’eau de l’oued était agitée

l’eau de l’oued était à un

niveau très bas

L’eau de l’oued était

moins agitée.

l’eau de l’oued était à un

niveau très bas

Page 54: mémoire master corrigé

Chapitre III Résultats et Discussions

44

Le tableau 8 décrit les mêmes paramètres dans le cas de la deuxième méthode

d’échantillonnage notée méthode 2 (décrite en détail dans le chapitre précédent).

Tableau 8 : Informations générales des conditions d’échantillonnage (méthode 2)

Point de Prélèv Info.

Point 1 Point 2

Code de l’échantillon

a b

Date de prélèvement

28/04/2011

Heure de prélèvement

9h 10h 11h 12h 13h 9h20 10h18 11h22 12h20 13h20

Temps

Ensoleillé

Odeur Moyenne Nauséabonde

Couleur Marron Noire

Température de l’air (°C)

16.6 16.8 16.8 18 18.3 17.7 18.5 18.5 18.9 19.6

Au cours de ces prélèvements, nous avons procédé à des mesures de pH et de Conductivité

pour les différents échantillons. Le tableau 9 donne les principaux résultats obtenus.

Tableau 9 : pH et conductivité relevés dans le cas de l’échantillonnage avec la méthode 1 Point PH et cond.

1 2 3 4 1’ 2’

pH pH 7.38 7.42 7.642 7.65 7.867 7.48

T (°C) 20.5 20 22.5 23.4 22.3 22.9 Cond. µs/cm

Cond. 1006 1061 1093 1469 1105 1477 T (°C) 22.9 21 23.6 23.5 23.1 23.3

Nous remarquons le caractère neutre du milieu de prélèvement, vu les valeurs de pH obtenus

(autour de 7), alors que les valeurs relativement élevées des conductivités indiquent le

caractère très minéralisée de l’eau de l’Oued. Ces résultats préliminaires, peuvent dès lors

Page 55: mémoire master corrigé

Chapitre III Résultats et Discussions

45

introduire la présence des polluants minéraux car cette élévation de la conductivité n’est pas

associée à une acidité importante.

La méthode 2 étant une méthode de prélèvement effectuée sur une journée à des intervalles de

temps réguliers, en plus des conductivités et pH nous avons également mesuré la turbidité

pour chaque échantillon. Les valeurs obtenues sont données dans le tableau 10.

Tableau/ 10 : pH, conductivité et turbidité des différents échantillonnages par la

méthode 2 pH, cond.et turbidité Point et heure

pH Cond. µs/cm Turbidité (NTU)

pH T (°C) Cond. T (°C)

a

9h 7.35 16 710 16 638 10h 7.65 16.8 753 16.8 621 11h 7.67 16.8 750 16.8 640 12h 7.67 18 750 18 647 13h 7.70 18.3 750 18.3 660

b

9h20 9.97 17.9 895 17.9 >1000 10h18 10.65 18.5 900 18.5 >1000 11h22 11 18.5 1003 18.6 >1000 12h20 11 18.9 1000 18.9 >1000 13h20 12.3 19.6 967 19.6 >1000

Dans le cas du point (a) les valeurs du pH sont quasiment neutres pour des valeurs de

conductivités relativement peu élevés. Ceci peut être dû à un effet de dilution, puisque un

temps assez pluvieux a précédé nos prélèvements.

Par contre, des pH basiques ont été obtenus au point (b). Ceci est justifié par la présence des

ions hydroxyles qui eux même provoquent une élévation de la turbidité. Cette élévation est

notamment attribuable aux agrégats qui peuvent se former entre les ions OH- et les ions

métalliques de type Fer. Ce résultat est conforme avec les valeurs des conductivités.

Les paramètres mesurés plus haut ont été suivi par des dosages qualitatifs des ions métalliques

susceptibles d’être présent dans les échantillons. Selon nos moyens d’analyse, nous avons

focalisé sur 8 éléments. Les résultats du dosage ont révélé l’absence des deux ions Cr et Co.

Les six autres éléments ont été alors choisis pour la poursuite de l’étude. Les valeurs faibles

obtenues pour le Cadmium nous ont amenés à opter pour une analyse par le four à graphite.

Page 56: mémoire master corrigé

Chapitre III Résultats et Discussions

46

Le tableau 11 donne l’absorbances lues des ions métalliques en fonction du type de

l’échantillon dans le cas de la première méthode de prélèvement et les trois méthodes de

minéralisation (A0, A1, A2).

Tableau 11 : Absorbances des métaux lourds dans l’eau (méthode de prélèvement 1)

Eléments Type de Minéralisation. Code de Prélèvements

Cu (Flamme)

Cd (Four)

Zn (Flamme)

Fe (Flamme)

Mn (Flamme)

Pb (Flamme)

A0

1 0,002 0, 043 0,063 0,213 0,039 0,001

2 0,004 0,046 0,085 0,628 0,077 0,002

3 0,015 0,042 0,182 0,117 0,049 0,002

4 0,018 0,032 0,157 0,377 0,069 0,004

1’ 0,137 0,038 1,072 1,205 0,541 0,061

2’ 0,221 0,028 1,107 1,226 0,561 0,083

A1

1 0,003 0,032 0,208 0,087 0,059 0,002

2 0,005 0,014 0,237 0,237 0,095 0,002

3 0,002 0,029 0,229 0,047 0,06 0,001

4 0,008 0,386 0,269 0,135 0,081 0,004

1’ 0,047 0,263 1,108 0,909 0,765 0,048

2’ 0,103 0,442 1,055 0,907 0,622 0,052

A2

1 0.000 0,093 0,085 0,05 0,033 0,012

2 0,001 0,063 0,207 0,118 0,055 0,011

3 0.000 0,075 0,29 0,03 0,038 0,011

4 0,003 0,434 0,254 0,077 0,047 0,012

1’ 0,096 0,361 0,785 0,88 0,246 0,012

2’ 0,131 0,682 0,988 0,911 0,386 0,017

V. Etude quantitative

Les dosages quantitatifs dans le cas de la 2ème méthode de prélèvements sont regroupés dans

le tableau 12.

Page 57: mémoire master corrigé

Chapitre III Résultats et Discussions

47

Tableau 12 : Teneurs des métaux lourds présents dans deux prélèvements (méthode 2), pour trois type de minéralisation (A0, A1 et A2). Type de minérali.

Prélèvement Cu

(mg/l) Cd

(µg/l) Zn

(mg/l) Fe

(mg/l) Mn

(mg/l) Pb

(mg/l) A0

A 0,0117 24.7712 0,2583 4,9441 0,2222 0,0177 B 0,1679 118.5978 1,3843 146,5195 2,8578 0,2178

A1

A 0,0258 1.2565 0,3581 25,5016 0,2929 0,0139 B 0,0601 4.2613 0,7461 76,5107 0,9040 0,0431

A2

A 0,0591 6.9247 0,6157 8,0448 0,6537 0,1227 B 0,0279 18.6023 0,3034 49,4157 0,1731 0,0845

Pour rappel :

a : Prélèvement du point 1

b : Prélèvement du point 2

A0, A1, A2 étant les trois méthodes de minéralisation (les différentes méthodes de préparation)

Les conditions de prélèvements étant fortement tributaire des conditions où se trouvent

l’échantillon (Température, climat, pH…etc). Ceci nous a amené à proposer un suivi des

teneurs en ions métalliques sus-cités en fonction du temps, en prenant comme référence le 1er

jour de prélèvement. En effet, la date du 16/03/2011 étant celle du premier prélèvement du

premier site, et celle du deuxième site est le 29/03/2011.

Nous avons tracé cette évolution dans le cas des 3 méthodes de minéralisation et pour les

deux points d’échantillonnage.

Les figures 13, 14 et 15 donnent les évolutions des teneurs en ions métalliques en fonction de

la date de prélèvement dans le cas du premier point de prélèvement.

Page 58: mémoire master corrigé

Chapitre III Résultats et Discussions

48

0 10 20 30 40 500,0

0,1

0,2

[C] p

pm

temp (Jour)

Cu Mn Zn Pb

Point 1 A0

0 10 20 30 40 500

10

20

30

40

Cd Fe

temp (Jour)

Cd

(ppb

)

0

5

10

15

20

25

30

Fe

(ppm

)

(I) (II)

Figure 13 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A0 pour le point 1

0 10 20 30 40 500,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

[C] p

pm

temp (Jour)

Cu Mn Zn Pb

Point 1 A1

0 10 20 30 40 50

0

5

10

15

20

25

30

Cd Fe

temp (Jour)

Cd

(ppb

)

0

5

10

15

20

25

30

35

40

45

Fe

(ppm

)

(I) (II)

Figure 14 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A1 pour le point 1

0 10 20 30 40 50

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

[C] p

pm

temp (Jour)

Cu Mn Zn Pb

Point 1 A2

0 10 20 30 40 50

0

10

20

30

Cd Fe

temp (Jour)

Cd

(ppb

)

0

5

10

15

20

25

30

35

Fe

(ppm

)

(I) (II)

Figure 15 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A2 pour le point 1

Page 59: mémoire master corrigé

Chapitre III Résultats et Discussions

49

Nous remarquons à travers l’ensemble des figures tracées que les teneurs en Plomb et en

Cuivre restent pratiquent stables ou constant durant toute la période de prélèvement.

Les figures 16, 17 et 18 donnent les évolutions des teneurs en ions métalliques en fonction de

la date de prélèvement dans le cas du deuxième point de prélèvement.

0 5 10 15 20 25 300,0

0,5

1,0

1,5

2,0

2,5

3,0

[C] p

pm

temp (Jour)

Cu Mn Zn Pb

Point2 A0

0 5 10 15 20 25 30

0

20

40

60

80

100

120

140 Cd Fe

temps (jour)

Cd

(ppb

)

0

20

40

60

80

100

120

140

Fe

(ppm

)

(I) (II)

Figure 16 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A0 pour le point 2

0 5 10 15 20 25 300,0

0,2

0,4

0,6

0,8

1,0

1,2

[C] p

pm

temp (Jour)

Cu Mn Zn Pb

Point 2 A1

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80 Cd Fe

temp (Jour)

Cd

(ppb

)

5

10

15

20

25 F

e (p

pm)

(I) (II)

Figure 17 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A1 pour le point 2

Page 60: mémoire master corrigé

Chapitre III Résultats et Discussions

50

0 5 10 15 20 25 300,0

0,2

0,4

0,6

0,8

1,0

1,2[C

] ppm

temp (Jour)

Cu Mn Zn Pb

point2 A2

0 5 10 15 20 25 300

10

20

30

40

50 Cd Fe

temp (Jour)

Cd

(ppb

)

15

20

25

30

35

40

45

50

Fe

(ppm

)

(I) (II)

Figure 18 : Variation des teneurs des métaux lourds en fonction de la date de prélèvement. Minéralisation type A2 pour le point 2

Les teneurs en Fer et en Cadmium ont été tracées séparément des autres éléments et ce à cause

de leurs valeurs élevés pour le premier et faible pour le second respectivement. Néanmoins,

l’évolution globale varie sensiblement en fonction du point et de la date de prélèvement et par

conséquent en fonction des conditions climatiques et physico-chimique. Cette dernière peut –

être liée aussi à l’activité industrielle pendant cette période.

Dans ce qui suit nous allons examiner l’effet de la méthode de minéralisation effectuée au

laboratoire avant l’analyse sur les résultats des différents dosages.

Les trois méthodes de minéralisations (ici notées A0, A1 et A2) ont été décrites dans le

chapitre précédent. L’étude concerne les deux méthodes de prélèvements pour les échantillons

prélevés à des dates différentes.

Les histogrammes tracés sur les figures 19 à 24 montrent pour chaque élément l’évolution de

la concentration en fonction de la minéralisation dans le cas des deux méthodes

d’échantillonnage pour le point 1. La méthode 1 est représentée par les prélèvements 1, 2,3 et

4 et la méthode 2 est symbolisée par (a).

Page 61: mémoire master corrigé

Chapitre III Résultats et Discussions

51

A0 A1 A20,00

0,01

0,02

0,03

0,04

0,05

0,06C

u pp

m

point1

1 2 3 4 (a)

A0 A1 A20,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 (a)

Mn

ppm

point1 Figure 19 : Dosage du Cu/ point 1 Figure 20 : Dosage du Mn/ point 1

A0 A1 A20,0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 (a)

Zn

ppm

point 1

A0 A1 A20,00

0,02

0,04

0,06

0,08

0,10

0,12

1 2 3 4 (a)

Pb

ppm

point 1 Figure 21 : Dosage du Zn/ point 1 Figure 22 : Dosage du Pb/ point 1

A0 A1 A20

5

10

15

20

25

1 2 3 4 (a)

Cd

ppb

point 1

A0 A1 A20

5

10

15

20

25

1 2 3 4 (a)

Fe

ppm

point 1 Figure 23 : Dosage du Cd/ point 1 Figure 24 : Dosage du Fe/ point 1 Nous observons des teneurs étroitement liées à la méthode de minéralisation. Le Cadmium

par exemple semble être mieux extrait par les deux méthodes A1 et A2 comparativement à la

méthode A0 dans le cas du prélèvement 4. Pour rappel, c’est l’acide Nitrique qui a été

employé dans le cas de la méthode A0. Par ailleurs, il est à noter que pour ce point

Page 62: mémoire master corrigé

Chapitre III Résultats et Discussions

52

précisément, une couleur marron foncé a été particulièrement observée. Ce qui signifie une

composition qui n’est probablement pas adéquate à une attaque par l’acide Nitrique.

Les autres éléments qui ont été analysés par la flamme ont montré un comportement

anormalement élevée (histogramme en couleur vert) quelque soit la méthode de

minéralisation. Ceci peut être attribué à la méthode de prélèvement avec acidification insitu.

Les histogrammes tracés sur les figures 25 à 30 montrent pour chaque élément l’évolution de

la concentration en fonction de la minéralisation dans le cas des deux méthodes

d’échantillonnage pour le point 2. La méthode 1 est représentée par les prélèvements 1’et 2’

alors que la méthode 2 est symbolisée par (b).

A0 A1 A20,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

Cu

ppm

Point2

1' 2' (b)

A0 A1 A20,0

0,5

1,0

1,5

2,0

2,5

3,0 1' 2' (b)

Mn

ppm

Point2 Figure 25 : Dosage du Cu/ point 2 Figure 26 : Dosage du Mn/ point 2

A0 A1 A20,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1' 2' (b)

Zn

ppm

Point2

A0 A1 A20,0

0,1

0,2

0,3

0,4

1' 2' (b)

Pb

ppm

Point 2 Figure 27 : Dosage du Zn/ point 2 Figure 28 : Dosage du Pb/ point 2

Page 63: mémoire master corrigé

Chapitre III Résultats et Discussions

53

A0 A1 A20

20

40

60

80

100

120

1' 2' (b)

Cd

ppb

Point 2

A0 A1 A20

20

40

60

80

100

120

140

1' 2' (b)

Fe

ppm

Point2 Figure 29 : Dosage du Cd/ point 2 Figure 30 : Dosage du Fe/ point 2

Les résultats du point 2 concordent avec ceux du point 1 concernant la méthode de

minéralisation. En effet, si on prend comme exemple le Cadmium, on observe la même

diminution pour le même jour de prélèvement et ceci dans le cas de la minéralisation A0 qui

utilise l’acide Nitrique. Les deux autres acides HCl et H2SO4 utilisés respectivement pour les

méthodes de minéralisations A1 et A2 semblent favorable à une bonne extraction du

Cadmium.

La deuxième méthode de prélèvement utilisée pour ce point 2 (ici notée (b)) donne la plus

grande valeur de concentration obtenue après minéralisation A0. L’acide Nitrique peut être

considéré comme très efficace quand il est ajouté au moment du prélèvement.

Aussi, on peut citer l’intérêt de la méthode de minéralisation A2 qui donne de meilleurs

résultats lorsque l’acidification se fait ultérieurement.

De meilleurs résultats pour les autres éléments dosés par la flamme (Spécifiquement pour le

Fer) sont aussi obtenus avec une acidification par l’acide Nitrique insitu.

Dans le cas du Plomb, l’efficacité des méthodes suit la séquence A0>A1>A2. Ceci a

antérieurement été signalé, puisque des travaux ont montré que l’utilisation des acides

Chlorhydrique et Sulfurique n’est pas recommandée pour la conservation de cet élément. [29]

VI. Etude de la bioaccumulation par le poulpe

La bioaccumulation étant avérée au niveau de la glande digestive, qui constitue environs 90%

de la quantité totale des métaux emmagasinés par la pieuvre, le dosage est alors effectué au

niveau de cette glande après extraction aux micro-ondes.

Page 64: mémoire master corrigé

Chapitre III Résultats et Discussions

54

Les résultats obtenus sont présentés en mg.kg-1 du poids secs du tissu de l’échantillon dans le

tableau suivants :

Tableau 13 : Teneurs des métaux lourds présents dans les trois bio-indicateurs étudiées

Métal (mg.kg-1)

Stations Cd Pb Zn Fe Mn Cu

Station 1

La baie d’ALGER 3,02.10-3 2,06.10-3 91.10-3 36.10-3 1.10-3 52.10-3

Station 2

BORDJ EL BAHRI 0 ,26.103 0,59.10-3 24.10-3 39.10-3 0,81.10-3 42.10-3

Station 3

BOUHAROUNE 0,55.10-3 0,38.10-3 67,6.10-3 17.10-3 1,04.10-3 50.10-3

Afin de mieux interpréter les différents résultats obtenus par l’analyse des trois différents

échantillons, nous avons établis six histogrammes (Figures 31 à 36) qui reflètent de façon

claire les variations des teneurs de chaque métal en fonction du poulpe prélevé.

baie d'Alger Bordj El Bahri Bouharoune0,0

0,5

1,0

1,5

2,0

2,5

3,0

10 3

* C

d(m

g/K

g)

station de prélèvementbaie d'Alger Bordj El Bahri Bouharoune

0,0

0,5

1,0

1,5

2,0

103 *

Pb

(mg/

Kg)

station de prélèvement

Figure 31 : Teneur du Cd en mg /kg Figure 32 : Teneur du Pb en mg /kg

Page 65: mémoire master corrigé

Chapitre III Résultats et Discussions

55

baie d'Alger Bordj El Bahri Bouharoune0

20

40

60

80

103 *

Zn

(mg/

Kg)

station de prélèvement

baie d'Alger Bordj El Bahri Bouharoune0

5

10

15

20

25

30

35

40

103 *

Fe

(mg/

Kg)

station de prélèvement Figure 33 : Teneur du Zn en mg /kg Figure 34 : Teneur du Fe en mg /kg

baie d'Alger Bordj El Bahri Bouharoune0,0

0,2

0,4

0,6

0,8

1,0

103 *

Mn

(mg/

Kg)

station de prélèvementbaie d'Alger Bordj El Bahri Bouharoune

0

10

20

30

40

50

103 *

Cu

(mg/

Kg)

station de prélèvement Figure 35 : Teneur du Mn en mg /kg Figure 36 : Teneur du Cu en mg /kg

Le poulpe de la baie d’Alger, par rapport aux deux autres, contient des concentrations

beaucoup plus importantes en Cd, Pb et Zn. Les quantités de Cadmium relevées sont

d’environ 15 fois plus grandes, celles du Plomb sont 4 fois supérieures et pour le Zinc, qui se

présente comme le métal le plus bio accumulé de tous, c’est de 13 à 38% de plus.

Le Fe, Mn et Cu sont des oligoéléments nécessaires à faibles doses pour le corps de cette

espèce aquatique, les valeurs de leurs abondances par rapport aux trois échantillons analysés

sont presque similaires, en ce qui concerne le Cuivre et le Fer on constate que leurs teneurs

sont beaucoup plus grandes. Ce qui nous indique une importante pollution du milieu

aquatique par ces métaux.

Page 66: mémoire master corrigé

Chapitre III Résultats et Discussions

56

De plus, ces valeurs comparées à ceux trouvées après analyse de l’Oued El-Harrach montrent

que les quantités bioaccumulées du Cadmium et du Zinc par exemple sont de l’ordre de 100

fois supérieures à ceux de l’Oued. Cette constatation est plus marquée dans la baie d’Alger

que dans les deux autres stations. Cette augmentation est de seulement 5 fois dans le cas du

Plomb. Ceci nous amène à penser que cette espèce marine ne semble pas accumuler des

quantités importantes de ce métal.

Toutes ces concentration ont pu être analysées par la méthode de l’atomisation par la flamme,

car la technique d’extraction employée combinée aux teneurs relativement élevées nous ont

permis d’obtenir des résultats détectables par la flamme.

Page 67: mémoire master corrigé

Conclusion Générale

57

CONCLUSION GENERALE Ce travail rentre dans le cadre de l’application des techniques spectroscopiques à l’analyse des éléments traces métalliques existant dans les différentes matrices naturelles. Notre étude a porté principalement sur l’utilisation d’un équipement récent d’absorption atomique et de l’étalonner au vu de son utilisation pour les dosages des éléments à faibles teneurs. La technique de l’analyse par la flamme a été employée pour la détection qualitative puis pour la détermination quantitative des éléments choisis pour l’étude. La technique de l’atomisation électrothermique a aussi été utilisée pour la mise en évidence des éléments se trouvant à des concentrations de l’ordre du ppb (µg/L). La partie la plus importante dans ce type de dosages est la préparation des échantillons. Pour cela, nous avons testé des techniques de valorisation validées auxquelles nous avons ajouté des modifications afin de tester plusieurs paramètres. Des applications sur des échantillons réels provenant de l’Oued El-Harrach qui enregistre une pollution très importante due aux différents rejets déversés tout au long de son passage par les usines limitrophes. Ces échantillonnages ont été minutieusement effectués selon les normes en vigueur puis une analyse s’en est suivie après plusieurs types de minéralisations. Suite aux résultats obtenus qui ont mis en relief l’existence d’une pollution par les ions métalliques, notamment, le Plomb et le Cadmium (même si les valeurs trouvées étaient faibles), nous avons procéder par la suite à des recherches concernant ces mêmes ions dans des espèces marines, considérées comme bioindicatrices. Le choix de la pieuvre n’était pas fortuit puisque les résultats préliminaires ont fait état d’une bioaccumulation de l’ordre de 100 fois par rapport aux valeurs trouvées dans l’Oued. Les résultats obtenus nous ont permis d’arriver aux conclusions suivantes :

- Les éléments Zinc, Fer et Manganèse ont été trouvés comme les plus abondants dans l’Oued.

- La technique de minéralisation A0 semble donner les meilleurs résultats particulièrement lorsque l’acide Nitrique est ajouté à l’échantillon au moment de son prélèvement.

- Les techniques de minéralisation A1 et A2 qui utilisent l’acide Chlorhydrique et Sulfurique respectivement n’ont pas permis d’aboutir aux concentrations réelles du Plomb

- Le Cadmium a été analysé par la méthode du four à graphite car indétectable par la flamme.

Page 68: mémoire master corrigé

Conclusion Générale

58

- L’aspect de l’Oued et ses propriétés physico-chimiques représentent des éléments

fortement indicateurs de la pollution. - La contamination des poulpes par les éléments Cd, Zn et Pb est principalement

attribuable à l’Oued. Ceci a été confirmé après comparaison des résultats des trois sites côtiers sélectionnés.

En fin, notre étude ne constitue pas une quelconque recherche de responsabilité de la pollution, elle est purement scientifique et concerne principalement la technique d’analyse par spectroscopie atomique : (échantillonnage, prétraitement, analyse). Le choix de l’Oued El-Harrach a été justifié par son accessibilité et par les différentes teneurs qu’il renferme. La pieuvre a été choisie parce qu’elle est considérée comme révélatrice de la présence de la pollution minérale grâce à son pouvoir bioaccumulateur. D’ailleurs, elle a toujours été bénéfique à toutes les espèces marines car elle joue le rôle de filtre adsorbant placés tout au long de la côte. Cette étude préliminaire mérite d’être approfondie et étalée à d’autres espèces vivantes directement ou indirectement exposés aux contaminations toxiques.

Page 69: mémoire master corrigé

1. PRADYT, Patnaik .Dean's Analytical Chemistry Handbook (McGraw-Hill

Handbooks). Second edition. 1114 p. 2004. ISBN: 0071410600 . 2. BROKAERT, José A. C. Analytical Atomic Spectrometry with Flames and Plasmas.

Deuxième edition revue et augmentée. WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim (Federal Republic of Germany), 2005. 414p. ISBN: 978-3-527-31282-5.

3. Méthodes spectrométriques d’analyse et de caractérisation, spectrométrie d’absorption atomique. Axe " Génie des Procédés", Centre SPIN, Ecole des Mines de Saint-Etienne. 43p

4. SKOOG, HOLLER, NIEMAN. Principe d’analyse instrumentale, fifth edition.

Edition de Boeck université. Paris, 2003. 938p. ISBN : 2-7445-0112-3.

5. PINTA, M. Spectrométrie d'absorption atomique Tome 1, Problèmes généraux. Masson, Paris, 1979. 696 p. ISBN: 2-225-64020-3

6. Analytical Methods for Atomic Absorption Spectroscopy. United States of America,

1996, 300p.

7. JOHN, Lynch. Analyse physico-chimique des catalyseurs industriels, manuel pratique de caractérisation. Edition Technip. Paris, 2001. 336p. ISBN : 2-7108-0750-5.

8. AUDIGIE, CL.DUPONT, G.ZONSZAIN,F. principe des méthodes d’analyse bio-

chimique tome 2. 3eme Edition, Doin editeur, France, 1992. ISBN : 2-7040-0684-9. 174p.

9. LINDEN. Techniques d'analyse et de contrôle dans les industries agro-alimentaires,

volume 2. Tech.& Doc./Lavoisier. 1993. 510p. ISBN: 978-2852065987.

10. FLAJNIK, Christine. DELLES, Fred. Evaluation of Deuterium and Zeeman Background Correction with the Presence of Spectral Interferences Determinations of Arsenic in an Aluminium Matrix and Selenium in an Iron Matrix by GFAAS. Agilent Technologies. 1995 AA119. 7p.

11. PINTA M., DE KERSABIEC A M., RICHARD M L., Possibilités d‘exploitation de

l’effet Zeeman pour la correction d‘absorptions non spécifiques en absorption atomique. Analusis, 1982. V. 10, N° 5, D. 207 à 215.

LISTE DES REFERENCES

Page 70: mémoire master corrigé

12. AROUA, Nadjet. Contribution à l’étude de la vulnérabilité urbaine au risque d’inondation dans un contexte de changement climatique, Cas de la Vallée d’Oued El Harrach à Alger. 20p.

13. HUTEZ DE LEMPS, A. Histoire des villes de la Mitidja : Maison Carrée, in Dossiers algériens, Avril 1952.

14. JICA, ONNED, MATE. Compte rendu du séminaire sur La pollution et la protection

de l’Environnement en Algérie. Alger, 05et 06 avril 2005,108p.

15. LACOUE-LABARTHE, Thomas. Incorporation des métaux dans les œufs de la seiche commune Sepia officinalis et effets potentiels sur les fonctions digestives et immunitaires. Thèse de doctorat : Océanologie Biologique & Environnement Marin.2007, 200 p.

16. BELANGER, David. Utilisation de la faune macrobenthique comme bioindicateur de

la qualité de l’environnement marin côtier.maître en écologie internationale : maîtrise en biologie incluant un cheminement de type cours en écologie internationale. Canada, Août 2009,67p.

17. JICA, MATET, ONNED. Compte rendu du séminaire Conjoint Algérie Japon pour

une gestion efficace de l’Environnement. Alger, du 21 au 22 avril 2008,102 p.

18. CASAS, Stellio. Modélisation de la bioaccumulation de métaux traces (Hg, Cd, Pb,

Cu et Zn) chez la moule, mytilus galloprovincialis, en milieu méditerranéen. Thèse de

doctorat : Océanologie biologique, Environnement marin. 2005,314p.

19. PICHARD, Annick. Fiche de données toxicologiques et environnementales des substances chimiques, plomb et ses dérivés. INERIS.03 avril 2003. [Page consultée le 06/05/2011].90p. le document est disponible sur internet : < http://194.69.194.227/alexandrie-7/dyn/portal/index.seam;jsessionid=ac0967f1a4b9380c6129b6b1a1dd?binaryFileId=941&page=alo&aloId=941&actionMethod=dyn%2Fportal%2Findex.xhtml%3AdownloadAttachment.download&cid=22101 >.

20. GUNNAR, F. NODBERG. BRUCE, A. NODBERF F,W. FRIBERG L. Handbook

on the toxicologie of metals. 3eme edition. Academic Press, 25 juin 2007. 1024 p.

ISBN: 978-0123694133.

Page 71: mémoire master corrigé

21. PICHARD, A. Fiche de données toxicologiques et environnementales des substances

chimiques, cuivre et ses dérivés. INERIS.11 avril 2003. [Page consultée le

06/05/2011]. 66p. le document est disponible sur internet :

< www.ineris.fr/substances/fr/substance/getDocument/2751 > .

22. NESTEL, P. DAVIDSSON, L. Anémie carence en fer et anémie ferriprive. Etat Unis

d’Amérique, 2003.

23. BISSON, M. Fiche de données toxicologiques et environnementales des substances

chimiques : Manganèse et ses dérivés. INERIS. 25 avril 2007. [Page consultée le

06/05/2011]. 66p. Le document est disponible sur internet :

< http://www.ineris.fr/substances/fr/substance/getDocument/2795 >.

24. PICHARD, A. Fiche de données toxicologiques et environnementales des substances chimiques : Zinc et ses dérivés. INERIS. 14 mars 2005. [Page consultée le 06/05/2011]. 69p. Le document est disponible sur internet : < http://www.ineris.fr/substances/fr/substance/getDocument/2867 >.

25. BODIN, N. Contamination des crustacés décapodes par les composés organohalogénés : Etude détaillée de la bioaccumulation des PCB chez l’araignée de mer Maja Brachudactyla. Thèse de doctorat : Océanologie Biologique, 2005, 309p.

26. IFREMER ENVIRONNEMENT. Compte rendu du Séminaire : Les Journées contamination décontamination des mollusques bivalves. Nantes, du 26 au 27 Mai 2004, 18p.

27. DANIS, B. BUSTAMENTE, P. CORTET, O. TEYSSIE, J. FOWLER, S.

WARNAU, M. Bioaccumulation of PCB in the cuttlefish Sepia officinalis from seawater, sediment and food pathways. Environ Pollut, 2005, 134p.

28. BUSTAMENTE, P. CHEREL, Y. CAURANT, F. MIRAMAND, P. Cadmium, Copper and Zinc in octopuses from Kerguelen Islands, Southern Indian Ocean. Polar Biol, 1998, 19 (4), 264-271.

29. ISO. Qualité de l’eau : échantillonnage. partie3 : Lignes directrices pour la conservation et la manipulation des échantillons d’eau. Suisse : ISO 5657-3, 2003.

30. RODIER, Jean. LEGUBE, B. MERLET N. COLL. L’Analyse de l’eau. 9eme édition. Dunod. Paris, 2009. 1526p. ISBN : 978-2-10-054179-9.

Page 72: mémoire master corrigé

31. IANOR. Qualité de l’eau : détermination de la turbidité .NA 746. Alger : IANOR, 2006, 10 p.

32. ISO. Qualité de l’eau : Dosage du cadmium par spectrométrie d’absorption atomique. Suisse : ISO 5961, 1994.10p.

33. ISO. Qualité de l’eau : Dosage du Cobalt, Nickel, Cuivre, Zinc, cadmium et

Plomb- méthodes par spectrométrie d’absorption atomique. Suisse : ISO 8288, 1986.

34. MASSAI F. SALIOU N. Discrimination et description morphométriques du poulpe

commun (Octopus vulgaris Cuvier, 1797) des côtes sénégalaises. 77-86. [Page consultée le 08/05/2011]. 77-86. Le document est disponible sur internet :

< http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers09-03/010029146.pdf >.

35. MATHER, Jennifer A. Behaviour Development: A Cephalopod Perspective.

International Journal of Comparative Psychology, 2006, 19(1), 99-115.

36. RAIMUNDO ,J. PEREIRA, P. VALE, C. CAETANO, M. Fe, Zn, Cu and Cd concentration in the digestive gland and muscle tissues of Octopus vulgaris and Spiaofficinalis from two coastal areas in Portugal. Cienc mar, 2005, 31 (1B). 243-264.

37. BUSTAMANTE, P1. BERTRAND, M. BOUCAUD-CAMOU E, MIRAMAND, P. Subcellular distribution of Ag, Cd, Co, Cu, Fe, Mn, Pb and Zn in the digestive gland of the common cuttlefish Sepia officinalis. Journal of Shellfish Research, 2006, 25(3), 987-993.

38. CLYDEF, E. ROPER . KATHARINA, M. MANGOLD. Octopus schultzei (HOYLE, 1910): A redescription with designation of aphrodotopus new genus (cephalopoda; octopodinae). Bulletin of marine science, 1991. 49(1-2), 57-72.

39. LACOUE-LABARTHE, T. Incorporation des métaux dans les oeufs de la seiche

Commune Sepia of f i cinal i s et effets potentiels sur les fonctions digestives et immunitaires. Thèse de doctorat : Océanologie Biologique & Environnement Marin, 2007, 220p.

40. CHAHID, A. TAHIRI, A. BENOUJJI, N. EL KAHOUI, N. BOUZID, T. Validation

interne de la méthode de dosage du plomb dans les produits de la pêche par spectrophotométrie d’absorption atomique en four a graphite (ASS-FG). Les technologies de laboratoire. Septembre - Octobre 2009, N°16, 15-22.

Page 73: mémoire master corrigé

41. LABAT, Laurence. La préparation des matrices biologiques pour l’analyse des métaux. Ann Toxicol Anal. 2010; 22(2): 81-88. Document disponible en ligne

< www.ata-journal.org >.

42. ISO. Qualité de l’eau : Dosage du cadmium, plomb, Fer, Manganèse, Cuivre, Zinc,

Cobalt, Nickel par spectrométrie d’absorption atomique. Suisse : ISO 5961, 1994.