PDE Lec 06 Orthogonal

Embed Size (px)

Citation preview

  • 8/13/2019 PDE Lec 06 Orthogonal

    1/8

    HUT DEPARTMENT OF MATH. APPLIED--------------------------------------------------------------------------------------------------------

    --IDE MODERNIZED PROGRAM

    PARTIAL DIFFERENTIAL EQUATIONS (PDE)

    ORTHOGONAL FUNCTIONS - GENERALEXPANSION PROBLEM (PHOTO, P. 552) PhD. NGUYEN QUO C LAN 12/2009)

  • 8/13/2019 PDE Lec 06 Orthogonal

    2/8

    CONTENTS-------------------------------------------------------------------------------------------------------------------------------

    3. Orthogonal with respect to weight function. Generalizedfourier series

    1. Recall: Heat problem. Orthogonal feature of basic solution2. Example: Heat problem with radiating end

    4. Sturn Liouville Theorem5. Application to the Heat problem with radiating end

  • 8/13/2019 PDE Lec 06 Orthogonal

    3/8

    RECALL: SEPARATION FOR PDE (HEAT PROBLEM)-----------------------------------------------------------------------------------------------------------------------------------

    Heat problem: ( ) ( ) ( ) ( )xuxututux

    ua

    t

    u02

    2

    0,,0,,0, ===

    =

    Separation: ( ) ( ) ( ) ( ) 1,sin,, 2 == nnxebtxutTxXtxu tannn( ) ( )

  • 8/13/2019 PDE Lec 06 Orthogonal

    4/8

    EXAMPLE: HEAT PROBLEM WITH A RADIATING END-----------------------------------------------------------------------------------------------------------------------------------

    Heat problem: ( ) ( ) ( )...,,,0,0,2

    2

    thutx

    utu

    x

    ua

    t

    u =

    =

    =

    Separation: ( ) ( ) ( ) ( ) ( ) huXXXtTxXtxu === /// &0,( ) 0cossinsin&0,2 =+=>= hxBxX

    ?Root:1

    &,tantan ====== z

    h

    zzz

    hh

    nnn

    zz =rootsofnumberInfinite

    ( )

    =

    =1 sin,

    2

    nn

    ta

    n xebtxu

    n

    ( ) ( ) ?sin0,1

    ===

    =n

    n

    nn bxfxbxu z

    zy =

    zy tan=

    2

    2

    3

    Is the system {sinnx} orthogonal?

  • 8/13/2019 PDE Lec 06 Orthogonal

    5/8

    ORTHGONAL SYSTEM. APPLICATION: FOURIER SERIES-----------------------------------------------------------------------------------------------------------------------------------

    Fourier series: Given a orthogonal system {n} over (a, b) and( ) ( ) ( )

    200

    ,,

    n

    nn

    i

    b

    a

    ni

    b

    a

    n

    i

    ii

    fafbaxxaxf

    ===

    =

    =

    ( ) ( ) tscoefficienFouriersincos,21:2,0, 222 ==== mxnxba

    Definition: A system {n(x)} is called orthogonal over (a, b) if:

    Example: The trigonometric system {cos0x = 1, cosx, cos2x, cosnx, , sinx, , sinmx, } is orthogonal over (0, 2) as

    ( ) ( ) ( ) ndxxmndxxx n

    b

    a

    nmn

    b

    a

    mn 0&,0,22 ===

    1,0sincossin1cos12

    0

    2

    0

    2

    0

    === mnmxdxnxmxdxnxdx

  • 8/13/2019 PDE Lec 06 Orthogonal

    6/8

    ORTHGONAL WITH RESPECT TP THE WEIGHT FUNCTION-------------------------------------------------------------------------------------------------------------------------------------------

    Generalized Fourier series: If the system {n} is orthogonal withrespect to the weight function p(x) over (a, b) and we have

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( )

    :,......2

    00

    =+++= b

    a

    n

    b

    a

    n

    nnn

    dxxxp

    dxxxpxf

    abaxxaxaf

    Generalized Fourier coefficients

    Definition: A system {n(x)} is called orthogonal with respect tothe weight function p(x) > 0 over (a, b) if:

    ( ) ( ) ( )

    =

    = mn

    mndxxxxp

    b

    a

    mn,0

    ,0

  • 8/13/2019 PDE Lec 06 Orthogonal

    7/8

    STURM LIOUVILLE THEOREM-------------------------------------------------------------------------------------------------------------------------------------------

    Separation for a lot of boundary problems with 2nd order linearPDE gives y// + y = 0, y(a) = y(b) = 0: r(x) 1 > 0, q(x) = 0, p(x) 1, n1 = n2 = 0 By Sturm Liouville: Solution {yn} is orthogonal

    Consider the differential equation with the boundary conditions:

    If 1, 2 n are distinct values of the parameter forwhich this problem has nontrivial solutions y1, y2 yn thenthe system {yn} is orthogonal with respect to the weight p(x)

    ( )[ ] ( ) ( )[ ] ( ) ( ) ( )

    ( ) ( )( )barrqpnmnm

    bynbym

    aynaymbaxyxpxqyxr

    dx

    d

    ,over0;continuous,,;0,0where0

    0&,,0

    22

    22

    21

    21

    /

    22

    /11/

    >>+>+

    =

    ==++

  • 8/13/2019 PDE Lec 06 Orthogonal

    8/8

    HEAT PROBLEM WITH A RADIATING END-----------------------------------------------------------------------------------------------------------------------------------

    We have already the solution: ( )

    =

    =1

    sin,2

    n

    nta

    n xebtxu n

    From the initial condition: ( ) ( ) ( ) 2,0,sin0,1

    ==

    =

    xxfxbxu

    n

    nn

    As {sinnx} is orthogonal: ( ) xxxfb nnn 2sinsin,=

    Return to the heat problem with radiating end. Separation gives:

    By Sturn Liouville, the basic solution {Xn(x)} = {sinnx} isorthogonal with respect to the weight function p(x) = 1. So thesystem {sinnx} is simple orthogonal.

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) !1,,0,1,1,0,01with

    Liouville-Sturm:0,00,0

    2211

    /2//

    ======>=

    =+==+

    nhmnmxpxqxr

    XhXXxXxX