55
7/23/2019 Poisson's binomial http://slidepdf.com/reader/full/poissons-binomial 1/55 LECTURE 15 X-Ray Difraction Strcuture o Materials

Poisson's binomial

Embed Size (px)

Citation preview

Page 1: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 1/55

LECTURE 15

X-Ray Difraction

Strcuture o Materials

Page 2: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 2/55

Why should we be interested?

Page 3: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 3/55

Page 4: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 4/55

pma 2010

LATTICE AA!" A#$ %A&AI" LATTICE"

 Crystalline materials differ from amorphous materials in that in the former there is order in the arran'ement of the molecular contents whereas in the latter there is no order or at best a tendency for a short(ran'e order)

 The packing of atoms, molecules or ions within a crystal occurs in a symmetrical manner and furthermore this symmetrical arran'ement is repetiti*e) A most important common characteristic that crystals may share is the manner  in which repetition occurs) This will be e+pressed in a common lattice array)

 A lattice array is constructed from the arran'ement of  atomic material within the crystal as follows,

Page 5: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 5/55

pma 2010

  A 2-dimensional Lattice -ic. any position within the 2 dimensional lattice in /i') 1a and note the arran'ement about this point) The chosen position can be indicated by a point a lattice point) In *iew of the repetiti*e arran'ement there will be a 2 dimensional array of identical positions and if these are also mar.ed by a point a 2(dimensional lattice will result if the points are 3oined)

Page 6: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 6/55

pma 2010

In a real 3-dimensional crystal lattice the same ideas apply.

 When crystal structures are represented by lattices it transpires that all crystals

 brea. down into one of fourteen three dimensional lattice arran'ements) Braais demonstrated mathematically that there are only fourteen ways in which repetiti*e symmetry can occur and the fourteen lattices representin' the ways in which repetition can occur are referred to as the Braais lattices)

!"IT C#LL

 A unit cell can be any unit of a lattice array which when repeated in all directions and always maintaining the same orientation in space 'enerates the lattice array)

There is no uni4ue way of choosin' a unit cell) /or e+ample each of the  cells A to $ in /i') 2 are 56)

 7owe*er the cell fa*oured by crystallo'raphers is the one of  smallest *olume that displays all of  the symmetry of the lattice) Thus cells C and A are the preferred unit cells for the lattices

 of /i's) 2 and 8 respecti*ely)

A B

C $

A

B

%ig. & %ig. 2

%ig. 2 %ig. 3

Page 7: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 7/55

pma 2010

 When these unit cells are combined with possible 9centerin': there are 1; different %ra*ais lattices)

In 'eneral si+ parameters are re4uired to define the shape and si<e of a unit cellthese bein' three cell ed'e len'ths con*entionally defined as a b and cand three an'les con*entionally defined as α β and γ ) In the strict mathematicalsense a b and c are *ectors since they specify both len'th and direction)α is the an'le between b and c β is the an'le between a and c γ  is the an'le

between a and b) The unit cell should be ri'ht handed) Chec. the cell abo*e withyour ri'ht hand

!"IT C#LL T'(#) and T*# )#+#" C')TAL )')T#)

Cubic a = b = c) α = β = γ  = >0)Tetra'onal a = b ≠ c) α = β = γ  = >0)

5rthorhombic a ≠ b ≠ c) α = β = γ  = >0 )@onoclinic a ≠ b ≠ c) α = γ = >0 β ≠ >0)Triclinic a ≠ b ≠ c)) α ≠ β ≠ γ  ≠ >0)hombohedral a = b = c) α = β = γ  ≠ >0 )or Tri'onal7e+a'onal a = b ≠ c) α = β = >0 γ  = 120)

5rthorhombica

c b

Page 8: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 8/55

%ra*ais Lattices

Page 9: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 9/55

Cubic Tetra'onal and 5rthorhombic

Page 10: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 10/55

pma 2010

Cuic

Tetragonal

/rthorhomic

onoclinic

Triclinic

(rimitie Cell

Body

Centred

Cell

%ace

Centred

Cell

#nd %ace Centred

  Cell

(

I %

C

%ig. 3

Trigonal

*e0agonal

Page 11: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 11/55

pma 2010

 &. E*ery crystal system has a primiti*e %ra*ais lattice)

2. The distribution of lattice points in a cell must be such as to maintain the total symmetry of the crystal system) Thus the cubic system cannot ha*e a C(type cell)

3. The fact that a unit cell meets the symmetry re4uirements of a crystal system does not 'uarantee its inclusion within the crystal system) This could result if the lattice it 'enerated could be e4ually well represented by a unit cell type which is already included within the crystal system) The C(type cell for the tetra'onal system see /i') ; pro*ides a 'ood e+ample)

%ig. 1

C - cell

( - Cell

/our simple points on crystal lattices,

1. If you repeat 8) within the orthorhombic system you will find that the primiti*e cell you

 'enerate will not ha*e >0 an'les) This is not orthorhombic and thus orthorhombic C is included in the crystal system)

Page 12: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 12/55

pma 2010

%ig. 1

C - cell

( - Cell

 A simplified *iew down c(a+is can beused to illustrate points 8 and ; 

5rthorhombica b c a = b = γ  = >0

ab

 An'le not >0B smaller cellnot orthorhombic

Tetra'onal

a = b c a = b = γ  = >0

ab

"maller cell is Tetra'onal -

Page 13: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 13/55

pma 2010

)'#T' (/I"T /!( )'#T' A"$ )(AC# /!( )'#T'

 -oint 'roup theory is not dealt with here) What follows is 3ust a summary) -oint 'roup symmetry defines the symmetry of an isolated ob3ect or 

 'roup of ob3ects whereas space 'roup symmetry further defines the systematic fashion in which an ob3ect or 'roup of ob3ects is repeated in space to 'enerate an infinite periodic array in 8$)

 -oint 'roup symmetry is 4uantified in terms of symmetry elements e+istin' within the ob3ect or 'roup of ob3ects and their associated operations) /our symmetry elements are used to 4uantify point 'roup symmetry

)ymmetry #lement )ymmetry /peration

otation a+is n(fold otation@irror plane eflection

Centre of "ymmetry In*ersionotor(reflection a+is n(fold otation and reflection

or otor(in*ersion a+is n(fold otation and in*ersion

Page 14: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 14/55

pma 2010

!"IT C#LL !"IT C#LL

(ositions of 2-fold a0esand mirror planes

Centres ofsymmetry

a

a

%ig. 4

5a6 56

-oint roup and "pace roup "ymmetry

 To 'enerate a 8$ lattice from an ob3ect it is necessary to add translational

 symmetry to point 'roup symmetry) The two important space 'roup symmetry operations which mo*e ob3ects are 'lide planes and screw a+es) These operations combine translation and reflection and translation and rotation respecti*ely)

The penta'ons on the

 left are related by simple translation) In Db the penta'on on the top left of the cell is related to the one in the centre by

 translation a2 followed by either reflection or  rotation) Centres of  in*ersion in Db are mar.ed with tiny circles)

Page 15: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 15/55

Page 16: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 16/55

pma 2010

The A%"E# pro'ram within 5scail can pro*ide %ar Chartsof the contents of the Cambrid'e $ata %ase C"$

The number of entries by crystal system Entries in the first 2D space 'roups

Page 17: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 17/55

pma 2010

C')TAL (LA"#) A"$ ILL# I"$IC#)

 The use of crystal planes to describe the

 structure of crystals 'oes bac. to the start of crystallo'raphy and crystal planes were used by %ra'' to e+plain diffraction as will be seen later) Crystal planes are defined by the intercepts they ma.e on the

 crystal a+es of the unit cell) The in*erse of these fractions are the @iller Indices of the planes)

 In a the intercepts are G G 1 and the @iller Indices are 2 2 1)

 In c the intercepts on b and c are at infinity the in*erse of which is 0 and the plane is the 2 0 0) In d the plane cuts the ne'ati*e c a+is at (1 and thus is 1 1 (1) In crystallo'raphy (1 is often written H 

 and pronounced 9%ar 1:)

Page 18: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 18/55

Characteristics of cubic lattices

)imple Body-centered %ace-centered

Lattice

pointscell1 2 ;

#umber ofnearest

nei'hbours J 12

nearest

nei'hbourdistance a √82 a a√2

-ac.in'fraction π = 0)D2; √8J π = 0)J0 √2 π = 0)F;0

Page 19: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 19/55

7e+a'onalK @iller(%ra*ais indices

Page 20: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 20/55

@etallic bondin'

Page 21: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 21/55

elation between 7C- and /CC

Page 22: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 22/55

%CC to 7C- transformation

Page 23: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 23/55

-roduction and -roperties of (ays

• (rays were disco*eredin 1J>D by Mnt'en

• In*isible in nature• -enetrate much more

than *isible li'ht

Page 24: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 24/55

(ray interaction with matter 

Page 25: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 25/55

Page 26: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 26/55

/undamentals of $iffraction

Page 27: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 27/55

Page 28: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 28/55

Page 29: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 29/55

$iffraction

• If a wa*e encounters a barrier that has an openin' of dimensionsimilar to the wa*elen'th the passin' wa*e will flare spread Nwill diffract N in the re'ion behind the barrier)

• $iffraction limits 'eometircal optics N will cause the li'ht to spread

a   a a

$iffractedwa*e

)0 λ8)0 λ 1)D λ

 λ

"creen

Page 30: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 30/55

5ri'in of (rays

Page 31: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 31/55

$iffraction and %ra''Os law

• "tructural information can be obtained by

usin' (rays electrons or neutrons• The incident radiation must ha*e a

wa*elen'th between 0)1 and 1 )•

The interference of +(rays when scatteredfrom the atoms within a crystal lattice)

Page 32: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 32/55

pma 2010

$I%%ACTI/" A"$ T*# BA #<!ATI/" 

@a+ *on Laue was the first to

 su''est that crystals mi'ht diffract (rays and he also pro*ided the first e+planation for the diffraction obser*ed) 7owe*er it is the e+planation pro*ided by %ra'' that is simpler 

 and more popular)

incidenteam

reflectedeam

0

y

m n

d

o o

o o

o oA B

C $

a

incidenteam

reflectedeam

0

y

m n

d

o o

o o

o oA B

C $

d

a!"IT

C#LL

=

/ (

5a6

56

%ig. &&

52,7,76

5&,7,76

# %

!"IT

C#LL

 In the %ra'' *iew crystal planes act a mirrors) Constructi*e interference is obser*ed when the path

 difference between the two reflected beams in a = nλ. The path difference in a is 2my) "ince myd = sinθ 2my = 2dsinθ = nλ where d is the interplanar spacin')

Page 33: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 33/55

pma 2010

 In a abo*e it is clear that the planes are the 100 set of planes) If the path difference is simply one wa*elen'th the %ra'' condition can be stated as

 This is a first order reflection) If the path difference istwo wa*e len'ths the %ra'' condition becomes

and the reflection is a second order reflection)

%ra''Ps Law animated

λ θ   =sin2 )0,0,1(d 

λ θ    2sin2 )0,0,1(   =d 

Page 34: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 34/55

•  A monochromatic beam of (rays with coherentradiations incident on a crystal

• The atoms are arran'ed as sets of parallel planesand these atoms act as a reflection mirror for (rays

Page 35: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 35/55

elation between plane spacin' andlattice constant

• /or a cubic crystal

Where h . l are called miller indices•

/or constructi*e interference the beams scattered on differentplanes need to be in phase i)e)fi'ure 1

The abo*e relation is called %ra''Os law)/or the first order diffraction i)e) n =1

λ = 2dh.lsinθ

Page 36: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 36/55

pma 2010

C,')TAL )')T#-and

!"IT C#LL $I-#")I/")

%!LL $ATA )#TC/LL#CTI/"

B,A+AI) LATTIC#

)(AC# 3,/!(

C/")T,!CT A"#L#CT,/" $#")IT'

-A(

L/CAT# AT/-(/)ITI/")

)T,!CT!,#,#%I"#-#"T

)#L#CT A )!ITABL#

C,')TAL

A

B

C

$

#

%

3

 )/L+I" A C')TAL )T!CT!# B'

 )I"L# C')TAL $I%%ACTI/" T#C*"I<!#)

 ".B. The crystal must e a single crystal. 

%ra''Qs e4uation specifies that if a crystal is rotated within a monochromatic (ray beam such that e*ery concei*able orientation of the crystal relati*e to the beam is achie*ed each set of planes will ha*e had the opportunity to satisfy the %ra'' e4uation and will ha*e

 'i*en rise to reflection) In order to sol*e a crystal structure it is necessary to record a lar'e number of reflections) This implies accurately measurin' their intensities and recordin' their directions with respect to crystal orientation and initial (ray beam direction)

 @any e+perimental techni4ues ha*e been de*ised to achie*e this) The steps in*ol*ed in a crystal structure determination are summarised in the flow chart)

$i 5f A A $ $ C ll i "

Page 37: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 37/55

pma 2010

$ia'ram 5f An Area $etector (ay $ata Collection "ystem)

 The crystal is oscillated o*er R 2B while an ima'e is collected then rotated by the same amountand oscillated a'ain) The process is

 repeated o*er a total ran'e of about 1J0B) Each ima'e is e+posed for R 100s) Thus if readout time is i'nored total data collection time is often R 8 hr) A typical ima'e shown to the left) A computer pro'ram is used to predict

 the unit cell from se*eral ima'es)

The first crystallo'raphicdata collection systems usedphoto'raphic methods) Thesewere replaced by automateddiffractometers which measuredreflections one at a time) A typicaldata collection too. se*eral days)modern systems use area detectorswhich measure 100s at a time)

Page 38: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 38/55

pma 2010

$etermination of the Lattice type and "pace roup

 7i'h symmetry can lead to reflections bein' systematically absent from the data set) Absent reflections ha*e no measurable intensity) There are two types of absences eneral Asences and )pecial Asences) The 'eneral absences determine the lattice typeK  -rimiti*e ( has no 'eneral absences and no restrictions on h . or l)  End Cantered C hS.=2nS1 are all absent)

  /ace Cantered % only h . l all e*en or all odd are obser*ed)  %ody Cantered I hS.Sl=2nS1 are all absent)

 The special absences refer to specific sets of reflections and are used to detect the presence of 'lide planes and screw a+es) "ome "pace roups

 are uni4uely determined by special absences but in many cases se*eral "pace roups will ha*e to be considered)

Computer pro'rams are able to lay out the data in tables with absencesindicated and possible "pace roups can be su''ested howe*er the choice of "pace roup will often need much thou'ht)

Page 39: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 39/55

pma 2010

The "eed for )ingle Crystals ( In order to carry out a detailed (ray structure determination it is essential to ha*e a crystal of the material in 4uestion) @any compounds cannot be crystallised and thus are not amenable to diffraction studies) There are also commercially important materials such as 'lasses and many ceramics which owe their uni4ue properties to their  amorphous nature) %ein' amorphous no lon' ran'e order the structures of these materials cannot be in*esti'ated in detail by diffraction techni4ues)

Locating *ydrogen atoms ( 7ydro'en atoms ma.e e+tremely small contributions and for this reason (ray crystallo'raphy is not a 'ood techni4ue for accurately locatin' hydro'en atom positions) If the location of hydro'en atoms is of specific interest e.g. in the study of hydride structures and hydro'en bondin' interactions use has 'ot to be made of the much more e+pensi*e and less a*ailable techni4ue of neutron diffraction) The theory of neutron diffraction is *ery similar  to that for (ray diffraction but an essential difference is that hydro'en atoms scatter neutrons as effecti*ely as many other atoms and for this reason they can be located with 'ood accuracy in the structure determination)

-roblems with (ray Crystallo'raphy

 Lo> Temperature )tructure $etermination N When (ray data are collected at low temperature R(1D0 C thermal ellipsoids are smaller and better defined)

 #)%) bond len'ths show *ery little *ariation with temperature)

Page 40: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 40/55

pma 2010

(/?$# @-A' $I%%ACT/#T'

 A crystalline powder sample will diffract (rays but since the orientations of the indi*idual crystals are random the data set produced is a plot of intensity v.s.

 diffraction an'le or %ra'' an'le θ)

 7ere the sample is sittin' on a flat plate and the plate is turned about the centre of the diffractometer at half the rate throu'h which the counter 

 mo*es) This is the θ2θ or %ra'' scan method)

 #otice the plot contains 2θ on the (a+is and (ray intensity on the y(a+is)

Page 41: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 41/55

pma 2010

!ses of @-ray (o>der $iffraction

 In 'eneral powder diffraction data are unsuitable for sol*in' crystal structures) "ome ad*ances ha*e recently been made usin' the iet*eld method) 7owe*er 

 this is far from tri*ial and it wor.s best in relati*ely simple cases) It is *ery difficult to be sure that the unit cell is correct as the reflections o*erlap and are difficult to resol*e from one another)

 Important adantages and uses of po>der diffraction

1) The need to 'row crystals is eliminated)

2) A powder diffraction pattern can be recorded *ery rapidly and the techni4ue  is non(destructi*e)8) With special e4uipment *ery small samples may be used 1(2m');) A powder diffraction pattern may be used as a fin'erprint) It is often superior to  an infrared spectrum in this respect)D) It can be used for the 4ualitati*e and often the 4uantitati*e determination of 

  the crystalline components of a powder mi+ture)) -owder diffractometry pro*ides an easy and fast method for the detection of   crystal polymorphs) -owder patterns are pro*ided when a dru' is bein'  re'istered with the /$A) -olymorphs are different crystal forms of the same  substance)

Page 42: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 42/55

pma 2010

 /or an ortho'onal system α = β = γ = >0B the relationship between interplanar spacin' d and the unit cell parameters is 'i*en by the

 e+pression,

 This is the e+pression for an orthorhombic crystal)

 /or the tetra'onal system it reduces to

and for the cubic system it further reduces to

Calculations using @-ray po>der diffraction patterns.

2

2

2

2

2

2

2),,(

1

c

b

a

h

d  l k h

++=

2

2

2

22

2),,(

)(1

c

a

k h

d  l k h

++

=

2

222

2),,(

)(1

a

l k h

d  l k h

++=

I t t C bi L tti T

Page 43: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 43/55

pma 2010

"ite #aS  Cl(Central 0 1/ace 2 0Ed'e 0 12;Corner JJ 0Total ; ;

Important Cubic Lattice TypesTwo of the most important cubic lattice types are the #aCl type and theCsCl type)

"toichiometry formula from the nit Cell

In the CsCl structure both ions ha*e coordination numbers of J and the structureis a simple primiti*e one with no centrin')

/ormula Cs at centre = 1  J + 1JCl = 1 = CsCl

#aCl crystalli<es in the "pace roup %m-3m

Page 44: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 44/55

Page 45: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 45/55

pma 2010

The %ra'' e4uation may be rearran'ed if n=1

from to

 If the *alue of 1/(d h,k,l  )2  in the cubic system e4uation abo*e is inserted into this form of the %ra'' e4uation you ha*e

"ince in any specific case a and λ are constant and if λ2;a2 = A

θ λ    sin2d n   =   θ λ    2

2

2

sin4

=d 

)(4

sin   2222

22 l k h

a

++= λ θ 

)(sin   2222 l k h A   ++=θ 

Page 46: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 46/55

pma 2010

A"AL')I) /% @-A' (/?$# $I%%ACTI/" $ATA 

$iffraction data ha*e been collected on a powder diffractometer for a series of  compounds that crystallise in the cubic system)

 In the practical course each person will calculate the unit cell parameter and density from an (ray powder diffraction pattern)

 <uestion &

 Aluminium powder 'i*es a diffraction pattern that yields the followin' ei'ht lar'est d(spacin's, 2)88J 2)02; 1);81 1)221 1)1> 1)012; 0)>2J>

 and 0)>0DD U) Aluminium has a cubic close pac.ed structure and its atomic wei'ht is 2)>J and λ = 1)D;0D A ) Inde+ the diffraction data and calculate the density of aluminium)

The %ra'' e4uation can be used to obtain sinθ

 The ccp lattice is an / type lattice and the only reflections obser*ed are those with all e*en or all odd indices)

Thus the only *alues of sin2θ in that are allowed

are 8A ;A JA 11A 12A1A and 1>A for the first ei'ht reflections)

)(sin   2222l k h A   ++=θ 

θ λ    sin2d =d 2

sin  λ 

θ   =

Page 47: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 47/55

pma 2010

dU "inθ "in2θ Calc) "in2θ h . I

2)88J 0)82>;D 0)10JD; 111

2)02; 0)8J0D 0)1;;J2 0)1;;F2 200

1);81 0)D8J2 0)2J>F2 0)2J>;; 220

1)221 0)80J; 0)8>F>D 0)8>F>J 811

1)1> 0)DJ>0 0);8;1; 0);8;1 222

1)012; 0)F0J2 0)DFJJ; 0)DFJJJ ;00

0)>2J> 0)J2>21 0)JFDJ 0)JF;2 881

0)>0DD 0)JD08 0)F28DJ 0)F280 ;20

Insert the *alues into a table and compute sinθ and sin2θ)"ince the lowest *alue of sin2θ is 8A and the ne+t is ;A the firstEntry in the Calc) sin2θ column is 0)10JD;8V; etc.

The reflections ha*e now been inde+ed)

Page 48: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 48/55

pma 2010

 /or the first reflection for which h2 S .2 S l2 = 8 sin2θ = 8A = 8 λ2  ;a2

 a2 = 8λ2 ;sin2θ  a = ;)0;>; U = ;)0;>; + 10(J cm)

Calculation of the density of aluminiuma8 = );08D U8 = );08D + 10(2; cm8)If the density of aluminium is ρ ') cm)(8 the mass of the unit cell is  ρ + );08D + 10(2; ')The unit cell of aluminium contains ; atoms)The wei'ht of one aluminium atom is 2)>J)022 + 1028 = ;);J02; +

10(28

 and the wei'ht of four atoms the content of the unit cell is 1F>)20> +10(2;)

 ρ + );08D + 10(2; = 1F>)20> + 10(2;

 p = 2)>JJ ')cm(8)

Calculation of a

Page 49: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 49/55

pma 2010

 Answer each of the followin') 5n the basis that the structure is cubic and of either the #aCl or CsCl type1) Inde+ the first si+ reflections) &4 marks, 2) Calculate the unit cellparameter)4 marks, 8) Calculate the density of A'Cl) 4 marks

Assume the followin' atomic wei'hts, A' 10F)JJK Cl 8D);D8K and A*o'adroPs number is )022 + 1028

The (ray powder diffraction pattern of A'Cl obtained usin' radiation of  wa*elen'th 1)D;U is shown below) The pea.s are labelled with 2 *alues

Page 50: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 50/55

pma 2010

 "ince θ *alues are a*ailable sin2θ *alues can be calculated and inserted in a table)

1) for a face centred lattice 8A ;A JA 11A 12A and 1A 2) for a primiti*e lattice 1A 2A 8A ;A DA and A

2θ θ "in2

θ2F)J0 18)>0 0)0DFF

82)20 1)10 0)0F>

;)20 28)10 0)1D8>

D;)J0 2F);0 0)211J

DF);D 2J)F8 0)2810F);D 88)F8 0)80J8

The second option is not possible as the first 2 are not in the ratio of 1,2)To test the first option di*ide the first by 8 and multiply the result by ; J etc. 

Calc) "in2

θ

0)0F>8

0)1D8>

0)211

0)280J

0)80FF

/rom "in2θ = Ah2 S .2 S l2 the possible *alues are,

Page 51: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 51/55

pma 2010

"ince sin2θ = λ2h2 S .2 S l2;a2

a2 = 1)D;2)1;0)80J8 usin' the lar'est most accurate 2θa2 = 80)F>2a = D)D;FX 1X = 10(J cm/ormula wt) of unit cell = ;A'Cl = DF8)2J;'This is the wei'ht of ; moles of A'Cl)

The wei'ht of ; molecules is DF8)2J; )02 + 1028$ensity = DF8)2J; )02 + 1028D)D;F + 10(J8  A is in X thus the answer should be multiplied by 1 10(2;

$ensity = D)DJ0 'cm8

$ensity of A'Cl

Page 52: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 52/55

pma 2010

(referred /rientation #ffects in @-ray (o>der $iffraction (atterns

It is possible to calculate the theoretical diffraction pattern if thecrystal structure is .nown)

Calculated pattern

5bser*ed pattern

There are no preferred orientation effects here as all reflections ha*e their 

e+pected intensity)

#ifedipine

Page 53: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 53/55

pma 2010

%en<oic acid

Calculated pattern

5bser*ed pattern

There is clear preferred orientation here)The 002 is the flat face e+posed when theneedles lie down on a flat plate)

002

00;

Page 54: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 54/55

pma 2010

"ome points relatin' to preferred orientation effects)

•   -referred orientation effects are often obser*ed for needles and plates)

•   -referred orientation effects can be reduced by sample rotation etc)

  7owe*er it is possible to obtain useful information when a stationary flat  sample holder is used without rotation and when preferred orientation  effects are at a ma+imum)

•   If de*iations from a theoretical pattern are measured they may be used  to monitor the morpholo'y shape of crystals in a production batch)

Page 55: Poisson's binomial

7/23/2019 Poisson's binomial

http://slidepdf.com/reader/full/poissons-binomial 55/55