of 25 /25
Mémoire Reentering the Earth’s Atmosphere Fauré Alexandre et Dupré de Baubigny Julien L3 Physique Fondamentale Avril 2009

Mémoire Reentering the Earth’s Atmospherealx.faure.free.fr/documents/travaux/memoire_space... · 2010. 11. 22. · 1 Travail préalable 1 1.1 Un peu d’histoire ... 1.3 Notions

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Mémoire

    Reentering the Earth’s Atmosphere

    Fauré Alexandre et Dupré de Baubigny Julien

    L3 Physique Fondamentale

    Avril 2009

  • Table des matières

    1 Travail préalable 11.1 Un peu d’histoire ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Aspects énergétiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2.1 Énergie cinétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.2 Protections thermiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    1.3 Notions de finesse, nombre de Mach, portance, et gîte . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2 Modélisation 32.1 Modélisation de la Terre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 Étude des équations de la dynamique du mouvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.3 Résolution des équations du mouvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.4 Données de notre programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2.4.1 Constantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.4.2 Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.4.3 Données temporelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    2.5 Première représentation de la trajectoire de la navette spatiale . . . . . . . . . . . . . . . . . . . . . . 7

    3 Rentrée atmosphérique et influence des paramètres 93.1 Influence de la vitesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2 Influence de l’angle de rentrée γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.3 Influence de la portance de la navette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.4 Influence la surface de référence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.5 Cas idéal : finalisation de notre modélisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    4 Conclusion et ouverture 174.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.2 Ouverture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    A Programmes Matlab 20A.1 Programme principal space_shuttle.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20A.2 Programme auxiliaire ss1.m utilisé par ode45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    1

  • Résumé

    Nous étudierons ici la rentrée en atmosphère d’une navette spatiale américaine.

    Une navette spatiale, dans le domaine de l’astronautique, est un véhicule aérospatialréutilisable conçu pour assurer la desserte des stations spatiales en orbite basse maispouvant aussi assurer d’autres missions, telles que le lancement ou la réparation desatellites artificiels. Le terme correspondant en anglais est space shuttle.La navette spatiale est lancée par une fusée et atterrit comme un planeur ou à l’aided’un réacteur.Plusieurs navettes ont été construites et utilisées par l’agence spatiale américaine, laNASA, alors qu’une seule navette russe, Bourane, a volé en mode automatique (sanséquipage), et que le projet européen Hermès a été abandonné.

    Dans une première partie nous verrons différents aspects de la rentrée en atmosphèred’une navette.

    Puis, dans une deuxième partie nous nous intéresserons à la modélisation numérique.

    Dans une troisième partie, nous travaillerons sur les influences principales que subitla navette et leur conséquences.

    Et dans la quatrième et dernière partie, nous aborderons la conclusion et l’ouverturede notre travail.

  • Chapitre 1

    Travail préalable

    1.1 Un peu d’histoire ...

    La navette spatiale américaine (space shuttle en anglais) est une navette spatiale conçue et utilisée par les États-Unis, dont le vol inaugural eut lieu le 12 avril 1981. C’est le premier engin de ce type, capable d’emmener de grossatellites en orbite basse et, éventuellement, de les rapporter sur la Terre.Ce programme fut lancé après la fin du programme Apollo au début des années 1970 à une époque où les restrictionsbudgétaires pour la NASA se faisaient déjà sentir, ce qui conduisit à chercher les moyens les plus économiques pourmaintenir une présence humaine dans l’espace.Son premier vol eut lieu le 12 avril 1981.Chaque navette a été conçue pour effectuer une centaine de lancements. L’un des principaux objectifs du programmeétait de construire et de desservir une station spatiale orbitale, ce qui est en train de se réaliser avec l’assemblage dela Station spatiale internationale (ISS).La navette a également permis la réparation de quelques satellites en orbite. Ce fut le cas de Solar Max en 1985 età plusieurs reprises du télescope spatial Hubble.Le programme de la navette spatiale américaine était entaché de deux accidents mortels pour les équipages :

    – la destruction au décollage de la navette Challenger, le 28 janvier 1986, suite à la rupture d’un joint d’unbooster ;

    – la désintégration le 1er février 2003 de Columbia, lors de son retour dans l’atmosphère suite à la détériorationde son bouclier thermique pendant le décollage.

    Ces deux accidents ont globalement mis en cause la mauvaise gestion du programme par la NASA, notamment lefait qu’elle ne prenait pas assez en considération la sécurité alors que la navette spatiale reste (encore aujourd’hui)un engin expérimental.L’annonce en 2004 par le Président des États-Unis George W. Bush de relancer l’exploration habitée de la Lune etde préparer le voyage vers Mars marque la fin du programme de la navette spatiale, car cette dernière ne peut yavoir aucun rôle majeur. Les trois orbiteurs restants seront donc mis à la retraite avant d’être probablement exposésdans un musée à l’instar du démonstrateur Enterprise d’ici 2015. D’ici là, ils serviront à achever la construction dela Station spatiale internationale. De plus, une mission sera consacrée à une ultime réparation du télescope spatialHubble.

    1.2 Aspects énergétiques

    1.2.1 Énergie cinétiqueEn orbite, une navette spatiale possède une énergie cinétique considérable. Selon la célèbre formule Ek = 12mv

    2,l’énergie d’un objet d’environ 105 kg (soit 100 T) lancé à la vitesse de 7800 m.s−1 vaut 3, 042.1012 J , soit celle de615 665 rames de métro toulousain de type VAL 206 (les rames blanches présentes sur la ligne A) lancées à leur vitessenominale (65 km.h−1). Sachant qu’une fois au sol la navette aura une vitesse nulle et donc une énergie cinétiquenulle, il faut que toute cette énergie disparaisse.

    Rien ne se crée, rien ne se perds, tout se transforme. [Lavoisier]C’est grâce au frottement sur l’atmosphère que celle-çi va se transformer en chaleur. Mais cette chaleur ne doitpas chauffer le véhicule de rentrée lui-même. Si toute la chaleur produite servait à augmenter sa température,

    1

  • il s’échaufferait de plusieurs milliers de degrés : il brûlerait totalement ! Comme nous ne pouvons accepter uneaugmentation supérieur à une vingtaine de degré à l’interieur de l’habitacle, nous devons faire en sorte que la plusgrande partie de l’énergie échauffe seuleument l’air qui entoure la navette et que le minimum de chaleur réussisse às’introduire.

    1.2.2 Protections thermiquesLes températures maximales sont atteintes au nez de l’avion, au point d’arrêt de l’écoulement : elles sont de l’ordre

    de 1600 ◦C. On utilise alors du carbone-carbone renforcé, seul materiau capable de supporter de telles températures.Pour les autres partie de la navette on trouve des céramiques comme le silicium-carbonne (1300 ◦C), ou encore desalliages métalliques faits de métaux nobles comme le nickel, le chrome, etc. (∼ 1000 ◦C). Tous ces revêtements sontréutilisables, ils doivent donc pouvoir résister à de hautes températures tout en ayant un fort pouvoir d’émissivitéà ces températures. Ils s’échauffent sous l’effet du frottement, mais à la température où ils sont portés, ils résistentet surtout, renvoient la chaleur par leur rayonnement. Seule une petite partie de la chaleur parvient alors à pénétrerdans les structures derrière eux.

    1.3 Notions de finesse, nombre de Mach, portance, et gîte

    Finesse

    Elle désigne la caractéristique aérodynamique et c’est le rapport entre la portance et la traînée d’un corps placédans un écoulement aérodynamique. Evidemment, elle varie en fonction de la vitesse, ou plus précisément, du nombrede Mach.

    Nombre de Mach

    Il exprime le rapport de la vitesse locale d’un fluide sur la vitesse du son dans ce même fluide.

    Portance

    C’est la composante de la force subie par un corps en mouvement dans un fluide. Elle s’exerce perpendiculairementà la direction du mouvement. On peut notamment ajouter pour le cas de notre navette spatiale qui n’est ni plus nimoins qu’un planeur, que la portance est dirigée de l’intrados vers l’extrados.

    Gîte

    C’est l’orientation de la portance. En effet, la projection de la portance est commandable. Elle est au maximumpour un vol sur le ventre où le gîte sera nulle. Elle s’annule pour un vol sur le dos où le gîte sera à 180̊ .

    2

  • Chapitre 2

    Modélisation

    2.1 Modélisation de la Terre

    Notre première étape de mise en œuvre du travail de transcription du problème physique sur support informatiquefut de créer tout d’abord l’environnement d’évolution de la navette spatiale c’est-à-dire la création de la Terre etde son atmosphère. Cela permettait évidemment d’avoir un support d’origine nous permettant de voir si la futuretrajectoire suivait la courbure de la planète. La méthode que nous avons utilisée est celle qui consiste à utiliser uneboucle for et de tracer une multitude de points pour des angles de 0 à 2pi :

    1 for i=1:2002 O =[0:pi/256:2*pi] ;3 R = 6378e3*i/200 ; % Rayon Terrestre4 Ra = 6378e3 + 200e3; % Rayon de l’atmosphere

    Puis d’effectuer le traçage du graphique point par point grâce aux commandes suivantes, utilisées en coordonnéescartésiennes :

    1 Tx=R*cos(O) ;2 Ty=R*sin(O) ;3 Txa=Ra*cos(O) ;4 Tya=Ra*sin(O) ;5 %initialisation des graphiques6 col=2; lig=3;7 subplot(col,lig,[1 2 4 5])8 hold on9 axis([-10e5 Ra+2e5 -10e5 Ra+2e5])

    10 plot(Tx,Ty,’b-’) % On affiche la Terre11 plot(Txa,Tya,’c-’) % On affiche l’atmosphere12 end

    Après avoir rentré ces lignes de commandes, nous obtenons donc le graphique 2.1 page 4 réprésentant la planèteTerre (en bleu) entourée de son atmosphère (en cyan).

    2.2 Étude des équations de la dynamique du mouvement

    Notre deuxième tâche a été de s’occuper du nœud du problème, de la colonne vertébrale de notre programme :nous parlons évidemment du système d’équations newtonien. Rapidement, nous avons démontré que les équationsde l’énoncé sont en grande partie correct.

    Tout d’abord, nous avons retravaillé le schéma d’origine, figure 2.2 page 4.

    Puis nous nous sommes occupés des équations. D’après la loi fondamentale de la dynamique :

    mssd�v

    dt=

    ��F (2.1)

    3

  • Fig. 2.1 – Terre

    Fig. 2.2 – Schéma

    4

  • Avec mss : masse de la navette spatiale.

    Et comme D et g travaillent mais pas L comme on peut le voir d’après le schéma, on écrit trivialement :

    mssd�v

    dt= − �D +

    �G mss MT sin γr2

    (2.2)

    Avec MT : masse de la Terre.

    En développant un minimum notre calcul, il vient :

    d�v

    dt= −

    �D

    mss+

    �G MT sin γr2

    (2.3)

    On trouve donc notre première équation du mouvement.La deuxième se trouve en se plaçant suivant L cette fois-ci et le calcul (toujours d’après la LFD) devient :

    mssd�v

    dt= �L− G mss MT cos γ

    r2+

    mss v2 cos αr

    (2.4)

    En effet, on a les relations suivantes :G mss MT

    r2= ��g� (2.5)

    Etm v

    2

    r= ��Fcentrifuge� (2.6)

    On continue le calcul d’où :d�v

    dt=

    �L

    mss− G MT cos γ

    r2+

    v2 cos α

    r(2.7)

    On notera k = G MT pour obtenir notre deuxième équation :

    d�v

    dt=

    �L

    mss− k cos γ

    r2+

    v2 cos α

    r(2.8)

    Puis, pour en finir avec ce précis mathématiques, trouvons les deux dernières équations. D’après le schéma, on a dansla direction z l’équation :

    dr

    dt=

    dz�

    dt= v sin α (2.9)

    Démontrant ainsi la troisième équation.Et nous savons également que, suivant l’axe y’ :

    rdθ

    dt= v cos γ (2.10)

    Ce qui prouve la quatrième et dernière équation :

    dt=

    v cos γr

    (2.11)

    Les coefficients D (pour « drag » en anglais qui signifie « frottements ») et L (pour « lift » en anglais qui signifie« portance ») dépendent évidemment de la vitesse de la navette. Ces paramètres seront modélisés par les équationssuivantes :

    D =12ρ A CD v

    2 (2.12)

    L =12ρ A CL v

    2 (2.13)

    Avec CD et CL respectivement coefficient de frottement et de portance.Puis notons aussi la formule qui relie la densité atmosphérique qui est tout naturellement relié à l’altitude de vol dela navette lors de son retour :

    ρ = ρ0 e−αz (2.14)

    Avec z = r − rE et ρ : densité atmosphérique de la Terre au sol.

    5

  • 2.3 Résolution des équations du mouvement

    Nous ferons appel tout naturellement à une résolution automatique proposé par Matlab en utilisant la fonctionOde45 :

    1 [T,Y]=ode45(’ss1’,t,CI);

    Par conséquent, il nous a fallu créer un programme auxiliaire permettant de résoudre ces équations différentielles.Il sera noté dans notre travail « ss1.m ».

    Dans un premier temps nous initialisons le vecteur colonne y :

    1 dy = zeros(4,1);

    Puis nous rentrons successivement chaque équation sur les 4 lignes que comporte notre vecteur y :

    1 dy(1) = - (rh0*exp(-al*(x(3)-rE))*A*Cd*x(1)*x(1))/(2*m) + k*sin(x(2))/(x(3)*x(3));2

    3 dy(2) = (rh0*exp(-al*(x(3)-rE))*A*Cl*x(1)*x(1))/(2*m*x(1)) + (x(1)*cos(x(2)))/(x(3))4 - k*cos(x(2))/(x(3)*x(3)*x(1));5

    6 dy(3) = x(1)* sin(x(2));7

    8 dy(4) = x(1)* cos(x(2))/x(3);

    Pour résumer les notations utilisées dans ce programme, nous présenterons ci-après un résumé sous présentationvectorielle :

    Y =

    d�v

    dt

    dt

    dr

    dt

    dt

    (2.15)

    Et le vecteur x qui comporte les variables de notre programme :

    x =

    v

    γ

    r

    γ

    (2.16)

    Les équations une fois programmées dans le programme constituent son centre névralgique. Il ne reste plus qu’às’occuper des paramètres que l’on devra faire varier et des constantes du problèmes.

    2.4 Données de notre programme

    2.4.1 ConstantesrE = 6378.103 m : rayon de la Terre.G = 6.673.10− 11 m3.kg−1.s−2 : constante de gravitation terrestre.M = 5.9736.1024 kg : masse de la planète Terre.m = 104169.602 kg : masse maximum de la navette à l’atterrissageρ0 = 1.2 : coefficient de densité volumique de l’atmosphère à une altitude nulle.α = 0.1385 10−3 : angle alpha de rentrée atmosphérique.A = 15.05 : surface de référence (encore appelé maître couple c’est-à-dire la section transversale maximum d’un

    véhicule).

    6

  • 2.4.2 CoefficientsCd = 1 : Coefficient des frottements fixéCl = 0 : Coefficient de la portance

    2.4.3 Données temporellesOn choisira un temps typique de l’ordre la dizaine de minute. Nous avons constaté qu’il sera nécessaire de corriger

    nos données temporelles en fonction de l’évaluation de la vitesse que nous donnons à la navette. Ce type de correctionest nécessaire pour un meilleur choix du « pas » évalué de façon automatique grâce à la commande linspace.

    1 t0=1;2 tf=2000;3 t=linspace(t0, tf);

    2.5 Première représentation de la trajectoire de la navette spatiale

    Nous avons souhaiter donner un graphique présentant la trajectoire de la navette point par point pour donnerune impression de mouvement rendant l’observation plus intuitive. Pour cela, nous avons programmé, à l’aide d’uneboucle for, l’affichage polaire des points comme en témoigne les lignes de codes suivantes :

    1 for j=1:length(Y(:,1))2 XX(j)=Y(j,3);3 YY(j)=Y(j,4);4 polar(YY,XX,’r-’)5 pause(0.001)6 end

    Conformément aux données des documents que nous avons utilisés (vous trouverez en annexe la bibliographieassociée à notre travail), nous changerons la vitesse initiale avec la valeur suivante : v0 = 7404.95 m.s−1

    Voici donc le premier graphique (figure 2.3 page 7) que nous obtenons avec notre programme :

    Fig. 2.3 – Première trajectoire

    7

  • En observant la courbe rouge décrivant la trajectoire de notre navette, on se rend compte que le programmes’arrête immédiatement lorsque celle-ci entre en contact avec la Terre. Nous avons écrit quelques lignes de code pourque le programme arrête d’itérer lorsque la navette heurte le sol. Dans le présent cas, on en conclut que notre butest atteint : la navette rejoint donc la planète lors de sa phase d’atterrissage. Il ne nous plus désormais qu’à vérifierl’influence de divers paramètres faisant l’objet de notre prochaine section.

    8

  • Chapitre 3

    Rentrée atmosphérique et influence desparamètres

    Dans ce chapitre, nous traiterons donc de l’influence des paramètres liés à notre programme et de voir la consé-quence de leur variation sur la trajectoire de la navette spatiale. Pour terminer cette partie, nous donnerons lesparamètres que nous pensons optimaux, d’après notre modélisation, pour une rentrée adéquate dans l’atmosphèrede la Terre.

    Comme vous le verrez sur les prochaines images provenant de notre programme, nous avons décidé d’afficher pourchaque résultat graphique un graphique de la vitesse de la navette en fonction du temps (en réalité du pas k) et dela température de la navette spatiale au cours du temps grâce à la formule suivante :

    H =1

    200ρ

    ρ0

    v

    vc

    3(3.1)

    Avec vc vitesse dite « circulaire » (vitesse qu’aurait la navette si elle tournait autour de la Terre) à l’altitude zéro.Cette vitesse se calcule grâce à l’équation suivante :

    vc =�

    µE

    r(3.2)

    Avec µE constante de gravité géocentrique.

    Enfin, avant d’aborder la partie centrale de ce chapitre, nous devons notifier le fait qu’un refroidissement de lanavette a été pris en compte afin que celle-ci ne s’échauffe pas trop durant son entrée dans l’atmosphère :

    1 h(k)=(1/1200)*(exp(-al*(Y(k,3)-rE)))*(Y(k,1)/vc0)^3; % Affichage de la temperature H2 H(k) = h(k)*1*10^(-13);

    La dernière ligne de code, bien que rudimentaire, rend compte de ce refroidissement qui reviendrait en réalité àchanger le composant de la surface chauffante de la navette par un matériau résistant a de fortes chaleur et jouantégalement le rôle de bouclier thermique.

    Nous utiliserons donc ces deux informations durant nos études suivantes pour avoir un contrôle permanent de lacohérence de notre modélisation.

    3.1 Influence de la vitesse

    Typiquement, la vitesse de la navette spatiale donnée dans les documents que nous avons consulté pour la rentréeest de l’ordre de 7400 m.s−1. Dans un premier temps, appliquons cette vitesse à notre programme. Le graphique quel’on obtient nous servira de référence (figure 3.1 page 10).

    Première observation : la vitesse indiquée par le texte est bien une vitesse adéquate pour l’atterrissage sur Terrede notre navette comme nous le montre le graphique. La navette entre donc bien en collision avec la Terre après avoirtraversé l’atmosphère.

    9

  • Fig. 3.1 – Graphique de référence

    La modélisation du programme cesse donc d’être bonne lorsque la navette spatiale heurte la Terre. Si nousn’avions pas écris la boucle permettant de stopper le programme au moment où la navette heurte la Terre, nous nousexposions à des rebondissements falacieux.

    Au bout d’un temps égal à 40 pas (désigne le pas k), on constate que la vitesse de la navette chute brutalementpour atteindre la valeur de 776, 9 m.s−1 lorsqu’elle entre en contact avec la Terre (des parachutes se déclenchentdans la réalité lors de l’atterrissage de la navette au Cap Canaveral mais nous considérerons uniquement la rentréeatmosphérique qui constitue l’objet principal de cette étude).Observons également l’échauffement de la navette qui est très important de l’ordre de 4, 888 10−5 ce qui correspondà une température de 1485 K ce qui adéquate pour la résistance de la navette. On fixera la limite de l’échauffementà 2000 K au maximum c’est-à-dire pour un échauffement de 6, 5714 10−5.

    • Diminution de la vitesse initiale et conséquences :

    On réduit la valeur de la vitesse initiale et on obtient le graphique 3.2 page 11.

    La diminution de vitesse initiale a donc raccourci la trajectoire comme l’on s’y attendait, la navette revient surTerre plus rapidement sur un autre point du globe. La perte de vitesse initiale a aussi engendré une diminution plusprogressive de la vitesse au contact de l’atmosphère et la vitesse de 891 m.s−1 est la vitesse finale d’approche. Enrevanche, au niveau de l’échauffement de la navette, elle est supérieure à la valeur précédente, 5, 107 10−5 soit unetempérature de 1554 K. La température de la navette augmente donc lorsque l’on réduit sa vitesse initiale.

    • On augmente cette fois-ci la valeur de la vitesse initiale v0 = 8000 m.s−1 et on obtient le graphique 3.3 page 11.

    Encore une fois, notre modélisation de trajectoire est bien conforme à ce que l’on observerait en réalité. En effet,la vitesse initiale étant trop importante devant la vitesse classique de satellisation (environ 7 km.s−1), la vitesse de lanavette permet à cette dernière de vaincre l’attraction gravitationnelle de la planète et s’échappe donc de ce champsavec une vitesse qui augmente jusqu’à 10250 m.s−1 et une température qui diminue pour devenir nulle lorsque l’ons’échappe de l’atmosphère terrestre au bout d’un temps de 20 pas caractérisant le froid spatial (qui est égal à 2, 7 K).

    10

  • Fig. 3.2 – Dimunition de la vitesse

    Fig. 3.3 – Augmentation de la vitesse

    11

  • Conclusion : On retiendra de l’influence de la vitesse initiale que celle-ci permet d’influencer la vitesse de lanavette spatiale tout au long de sa procédure d’atterrissage sur la Terre. En revanche, on retiendra que la vitesseinitiale détermine la vitesse d’atterrissage comme l’on pouvait s’en douter. Elle influe également sur la températurede surface de la navette.

    3.2 Influence de l’angle de rentrée γ

    Par défaut nous l’avons réglé sa valeur initiale à π. Essayons de plusieurs modifications de l’angle et d’en observerles conséquences.

    • Diminution de l’angle de rentrée :

    Nous avons diminué cet angle par itérations et essais successifs afin de limiter également l’échauffement de la navetteau maximum. En essayant la valeur γ0 = π − 0.03 on obtient le graphique 3.4 page 12.

    Fig. 3.4 – Diminution de l’angle de rentrée

    La diminution de l’angle à provoqué une diminution plus lente de la vitesse pendant qu’elle tourne autour dela Terre avant sa procédure finale d’atterrissage estimée à partir d’un temps de 60 pas. La vitesse d’atterrissageest de 452 m.s−1. Nous réduisons donc la vitesse lors de l’atterrissage en réduisant l’angle d’entrée. Sa températuremaximale est de 1495 K pour un échauffement de 4, 913 10−5.

    • Augmentation de l’angle de rentrée :

    Nous avons augmenté cet angle et en essayant la valeur γ0 = π + 0.03 on obtient le graphique 3.5 page 13.

    On a encore de nouveau réduit la distance de la navette a parcourir avant son atterrissage. Sa vitesse finale ausol est de 609, 7 m.s−1, donc supérieur à la vitesse précédente et sa température maximale atteinte lors de l’entréedans l’atmosphère est de 4, 641 10−5 soit 1412 K soit une témpérature plus faible que précédemment.

    12

  • Fig. 3.5 – Augmentation de l’angle de rentrée

    Conclusion : La diminution de l’angle de rentrée permet de réduire la vitesse d’approche au sol mais en contrepartie, l’échauffement de la navette est plus important en comparaison au cas de référence. Ainsi, l’augmentation decet angle augmente sa vitesse d’approche tout en réduisant sa témpérature.

    3.3 Influence de la portance de la navette

    On modifiera le coefficient CL qui par défaut est nul. La seule option physique viable est donc d’augmenter cecoefficient. Augmentons ce coefficient de 1. On obtient le graphique 3.6 page 14 (toujours à comparer avec le gra-phique de référence).

    L’augmentation de la portance de la navette spatiale nous amène à considérer une vitesse d’aterrisage très im-portante 4107 m.s−1 par rapport au cas de référence ainsi qu’un échauffement de 1, 271 10−4 soit 3868 K ce qui esttrop important pour la résistance de notre navette. Dans la réalité et d’après nos estimations numérique, la navettespatiale ne tiendrait pas le coup et aurait été desintégrée dans l’atmosphère lors de sa rentrée sur Terre.

    Conclusion : L’augmentation de la portance de notre navette provoque des résultats non désirables et des valeursextrêmes. Ces observations sont néanmoins cohérents avec la réalité. En effet, en augmentant la portance de notreengin, nous lui permettons d’être soumis de façon plus importante au flux d’air et donc de mieux « voler » lors deson retour dans l’atmosphère et plus rapidement d’où l’échauffement constaté. Nous laisserons donc cette valeur à 0comme par défaut.

    13

  • Fig. 3.6 – Augmentation de la portance de la navette

    3.4 Influence la surface de référence

    Modifions le coefficient A et obervons-en les conséquences.

    • Diminution de la surface de référence :

    On modifie la surface de référence et on donne donc A = 2 m2 d’où le graphique 3.7 page 15.

    En diminuant la surface de référence, la vitesse finale d’approche de la navette devient importante 3822 m.s−1(moins importante tout de même que dans le cas où l’on augmente la portance) et sa température maximale atteint3, 620 10−4 soit 11017 K, température trop importante conduisant à une destruction en vol de la navette.

    • Augmentation de la surface de référence :

    On modifie la surface de référence et on donne donc A = 35 m2 d’où le graphique 3.8 page 15.

    On constate qu’il s’agit ici d’un cas limite où l’on observe un rebondissement sur la Terre malgrè les précautionsprises pour la programmation. Les vitesse et échauffements négatifs proviennent de la trajectoire hypothétique dela navette après son rebondissement. Notre seule observation viable dans le présent cas est de prendre en comptela température maximale de la navette qui est de 1, 531 10−5 soit 465 K. On constate la encore une aberrationnumérique : une telle température est trop faible pour une rentrée atmosphérique.

    La seule explication physique pouvant expliquer ces phénomène serait de considérer l’échauffement global de lanavette. En effet, sa surface augmente donc la témpérature globale augmente mais il en est de même pour le refroi-dissement de la navette ! Notre modélisation du refroidissement de la navette atteint ici son cas limite.

    Conclusion : Nous garderons donc la surface de référence à sa valeur par défaut c’est-à-dire A = 15, 05 m2 commenous le donne les valeurs tirées de notre bibliographie.

    14

  • Fig. 3.7 – Diminution de la surface de référence

    Fig. 3.8 – Augmentation de la surface de référence

    15

  • 3.5 Cas idéal : finalisation de notre modélisation

    Si l’on récapitule tous les points capitaux à prendre en compte pour que notre navette arrive à bon port sansennuis majeurs :

    – Une vitesse de 7404, 95 m.s−1 ;– Un échauffement compris entre 700 K et 2000 K ;– Un angle de rentrée inférieur à π pour réduire la vitesse d’approche ;– Une surface de référence de 15, 05 m2.

    En combinant tout ces éléments, on obtient le résultat final 3.9 page 16.

    Fig. 3.9 – Résultat final

    La navette revient bien donc sur Terre, sans erreurs numériques à constater. La vitesse de la navette lors de sonatterrissage est tout à fait satisfaisante : 756, 2 m.s−1. On imagine évidemment que dans un programme completprenant en compte l’atterrissage de la navette sur la Terre, nous aurions pris en compte le déclenchement de para-chute, etc. Enfin, regardons notre dernier paramètre important, l’échauffement de la navette qui est de 4, 991 10−5soit une témpérature maximale de 1519 K tout à fait satisfaisant au vu des bornes que nous nous sommes fixés.

    Nous pouvons donc garantir avec de tels paramètres et la présente modélisation, une rentrée atmosphérique sansencombre au niveau technique. Seul le pilotage du commandant de bord sera déterminant mais ne pourra pas êtremodélisé ici comme le lecteur pourra aisément en juger.

    16

  • Chapitre 4

    Conclusion et ouverture

    4.1 Conclusion

    Depuis 1981, les navettes spatiales sont en service aux Etats-Unis afin d’acheminer les différents modules permet-tant de compléter le projet de station spatiale internationale (ISS). Actuellement en 2009, nous sommes proches dela complétude de cette station qui sera terminée en 2010 permettant aux américains de se concentrer sur le futurprojet de base lunaire qui devrait se dérouler aux alentours de 2025-2030. Néanmoins, malgrè deux accidents, lesnavettes spatiales américaines se révèlent être de formidables instruments technologique. Dans ce mémoire, nous noussommes intéressés à la rentrée atmosphérique de la navette après un décrochage de la station spatiale internationale(la station soviétique Mir et l’ISS sont toutes deux a une orbite de 400 km soit dans notre modélisation 200 kmpour l’atmosphère + 200 km au-dessus de l’atmosphère pour l’altitude initiale de notre navette). Nous avons doncétudié l’influence des divers paramètres le plus important étant celui de la vitesse et de l’angle de rentrée comme l’onpouvait s’y attendre. Pour les pilotes, la procédure de rentrée est très délicate si l’on veut maitriser l’échauffementde la navette, véritable brique volante, ainsi que sa vitesse d’approche pour ne pas s’écraser sur la Terre.Ce mémoire nous a permis de prendre conscience de la conséquence de la modification à priori infime de certainsparamètres mais qui peuvent provoquer des conséquences parfois désastreuses.

    Nous tenons également a saluer le travail d’équipe nécessaire pour la finalisation de notre modélisation. Il nousa fallu plusieurs semaines pour venir à bout d’erreurs de modélisation d’équations et de modélisations de donnéesphysique par l’ordinateur.

    Enfin, nous remercions les enseignants de ce module qui nous ont donné le strict nécessaire comme informationet malgrè la difficulté du travail pour certaines parties, nous leur sommes reconnaissant : c’est sans doute la premièrefois que nous réalisons un tel travail, se rapprochant du travail quotidien des chercheurs. Cela conforte évidemmentnotre volonté d’exercer ce métier ... passionnant !

    17

  • 4.2 Ouverture

    Pour le plaisir, nous nous sommes amusés à effectuer la rentrée de la navette spatiale sur la planète Mars. Enconséquence nous nous sommes contentés de modifiés la masse de la planète pour la remplacer par la valeur suivante :6.4185 1023Kg et nous avons augmenter le coefficient α pour arriver à la valeur suivante : α = 0.2770 10−3 afin derendre compte de l’atmosphère plus dense de la planète Mars.

    Le premier graphique que nous obtenons est le suivant (figure 4.1 page 18).

    Fig. 4.1 – Essai Mars

    Comme l’on pouvait s’y attendre, la masse de la planète étant inférieure à celle la Terre, son attraction gravita-tionnelle est donc conséquemment moindre. La vitesse de la navette que l’on avais choisie par défaut devient donctrop importante et est suffisante pour s’affranchir à l’attraction de Mars. Sa vitesse augmente donc pour se stabiliseren fin de course (que l’on conjecture) et la vitesse devient donc nulle très rapidement.

    Cette ouverture nous a permis de constater que nos équations du mouvement sont bien modélisées. Les obser-vations sont bien conforme à ce que l’on observe en réalité (pour les satellites ou les sondes en ce qui concerneMars).

    18

  • Bibliographie

    [1] Les travaux d’Emmanuel TRELAT disponibles à l’adresse suivante : http ://www.univ-orleans.fr/mapmo/membres/trelat/

    [2] Philippe COUILLARD : Lanceurs et satellites, Éditions Cépaduès

    [3] Daniel MARTY : Systèmes spatiaux, conception et technique, Éditions Masson

    [4] Le site web belge de la Faculté des Sciences Appliquées : http ://www.ulb.ac.be/polytech/smana/solTP_2.htm

    19

  • Annexe A

    Programmes Matlab

    A.1 Programme principal space_shuttle.m

    1 %Rentree de navette dans une atmosphere planetaire%2 %% Initialisation3 clc4 clear all5 close all6 %% Constantes7 global m k A Cd Cl rh0 al rE8 rE=6378e3; % Rayon de la Terre9 G=6.673e-11; % Cte de gravitation terrestre

    10 M=5.9736e24; % Masse de la Terre11 m=104169.602; % Masse de la navette 104169.60212 k=G*M;13 rh0=1.2;14 al=0.1385*10^(-3); % Angle alpha15 A=15.05; % Surface 15.05 par defaut16 Hc=2.3*10^(-5); % Temperature critique ou la navette explose.17 % Coefficients :18 Cd=1; % Coefficient des frottements fixe19 Cl=0; % Coefficient de la portance20 %% Modelisation de la Terre21 for i=1:20022 O =[0:pi/256:2*pi] ;23 R = rE*i/200 ; % Rayon Terrestre24 Ra = rE + 200e3; % Rayon de l’atmosphere25 Tx=R*cos(O) ;26 Ty=R*sin(O) ;27 Txa=Ra*cos(O) ;28 Tya=Ra*sin(O) ;29 %initialisation des graphiques30 col=2; lig=3;31 subplot(col,lig,[1 2 4 5])32 hold on33 axis([-10e5 Ra+2e5 -10e5 Ra+2e5])34 plot(Tx,Ty,’b-’) % On affiche la Terre35 plot(Txa,Tya,’c-’) % On affiche l’atmosphere36 end37 %% Conditions initiales :38 r0=Ra+119.82e3; % Altitude de la navette 119.82e3 (Textes)39 v0=7404.95; % Vitesse initiale 7404.95 (Textes)

    20

  • 40 gm0=pi-0.03; % Angle vecteur vitesse - tangente atm41 th0=pi/2; % Angle navette-rayon terrestre42 % Vecteur conditions initiale43 CI=[v0 gm0 r0 th0];44 % Vitesse de la navette vc0 pour une orbite circulaire45 vc0=sqrt(3.986*10^5/r0);46 % Remarques :47 % 7900 la navette est trop rapide et sort du champ GT.48 % 7700 et tf=4000 la navette rebondie sur l’atmosphere49 %% Donnees temporelles50 t0=1; % Temps intial51 tf=2000; % Temps final52 t=linspace(t0, tf);53 % Remarques :54 % Erreur NaN : changer la vitesse ET le temps final.55 %% Resolution de l’equation differentielle avec ode45 :56 %options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-5]);57 [T,Y]=ode45(’ss1’,t,CI);58 Y; %On affiche Y pour controler la matrice de sortie.59 %% Representations de la trajectoire de la navette spatiale60 for j=1:length(Y(:,1))61 if Y(j,3)> rE62 XX(j)=Y(j,3);63 YY(j)=Y(j,4);64 subplot(col,lig,[1 2 4 5])65 polar(YY,XX,’r-’)66 Title([’Trajectoire de la navette spatiale’]);67 pause(0.1)68 else69 break70 end71 end72 %close73 hold off74 %N.B. en cartesien :75 %XX(j)=Y(j,3)*cos(Y(j,4));76 %YY(j)=Y(j,3)*sin(Y(j,4));77 %% Dynamique de la navette spatiale78 % Vitesse de la navette spatiale en fonction du temps79 for k=1:length(Y(:,1))80 if Y(k,3)> rE81 v(k)=Y(k,1); % Affichage de la vitesse82 subplot(col,lig,3)83 plot(v)84 Title([’Vitesse de la navette spatiale en fonction du temps’]);85 grid on; % On affiche le quadrillage sur le graphique.86 ylabel([’vc (m.s-1)’]);87 xlabel([’Temps (pas k)’]);88 else89 break90 end91 end92 %pause(2)93 %close94 %% Temperature H de la navette spatiale :95 for k=1:length(Y(:,3))96 if Y(k,3)> rE

    21

  • 97 h(k)=(1/1200)*(exp(-al*(Y(k,3)-rE)))*(Y(k,1)/vc0)^3; % Affichage de la temperature H98 H(k) = h(k)*1*10^(-13);99 subplot(col,lig,6)

    100 plot(H)101 Title([’Temperature H de la navette spatiale (Kelvin)’]);102 grid on; % On affiche le quadrillage sur le graphique.103 ylabel([’H’]);104 xlabel([’Temps (pas k)’]);105 else106 break107 end108 end109 %pause(1)110 %close111 % Notes : 2.3e-5 == 700 K donc la temperature maximale pour nous :112 % 1600 K==5.257e-5 pour H.

    A.2 Programme auxiliaire ss1.m utilisé par ode45

    1 function dy = ss1(t,x)2 global m k A Cd Cl rh0 al rE3 dy = zeros(4,1);4 dy(1) = - (rh0*exp(-al*(x(3)-rE))*A*Cd*x(1)*x(1))/(2*m) + k*sin(x(2))/(x(3)*x(3)); % dv/dt5 dy(2) = (rh0*exp(-al*(x(3)-rE))*A*Cl*x(1)*x(1))/(2*m*x(1)) + (x(1)*cos(x(2)))/(x(3))6 - k*cos(x(2))/(x(3)*x(3)*x(1)); % dgamma/dt7 dy(3) = x(1)* sin(x(2)); % dr/dt8 dy(4) = x(1)* cos(x(2))/x(3); % dtheta/dt

    22