8
OC 2 (FS 2013) Lecture 3 Prof. Bode 1 Redox Neutral Reactions and Rearrangements 1 Types of “Redox Neutral Organic Reactions” 1.1 Reactions with no external reducing or oxidizing agent In this case, one part of the starting material is oxidized while the other is being reduced. 1.2 “Redox Disproportionation” In this case, one starting material is oxidized while the other starting material is being reduced. 2 Cannizzaro Reaction 3 Tishchenko Reaction 4 Meerwein-Ponndorf-Verley/Oppenauer Meerwein-Ponndorf-Verley Reduction is the reverse reaction of Oppenauer Oxidation HO redox neutral red. [O] O OH Me HO H redox neutral red. O H O Me [O] H O aq. NaOH Mechanism Ar H O OH red. [O] H OH H 2 equivalent O OH Ar H O O (excess) Ar H O O OH H 2 O Ar H O Ar O OH Ar OH 2H fromH 2 O H H O Al(OiPr) 3 O O Mechanism Ar H O Al(OiPr) 3 H H red. [O] Ar H O Al(OiPr) 3 Ar O H Ar H O Al(OiPr) 3 Ar O H Ar O O Ar H O Al(OiPr) 3 Mechanism R 1 H O Al(OiPr) 3 red. [O] R 1 O Al R 2 O H R 2 O OH R 1 OH Me Me H isopropanol H OH O Me Me H acetone iPrO OiPr R 2 R 2 transfer hydrogenation then work-up H + work-up

OC 2 (FS 2013) Lecture 3 Prof. Bode - ETH Zn.ethz.ch/~nielssi/download/4. Semester/OC II/Unterlagen... · 2013. 3. 1. · Meerwein-Ponndorf-Verley Reduction is the reverse reaction

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • OC 2 (FS 2013) Lecture 3 Prof. Bode

    1

    Redox Neutral Reactions and Rearrangements

    1 Types of “Redox Neutral Organic Reactions” 1.1 Reactions with no external reducing or oxidizing agent

    In this case, one part of the starting material is oxidized while the other is being reduced.

    1.2 “Redox Disproportionation”

    In this case, one starting material is oxidized while the other starting material is being reduced.

    2 Cannizzaro Reaction

    3 Tishchenko Reaction

    4 Meerwein-Ponndorf-Verley/Oppenauer

    Meerwein-Ponndorf-Verley Reduction is the reverse reaction of Oppenauer Oxidation

    HOredox neutral

    red.[O]O

    OH

    Me HO

    H

    redox neutral red.O

    H O

    Me[O]

    H

    O

    aq. NaOH

    Mechanism

    Ar H

    OOH

    red.[O]

    H

    OH

    H2 equivalent

    O

    OH

    Ar H

    O

    O

    (excess)

    ArH

    O

    O

    OH H2OAr

    H

    O

    Ar

    O

    OH Ar OH2H

    fromH2O

    H

    H

    O

    Al(OiPr)3O

    O

    Mechanism

    Ar H

    O Al(OiPr)3

    H H red.

    [O]

    Ar H

    OAl(OiPr)3

    Ar

    O

    H

    Ar

    H

    OAl(OiPr)3

    Ar

    O

    H

    Ar

    O

    O Ar

    H

    OAl(OiPr)3

    Mechanism

    R1 H

    O Al(OiPr)3

    red.[O]

    R1

    OAl

    R2

    OH R2

    OOH

    R1

    OH

    Me MeH

    isopropanol

    H

    OHO

    Me MeH

    acetone

    iPrO OiPr

    R2R2

    transferhydrogenation

    then work-up

    H+ work-up

  • OC 2 (FS 2013) Lecture 3 Prof. Bode

    2

    5 NHC-Catalyzed Reactions Unlike other carbene or carbenoid species which are high-energy intermediates, N-heterocyclic carbene is a stable singlet carbene. The lone pairs of the heteroatoms adjacent to the carbene carbon donate electron into the empty p-orbital of the carbene carbon. Additionally, the N-substitution provides kinetic stability.

    5.1.1 Benzoin Reactions 5.1.1.1 Before there was an NHC

    Cyanide ion catalyzed benzoin condensation

    For mechanism: Lapworth, J. Chem. Soc., Trans. 1903, 83, 995 & 1904, 85, 1206

    5.1.1.2 The thiamine variant:

    In the benzoin reaction (and many other NHC-catalyzed reactions), the aldehyde carbon undergoes a reversal in polarity from an electrophilic center to being a nucleophilic center. This concept is termed “umpolung” (Seebach ACIE 1979, 18, 239).

    General Structures of nucleophilic carbenes

    S N R'

    thiazolylidene

    N NR R'

    imidazolylidene

    NN NR R'

    triazolylidene

    XY N R

    XY N R

    H

    XY N R

    Base

    carbene ylide

    Ph H

    O CN K

    Ph CN

    O

    HPh CN

    OHPh H

    O

    Ph CN

    O

    O

    Ph

    Ph CN

    O

    OH

    Ph

    Ph

    O

    OH

    Ph

    The benzoin condensation was the first organic reaction with its mechanism fully elucidated.

    CN

    then H+

    H

    protontransfer

    CN

    OH

    H2NN S

    H3CNH3C

    N base

    HCl

    thiamine

    OH

    R N S

    H3C

    HO

    RN

    S

    H3C

    ylide

    carbene

    OPh

    HOH

    R N S

    H3C

    PhO

    H

    OH

    R N S

    H3C

    Ph OH

    OH

    R N S

    H3C

    PhHO

    O

    Ph

    OH

    R N S

    H3C

    PhOOH

    Ph

    PhPh

    O

    OH

    OPh

    H

    R2 N S

    R3R1

    HCl

    A general struture of thiazolium salt precatalyst

    for benzoin reaction(R = alkyl or aryl)

    Breslow intermediate

    NHC-aldehydeadduct

    base

    base(protontransfer)

  • OC 2 (FS 2013) Lecture 3 Prof. Bode

    3

    5.1.2 Stetter Reactions

    The research program of Prof. Tom Rovis (Colorado State University) has established the current state of the art for Stetter reactions, especially the intramolecular variant:

    5.1.3 Other NHC-Catalyzed Annulations γ-lactone synthesis via homoenolate addition

    Bode JACS 2004, 126, 8126 & Glorius ACIE 2004, 43, 6205

    5.1.4 Internal Redox Reactions - Epoxy aldehyde

    Bode JACS, 2004, 126, 8126

    Ph

    O

    H

    Ph

    OH

    N

    S

    R1

    R3

    R2

    Ph

    OH

    N

    S

    R1R2

    R3

    OPh

    Ar

    O

    PhAr

    O

    Ph

    N

    S

    R1R3

    R2

    S

    N

    Me

    Me

    HO

    O

    PhAr

    SN Me

    Me

    HO

    Ph

    O

    Ph

    OAr

    - NHC

    1,4-addition

    O

    O CO2Et20 mol% cat

    20 mol% base

    xylenes, 25 oC, 24 h O

    O CO2Et

    N N

    N

    OMe

    O BF4-

    R1 H

    O

    H

    O

    R2

    +

    base (7 mol %)THF/t-BuOH

    RT

    O

    R2

    R1

    ON N MesMesCl

    (8 mol %)

    R1 H

    O

    R1

    O

    N

    N

    Mes

    Mes

    H

    R1

    OH

    N

    N

    Mes

    Mes

    R1

    OH

    N

    N

    Mes

    Mes

    homoenolate

    H

    O

    R2

    R1

    OH

    N

    N

    Mes

    Mes

    R2 O

    activated carboxylate

    R1

    O

    N

    N

    Mes

    Mes

    R2 O

    N

    N Mes

    Mes

    OR2

    R1

    O

    Mechanism

    enolate

    base(proton

    transfer)

    base(proton

    transfer)

    R1

    R2

    OO

    H R3OH R1

    R2

    O

    OR3

    OH

    10 mol % NHC

    8 mol % base

    +

    S

    N

    Bn

    Me

    Me

    Cl–

    redox-neutral

    oxidized

    reduced

  • OC 2 (FS 2013) Lecture 3 Prof. Bode

    4

    - Mechanism:

    - An application to natural product synthesis:

    Vosburg OL, 2009, 11, 2217

    - Redox esterification from α-bromoaldehyde was concurrently reported:

    Rovis, JACS, 2004, 126, 9518

    6 Other nucleophilic catalysis 6.1.1 Baylis-Hillman reaction

    O

    R1HO

    S

    N

    Bn

    Me

    Me

    OH

    R1O

    S

    N

    Bn

    Me

    Me

    S

    NBn

    Me

    Me

    R2

    R2

    O

    R1

    O

    S

    N

    Bn

    Me

    Me

    R2

    H

    O

    R1

    HO

    S

    N

    Bn

    Me

    Me

    O

    R1

    OH

    S

    N

    Bn

    Me

    Me

    R2

    R2

    O

    R1

    OH

    OR3

    R2

    O

    R1O

    H

    R2

    S

    N

    Bn

    Me

    Me

    H

    base

    R3O

    base(protontransfer)

    base(protontransfer)

    H

    R3O

    HAcO

    Me

    O

    Me

    O S N Bn

    MeMe

    baseEtOH

    OEtAcO

    Me

    OH

    Me

    OO

    Me H O

    Me

    MeMe

    83% (+)-davanone

    Cl

    R1H

    O

    Br

    R3OH(20 mol %) R1

    OR3

    O

    R2R2

    NN N Ph

    BF4

    Et3N (1 eq)

    55−91%

    OMe

    OO

    Ph H OMe

    OOH

    Ph

    NN

    DABCO

    Mechanism

    X

    O

    NR3

    X

    O

    NR3

    O

    R'HX

    O

    NR3

    R'

    OH

    NR3

    X

    O

    R

    ONR3

    H NR3 X

    O

    R'

    OHNR3

  • OC 2 (FS 2013) Lecture 3 Prof. Bode

    5

    6.1.2 Rauhut-Currier reaction

    6.1.3 Others

    PPh3 catalyzed cycloaddition of N-Tosyl-substituted imines with allenes

    7 Alkyne and Alkene Hydration

    7.1 Alkyne Hydration

    - Mercuric ion-catalyzed hydration of alkynes goes with Markovnikov orientation. - The Hg2+ salt acts as a catalyst to accelerate the rate of reaction; the nucleophile (e.g. H2O) will attack the most stabilized carbocation it formed.

    7.2 Alkene Hydration

    The orientation of hydration to alkenes with aqueous acid is followed by Markovnikov's rule

    O

    EtO OEt

    O 1 equiv Bu3P

    MeCN, 40 oC, 3 hr EtO

    O

    OEt

    O

    Mechanism

    R

    O

    PR3

    R

    O

    PR3

    O

    RR

    O

    PR3

    R

    OH PR3

    H

    R

    O

    R

    OH

    R

    O

    R

    Oketo-enoltautomerism

    •COOMe

    NTs

    PPh3

    benzener.t.

    N

    COOMe

    Ts

    Mechanism

    398%

    PPh3COOMe

    TsN Ph

    COOMePPh3

    N

    Ph3P COOMe

    Ts

    Ph

    N

    Ph3P COOMe

    Ts

    Ph

    PPh3

    1 2

    1

    2

    3

    R HH2O, H2SO4Hg(OAc)2 R

    OH

    enol tautomer

    R

    O

    keto tautomerMarkovnikov product

    R2R1Hg2+

    R2

    Hg+

    HOH

    R1

    O R2

    Hg+

    HH

    HOH

    R1

    O R2

    Hg+

    H H3O+

    + H3O+R1

    O R2

    H

    Hketo-enol

    tautomerism O

    R1R2

    Mechanism

    + Hg2+, H2Ocarbocation oxonium ion Markovnikovproduct

    R1

    Me H3PO4H2O, 250 oC

    (Markovnikov product)

    MeOH

  • OC 2 (FS 2013) Lecture 3 Prof. Bode

    6

    8 Nef Reaction

    9 Rearrangements 9.1 Pinacol Rearrangements 9.1.1 Pinacol to pinacolone

    - The group that stabilizes a positive charge better migrates first.

    9.1.2 Stereospecific pinacol rearrangements

    9.1.3 Synthesis of enantiopure quaternary carbons

    Semipinacol rearrangement of 2,3-aziridino alcohols

    Mechanism

    R2

    R1

    R3

    OH HH

    R1R2 H

    HR3

    +

    HOH

    R2 H

    HR3

    OR1

    HH

    HOH

    R2 H

    HR3R1

    HO

    - H2O - H3O+

    H

    Me

    NONa

    O H2SO4

    H2O

    Me

    OH

    Mechanism

    R2

    R1

    NO

    OR2

    R1

    NHO

    OR2

    R1

    NHO

    OHR2

    R1

    NHO

    OHHOH R1 R2

    OH2N2O2 N2O

    O

    HH

    + H+ + H+ P.T. + H+

    -H2O -H2O

    HO OH

    Me MeMe Me

    pinacol

    aq. H2SO4- H2O

    O

    Me

    Me

    MeMe

    HO OH

    R2 R3R1 R4

    Mechanism

    pnacolone

    H HO OH

    R2 R3R1 R4

    H- H2O HO

    R2R1

    R4

    R3

    [1,2]-alkyl shiftR1

    OH

    R4

    R2R3

    - HR1

    OR4

    R2R3

    H3C Ph

    O

    S

    H3C Ph

    OH

    OHS

    MsCl, Et3N

    CH2Cl20 oC, 10 min

    H3C Ph

    OH

    MsOS

    Et3Al

    CH2Cl2-78 oC, 10 min

    93%99% e.e.

    OHNTs

    Et MeZnBr2

    CH2Cl2, r.t.

    Me O

    Et

    NHTs

    NTs

    R1

    OHR2

    Lewis acidN

    R1

    OHR2

    TsLA

    R2

    OH

    NTs

    LA

    R1

    - LA

    O

    R2

    NHTs

    R1

    Mechanism

  • OC 2 (FS 2013) Lecture 3 Prof. Bode

    7

    9.2 Benzil rearrangement

    9.3 Favorskii rearrangement

    9.4 Payne rearrangement

    O

    O

    KOH

    H2O, MeOH, heat

    OH

    R

    OR

    O

    benzil

    OHR

    OO

    ROH R

    O

    R

    O

    OK HCl OH

    O

    OH

    R

    HO

    ROH

    O

    O

    OH3O+

    R

    HO

    ROH

    O

    Mechanism

    - H2O

    OCl NaOH

    O OH

    OHXR1R2

    R1XR2

    O

    R1O

    R2 R1R2O OR

    R1

    R2

    OH

    OBase

    HOR H

    protontransfer

    Mechanism

    - X–

    O

    CH3

    H CH3O

    H3C

    H H

    OHH3C CH3

    H3COH

    0.5 N NaOH

    O

    R2

    R1H

    OO

    R2

    R1H

    O O

    R2

    R1 OH OH

    R2

    R1 OBase 3-exo-tet

    - HBase

    + HBase

    - Base

    Mechanism

    R1 O

    OHR2

  • OC 2 (FS 2013) Lecture 3 Prof. Bode

    8

    10 Advanced Topic (Optional)

    10.1 Ir catalyzed redox neutral C-C bond coupling

    More information: Krische Org. Process Res. Dev., 2011, 15, 1236

    10.2 Chemoselective Keto-Acid-Hydroxyl-Amine Ligation

    Bode ACIE 2006, 45, 1248

    10.3 Gold-catalyzed cycloisomerization of bis-homopropargylic diols under a mild condition

    Michelet & Genêt JACS 2005, 127, 9976

    OAc OH

    R

    IrO

    O

    NO2

    PPh2

    Ph2P

    2.5 to 5%

    Cs2CO3; m-NO2BzOHTHF; 110oC

    OH

    R

    [Ir3+]

    OH

    R

    [O]

    O

    R

    [Ir3+]

    OH

    R

    H2N

    H2NHN

    ONH

    OPh

    O

    O

    OHMe

    HOHN

    NH

    O

    Me

    COOH

    O

    HN

    Ph

    OH

    O H2N

    H2NHN

    ONH

    OPh

    O

    HN

    MeNH

    O

    Me

    COOH

    O

    HN

    Ph

    OH

    O+

    aq. DMF40 oC

    - CO2- H2O

    HO

    HOPh

    H

    AuCl (2 mol %)

    MeOH, r.t.30 min

    O

    O

    Ph

    Me99%

    HO

    HO R

    H

    O [Au]H

    R

    HO

    O[Au]–

    R

    HO

    [Au]

    H+

    H+

    O

    O

    R

    Me

    Mechanism