24
CRMEF DE FES MODULATION ET DEMODULATION D’AMPLITUDE ELHAMMADI Ahmed ELHAOUARI Samir BENKHADDA Said REGRAGUI Ahmed Encadré par : Pr. KADIRA Elhoussine 08/03/2015 La première technique d’émission utilisée en radiophonie a été la modulation d’amplitude. Une tension électrique, module l’amplitude d’un signal porteur. Pour restituer l’information, il suffit ensuite de démoduler le signal reçu.

MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de fes

MODULATION ET DEMODULATION D’AMPLITUDE

ELHAMMADI AhmedELHAOUARI SamirBENKHADDA SaidREGRAGUI Ahmed

Encadré par : Pr. KADIRA Elhoussine

08/03/2015

La première technique d’émission utilisée en radiophonie a été la modulation d’amplitude. Une tension électrique, module l’amplitude d’un signal porteur. Pour restituer l’information, il suffit ensuite de démoduler le signal reçu.

Page 2: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

Sommaire

Introduction :..........................................................................................................................................3

I- La modulation d’amplitude :.......................................................................................................3

1- Présentation :............................................................................................................................3

a- Utilitaire :..............................................................................................................................3

b- Mathématique :.....................................................................................................................3

2- Le principe mathématique :.....................................................................................................4

3- La réalisation pratique :...........................................................................................................4

4- Étude du signal modulé :..........................................................................................................5

a- Analyse fréquentielle :..........................................................................................................5

II- La démodulation d’amplitude par détecteur de crête :.........................................................7

1- Présentation :............................................................................................................................7

2- Première étape : la détection d’enveloppe..............................................................................7

a- Première opération : la suppression des alternances négatives :......................................7

b- Deuxième opération : la suppression de la porteuse :........................................................8

3- Deuxième étape : la suppression de la composante continue :............................................11

a- Montage :............................................................................................................................11

b- Le résultat :.........................................................................................................................11

c- Condition de réalisation :...................................................................................................11

4- Bilan :......................................................................................................................................12

a- Schéma électrique global du circuit de démodulation :...................................................12

b- Résultat de la démodulation :............................................................................................12

III- La démodulation cohérente :.................................................................................................12

1- Détection synchrone :.............................................................................................................12

2- Reconstruction de la porteuse:..............................................................................................13

3- Utilisation pour la démodulation :.........................................................................................13

Conclusion :.........................................................................................................................................14

Exercice :.............................................................................................................................................15

Page 3: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

Introduction :La première technique d’émission utilisée en radiophonie a été la

modulation d’amplitude. Une tension électrique, appelée tension modulante

et contenant l’information à diffuser, module l’amplitude d’un signal porteur.

Pour restituer l’information de la tension modulante, il suffit ensuite de

démoduler le signal reçu.

I- La modulation d’amplitude :

1- Présentation :

a- Utilitaire :

La modulation d’amplitude permet la transmission de signaux de

faibles fréquences par ondes électromagnétiques. Le signal à transmettre

(musique, voix …) (appelé signal modulant), signal de basse fréquence, est

transformé en tension électrique par un microphone ; la tension ainsi formée est

utilisée pour faire varier (on dit moduler) l’amplitude d’un signal de Haute

Fréquence (H.F.) appelée porteuse. Le signal modulé ainsi formé est transformé

en onde électromagnétique contenant les mêmes fréquences, au moyen d’une

antenne émettrice.

Une antenne réceptrice capte l’onde électromagnétique et restitue le

signal électrique modulé. La démodulation permet alors d’extraire le signal

modulant d’origine du signal modulé.

b- Mathématique :

Le signal modulant est une tension sinusoïdale uS(t) de fréquence fS :

uS(t) = (US)Max.cos(2.π.fS.t)

La porteuse est une tension sinusoïdale up(t) de fréquence fp :

Page 4: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

up(t) = (Up)Max.cos(2. π.fp.t)

Moduler l’amplitude de ce signal sinusoïdal up(t) consiste à

transformer son amplitude constante (Up)Max en une fonction affine de la tension

modulante uS(t) : a.uS(t) + b où a et b sont des constantes

Le résultat de cette modulation donne le signal modulé ayant pour

équation : um(t) = [a.uS(t) + b].cos(2. π.fp.t) Le signal modulant est en fait

l’enveloppe du signal modulé.

2- Le principe mathématique :

Le signal modulé a pour équation : um(t) = [a.uS(t) + b].cos(2. π.fp.t)

Soit : um(t) = [uS(t) +a b].a.cos(2. π.fp.t)

Ou : um(t) = [uS(t) + U0].[(Up)Max.cos(2. π.fp.t)]

Soit : um(t) = [uS(t) + U0].up(t)

Moduler l’amplitude d’un signal consiste alors à ajouter une

composante continue (ici U0) au signal modulant uS(t) à transmettre, puis de

multiplier la tension résultante par la tension up(t) de la porteuse.

Le décalage en tension U0 est indispensable pour éviter la

surmodulation et permettre ensuite la restitution du signal initial par

démodulation ( Cf. § 4° ); le taux de modulation m est révélateur de la qualité

de la modulation :

um(t) = [uS(t) + U0].up(t)

soit : um(t) = [(US)Max.cos(2. π.fS.t) + U0].up(t)

Soit : um(t) = U0 . [¿¿.cos(2. π.fS.t) + 1].up(t)

Ou : um(t) = U0.[m.cos(2.π.fS.t) + 1].up(t)

3- La réalisation pratique :

Pour réaliser expérimentalement la modulation d’amplitude d’une

porteuse par un signal modulant, on utilise un multiplieur.

Page 5: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

4- Étude du signal modulé :

a- Analyse fréquentielle :

Nous avons montré dans le paragraphe 2°) que la tension du signal

modulé était de la forme : um(t) = U0.[m.cos(2. π.fS.t) + 1].[up(t)]

Soit : um(t) = U0.[m.cos(2. π.fS.t) + 1].[(Up)Max.cos(2. π.fp.t)]

Soit : um(t) = U0 . (Up)Max.[m.cos(2. π.fS.t) + 1] . cos(2.π.fp.t)

Soit : um(t) = k.[m.cos(2. π.fS.t) + 1] .cos(2. π.fp.t)

Soit : um(t) = k.[m.cos(2. π.fS.t) . cos(2. π.fp.t) + cos(2. π.fp.t)]

Une étude mathématique permettrait de montrer que le produit :

m.cos(2.π.fS.t) . cos(2.π.fp.t) peut s’écrire :

m.cos(2.π.fS.t).cos(2.π.fp.t)=2.m.cos(2.π.(fp+fS).t)+2.m.cos(2.π.(fp-fS).t)

La tension du signal modulé peut alors s’écrire :

um(t) = k.cos(2. π.fp.t) +2.k.m.cos(2.p.(fp + fS).t) +2.k.m. cos(2. π.(fp - fS).t)

Conclusion :

Lorsque la tension modulante uS(t) et la porteuse up(t) sont des

tensions sinusoïdales, de fréquences respectives fS et fp, la tension modulée um(t)

est la somme de trois tensions sinusoïdales de fréquences fp, fp - fS et fp + fS.

Cette propriété nous montre qu’un émetteur fonctionnant en

modulation d’amplitude doit réserver une bande de fréquence ayant une largeur

égale à fS de part et d’autre de la fréquence de la porteuse fp.

Le son le plus aiguë à émettre ayant une fréquence fS de 20 kHz, une

bande de 40 kHz au total est nécessaire.

Page 6: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

b- Qualité de la modulation :

La tension U0 joue un rôle important dans la qualité de la modulation ;

en effet, de la valeur du décalage en tension dépend de la fidélité de

l’enveloppe du signal modulé par rapport au signal modulant.

Pour que la modulation soit de bonne qualité, l’enveloppe du

signal modulé doit être fidèle au signal modulant. Le décalage en tension U0 doit

alors être supérieur à l’amplitude (US)Max du signal modulant, soit U0 > (US)Max

soit ¿¿ ou m < 1 , m étant le taux de modulation.

Si la modulation est de mauvaise qualité, l’enveloppe du signal

modulé n’est pas fidèle au signal modulant. Cela est dû au fait que le décalage

en tension U0 est alors inférieur à l’amplitude (US)Max du signal modulant, soit

U0 < (US)Max soit ¿¿ ou m > 1 : il y a surmodulation.

II- La démodulation d’amplitude par détecteur de crête :

Page 7: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

1- Présentation :

La démodulation d’amplitude est l’opération consistant à reconstituer

le signal modulant à partir de l’onde modulée en amplitude. Elle s’opère en deux

étapes :

la détection d’enveloppe ;

l’élimination de la composante continue par filtrage.

2- Première étape : la détection d’enveloppe

a- Première opération : la suppression des alternances négatives :

Le montage :

Le montage à utiliser comporte une diode : il s’agit d’un montage

redresseur simple alternance : la diode bloque les alternances négatives. La

tension recueillie aux bornes du conducteur ohmique est une tension modulée

redressée.

Le résultat :

Page 8: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

b- Deuxième opération : la suppression de la porteuse :

Le montage :

L’opération consiste à ajouter un condensateur en dérivation aux

bornes du conducteur ohmique du montage redresseur.

Le résultat :

Interprétation :

Page 9: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

Supposons le condensateur chargé à t = 0s, au début d’une alternance

positive; entre t = 0s et t1, la tension à l’entrée du circuit de démodulation um(t)

croît :

La diode laisse passer le courant ;

Le condensateur se charge et la tension à ses bornes augmente

jusqu’à atteindre une valeur maximale.

Après la date t1, la tension à l’entrée du circuit de démodulation um(t)

décroît :

La diode ne laisse pas passer le courant ;

La tension aux bornes du condensateur étant supérieure à um(t),

celui-ci se décharge dans le conducteur ohmique et la tension u(t) diminue

jusqu’à atteindre une valeur égale à celle de la tension à l’entrée du circuit de

démodulation um(t) : ceci se produit à la date t2.

Après la date t2, la tension à l’entrée du circuit de démodulation um(t) croît :

La diode laisse passer le courant ;

Le condensateur se recharge et la tension à ses bornes augmente

jusqu’à atteindre une nouvelle valeur maximale.

Influence de la constante de temps τ :

L’étude montre que la durée de la décharge a une influence notable

sur la forme du signal recueilli en sortie du montage « Détecteur de crête ».

Concernant la décharge :

Plus la décharge est rapide, plus ce signal u’(t) ressemblera au signal

modulé redressé ;

Plus la décharge est lente, plus ce signal u’(t) ressemblera à l’enveloppe

du signal modulant.

Concernant la charge :

Plus la charge est rapide, plus ce signal u’(t) ressemblera à l’enveloppe du

signal modulant ;

Page 10: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

Plus la charge est lente, plus ce signal u’(t) ressemblera au signal modulé

redressé.

Illustrations :

Conclusion :

Pour que la montée en tension ne soit ni trop lente, ni trop rapide, il

faut que :

τ << TS (au-moins τ <T S

10)

Pour que la chute en tension soit rapide, il faut que :

τ >> Tp (au-moins τ > 10.Tp)

Page 11: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

Pour retrouver une enveloppe de porteuse fidèle au signal modulant

originel, il faut donc que :T S

10 > τ > 10.Tp soit TS > 100.Tp soit fp > 100.fS

3- Deuxième étape : la suppression de la composante continue :

a- Montage :

Le montage à utiliser comporte un filtre passe–haut, c’est-à-dire ne

laissant passer que les composantes aux fréquences élevées et arrêtant celles aux

basses fréquences et continues.

Il s’agit d’un montage RC simple alternance : la diode bloque les

alternances négatives. La tension recueillie aux bornes du conducteur ohmique

est une tension modulée redressée.

b- Le résultat :

Courbe 1 : Enveloppe du signal modulé redressé.

Courbe 2 : Signal modulant reformé.

c- Condition de réalisation :

La tension modulante reformée est une tension variable.

Page 12: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

Pour que le filtre passe-haut n’altère pas ce signal, la constante de

temps de ce filtre doit être bien supérieure à la période du signal modulant :

τ2 >> TS

4- Bilan :

a- Schéma électrique global du circuit de démodulation :

b- Résultat de la démodulation :

Courbe 1 : Signal modulé détecté

Courbe 2 : Signal modulant reformé

III- La démodulation cohérente :

1- Détection synchrone :

Le principe de cette démodulation est celui de la détection synchrone.

Si s(t) représente le signal modulé et si on suppose que l'on dispose de la

porteuse ayant servi à la modulation (même amplitude et même phase), alors, en

réalisant le montage suivant, on peut récupérer le signal modulant.

Page 13: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

On a um(t) = k.[m.cos(2. π.fS.t) + 1] .cos(2. π.fp.t) et on suppose disposer de

up(t)=(Up)Max.cos(2. π.fp.t) (signal de même fréquence et en phase avec la

porteuse). Alors, en sortie du multiplieur, on récupère

u(t)=k.[m.cos(2.π.fS.t) + 1] .cos(2. π.fp.t)×(Up)Max.cos(2. π.fp.t)

u(t)= k.(Up)Max [m.cos(2.π.fS.t) + 1]. cos2(2. π.fp.t)

u(t)=k.(Up)Max [m.cos(2.π.fS.t) + 1].1+cos(4. π . f p . t)

2

u(t)=k .(U p)Max

2 [1+m .cos (2.π . f S . t )+cos (4. π . f p . t)+m . cos (2. π . f S .t ) . cos(4. π . f p . t )]

En calculant la fréquence de coupure du filtre correctement, on peut

éliminer tous les termes et ne récupérer que :

u' (t )=k .(U p)Max

2[1+m. cos (2. π . f S . t ) ]

Il ne reste plus qu'à éliminer la composante continue et on récupère un

signal proportionnel à uS(t) = (US)Max.cos(2.π.fS.t).

Cependant, nous avons éludé un problème: comment récupérer une

porteuse en phase avec celle qui a servi à la modulation? On peut tendre un

câble BNC en salle de TP, mais dans le cas d'une transmission hertzienne, ça

n'est plus possible… Il va donc falloir la reconstruire à partir du signal reçu.

2- Reconstruction de la porteuse:

Pour reconstruire une porteuse u’p(t) de même fréquence que la porteuse ayant

été utilisée pour la modulation et présentant un déphasage constant avec cette

dernière, on va devoir avoir recours à une boucle à verrouillage de

phase.

3- Utilisation pour la démodulation :

Page 14: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

Lors de la description du principe de la détection synchrone, nous

avons travaillé avec une porteuse reconstruite en phase avec la porteuse initiale.

Une porteuse en quadrature va conduire à un signal nul. Pour éviter ce

problème, il va donc falloir adjoindre un déphaseur à la porteuse reconstruite. Ce

type de montage peut par exemple être réalisé simplement de la façon suivante :

up’’(t) est un signal déphasé par rapport à up’(t). Globalement, la

détection cohérente sera réalisée au moyen du système suivant :

Conclusion :La modulation d'amplitude est la plus ancienne technique de

modulation, mais néanmoins ayant fait ses preuves. Son plus gros avantage est

la simplicité de réalisation de la modulation et de la démodulation. Pour s'en

convaincre, il suffit de regarder les circuits de modulation et de démodulation

décrits ci-dessus. Il en résulte qu'un système de modulation d'amplitude est

relativement bon marché, ce qui explique la raison pour laquelle la diffusion de

programmes radio AM est populaire depuis si longtemps. Cependant, la

modulation d'amplitude souffre de deux limitations majeures: La modulation

Page 15: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

d'amplitude implique un gaspillage de puissance. L'onde porteuse est totalement

indépendante du message que l'on désire transmettre, c'est-à-dire le signal en

bande de base m(t). La transmission de la porteuse représente donc une perte de

puissance. De plus, la puissance de la porteuse représente plus de 2/3 de la

puissance totale du signal modulé. La modulation d'amplitude implique un

gaspillage de bande passante. D'un point de vue fréquentiel, les bandes latérales

supérieures et inférieures sont liées entre elles par une symétrie autour de la

fréquence fc. Connaissant une de ces deux bandes, on peut en déduire l'autre.

Cela implique qu'il suffirait d'envoyer une de ces deux bandes pour obtenir toute

l'information nécessaire à la reconstruction de m(t). Cependant, la modulation

AM utilise une bande de transmission égale à deux fois la bande passante du

message, ce qui constitue un gaspillage de bande passante.

Exercice :1. On donne les figures 1 et 2 dont l’une représente l’évolution au cours du

temps d’une tension modulée en amplitude et l’autre représente l’évolution au

cours du temps d’une tension modulée en fréquence

a- Préciser en le justifiant la nature de la modulation correspondant à chaque

signal.

b- Dans le cas de la modulation d’amplitude, tracer directement sur la figure

choisie l’allure du signal modulant.

2. On veut transmettre, par modulation d’amplitude, un signal sinusoïdal de

fréquence F. Pour cela, on doit utiliser un signal porteur de fréquence FP. Le

signal modulé uS(t) peut se mettre sous la forme d’une somme de 3 fonctions

sinusoïdales. Exprimer les fréquences de ces 3 fonctions sinusoïdales en

fonction de F et FP.

3. Au laboratoire, pour simuler la tension modulée par le signal de 440 Hz

précédent, on utilise deux GBF et un composant électronique [X] :

Page 16: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

u1(t) est la tension de fréquence F et d’amplitude U1max délivrée par le premier

GBF, à laquelle on a ajouté une composante continue U0.

u2(t) est la tension de fréquence FP et d’amplitude U2max délivrée par le second

GBF.

uS(t) est le signal modulé.

a- Quel est le nom du composant [X] et quel est son rôle?

b- Exprimer uS(t) en fonction de U0, u1(t), u2(t) et k.

NB : k est une constante liée au composant électronique.

4- Un oscilloscope permet de visualiser la tension modulée. On obtient

l’oscillogramme ci-dessous :

a- Quelle est la période du signal modulant?

Page 17: MODULATION ET DEMODULATION D’AMPLITUDElewebpedagogique.com/.../12/modulation-demo-benkhada.docx · Web viewDans le cas de la modulation d’amplitude, tracer directement sur la

CRMEF de FES Complément de physique Année scolaire : 2014/2015

b- Déterminer la valeur maximale USmax de l’amplitude de la tension

modulée, puis sa valeur minimale USmax .

c- Calculer le taux de modulation m. A-t-on réalisé un signal de bonne

qualité? Justifier.

d- Sachant que U1max =1 V, déterminer la tension de décalage U0.

e- Déterminer la fréquence FP de la porteuse.

5- Pour démoduler le signal étudié on réalise le montage de la figure 3

nommez la fonction de chaque étage.

6- Suivez les différentes modifications qui subissent le signal de l’entrée à la

sortie de la chaine.

Figure -3-