271
Université de Montréal Problèmes d’économétrie en macroéconomie et en finance: mesures de causalité, asymétrie de la volatilité et risque financier par Abderrahim Taamouti Département de scieiices éconoliliclues Faculté des arts et (les sciences Thèse présentée à la faculté des études supérieures eu vue de l’obtentioii du grade de Philosophiae Doctor (Ph. D.) en sciellces économiques Juin 2007 © Abderrahim Taaniouti, 2007

Problèmes dléconométrie en macroéconomie et en finance

  • Upload
    ngokhue

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Problèmes dléconométrie en macroéconomie et en finance

Université de Montréal

Problèmes d’économétrie en macroéconomie et en finance:mesures de causalité, asymétrie de la volatilité et risque

financier

par

Abderrahim Taamouti

Département de scieiices éconoliliclues

Faculté des arts et (les sciences

Thèse présentée à la faculté des études supérieures

eu vue de l’obtentioii du grade de

Philosophiae Doctor (Ph. D.)

en sciellces économiques

Juin 2007

© Abderrahim Taaniouti, 2007

Page 2: Problèmes dléconométrie en macroéconomie et en finance

o

o

Page 3: Problèmes dléconométrie en macroéconomie et en finance

Universitéde Montréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalitéou en partie, par quelque moyen que ce soit et sur quelque support que cesoit, et exclusivement à des fins non lucratives d’enseignement et derecherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droitd’auteur et des droits moraux qui protègent ce document. Ni la thèse ou lemémoire, ni des extraits substantiels de ce document, ne doivent êtreimprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection desrenseignements personnels, quelques formulaires secondaires, coordonnéesou signatures intégrées au texte ont pu être enlevés de ce document. Bienque cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexciusive licenseallowing Université de Montréal to reproduce and pub!ish the document, inpart or in whole, and in any format, sole!y for noncommercial educational andresearch purposes.

The author and co-authors if applicable retain copyright ownership and moralrights in this document. Neither the whole thesis or dissertation, norsubstantial extracts from it, may be printed or otherwise reproduced withoutthe author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contactinformation or signatures may have been removed from the document. Whilethis may affect the document page count, it does flot represent any loss ofcontent from the document.

Page 4: Problèmes dléconométrie en macroéconomie et en finance

Université de Montréal

faculté des études supérieures

Cette thèse intitulée:

Problèmes d’économétrie en macroéconomie et en finance:mesures de causalité, asymétrie de la volatilité et risque

financier

présentée

Abjerrahuin Taamouti

a été évaluée par un jury composé des personnes suivantes:

\‘Villiam I\IcCausland: J)1éSitIellt —rapporteur

Jean-i\iarie Dufour: directeur de recherche

Nour Meddahi: co—directeur de recherche

Marine Carrasco: membre du jury

Einma M. Iglesias: exaririiiateur externe (Universitv of Michigan)

Jean Boivin: représentant du doyen de la FES

Page 5: Problèmes dléconométrie en macroéconomie et en finance

SommaireCette thèse de doctorat consiste en quatre essais traitant des problèmes d’économétrie

eu macroéconomie et en finance. Nous étudions trois sujets principaux : (1) mesures

de causalité à différent horizons avec des applications macroéconomiques et. financières

(essais ilos 1 et 2); (2) mesllres de risque financier et gestion de portefeuille clans les

modèles à changements de régime markoviens (essai no 3) (3) développement de niéth

odes d’inférence non paramétriques exactes. optimales et adaptatives dans les modèles

de régression linéaires et non linéaires, avec des erreurs non gaussiennes et en présence

d’hétéroscétlasticité de forme inconnue (essai no 1). De brefs résmnés de ces quatre essais

sont présentés ci-après.

Dans le premier essai. nous proposons des mesures de causalité à des horizons plus

grands ciue 1m, lesquelles généralisent, les mesures de causalité habituelles cjui se limitent

à Fhorizoni un. Ceci est motivé paI le fait que. en présence d’un vecteur de variables aux

iliaires Z, il est possible que la variable - ne cause pas la variable X à Fhorizoïi un. mais

qu’elle cause celle-ci à un horizon plus grand que un [voir Dufour et Renault (1998)].

Dans ce cas. on parle d’une causalité illdirecte transmise par la variable auxiliaire Z.

Nous proposons mie nouvelle approche pour évaluer ces mesures de causalité en simulant

un grand échantillon à partir du processus d’intérét. Des intervalles de confiailce non

paramiiétriciues. basés sur la technique de bootstrap, sont également proposés. Finale—

miment, nous présentons une application empiriclue où est analysée la causalité à différents

horizons entre la monnaie. le taux d’intérêt, les prix et le produit intérieur bruit aux

Etats-Unis.

Dans le deuxième essai. nous analysons et quantifions la relation cIntre la volatilité

et les rendements en utilisant des données à haute frécjuence. Ceci est important pour

la gestion de nisCjne ainsi que pour l’évaluation des produits dérivés. Dans le cadre

d’un; modèle vectoriel linéaire autorégressif de rendements et de la volatilité réalisée.

nous quantifions l’effet de levier et l’effet de la volatilité sur les rendements (ou l’effet

rétroactif de la. volatilité) en se servant des mesures de causalité à court et à long terme

Page 6: Problèmes dléconométrie en macroéconomie et en finance

proposées clans l’essai 1. En utilisant (les observations à chaciue 5 minute sur l’indice

boursier SP 500. nous mesurons une faible présence tic l’effèt de levier dynamique pour

les quatre premières heures clans les données horaires et un important effet tic levier

clynamiciue pour les trois premiers jours clans les données journalières. L’effet de la

volatilité sur les renclenients s’avère négligeable et non significatif à tous les horizons.

Nous utilisons également ces mesures tie causalité pour quantifier et tester l’impact tics

bonnes et des mauvaises nouvelles sur la volatilité. Ernpiriciuement, nous mesurons un

important impact des mauvaises nouvelles, ceci à plusieurs horizons. Statistiquement.

l’impact (les mauvaises nouvelles est significatif durant les quatre premiers jours, tanchs

que l’impact tic bonnes nouvelles reste négligeable à tous les horizons.

Dans le troisième essai, nous modélisons les rendements des actifs sous forme d’un

processus à changements tic régime markovien afin tic capter les propriétés importantes

tics marchés financiers, telles tjue les quelles épaisses et la persistance tians la distri

bution tics rendements. De là, nous calculons la fonction tic répartition tin process

des rendements à plusieurs horizons afin d’approximer la Valeur-à-Risque (VaR) con

ditionnelle et obtenir une forme explicite de la mesure tic risque «tiéficit prévu» (l’un

portefeuille linéaire à tics horizons multiples. Nous caractérisons la frontière efficiente

Moyenne-Variance dynamique tics portefeuilles linéaire. En utilisant des observationsjournalières sur les indices boursiers S&P 500 et TSE 300, d’abord nous constatons

que le risque conditionnel (variance ou VaR) tics rendements tl’un portefeuille optimal,

quand est tracé comme fonction de l’horizon, peut augmenter ou diminuer à des horizomis

interméthaires et converge vers une constante- le risque iriconthtionnel- à tics horizons

suffisamment larges. Deuxièmement. les frontières efficientes à tics horizons multiples

tics portefeuilles optimaux changent (tans le temps. fhialement, à court terme et dans

73.56% tic l’échantillon, le portefeuille optimal contiitionnel a une meilleure performance

que le portefeuille optimal mcon(htionhlcl.

Dans le tluatrièmc essai, nous dérivons un simple test point optimal basé sur les

statistiques tic signe tians le cadre tics modèles de régression limiéaires et non linéaires.

11

Page 7: Problèmes dléconométrie en macroéconomie et en finance

Ce test est exact. robuste contre une forme inconnue d’hétéroscedasticité. ne requiert

pas ci hypothèses sur la fouine de la distribution et il ieut être inversé pour obtenir

des régions tic confiance pour un vecteur de paramètres inconnus. Nous proposons une

approche aciaptative basée sur la techniciuc de subdivision d’échantillon pour’ choisir une

alternative telle que la courbe (le puissance tin test tic signe point optimal soit pins proche

de la courbe de I enveloppe tic puissance. Les simulations irrditiuent que quand on utilise

à peu près 10% tic l’échantillon pour estimer l’alternative et le reste, à savoir 90%, pour.

calculer la statistique du test. la courbe de puissance de notre test est typiquement proche

tic la courbe tic l’enveloppe tic puissance. Nous avons également fait une étude tic Monte

Carlo pour évaluer la performance du test de signe quasi” point optimal en comparant

sa taille ainsi que sa puissance avec celles tic certains tests usuels. tlui sont supposés être

robustes contre hétéroscedasticité. et les résultats montrent la supériorité tic notre test.

Mots clés: séries temporelles; causalité au sens de Granger: causalité indirecte;

causalité à des horizons multiples; mesure de causalité; irévisibilité; modèle autorégres

sive: VAR; bootstrap; Monte Carlo: macroéconomie; monnaie; taux d’intérêt: production:

inflation: asymétrie clans la volatilité: l’effet tic levier; l’effet rétroactif tic la volatilité;

dorniées à haut-fréquence; volatilité réalisée: modèle à changement tic régime; fonction

caractéristique; la tlistribution tic probabilité: valeur—à—risque; déficit prévu: rendement

agrégé: la borne supérieure de la valeur-à-risque; portefeuille moyenne-variance; test (le

signe; test point optimal; modèles linéaires; modèles non linéaires: hétéroscédasticité;

inférence exacte: distribution libre: l’enveloppe tic pirissalice: subtiivision d’échantillon:

approche aciapt ative: projection.

lu

Page 8: Problèmes dléconométrie en macroéconomie et en finance

$ummaryThis thesis consists of four essays treating the problems of econometrics in macroeco

nomics and finance. Three main topics are considered: (1) the measurement of causality

at different horizons with macroeconomics and financial applications (essays 1 and 2); (2)

financial risk measures and asset allocation in the context of Markov switching models

(essay 3); (3) exact sign-based optimal adaptive inference in linear and nonlinear regres

sion models in the presence of heteroskedasticity and non-normality of unknown form

(essay 4). The four essays are summarized below.

In the first essay, we propose measures of causality at horizons greater than one, as

opposed to the more usual causality measures which focus on the horizon one. This

is motivated by the fact that, in the presence of a vector Z of auxiliary variables, it is

possible that a variable Y does not cause another variable X at horizon 1, but causes it at

horizons greater than one [see Dufour and Renault (1998)]. In this case, one has indirect

causality transmitted by the auxiliary variable Z. In view of the analytical complexity of

the measures, a simple approach based on simulating a large sample from the process of

interest is proposed to compute the measures. Valid nonparametric confidence intervals,

based on bootstrap techniques, are also derived. Finally, the methods developed are

applied to study causality at different horizons between money, federal funds rate, gross

domestic product defiator, and gross domestic product, in the U.$.

In the second essay, we analyze and quantify the relationship between volatility and

returns for high-frequency equity returns. This is important for asset management as well

as for the pricing of derivative assets. Within the framework of a vector autoregressive

linear model of returns and realized volatility, leverage and volatility feedback effects are

measured by applying the short-run and long-run causality measures proposed in Essay

1. Using 5-minute observations on S&P 500 Index, we measure a weak dynamic leverage

effect for the first four hours in hourly data arid a strong dynamic leverage effect for the

first three days in daily data. The volatility feedback effect is found to be negligible at

all horizons. We also use the causality measures to quantify and test statistically the

iv

Page 9: Problèmes dléconométrie en macroéconomie et en finance

dvnamic impact 0f gooci anci bad news on volatilitv. Empiricallv. we measure a much

stronger impact for bad news at several horizons. $tatistically, the impact of baci news

is fomid to be significant for the first four days. whereas the inipact of good news is

negligible at ail horizons.

In the third essav, we consicler a Markov switching moclel to capture important fea

turcs sucli as heavy tails, persistence. anti nonlinnear clynamics in the distribution of asset

ret urns. We compute the conclitional prohabilitv distribution function of multi—horizons

returns, whicli we use to approxiinate the conclitional multi-horizons Valne-at-Risk (VaR)

arici we (icrive a closed-foriu solution for the multi-horizons conditional fxpected Short

fail. We characterize the dynanuc Mean-Variance efficient frontier of the optimal portfo

lios. Using daily observations on $P 500 and T$E 300 indices, we first fonnd that the

conditional risk (variance anti VaR) per period of tire multi—horizon optimal portfoÏio’s

returns. when plotted as a function of tue horizon. nnay he increasing or decreasing at

intermecliate horizons, and converges to a constant- the unconditional risk-at long enough

horizons. Second. the efficient frontiers of the inulti—horizon optimal portfohos are time

varying. finallv. a.t. short—terni and in 73.56% of the sample the conchtioiial optimal

portfolio performs better then the unconditional one.

In tire fonrth essay, we derive simple sign—based point—optimal test hi linear and

nonlinear regression nodels. The test is exact. distribution free. rohust against het

eroskedasticity of unknown form, and it may be inverted to obtain confidence regions for

thé’ vector of unknown parameters. We propose an adoptive approach baseci on spiit—

sample techinque to choose an alternative such tliat the power curve of pomt-optnnal

sign test is close to the power envelope curve. The simulation study shows that when

using approximatel 10% of sample to estimate tire alternative and tire rest to calculate

tire test statistic, tire power curve of the point-optimal sign test is typically close to tire

power eiwelope ctnrve. We prescrit a Monte Carlo study to assess the performance of

tire proposed c1uasi’ —point—optimal sign test bv compa.ring its size and power to those

of sonie cornmon tests which are supposed to he uobust against heteroskedasticity. Tire

V

Page 10: Problèmes dléconométrie en macroéconomie et en finance

resilits show that our procecluie is superior.

Keywords: time series: Granger causalitv: indirect causalitv: multiple horizon causal

ity: causality measure; predictability: autoregressive model; VAR: bootstrap; Monte

Carlo; macroeconomics; money; interest rates: output; inflatioll; volatility asvmmetry;

leverage effect: volatiÏitv feeclback effcct: high-frequency data realizeci volatilitv: i\Iarkov

switching model; cliaracteristic fmiction; probabilit distribution; Value—At—Risk; Ex—

pectecl Shortfall; aggregate return: upper bounci VaR: Menu—Variance portfolio: sign

based test; point-optimal test; linear models; uonhuiear models; heteroskeclasticity: exact

inference; distribution free; power envelope: sainple—split: aclaptive approach: projection.

vi

Page 11: Problèmes dléconométrie en macroéconomie et en finance

Contents

Sommaire. j

Suirimar. iv

Remerciements.

Introduction gén éraie 1

1 Short and long mn causality measures: theory and inference 13

1.1 Introduction 11

1.2 Motivation 16

1.3 Framework 19

1.4 Causality measures 22

1.5 Parametric causality rneasures 26

1.5.1 Parametric causaiitv measures in the context of a VARI\IA(p. q)

process 27

1.5.2 Characterization of causality measures fc)r VIVIA(q) processes 37

1.6 Estimation 38

1.7 Evaluation by simulation of causality nieasures 13

1.8 Confidence iiitervais 47

1.9 Empirical illustration 55

1.10 Conclusion 60

1.11 Appendix: Proofs 65

vii

Page 12: Problèmes dléconométrie en macroéconomie et en finance

2 Measuring causality between volatility and returns with high-frequency

data 73

2.1 Introduction 71

2.2 Volatility anti causality measures 77

2.2.1 Volatility in higli frequencv data: realizeci volatiiity, bipower van

atiOll. and jUflipS 7$

2.2.2 Sliort-rtm and long-non causality measures 80

2.3 Measuning causality iii a VAR model 83

2.3.1 Measuririg the leverage anti volatility feedback effects $3

2.3.2 Measuning tire dynamic impact of news on volatilitv $8

2.1 A simulation study 92

2.5 An empirical application 95

2.5.1 Data 95

2.5.2 Estimation of causahtv measures 97

2.5.3 Resuits 9$

2.6 Conclusion 100

2.7 Apperidix: bootstrap confidence intervais of catisality iiieasures 102

3 Risk measures and portfolio optirnization under a regirne switching

model 124

3.1 Introduction 125

3.2 Framework 129

3.3 VaR and Expected Short.fall under Markov $witching regimes 130

3.3.1 One-periocl-ahead VaR and Expected $hortfall 131

3.3.2 Moiti-horizon VaR anci Expccted Shortfall 137

3.1 Mean-Vaniance Efficient. fnontier 111

3.1.1 Mean-Vaniance efficient frontien of dynauuc portfolio 112

3.1.2 Terni structure of tire Mean-Vaniance efficient frontier 116

3.5 Ernpirical Application 150

V”

Page 13: Problèmes dléconométrie en macroéconomie et en finance

3.5.1 Data and paraineter estimates 150

3.5.2 Resuits 151

3.6 Conclusion 153

3.7 Appendix: Proofs 155

4 Exact optimal and adaptive inference in linear and nonlirrear models

under heteroskedasticity and non-normality of unknown forms 184

4.1 Iriti’oduction 185

4.2 Frainework 188

4.2.1 Point-optimal sign test for a constant hypothesis 189

1.2.2 Point-optimal sigil test for a non constant h’pothesis 191

1.3 Sign-based tests in linear and nonliiiear regressions 19.5

4.3.1 Testing zero coefficient hypothesis in linear models 196

4.3.2 Testing the geireral hypothesis ,3 = ;3 in liiiear anci nonhillear mocl

els 199

1.1 Power envelope and the choice of the optimal alternative 201

4.4.1 Power envelope of the point-optimal sign test 201

4.1.2 An adaptive approach to choose the optimal alternative 205

1.5 Poillt-optimal sign-basecl confidence regions 207

1.6 Monte Carlo study. . 208

1.6.1 Size and Power 208

4.6.2 Resiilts 211

4.7 Conclusion 213

4.8 Appendix: Proofs 214

Conclusion générale . . . . 251

ix

Page 14: Problèmes dléconométrie en macroéconomie et en finance

List of Tables

Evaluation by simulation of causality at h=l,2.46

Evaluation by simulation of caitsality at h=I. 2: indirect causality 47

Dickey-Fuller tests: variables in logarithrnic forrn 58

Dickey-FulIer tests: variables in first difference 5$

Stationarity test resuits 58

Surnma;y of causality relations at various horizons for series in first difference 64

Parameter values ofdiffcrent GARCH models 104

Sumrnary statistics for daily S&P 500 index returns, 1988-2005 104

Summary statistics for daily volatilities, 1988-2005 104

Causality measures of hourly and daiÏy feedback effects 105

Causality measures ofthe impact ofgood news on volatility: centered positivereturns 106-107

Causality measures ofthe impact ofgood news on volatility: Noncentered positiveretums 108

Surnrnary statistics for S&P 500 index retums, 1988-1999 171

Sumrnary statistics for TSE 300 index rcftirns, 1988-1999 171

Parameter estimates for the bivariate Markov switching model 171

Power comparison: Truc weights versus Normal weights (Cauchy case) 219

Power comparison: Tiiie weights versus Normal weights (Mixture case) 219

Power comparison: Normal case 232

Power comparison: Cauchy case 233

Power comparison: Mixture case 234

Power comparison: Break in variance case 235

X

Page 15: Problèmes dléconométrie en macroéconomie et en finance

Power comparison: Outiier in GARCH(l,1) case .236

Power comparison: Non-stationary case 237

xi

Page 16: Problèmes dléconométrie en macroéconomie et en finance

List of figures

MonthÏy observations on nonborrowed reserves (NBR), federal funds rate (r), grossdomestic product deflator (P), and real gross dornestic product (GDP) 56

First differences ofln(NBR), in(r), ln(P), and ln(GDP) 57

Causality measures from NBR to r, from NBR to P, from NBR to GDP, and from r toP 62

Causality measures from r to GDP and from GDP to r 63

Impact ofbad and good news on volatility in different pararnetric GARCH moUds109-iii

Quantile-Quantile Plot of the relative measure ofjumps, z(QP,i,t), z(QP,t), andz(QP,Îm,t) statistics 112

Daily retums ofthe S&P 500 index 113

Realizcd volatility and Bipower variation ofthe S&P 500 index 114

Jumps ofthe S&P 500 index 115

Causality measures for hourly and daily leverage effects 116

Measures of the instantaneous causality and the dependence betwecn returns and realizedvolatility or Bipower variation 117

Comparison between daily leverage and volatility feedback cffects 118

Comparison between hourly and daily leverage effects 11$

Impact ofbad and good news on volatiiity 119-121

Comparison between the impact ofbad and good news on volatitity 122

Temporal aggregation and dependence between votatility and returns 123

Daily price ofthe S&P 500 index 123

Daily retums of the S&P 500 and TSE 300 indices 172

f iltered and srnoothcd probabilities ofregirnes I and 2 173

Conditional and unconditional variances of multi-horizon returns 174

xii

Page 17: Problèmes dléconométrie en macroéconomie et en finance

Conditiotiat and unconditionat 5% VaR of multi-horizon retums .175

Conditional and unconditional 10% VaR of mctlti-horizon retunis 176

Conditional and unconditional Mean-Variance efficient frontier ofmulti-horizonportfolios 177

Conditional and unconditional Sharpe ratio of mufti-horizon optimal portfolios 17$

Conditional and unconditional variances of the aggregated reftirns 179

Conditional and unconditional 5% VaR of the aggregated rcturns 180

Conditional and unconditional 10% VaR ofthe aggregated rcturns 181

Conditional and unconditional Mean-Variance efficient frontier of the aggregatedportfolios 182

Conditional and unconditional Sharpe ratio of multi-horizon aggrcgated optimalportfolios 183

DaiÏy returns ofthc S&P 500 index 220

Comparison between the power curve ofthe POS and the power envelope under differentalternatives and for different data generating processes 22 1-223

Comparison between the power curve ofthe split-sample-based P05 test and the powerenvetope under different spiit-sampte sizes and for different data generatingprocesses 224-226

Size and Power comparison between 10% split-samplc-based POS test and t-test, signtest of Campbell and Dufour (1995), and t-test based on White’s (1980) correction ofvariance under different data generating processes 227-23 1

XIII

Page 18: Problèmes dléconométrie en macroéconomie et en finance

Remerciements

Je tiens à reïKire un vibrant hommage à mon directeur de recherche Jean-Marie

Dufour pour sa disponibilité, sa patience, sa contribution à la réalisation de ce travail

et surtout à m’encourager à ne pas baisser les bras durant les moments difficiles. Je

rcJj5 également remercier iiioii co-directeur Nom Meddahi pour son encouragement.

ses conseils et pour m’avoir prodiguée des commentaires scientifiques très pertinents.

Je voudrais aussi remercier mon co-auteur René Garcia pour sa collaboration signi

ficative dans le deuxième chapitre de cette thèse. Il m’a beaucoup appris et je lui suis

reconnaissant.

Je voudrais aussi remercier les différents institutions qui m’ont soutenu par leur fi

nancenient: centre interimiversitaire de recherche en écononne quantitative (CIREQ).

conseil de recherche en sciences humaines du Canada (CR511), vIITACS (The niathe

maties of information teclmology arid comnplex systems) et centre interuniversitaire de

recherche en analyse des organisations (CIR.ÀNO).

J’ai également bénéficié des conimeuitaires (le plusieurs autres personnes ;iotanimeut

Lynda Khalaf, Lutz Kilian, Bernarci-Daniel Solomon et Johan Latulippe. Un grand merci

à Benoît Perron pour avoir pris le temps de lire certains chapitres de ma thèse et nie faire

des commentaires très iertinents.

Enfin un remerciement tout spécial à mes parents et Vassima potir l’encouragement

et le soutien moral.

xiv

Page 19: Problèmes dléconométrie en macroéconomie et en finance

Introductioll GélléraleCette thèse de doctorat contient quatre chapitres où nous traitons différents problèmes

d’économétrie en macroéconomie et en finance. Etant donné l’importance de la causalité

pour la compréhension, la prévision et le contrôle des phéomènes économiques. notre

premier objectif est de proposer une approche basée sur le concept de causalité pour

quantifier et analyser les relations dynamiques entre variables économiques. Dans le

contexte niacroéconom jue lar exemple, cette approche serra très utile pour les décideurs

tIcs politiques économiques et monétaires puisqu’elle pourra les aider à prendre leurs

décisions tout en se basant sur une meilleure connaissance tics effets mutuels qu’exerce

chaque variable macroéconomique sur les autres à différents horizons. Un autre exemple

est celui de la finance où rions pouvons utiliser 1 approche proposée pour identifier la

meilleure façon de iïiocléliser la relation entre les rendements des actifs et leur volatilité.

Ceci reste crucial pour la gestion tic risque ainsi que pour l’évaluation tics prix tics actifs

(lénvés. Notre ciemdème et dernier objectif est de proposer tics mesures pour le risque

financier et des tests statistitiues qui fonctioiment 50115 des hypothèses plus réalistes.

Nous dérivons tics mesures tic ristlue financier nui tiennent compte tics effets stylisés

qu’on observe sur les marchés financiers tels tjue les queues épaisses et la persistance

tians la distribution tics rendements. Nous dérivons également tics tests optimaux pour

tester les valeurs tics paramètres dans les modèles de régression linéaires et non-linéaires.

Ces tests restent valities sous tics hypothèses distributionnelles faibles.

Dans le premier chapitre. irons développons des mesures de causalité à tics horizons

pins grands que un. par opposition aux mesures de causalit.é habituelles qui se concen

trent stir l’horizon un. Le concept de causaiité introduit ia Wiener (1956) et Granger

(1969) est actuellenient reconnu comme étant la notion de hase pour étutiier les relations

dvnamitpies entre séries temporelles. Ce concept est défini en terme tic prévisibilité à

l’horizon un d’une variable X à partir tic son propte passé, le passé d’une autre vari

able Y et possiblement un vecteur Z de variables auxiliaires. En se basant sur Granger

(1969). nous définissons la causalité tic X vers Y urne périotle à l’avance comme suivant:

1

Page 20: Problèmes dléconométrie en macroéconomie et en finance

Y cause X au sens rie Granger si les observations de jusqu’à la date t — 1 peuvent aider

à prévoir la valeur de X(t) étant donné les passés de X et de Z jusqu’à la date t — 1.

Plus précisément, on dit que cause X au sens de Granger si la variance de l’erreur de

prévision de X(t) obtenue en utilisant le passé (le Y est plus petite que la variance de

l’erreur de prévision de X(t) obtenue sans l’utilisation du passé de Y.

Dufour et Renault (1998) ont généralisé le concept de causalité au sens de Granger

(1969) en considérant une causalité à un horizon quelconque (arbitraire) h et une causalité

jusqu’à un horizon k. où h est un entier positif qui peut être égale à l’infini (1 < h Dc).

Une telle généralisation est motivée iai’ le fait c1uil est possible, en présence d’un vecteur

de variables auxiliaires Z, d’avoir la situation où la variable Y ne cause pas la variable X

à l’horizon un. mais qu’elle la cause à un long horizon h > 1. Dans ce cas, nous parlons

d’une causalité indirect ti’ansuiet par les variables auxiliaires Z.

L’analyse de Wiener-Granger distingue entre trois types de causalités: deux causal

ités unidirectionnelles (ou effets rétroactifs) de X vers Y, de Y vers X et une causalité

instantanée (ou effet instantané) associée aux corrélations contemporaines. En pratique,

il est possible que ces trois types de causalités coexistes, d’où l’importance de trouver un

moyen pour mesurer leur dégrées et déteriruner la plus importante entre elles. Malheuse

ument, les tests de causalité qu’on trouve dans la littérature échouent à accomplir cette

tache, puisqu’ils nous informent uniquement sur la présence ou l’absence d’une causal

ité. Geweke (1982, 1984) a étendu le concept de causalité en définissant des mesures

pour les effets rétroactifs et l’effet instantanée, qu’on peut décomposer tians le domaine

du temps et de la fréquence. Gouriéroux, Monfort et Renault (1987) ont proposé des

mesures de causalité basées sur l’information de Kullback. Polasek (1994) montre com—

ment fies mesures de causalité peuvent être calculées à partir du critère d’inforrriatiomi

cl’Akaike (AIC). Polasek (2000) a aussi initrodmiit des nouvelles mesures de causalité dans

le contexte des modèles ARCH univariés et multivariés et leurs extensions en se basant

sur l’approche Bayesian.

Les mesures tic causalité existantes sont établit seuleiiient pour l’horizon un et échouent

2

Page 21: Problèmes dléconométrie en macroéconomie et en finance

donc à capter les effets indirects. Dans le premier chapitre. nous développons tics mesures

de causalité à différents horizons capables de capter les effets indirects qui apparaissent à

des horizons longs. Plus spécificuement, nous 1)roposons des généralisations à n’importe

qu’il horizon h des iriesures à l’horizon un proposées par Geweke (1982). Par analogie

à Geweke (1982, 1984), nous définissons une mesure de dépendance à l’horizon h qui se

décompose en somme des mesures des effets rétroactifs de X vers Ï -. de vers X et de

l’effet instantané à l’horizon h.

Pour calculer les mesures associées à un modèle donnée — quand les formules ana—

lyticjucs sont difficiles à obtenir nous 1)roposons une nouvelle approche basée sur une

longue simulation du processus d’intérêt. Pour l’implénientation empirique, nous pro

posons des estimateurs consistent ainsi que des intervalles tic confiance non paramétriques.

basés sur la technique de bootstrap. Les mesures de causalité proposées sont appliquées

pour étudier la causalité à différents horizons entre la monnaie. le taux d’intérêt, le niveau

des prix et la production, aux États-Unis.

Dans le deuxième chapitre, nous mesurons et analysons la relation dynamique entre

la volatilité et les rendenients en utilisant des tlonnées à haute fréciuence. Un des effets

stylisés caractérisant les marchés financiers est nommé l’asymétrie de la volatilité et

signifie que la volatilité à tendance à augmenter plus ctuand il y a (les rendements négatifs

que quand il y a des rendements positifs. Dans la littérature il y a cIeux explications pour

ce phénomène. La première est liée à ce qu’on appelle l’effet tic levier. Un décroissement

clans le prix d’un actif accroit le levier financier et la probabilité de faillite. ce cmi rend

l’actif risqué et augmentera sa volatilité future [voir Black (1976) et Christie (1982)]. La

deuxième explication, ou l’effet rétroactif de la volatilité, est lié à la théorie sur la prime

de risque: si la volatilité est évaluée, un accroissement anticipé de celle-ci doit accroître le

taux de rendement. ce cmi exige un tiéclin immédiat du prix de l’actif pour permettre un

accroissement du rendement futur [voir Pinclyck (1981). french, Sciiwert et Stambaugh

(1987). Campbell et Heutsdhel (1992) et Bekaert et XVii (2000)].

Bekaert et Wu (2000) et récemment Bollerslev et ai. (2005). ont fait remarquer que la

3

Page 22: Problèmes dléconométrie en macroéconomie et en finance

différence entre les deux explications de l’asymétrie de la volatilité est liée à la question

de causalité. L’effet de levier expliciue pourquoi un rendement négatif conduira à une

augmentation future de la volatilité, tandis ciue l’effet rétroactif de la volatilité justifie

comment une augmentation tic la volatilité peut conduire à un rendement négatif. Ainsi,

l’asymétrie de la volatilité peut être le résultat de divers liens causals: des rendements

vers la volatilité, (le la volatilité vers les rendements. d’une causalité instantanée. de tous

ces effets causals ou de certains «entre eux.

Bollerslev et al. (2005) ont étudié ces relations en utilisant tics clomiées à haut

fréquence et des niesures (le la volatilité réalisée. Cette stratégie augmente les chances

de détecter les vrais liens causals puisque l’agrégation peut rendre la relation entre les

rendements et la volatilité simultanée. Leur approche empirique consiste alois à utiliser

des corrélations entre les rendements et la volatilité réalisée pour mesurer et couiparer

la magnitude de l’effet de levier ou de l’effet rétroactif tic la volatilité. Cependant, la

corrélation est une mesure d’une association linéaire et n implique pas nécessairement

une relation causale. Dans le deuxième chapitre, nous proposomis une approche clui con

siste à utiliser des données à liant fréquence, modéliser les rendements et la volatilité

sous forme d’un modèle vectoriel autorégressif (VAR) et utiliser les mesures de causalité

à court et à long terme proposées dans le premier chapitre. poui’ cjtiaritifler et comparer

l’effet rétroactif (le la volatilité et l’effet tic levier dynarmques.

Les études concentrées sur l’hypothèse d’un effet tic levier [voir Christie (1982) et

$chwert (1989)] ont conclu qu’on ne peut pas compter uniquement sur le changement

de la volatilité. Cependant, pour l’effet rétroactif tic la volatilité on trouve des résiil—

tats empiriques contradictoires, French. Schwert et Stamhaugh (1987) et Canipbell et

ITentschel (1992) ont conclu que la relation entre la volatilité et les rendements espérés à

l’horizon un est positive, tandis cjue Turncr. $tartz et Nelson (1989), Glosten. Jaganna

then et Rumikle (1993) et Nelson (1991) ont trouvé ctue cette relation est négative. Plus

souvent le coefficient reliant la volatilité aux rendements est statistiquement non signi

ficatif. Pour tics actifs individuels, Bekaert et Wu (2000) montrent empiriquement que

4

Page 23: Problèmes dléconométrie en macroéconomie et en finance

l’effet rétroactif de la volatilité (iomine l’effet de levier. En utilisant des doriuées à haut

fréquence. Bollerslev et al. (2005) ont obtenu mie corrélation négative entre la volatilité

et les rendements courants et retardés pour plusieurs jours. Cependant, les corrélations

entre les rendements et les retards do la volatilité sont tous proches de zéro.

La deuxième contribution du chapitre deux consiste à montrer que les mesures de

causalité peuvent être utilisées pour ciuautifier l’impact clynaniicine clos bonnes et clos

mauvaises uouvelles sur la volatilité. L’approche commune pour visualiser empirique

ment la relation entre les nouvelles et la volatilité est fournie par la courbe de l’impact

des nouvelles originalement étudiée par Pagan et Schwert (1990) et Engle et Ng (1993).

Pour étudier l’effet des chocs courants des rendements sur la volatilité espérée, Engle et

Ng (1993) ont introduit ce qu’ils appellent la fonctiou d’impact clos nouvelles (ci—après

FIN). L’idée de base consiste à couiclitio;mer A la date t + 1 par rapport A l’information

disponible à la date t, et de considérer alors l’effet d’uu choc tic rendement à la date

t sur la volatilité à la date t + 1 cii isolation. Dans ce chapitre. nous proposons une

nouvelle courbe de l’impact des nouvelles sur la volatilité basée sur les mesures de causal

ité. Contrairement à FIN d’Engle et Ng (1993), notre courbe petit être construite pmir

des modèles paramétriques et stochastiques de la volatilité, elle tient compte tic toute

l’information passée de la volatilité et tics rendements, et elle concerne clos horizoHs mul

tiples. Eu outre, nous construisons (les intervalles tic confiance autour de cette courbe

en se basant sur la techuiciue de bootstrap, ce qui fourni une amélioration, en terme

d’inférence statistique. par rapport aux procédures courantes.

Dans le troisième chapitre. nous nous intéressons aux mesures de risclue financier

et à la gestion tic portefeuille dans le contexte des mïiocièles à changemeuts de régime

markoviens. Depuis le travail séminal de Ilannltou (1989), les modèles à changement tic

régime sont utilisés de plus eu plus en économétrie financière et séries temporelles. Cela â

cause de leur capacité à capter certaines uiportantes caractéristiques, telle ciue les dlueuos

épaisses. la persistance et la dynamique non linéaire clans la chstrihution clos remiements

des actifs. Dans ce chapitre, nous exploitons la supériorité tic ces modèles pour dériver

5

Page 24: Problèmes dléconométrie en macroéconomie et en finance

des mesures de risque financier, tels que la Valeur-à-Risque (VaR) et le déficit prévu, qui

tiennent compte (les effets stylisés observés sur les marchés financiers. Nous caractérisons

également la frontière efficiente moyenne-variance de portefeuilles linéaires à des horizons

multiples et nous comparons la perf&mance d’un portefeuille optinial coniditioniiel et celle

d’un portefeuille optimal inconditionnel.

La VaR est devenu la technique la plus utilisée pour mesurer et contrôler le risque

sur les iïiarchés financiers. C’est mie mesure cjuantile qui quantifie la perte maximale

espérée sur un certain horizon (typiquement une journée ou mie semaine) et à mi certain

niveau de confiance (typiquement 1%, 5, ou l0Y). Il existe différentes méthodes pour

estinier la VaR sous différents modèles des facteurs de risque. Généralement, il y a

un arbitrage à faire entre la simplicité de la méthode d’estimation et le réalisirie des

hypothèses dans le urodèle des facteurs de risque considéré: Plus on permet à ce dernier

de capter plus deffets stylisés, Plus la méthode d’estimation devient complexe. Sous

l’hypothèse de la normalité des rendements, nous pouvons montrer que la VaR est donné

par une simple forrmmle analytique [voir Riskl\ietrics (1995)]. Cependant, ciuand nous

relâchons cette hypothèse. le calcul analytique de la VaR (levielit plus compliqué et les

gens ont tendance à utiliser des méthodes de simulations. En se basant sur tin modèle

à changement de régime. ce chapitre propose des approximations analytiques de la VaR

conditionnelle sous des hypothèses plus réalistes comnie la non normalité des rendements.

L’estimation de la VaR dans le contexte des modèles à changement de régime à

été abordée par Bilbo et Pelizzon (2000) et Guidolin et Timmermaim (2004). Billio et

Pelizzon (2000) ont utilisé mm modèle de volatilité avec changement de régime pour prévoir

la distribution des rendements et estimer la VaR des actifs simples et des portefeuilles

linéaires. En comparant la VaR calculée à partir d’un modèle à chamigenient de régime

avec celles obtenues en utilisant lapproche variance-covariauce ou un GARCII(1.1). ils

ont conclu ciue la VaR d’un modèle à changement de régime est préférable à celles des

autres approches. Guidolin et Tinuniermann (2001) ont examiné la strtmcture à terme

de la VaR sous différents modèles écononirétriques. y compris les modèles à changement

6

Page 25: Problèmes dléconométrie en macroéconomie et en finance

de régime multivariés, et ils ont constaté que le bootstrap et les modèles à changement

de régime sollt les meilleurs, parmi d’autres modèles considérés. pour estimer des VaR

à des niveaux de 5% et 1%. respectivement.. A notre connaissance. aucune méthode

analytique n’a été proposée pour estimer la VaR conditionnelle claris le contexte des

modèles à changement de régime. Ce chapitre utilise la inênie approche ciue Carclerias et

autres (1997). Rouvinez (1997) et Duffie et Pan (2001) pour fournir une approximation

analytique de la VaR conditionnelle à des horizons multiples. D’abord, eu utilisant la

méthode d’inversion de Fourier, nous dérivons la fonction de répartition des rendements

de portefeuilles linéaires à des horizons multiples. Ensuite, pour rendre l’estiniation de la

raR possible nous employons une méthode numérique d’intégration, conçue par Davies

(1980). pour approximer l’opérateur intégrale clans la formule d’inversion. Finalement,

nous utilisons le filtre di-lamilton pour estimer la VaR conditiommelle.

En dépit de sa popularité parmi les gestionuaires et les régulateurs, la VaR a été cri

tiquée du fait, qu’on général, elle n’est pas consistante et ignore des pertes au delà de son

niveau. En outre. elle n’est pas subadditive, ce qui signifie cju’elle pénalise la diversifica

tion ami lieu de la récompenser. En conséquence, des chercheurs ont proposé une nouvelle

mesure de risque, appelée le déficit prévu, qui est égale à l’espérance conditionnelle de

la perte étant donné que celle-ci est au delà clii niveau de VaR. Contrairement à la VaR,

la mesure déficit prévu est consistante, tient compte de la fréquence et la sévérité des

pertes financières, et elle est additive. À notre connaissance, aucune formule analytique

n’a été dérivée pour la mesure tiéficit prévue conichitionuehle clans le contexte des nioclêles

à changement de régime. Dans ce chapitre rions proposous une solution explicite de cette

mesure pour’ des portefeuilles linéaires et à des horizons multiples.

Ull autre objectif chu chapitre trois est d’étudier le problème de gestion de portefeuille

clairs le contexte des modèles à changement de régime. Dans la littérature il y a cieux

manières de coirsiclérer le problèmrie d’optimisation de portefeuille: statique et dynamique.

Dans le contexte moyemine-varianice, la différence entre les cieux est liée à comment nous

calculons les cIeux premiers moments des rendements. Dans Fapproche statique, la struc

Page 26: Problèmes dléconométrie en macroéconomie et en finance

turc de portefeuille optimale est choisie une fois pour toute au début de la période. Un

mcollvéniellt de cette approche c’est ciu’elle suppose une nioyenne et mie variailce des

reiideirieuts constantes. Dans l’approche dynamique, la structure du portefeuille opti

male est continuellement ajustée en utilisant l’ensemble d’information observé t la date

courante. Un avantage de cette approche est qu’elle permet d’exploiter la prévisibilité

des deiLx premiers moments pour biell gérer les opportunités d’investissement.

Des études récentes qu’ont examiné les implications économiques de la prévisibilité

des rendements sur la gestion de portefeuille ont constaté ciue les investisseurs agis

sent différemment quand les rendements sont prénisibles. Nous dist.inguolls entre cieux

approches. La première, qui évalue les avantages économiques par l’interméchaire du

calibrage antérieur, conclut que la prévisibilité des rendements améliore les décisions des

investisseurs [voir Kanclel et Stambatigli (1996), Balcluzzi et Lynch (1999), Lynch (2001),

Gomes (2002) et C’ampbell. Chan et Viceira (2002)]. La deuxième approche. cliii évalue la

performance postériori de la prévisibilité des rendements. trouve des résultats différents.

Breen. Glosten et Jagaimathan (1989) et Pesaran et Timmermann (1995), ont constaté

citie la prévisibilité rapporte des gains économiques significatifs hors échantillon, tandis

que Cooper, Gutierrez et Marcum (2001) et Cooper et Guien (2001) n’ont constaté au

cun gain économique significatif. Dans le contexte moyenne-variance. .Jacobsen (1999)

et Marquering et Verbeek (2001) omit constaté que les gains économiques de l’exploitation

de la prévisihihté des rendements soiit significatifs, alors que Ilarida et Tiwari (2004) ont

conclut qtme ces gains sont incertaimis.’

Récemment. CampbeH et Viceira (2005) ont examiné les imphcations à des Lori—

zons multiples de la prévisibilité pour un portefeuille moyenne—variance en utilisant un

modèle vectoriel autorégressif standard avec une matrice variance-covariance constante

pomir les ternies d’erreurs. Ils ont conclut ciue les changenients dans les opportunités

d’investissements peuvent alterner l’arbitrage renciemnemit-risque pour les obligations, les

actifs et l’argent comptant à travers les horizons d’investissement et que la prévisibilit.é a

\Q)1 Han (2005) p( pins (le (liSCUSSiOn.

$

Page 27: Problèmes dléconométrie en macroéconomie et en finance

des effets importants sur la structure de la variance et les corrélations des actifs à travers

les horizoHs d’investissement. Dans le troisième chapitre nous étendons le modèle de

Canipbell et Viceira (2005) en considérant un modèle à changement de régimes. Cepen

dant. nous ne teions pas compte des variables, telles cjue le prix-revenu, le taux d’intérêt

et d’autres, pour prévoir les rendements fut urs. comnie dans Carnphell et Viceira (2005).

Nous dérivons les cieux premiers moments conditionnels et inconditioniwls des horizons

multiples. que nous utilisons potir comparer la performance des portefeuilles optimaux

conditionnels et inconditioimels. Eit utilisant des observations journalières sur les indices

boursiers S&P 500 et TSE 300, d’abord nous constatons que le risque coiichtionnel (vari

ance ou VaR) des reildiements d’un portefeuille optimal. quand est tracé comme fonction

tic l’horizon h. peut augmenter ou diminuer à des horizons inteuméÏiaires et converge

vers une constante- le riscitie inconditionnel- à tics horizons suffisamment larges. Deux

ièniement, les frontières efficientes à des horizons nmltiples des portefeuilles optimaux

changent dans le temps. finalement, à court terme et dans 73.569f. de l’échautillon, le

portefeuille optimal conditionnel a une meilleure performance que le portefeuille optimal

inconditionnel.

Daims le quatrième et dernier chapitre. nous développons tics méthodes d’inférences

exactes et non paramétriques tians le contexte des modèles dc régression linéaires et non

linéaires. En pratique, la plupart des données économiques sont hétéroscédastique et non

normale. En présence de qnelques formes d’liétéroscéciasticité, les tests paramétriques

proposés pour améliorer l’inférence peuvent ne pas contrôler le niveau et avoir une puis

sance faible. Par exeniple, ciuand il y a (les sauts tians la variance des termes erreurs.

nos résultats tic simulation indiciuent que les tests statistiques habituels basés sur la cor

rection de la variance proposée iar White (1980), tyui sont censés être robuste contre

l’liétéroscéctast.icité. ont unie puissance très faible. D’autres formes ti’hétéroscéciasticité

pour lesciuclies les tests habituels sont irioins puissants sont une variance exponentielle

et un GARCI-I avec un ou plusieurs valeurs aberrantes. En même temps. beaucoup tic

tests paramétridiues exacts développés claris la littérature supposent typiquement ciuc

9

Page 28: Problèmes dléconométrie en macroéconomie et en finance

les termes d’erreurs sont normaux. Cette hypothèse est peu réaliste et en présence de

distributions avec des ciueues épaisses et/ou asymétriques, nos résultats de simulation

montrent ciue ces tests peuvent ne pas contrôler le niveau et avoir de la puissance. En

outre. les procédures statistiques développées pour faire de l’inférence sur des paramètres

de modèles non-linéaires sont typiquement basées sur des approximations asymptotiques.

Cependant, ces derniers peuvent étre invalides nième clans de grands échantillons [voir

Dufour(1997)]. Ce chapitre à pour objectif de proposer’ des procédures statistiques ex

actes qui fonctionnent sous des hypothèses plus réalistes. Nous dérivons des tests op

timaux basés sur les statisticlues de signe pour tester les valeurs des paramètres clans

les modèles de régression linéaires et non-linéaires. Ces tests sont valides sous des hy

pothèses distributionnelles faibles telles ciue l’hétéroscécÏastieité de forme inconnue et la

non—normalité.

Plusieurs auteurs ont fourni (les arguments théoriciues pour justifier pourc1uoi les tests

pai’aniétricmes existants pour tester’ la moyenne des observations i.i.cl. échouent sous tics

hypothèses distributionnelles faibles telles que la non-normalité et Phétéroscéclasticité de

forme inconnue. Bahaclur et Savage (1956) ont montré ciue sous des hypothèses distrib

utionnelles faibles sur les termes d’erreurs, il est impossible d’obtenir un test valide

la moyenne d’observations i.i.d. nième pour’ de grands échantillons. Plusieurs autres

hypothèses au sujet de divers moments des observations i.i.cÏ. conduisent à des difficultés

semblables et ceci peut être expliqué par le fait que les moments ne sont pas empirique-

rient significatifs clans les modèles non paramétriques ou des modèles avec des hypothèses

faibles. Lelimnann et Stem (1949) et Pratt et Gibbons (1981. sec. 5.10) ont prouvé citie

les méthodes de signe conditionnelles étaient la seule nianière possible de produire des

procédures d’inférence exactes clans des conditions d’hétéroscéclasticité de forme incon

nue et (le la non—normalité. Pour plus de discussion au sujet des problèmes d’inférence

statistiques dans les nioclèles non paranlétridlues le lecteur peut consulter Dufour (2003).

Dans ce chapitre nous introduisons de nouveaux tests basés sur les statistiques de

signe pour’ tester les valeurs des paraumètres clans des modèles de régression linéaires et

10

Page 29: Problèmes dléconométrie en macroéconomie et en finance

non-linéaire. Ces tests sont exacts, n’exigent pas de spécifier la distribution des termes

d’erreurs. robuste contre une hétéroscédasticité de forme inconnue, et ils peuvent être

inversés pour obtenir des régions (le confiance pour un vecteur de paramètres incoimus.

Ces tests sont dérivés sous les hypothèses que les ternies tl’erreurs dans le modèle de

régression sont indépendants, et non nécessairement identiquement distribués, avec zéro

médian contlitionnellement aux variables explicatives. Seulement quelques procédures de

test de signe ont été développées dans la littérature. En présence d’une seule variable ex

plicative. Campbell et Dufour (1995. 1997) ont l)roposé (les analogues non paramétriques

du t—test. basés sur (les st.atisticjues tic signe et de rang. clui sont applicables à une classe

spécifique de modèles rétroactifs comprenant le modèle (le Mankiw et Shapiro (1987)

et le modèle de marche aléatoire. Ces tests sont exacts même si les perturbations sont

asymétriques, non-normales, et hétéroscéclasticiue. Boldin. $imonova et Tyurin (1997)

ont proposé des procédures «inférence et cl’ebtimation localement optimales dans le con

texte tics modèles linéaires basés sur les statistiques de signes. Coudin et Dufotir (2005)

ont étendu le travail de Bolclin et al (1997) à la présence de certain formes tic dépendance

statistique clans les données. Wright (2000) a proposé des tests tic ratio de variance basés

sur les rangs et les signes pour tester l’hypothèse nulle ciue la série d’intérêt est une

séquence (le différence martingale.

Dans ce chapitre nous abordons la question d’optimalité et nous cherchons à dériver

tics tests point-optimaux basés sur les statistiques de signes. Les tests point-optimaux

sont utiles clans plusieurs directions et ils sont plus attractives pour les problèmes clans

lesctuels l’espace tic pararniètre peut être limité Iar des considérations tliéoriques. En

raison de leurs propriétés de puissance. les test.s pomt—optiullarLx sont Particulièrement

attractive ciuancl on teste une théorie économicftue contre une autre. par exeruiple une

nouvelle théorie contre tin autre ciiii existe déjà. Ils ont une puissance optimale à un

poiiit donné et. clépendannment tic la structure clii problème. pourrait avoir une puissance

optimale pour l’ensemble tic l’espace de paramètres. Une autre caractéristique intéres

sante des tests point—optimaux c’est qu’ils peuvent être utilisés pour tracer l’enveloppe

11

Page 30: Problèmes dléconométrie en macroéconomie et en finance

tic puissance pour un problème tic test doimé. Cette enveloppe de puissance fournit un

repère évident contre leciuci tics procédures de test peuvent être évaluées. Pour pins de

discussion concernant l’utilité (les tests point—optimaux le lecteur peut consulter King

(1988). Plusieurs auteurs ont dérivé (les tests Point-oPtiniaux p° aniéliorer Iiiiférence

pour quelciues problèmes écononliclues. Dufour et King (1991) ont utilisés les tests point-

optimaux rour tester le coefficient d’autocorréiation dun modèle de régression linéaire

avec tics termes d’erreurs normales autorégressives d’ordre un. Elliott, Rotheiiberg. et

Stock (1996) ont dérivé l’enveloppe (le puissance asymptotique pour (les tests point—

optimaux d’une racine tuutaire dans la représentation autorégressive d’une série tem

porelle gaussienne sous différentes formes de tendance. Plus récennnent. Jansson (2005) a

dérivé une enveloppe de puissance gaussienne asymptotique pour des tests de l’hypothèse

ntille du cointegration et a proposé un test pouit-optirial faisable (le cointegration dont

la fonction tic puissance asymptotique locale s’avère proche de Femiveloppe tic puissance

gaussienne asymptotique.

Puisque notre test point optimal dépend (le l’hypothèse alternative. nous proposoiis

une approche adaptative basée sur la technique de la subdivision tic i’échantiion [voir

Dufour et Torres(1998) et Dufour et .Jasiak (2001) ] pour choisir une alternative tels que

la courbe de puissance tin test de signe pomt—optimal est proche tic celle tic l’enveloppe

tic puissance. L’étude tic simulation montre qu’en utilisant approximativement 10% de

l’échantillon pour estimer l’alternative et le reste. voir 90, pour calculer la statistique

tic test, la courbe tic puissance du test tic signe point-optimal est typiciuement proche de

la courbe tI’enveloppe tic puissance. En faisant une étude (le Monte Carlo pour évaluer la

performance tin test tic signe quasi-point-optimal en comparant sa taille et sa puissance à

celles tic quelques tests communs qui sont censés êti’e robustes contre l’hétéroscédascticité.

Les résultats prouvent ciue les procétiures adaptatives tic signe semblent être supérieures.

12

Page 31: Problèmes dléconométrie en macroéconomie et en finance

Chapter 1

Short and long run causality

measures: theory and inference

13

Page 32: Problèmes dléconométrie en macroéconomie et en finance

1.1 Introduction

ihe concept of causality introclucud by \Viener (1956) and Cranger (1969) is now a basic

;iotion for studying dynamic relatioriships hetween tirne seric’s. This concept is defineci

in ternis of predictahihty ut horizon one ot u variable X from its own past. the past of

another variable and possihly a vector Z of auxiliary variables. following Granger

(1969), we defille causality from Y to X one period ahead as follows: Y causes X if

observations on Y up to tiine t — 1 eau help to predict X(t) given the past of X and Z

up to tniie t — 1. i\Iore PreciselY. we say tliat Y causes X if the variance of tue forecast

error of X obtailled bv lising the past of Y is smaller than the variance of the forecast

euror of X obtained without using the past of

The theory of causality has generated u considerable literatiare. In the context of

bivariate ARI’viA models, Kang (1981), clerived llecessary and sufficidllt conditions for

noncausality. Boudjellaba. Dufour, anci Roy (1992, 1994) developed nccessary alld suffi

cient conditions of noncausality for multivariate ARMA models. Parallel to the literattire

on noncausality coilditions. sonie authors developed tests for the presence of causalitv

between time series. Tue first test is due to $inis (1972) in the context of bivariate time

series. Other tests were developed for VAR models [sec Pierce aiid Haugh (1977). New

hold (1982), Geweke (1984a) ] and VARMA niodels [sec Boudjellaba, Diifour, anci Roy

(1992. 1991)].

In Dufour anci Renault (199$) the concept of causalitv in the sense of Granger (1969)

is generalized by consideruig causalitv at a given (arhitrarv) horizon h and causalitv up

to horizon h. where h is a positive integer ami can he infiriite (1 h Dc) for relateci

work, sec also Sims (1980), Ilsiao (1982), arid Liitkepohl (1993). Such generalization is

motivated by the fact that, in the presence of auxiliary variables Z, it is possible to have

the variable - uot causing variable X at horizon oiie, but causing it at a longer horizon

11

Page 33: Problèmes dléconométrie en macroéconomie et en finance

h. > 1. In this case, we have an indirect catisality transmitteci by tue aixi1iaiy variables

Z. Necessarv anci sufficient conditions of noHcausalitv between vectors of variables at aiiy

liorizoil Ii. for stationarv and nonstationary processes are also supplied.

The analysis of Wiener-Granger distirignishes among three types of causality: two

uniclirectional causalities (called feedbacks) from X to Y anci from Y to X and an in

stantaiieous causality associated with contemporaneous correlations. In practice. it is

possible that these three types of causalitv coexist, hence the importance of fiuding

means to measure their degree and deternnne the rnost important ones. Unfortunately,

existing causality tests fail to accomplish tlns task, because they only inform us about

the presence or tue absence of causalitv. Geweke (1982. 1981) extended tue causu1ity

concept bv definiiig uleasures of feedback anci instaritaneous cffects. which eau be de

composeci in time and frequency domains. Gouriéroiix, Monfort. anci Renault (1987)

proposed causality measures haseci on the Kullback information. Polasek (1991) showcd

how causality measures eau be calculated using the Akaike Informatio;i Criterion (A Je).

Polasek (2000) also introduced new causality measnres in the context of univariate and

nmltivariate ARCH models and their extensions based on a Bayesian approach.

Existing causalit meaxures have been estahhxlied only for a orie period horizon anci

fail to capture indirect causal effects. In this chapter. we develop measures of causality

at clifferent horizons whicli can detcct the well known indirect causality that appears

at higher horizons. Specifically, we propose generalizations to any horizon h of the

nïeasures proposed bv Ceweke (1982) for tue horizon one. Both nonparanietric and

paranietric measures for fecdhack and instantaneous effects at any horizon h are stndied.

Parametric measures are definecl in ternis of irïipulse response coefficients of the movi;ig

avcrage (MA) representation of tlie process. By analogy witli Geweke (1982, 1984). we

also define a measure of clependence at horizon h which cai; be decomposed into the simi

of feedback measures froni X to from to X. and an instantaneous effect at horizon

h. To evainate the measures associated with a given niodel wheii analytical fornmlae

are clifficuit to obtain— we propose a new approach based on a long simulation of the

15

Page 34: Problèmes dléconométrie en macroéconomie et en finance

p’ocess of iriterest.

For empirical implementation. we propose consistent estirnators as well as nonpara

metric confidence intervals. based on the hoot strap technique. The proposed causalitv

measures eau he applied in different contexts and niav help to solve some puzzles of the

econoniic and financial literature. They may improve the well known debate 011 long—term

prechctahihty of stock returns. Tri the present chapter. they are applieci to study causality

relations at cliffereirt horizons between macroeconornic, rnonetary anci financial variables

in the U.S. The data set considered is the oiie nsed bv BerHanke and Miliov (1998) and

Dufour. Pelletier, anti Renault (2006). This data set consists of monthiy observations on

nonhorroweci reserves, the federal funds rate. gross domestic procluct deflator. and reai

gross domestic procluct.

The plan of this chapter is as follows. Section 1.2 provides the motivation behinci an

extension of causality measures at horizon h > 1. Section 1.3 presents the framework

allowing the clefinition of causality at clifferent horizons. In section 1.1. we propose

nonparametric short-run and long-run causality nieasures. In section 1.5, we give a

pararnetric equivalent. in the context of linear stationary invertihie processes. of the

cansality ineasures suggested in section 1.4. Tliereafter, we characterize our rHeasures

in the context of moving average models with fuite order q. In section 1.6 we discuss

different estimation approaches. In section 1.7 we suggest a new approach to calculate

these measures basecl on the simulation. In section 1.8 we establish the asymptotic

distribution of measures and the asymptotic validity of their nonparametnc bootstrap

confidence intervals. Section 1.9 is clevoted to an empirical application anti the conclusion

relating to the results is given in section 1.10. Technical proof are giveu in section 1.11.

1.2 Motivation

The causalitv measures proposed in this chapter constitute extensions of those developed

by Geweke (1982. 1981) and ot.hers [sec the introduction]. 111e existing causalitv mea—

16

Page 35: Problèmes dléconométrie en macroéconomie et en finance

suies quantifv the effect of a vector of variables on anothei’ at one period horizon. The

signfficance of such rneasures is however limiteci in the presence of auxiliarv variables.

since it is possible that a vector Y causes another vector X at horizon h strictly higher

than 1 even if there is no causalitv at horizon 1. In this case. we speak about an indirect

effect induced by the auxiliary variables Z. Clearly causality meastires defined for horizon

1 are tinable to cyualltify this indirect effect. This chapter pi’poses causality nieasures at

diflerent horizons to quantify the degree of short alld long nm causality between vectors

0f ratidoin variables. Such causality measurus detect alld quantifv the indirect effects due

to auxiliary variables. b illustrate the importance of such causality measures, consider

the following examples.

Example 1 Suppose tee hure infoiynation (Ibout two vauiubtes X ard . (X. )‘ us u

stut’tontiuij VAR(1) model:

X(t + 1) 0.5 0.7 X(t) EV(t + 1)

Y(t + 1) 0.4 0.35 1)(1.1)

X(t + 1) is given by flue foÏÏowing equation:

X(t 1) = 0.5 X() ± 0.7 Y(t) + (t ± 1). (1.2)

$ince flue coefficient of Y(t) in (1.2) is eqnaÏ to 0.7, we eau cou ctucÏe that Y causes X

in flue sense of Grau qei. Ilowceer. this does aoL qive cul) u ujovi ahon on, causahtg ut

horrzons largei tlucur 1 itou on uts strength. To study the causatity ut hovizon 2, let us

coi1sider flue systeni (1.1) ut finie t + 2:

X(t-1-2) 0.53 0.595 X(t) 0.5 0.7 z1(t+1)= + ÷

Y(t -f- 2) 0.31 0.402 Y(t) 0.1 0.35 zy(t + 1) (t - 2)

17

Page 36: Problèmes dléconométrie en macroéconomie et en finance

Iïi particutar. X(t + 2) is gluen by

X(t + 2) = 0.53 X(t) + 0.595Y(t) + 0.5z(t + 1) + 0.7z(t + 1) + ev(t + 2). (1.3)

The coefficient of (t) in equotion (1.3) is equot to t).595. so oc con conctude that -

causes X at horizon 2. But. Ïiow eau one ru eusure the importance of this “Ïong-run”

causatrty? Ezisting measrtres do not answer this question.

Exarnple 2 Suppose noir that the tnjoi7uation set contanrs rot onhj the tuo i’ar’nibtes of

lute iest X and b ut aÏso an alrciÏia7j van abÏe Z. H7e consider a tiiuu.iiate station ory

process (X. Y Z)’ wh’ich futÏows a V4R(1) modet:

X(t + 1) 0.60 0 0.80 X(t) Cz(f + 1)

Y(t + 1) = t) t).10 O Y(t) -t— z(t ÷ 1) (1.1)

Z(t -F 1) 0 0.60 0.10 Z(f) z(t + 1)

hence

X(t + 1) = 0.6 X(t) + 0.8 Z(t) + z(t + 1). (1.5)

Since tÏte coefficient ofY(t) in equation (1.5) is 0, ire eau conctude that Y dues rot cause

X at horizon 1. If tue eons’.der modet (i.) af tinte t ± 2. oie get:

9

X(t + 2) 0.60 0.00 0.80 X(t)

Y(t t 2) 0.00 0.4t) 0.00 Y(t) (1.6)

Z(t 2) 0.00 0.60 0.10 Z(t)

0.60 0.00 0.80 zx(t ± 1) z\(t + 2)

+ 0.00 0.40 0.00 z(t + 1) + zy(t + 2) . (1.7)

0.00 0.60 0.10 rZ(t + 1) zz(t + 2)

18

Page 37: Problèmes dléconométrie en macroéconomie et en finance

so that ..V(t + 2) is geven i)g

X(t + 2) 0.36 X(t) + OJSY(t) + 0.56 Z(t) + O.6+v(t + 1)

+O.$Ez(t + 1) + rx(t + 2). (1.8)

Tue coefficient of Y(t) in equation (1.8) is equaÏ to 0.48, wÏucÏi inpÏies that Y causes

X ut horizon 2. This shows that [hie absence of causatdq ut h = 1 does net &tcÏucte [hie

possÏnÏzty of causatity ut horizon h > 1. This indirect effect is tiansrnitted by the

varzabÏe Z:

Y —* Z —* X.0.6 OS

0.48 = 0.60 x 0.80. u’heie 0.60 and 0.80 are the coefficients of the on.e period effect of

Y on Z and the mie per’od effect of Z on X. respechveÏy. So. Ïiow con one nzeasure the

importance of this indirect effect? Again, e;iisting ‘measures do not ans wer this qvestion.

1.3 Framework

The notion of noncausalitv consideied here is defined in ternis of orthogonalitv conditions

between subspaces of a Hilbert space of random variables with finite second moments.

We denote L2 L2(Q. À. Q) the Hilbert space of real random variables defined On a

common probability space (Q. À. Q). with covariance as inner product.

We consider three multivariate stochastic processes {X(t) : f E Z} . {Y(t) : t E Z}

anci {Z(t) t E Z}. with

X(t) = (.ri(t) ,1(tfl’ ..r1(t) E L2. J 1 iii1.

Y(t) = (yi(t) j,(t)). y(f) E L2. J = 1 in2.

Z(t) = (zi(t) Zrn3(f))’, z1(t) E L2. i 1 1113.

where m1 1. m9 > 1. /03 > 0: ancl 111l+r112+/1)7 ra. We denote Xt = tX(s) :s < t},

19

Page 38: Problèmes dléconométrie en macroéconomie et en finance

{Y(s) .s < t} arici Z, = {Z(s) •.s < t} the information sets which contain ail the

past ami pÏeseIlt values of X. Y and Z. respectiveiv. We denote I, the information set

which contains X. Y, and Z,. I, — Â,. with Â, = X. Y or Z, cont.ains ail the elements

of I, except those of Â. These information sets eau 5e used to preclict the value of X at

horizon h. denotecÏ X (t + h). for ail h > 1.

For anv inforniation set B,, let P[.r,(t -1— h) 3,] 5e the best linear forecast of .r,(t H— h)

based 011 the inforniation set B, tue corresponcling puecliction error is

it (it (t + Ï,) I B,) = , (t + h) — P[.e,(t + h) I 3,]

and u (.,(t + h) B,) is the variance of this prediction error. Thus. the hest hnear

forccast of X(t + h) is

P(X(t ÷ h) B,) = (P(.ri (t ± 1,) I 3,) P(.r, (t ± h) I B,))’.

the corresponding vector of prediction error is

U((t li) 3,) = (u(ri (t + h) I 3,)’ ii(.r,1 (t ± h) B,))’.

and its variance-covariaiice matrix is (X(t ± h) B,). Eacli component P[.r (t + h) I B,]

of P[X(t + h) 3,]. for 1 < <mi, is then the orthogonal projection of :r,(t + h) on the

subspace 3,.

Following Dufour anci Renault (1998). noncausahtv at horizoil h and up to horizon

h. where h is a positive integer, are defined as follows.

Definition 1 For h 1.

(i) Y does lot couse X at horizon h qiven I,— Y,. de,wted Y,“

X I, — 1ff

P[X(t + Ï,) I,—

1’] = P[X(t + Ït) I,]. Vt> u.

20

Page 39: Problèmes dléconométrie en macroéconomie et en finance

wh.ere w represents n “startzng point ‘

(ii) Y doesnot cause X ‘up to horizon h given I,— Y. dci oteci Y —÷ X I — 1ff

Y-XII,—frnk=1,2. h;

(iii) does not cause X ut ang horizon 9? ecu I — Y. derioted Y :-, X I, — Y, 1ff(.)

YX J,— Y,foraÏth=1. 2....

This cleftl]ition corresponds to uniclirectional causalitv from Y to X. It nwans tliat

causes X at horizon h if the past of Y iniproves the forccast of X(t + h) based 011

the information set I —Y,. An alternative clefinition can be expressed in ternis of the

variance-covariance matrix of the forecast errors.

Definition 2 for h > 1.

(1) Y does not cause X ut horizon h giucu I,— Y

det (X(t + h) I,—

Y,) det (X(t + k) I,), Vt> w;

wh ere det (x( + h) I Â,). irpresents the deterinvuant of the variance-coearia’nce in ut rie

of the for’ccast error ofX(t + h) qu’en Â, It. It— Y,:

(ii,,) Y does ‘not cause X up to horizon h gieen I,— Y, if V t > w (md k — 1.

2 h.

det Z(X(t ± k) I I, — Y,) — det (X(t ± k) I I,);

(iii) Y does not cause X ut ang horizon given I,— Y,. ijV t > w and k = 1. 2....

(let (X(t + k) I, — Y,) mlet z(X(t + k) I,).

The s faiting point” w is ont spetifin?. in paitit’utarw îiiiij equal —‘x oi O dCpf’fl iting On (i’/U?theîoie consoler o stutioiary pioeess on tire inlegecs (t; Z) or o pioccss {X(t) : t > Ï} ou tire posdieeinteqeis gOei iidtiat coures prf’c( d.nq ilote 1.

21

Page 40: Problèmes dléconométrie en macroéconomie et en finance

1.4 Causality measures

In the remainder of this chapter. we consider an information set I whicii contains two

vector valueci randorn variables of interest X and Y. ami an auxiliary valued random

variable Z. In other words, we suppose that I, = HUX1UYUZ,, where H represents

a subspace of the Hilbert space. possihlv empt. contanimg time mdependent variables

(e.g.. the constant in a regression model).

The causality measures we consider are extensions of the muasure introcluced by

Geweke (1982,1981). Important properties of these measures include: 1) they are non

negative. auJ 2) tliey cancel onlv when t.hcre 5 no causalitv at the horizon consitlered.

Specifically. we propose the following causalitv measures at horizon h 1.

Definition 3 For h 1. a causatity mensure from Y b X ut horizon h, cailed the

iiitensitv of the C(fltSUÏity fioin }‘ to X ut horizon h s gzven t)y

- (let ( (t + h) I— L)

O _*XIZ)=1n -

Jet Z(X (t + h) J)

Remark 1 For 07 = m2 m3 = 1,

C(Y X Z) inu2 (X(t + h) It — L)

h u2(\ (t + h) I)

C(Y —* X I Z) ineasures the degree of the causal effect froni Y to X at horizon h. given

the past of X anci Z. In terms of predictabihty. this can he vieweci as the amount of

information hrought h tue past of Y that eau improve the forecast of X(——h). Following

Geweke (1982), this nieasure can be also interpreted as the proportional reciuction in the

variance of the forecast error of X(t + h) ohtained by t.aking into accourit the past of Y.

TIns proportion is equal to:

u2(X(t + h) I — Y) — u2(X(t + h) I,)u2(X(t + Ii) I — Y)

=1 — exp[ — C(} X Z)].

99

Page 41: Problèmes dléconométrie en macroéconomie et en finance

We cari rewrite the coriditionai causality measures given by Definition in ternis of

uncoilditiOllal causalitv measures:2

C(Y X J Z) C(YZ X) — C(Z X)h h h

where

C(YZ X) indet(X(t+ h) t I — Y, —

h (let Z(X(t + h) I,)

C(Z V) = 1det (X(t + h) It — Y, —

1, det (X(t ± h) I,— Y,)

C(YZ — X) and C(Z —> X) represent the uncoriditional causality measures frornh h

(Y’. Z’)’ to X arid from Z to X. respectivcly. Simularly. we have:

C(X ‘ Y Z) = C(XZY) — C’(Z Y)h h h

wliere

C(XZ Y) = in(1et(Yt±h) I,

— —

h clet (t ± h) I,)

clet(Y(t+ h) Ï, — X, — Z,)C(Z—) In

1 c1etZ((t+Ïi) I 1,—X,)

W7e ciefine an irista;itaneous causalitv ineasure between X awi Y at horizon h as

follows.

Definition 4 Foi’ h 1. an instantcineoïs ctiusaÏity iieasiii’e Ï)etWeCfl. and X at hai’i—

zon h, coÏled tue intensitv of the i,,,staiitaneois eausatzty betwee’ii - and X at hoi’izoi,, h.

2See Oe\veke (i951).

23

Page 42: Problèmes dléconométrie en macroéconomie et en finance

denoted C(X Y Z). is given Ïry:

cÏet (V(t + h) I I) Jet (Y( + h) I)C(\— Z)1n- e Jet (X(t + h). Y(t + h) I,)

where Jet (X(t + h). Y(t + h) I I) represents the determinctnt of tire iariance—covariance

iatrLr of th e forecost eiroi of the joint iOCess (X. Y’) ut horizon h giten tire infor

mat ion. set I.

Remark 2 For m1 = = n3 1,

Jet ((X(t + h). Y(t + h) I I) = 2(X(t + h) I I,) u2(Y(t + h) I,)

—(cov((X(t + h), Y(t + h) It))2. (1.9)

So 1h e mnst an tan cous ca:usatity meus nie hettt’een X an d Y ut horîzon h can he wrmtten us:

C’(X YI Z) = in[i — p2(X(t ± h). Y(t + h) Ii)]

rth crecov(X(t ± h). YQ + h) I I)

p(X(t ± h). Y(t + h) I,) - . (1.10)u(X(th) I I)u(} (tth) I,)

is tire coitetation coefficient between X (t + h) and Y(t + h.) given tire info ‘rnatioi set

L. Tiras. tire instantaneons cansatmty rneasnie is higher wh.en tire correlation coefficient

beco in es h igh e r.

We aiso define a measure of depeïidence between X auJ Y at horizon h. This xviii

enable us to check if, at givdil horizon h, the processes X anti Y must be considereci

together or whether the eau be treated separately given the information set It—Yi.

Definition 5 for h 1 u meaSume ut dependence hetween X anti crt horizon h, catted

tire intensity of tire dependence between X anti Y ut horizon h, (ienoted C’(X. Y Z),

21

Page 43: Problèmes dléconométrie en macroéconomie et en finance

is give’n. b’y:

C@)tX. Y Z) 1det. Z(X(t + h) I

— ‘) Jet Z(Y(t ± h) I, — X)detZ(X(t ± li). Y(t + h) I,)

We eau easilv show that the intensity of the depenclence between X auJ Y at horizon h is

equal to the sum of feedbacks measures from X to Y, from to X, auJ the illstantaneous

measure at horizon h. We have:

C. Y I Z) = C(X Y j Z) + C(Y X Z) ± C(X Y Z). (1.11)h h h

Now, it is possible to build a recnrsive formulation of causality measures. This one will

depenci on the predictability measure mtroduced by Diebolcl alld Kilian (1998). These

authors proposed a predictahihty mensure based cii the ratio of expected losses of short

alld long run forecasts:

P(L. Q,..

k) = 1—

________

E(L(et+e, ))

where Q is the information set at time t. L is a loss fimction, j auJ k represent respec

tively the short. auJ the long-rmi, X(t + s) — P(X(t ± s) Q,). s j. k. is the

forecast error at horizon t + s. Tins predict.abilit measure can Le constrticted accordhig

to the horizons of interest anci it allows for general loss functions as well as univariate

or multivariate information sets. III this chapter we focus on the case of n quaciratic loss

fnnct ion,

= for s = j. Â’.

We have the following relat ionships.

Proposition 1 Let h1, h.9 be two tiiffeient hor7zons. For’ 1r9 > h1 1 ar,,d nq = ru2 = 1,

C( XjZ) — C( XjZ) in [i — P(i, — }. h. 112)] — in [i— P(I. h1. h2)]

25

Page 44: Problèmes dléconométrie en macroéconomie et en finance

whe’re . h. h2) represents tire predzctabzÏrty measure for variable X,

- u’(X(t + h1) J ‘t —— ,. Ïl. h2) = 1—

u2tV(t + h2) I— L)

- 2(Y(t h1) I I)P(I, h1. 112) = 1—

u2(V(t+ho) I,)

The following corollary follows immecÏiately from the latter proposition.

Corollary 1 for h 2 flIrd m1 = = L

CtYXIZ) C(YXJZ) + ln[1— Pv(I,. 1. h)] — ln[1 — — Y 1. h)].

For h2 > h1, the functiori P1.( . . h1 172), k X, } represents the measure of short

mn forecast relative to tue long-run forecast. and C(k Ï Z) — C(k I I Z). forh1

Ï k anti 1. k = X. represents the difference between the degree of short mn causality

anti that of long mn causality. Further, P1. (.. h1. /72) > O means that the series is higiilv

preciictable at horizon h1 relative to h2. anti P( .. h. /72) = O. means that the series is

nearly iinpreciictable at horizon h1 relative to 112.

1.5 Parametric causality measures

We now consicier a more specific set of linear invertible processes which inchicies VAR.

VMA, and VARMA moclels of finite order as special cases. Uncier this set we show that it

is possible to obtain paranietric expressions for short—mn and long—run causalitv measures

in tenus of impulse response coefficients of a VI\IA representation.

This section is divided into two subsections. In the first we calculate parametric

measures of short-mn and long-rlln causality in the context of an autoregressive moving

average inociel. We assumie that the process {IF(s) = (X’(s). ‘(s). Z’ (s))’ s t} is

a VARMA(p.q) model (hereafter unconstrained niodel). wliere J) and (J eau be infinite.

hie motlel of the process {S(s) (X’(.). Z’(s))’ q < t} (heueaft.em constmained model)

26

Page 45: Problèmes dléconométrie en macroéconomie et en finance

can be decÏuced from the unconstrained moclel using Corollary 6.1.1 in Li’itkepohl (1993).

ihis moclel follows a VARMA(15. j) nioclel with fi < m1’ ancl (7 < (ni—

1)p + q. In

tue second sillisection we provicle a characterization of the parametric ineasures in tue

context of VIVIA(q) model, where q is fuite.

1.5.1 Parametric causality measures in the context ofa VARMA(p. ci)

process

Without loss of generalitv. let us consider the discrete vector with zero mean

{W(s) (X’(s). Y’(s). Z’(s))’, s <t} defined on L2 arid characterized by the following

autoregressive nioving average representatioii:

(f) =

.VYj xzj V(t _j)

= YXj Y(t— j)

ZXJ ZYj ZZ) Z(t —j)

XXJ XYj vzj u(t— j) u(t)

YXJYYj uy( — j) + ii(t) (1.12)

ZXJ ZYj ZZJ uz(t—

j)

wit li

/ t for s = tE [u(t)] = O. E [u(t)tt (s)] =

t) forst

or. more compactly,

HW(t) (L)ii(t)

27

Page 46: Problèmes dléconométrie en macroéconomie et en finance

where

x(L) (L) vz(L)

H(L)= wx(L) (L) 7ryz(L)

irzx(L) iiz(L) 7rzz(L)

(L) (L)

(L)= 1(L) L)

zx(L) ztL) 7(L)

= I,—

1L1, Ih.(L)

11(L) = 1, + Z11L. h.(L) = foi’ j k. I. k = X. Y. Z.

We assume that u(t) is orthogonal to the 1-lilbert subspace {W(s). s < (t — 1)} and that

Z, is a symmetric positive definite matrix. Under stationarity. 1I(f) lias a VMA()

representation.

11(t) = ‘IJ(L)u(t) (1.13)

where

-‘XXJ 1’XY) ‘XZj

(L) = H(L)’(L) =‘YZJ L. = L.

ZVj Ly ‘ZZj

From the previous section, measures of dependence ami feecÏback effects are defined

in ternis of variance-covariance matrices of the constrairieci anci unconstrained forecast

errors. So to calculate these measures, we ;ieed to know the structure of the constrained

model (imposing noncausality). This one cari be deduced from tue stnicture of the

tmcollstraillecl model (1.12) using the following proposition anci corollary [sec Lutkepolil

28

Page 47: Problèmes dléconométrie en macroéconomie et en finance

(1993.

Proposition 2 (Linear tmnsfonnation of a VMA(q) pwcess). Let u(t) be a K-dimensional

white noise pwœss with nonsingular vwiance-covaiiance matit E and let

W(t) = p+’Pju(t —j) + «(t),

be a K-dime,wional inveflible VMA(q) pwœn. Fuflhennore, let F be an (Mx K) matit

of mnk M. Then the M-dimensional process S(t) = FW(t) lias an invertible VMA(q)

itpnsentationq

S(t) = Fp + > — j) + r(t).3=1

u*en 5(t) is iI-dimensional u*ite noise with iwnsingWar vadance-œvariance matit

E, theOj. j=1 q. are (MxM) coefficient matiices andqq.

Coroflary 2 (Linear 7hznsfonnation of a VARMA(p,q) pmcess). Let W(t) be a K

dimensional, stable, invertible VARMA(p,q) prncen and let F be an (M x K) matit

of mnk ..3L Then Me pmcess S(t) = FW(t) lias a VÀRMA(p. q) representaHon i&h

pKp. q(K—1)p+q.

Remark 3 If ive assume Mat W(t) foliotas a VÀR(p»VARMA(p,O) model, Men its

linear traiwfonnation S(t) = FW(t) lias a VARMA(p. q) representation with p Kp

andq(K—1)p.

Suppose that we are interested in measuring the causality from Y to X at a given

horizon h. We need W apply Coroflary (2) to define the structure of process S(s) =

(X(s)’. Z(s)’)’. if we loft-miiltiply equation (1.13) by the adjoint matrix offl(L), denoted

fl(L), we get

fl(L)fl(L)W(t) = fl(L)*,p(L)n(t) (1.14)

29

Page 48: Problèmes dléconométrie en macroéconomie et en finance

where 11(L)*11(L) det [11(L)]. $ince the det.ermiriant of 11(L) is a sum of products

involving one operator from each row anci each eolumn of 11(L), the clegree of the AR

polynomial. here det [11(L)] . is at most mp. We write:

(let [11(L)] = 1— o1L — — cL

wher-e j3 < rnp. It is also easy to check that the degree of the operator 11(L)*(L) is at

most p(n — 1) + q. Thus, Equation (1.11) eau lie written as follows:

(let [11(L)] 11(t) = 11(L)tL)u(t). (1.15)

This equation is another stationary invertible VARI’iA representation of process W(f).

called the huai equation foum. The model of process 1S(s) = (X’. Z’(sfl’ .s t} can

he obtameci bv choosing

Ifl O O

O O I3

On prenmltiplying (1.15) by f. we get

det [11(L)] S(t) = f11(L)(L)u(t). (1.16)

The right-hancl side of Equation (1.16) is a linearly transformeci fuite order VMA process

which. by Proposition 2, has a VMA(7) representation with 7 < p(m — 1) + q . Thus, we

get the foïlowing constraineci ruodel:

&\v(L) )vz(L)(let [11(1)] 5(t) 9(L)(t) = (t) (1.17)

9zx(L) Ozz(L)

where

Ç fors=tE[(t)] = 0. E [(t)r (s)]

O fbrst

30

Page 49: Problèmes dléconométrie en macroéconomie et en finance

= I, &Ik(L) = fbr 1 k. L k = X. Z.

Note that. in theory, the coefficients 9. L k X. Z: j = 1. . anci elements 0f’ the

variailce-covariance matrix Z. can be computed from coefficients 7T,

L k = X.

Z. Y; j 1 ,....p; t = 1 .....q. and elements of the variance-covariance matrix Z.

Ibis is possible bv solving the followiiig system:

= r’ = 0. 1. 2, ... (1.18)

where (L’) anci 7,(e) are the autocovariance functiolls of the processes 9(L)z(f) and

ffI(L)*(L) u(t). respectively. For large numbers in. p. anci f]. system (1.15) cari he

solved by using optirnization methocls.1 The followiiig example shows how one can cal—

culate the theoretical parameters of the constrained moclel in terms of those of the tin

constrained moclel in the context of n bivariate VAII(1) moclel.

Example 3 Consiter tire fottowing brvarwte 144R(1] modet:

X(t) X(t — 1) ui(t)

ry 7fyy ‘(t — 1) u(t)

X(t—1)= +u(t). (1.19)

Y(t-1)

We assume that ait roots of (let [11(z)] det(L — 7rz) are oits’ide ot the unit ciiete. Under

this assumptitin modet (1.19) lias tire follouing iiIA (oc) repïesentatton:

( X(t) = ( u(t— j) = i’xx, ( ux(t — j)

Y(t) j uy(t— j) ) ,=o L’yy L”yyj uy(t — j)

sectiun 1.7 we cliscuss unothei approacli tu eolnputing the consi ruiïed inoclel using siriuhition

techniciite.

31

Page 50: Problèmes dléconométrie en macroéconomie et en finance

U’j=Wtj...i=W. j=L2...., 7P0I2.

If tue an intensted in detennining the model of rnaipinal pwcen X(t), then by Coivllary

(2) and forF=[1, 0]. tue have

det[fl(L)]X(t) = [1. 01 fl(L)’u(t)

wlzeir

fl(L)’= 1 wflL wçyL

,ryxL l—wxxL

and

detlfl(L)1 = 1— (In’ + irxx)L — (wyxlrxy — irxxirn-)L2. (1.20)

flus.

X(t) — iriX(t — 1) — w2X(t — 2) = wxyuy(t — 1) — wyyux(t — 1) + ux(t).

wheie w = wyy+lrxx andw2 = wyx7rxy—wxxwn.fle Hght-hand aide of equation 1.20.

denoted w(t). is Me aura of an MÂ(1) pwœss and a «‘bite noise pwœss. By Pmposition

2. w(t) lias an MÂ(1) npnsentation. ccr(t) = ex(t)÷Oex(t—l). To detenWne pammeters

O and Varfrx(t)) = in ternis of Me pammeters of Me unconstmined modeL tue have

tosolvesystem (1.18) forv=0 andv=1,

Var [r(t)] = Far [ux(t) — wyyux(t — 1) + irxyuy(t — 1)].

E [w(t)w(t — 1)]E[(ux(t) — wyyux(t — 1) + wxyuy(t — 1))

x (u4t — 1) — wn.ux(t — 2) + wxyuy(t — 2fl1.

32

Page 51: Problèmes dléconométrie en macroéconomie et en finance

(1 + — (1 ± U +—

oj)x = —7rYYJ.

Here we Ïiare two eq’uation.s aiict two unknown paraineters O and These paTameters

must satisJj the constiaints 6? 1< 1 ami u > O.

The VMA(Dc) representation of model (1.17) is given bv:

S(t) = det [11(L)]-’ O(L)(t) j(t—

j).1=0

XX XZ rx(t— J)

(121)zz, rz(t

— j)

wliere = -(rnl+?îI2) b clualltifv the degree of causalitv froni Y to X at horizon h. we

first coiisideu the unconstrairied and constrai,ied models of puocess X. The uneonstrair,ed

model is given by the following equation:

X(t) = ‘xvux(t — J)+ ‘°(t — .j)+Z xzJuz(t —

wliereas the constrained model is given by:

X(t) = cvx)rx(t — J) ± o-z(t j) ± +(t).

Second, we neecÏ to calculate the variance-covariance matrices of the unconstraineci and

constraineci forecast errors of X(t + h). From ecittation (1.13), tue foiecast errou of

Il (t ± h) is given bv:

h—1

e. [1T(t ± h) I,] ‘1u(t ± h — i)

33

Page 52: Problèmes dléconométrie en macroéconomie et en finance

associatect with the variance-covariance iiiatrix

k—1 h—1

Z(TV(t + h) I) = Ver [u(f)] = (1.22)1=0

The unconstrained forecast error of X(t + h) is given by

11—1 11—1

t(t + h) Ij xxLX(t ± h— j) + + h

— j)i=1 .1=1

l1 1

+ ‘xznztt + h — j) + u(t ± h).j=1

which is associateci with the unconstrained variance—covariance matrix

h—1

h) I,) = Z[c’,

where c= [ o o ] . $imilarly, the forecast error of S(t + h) is given by

Il—1

kr [S(t ± li) It — Y,] I1Z(t h — i)

associatect with tue variance-cuvariance matrix

Z(S(t + h) I — Y,)=

CF, Zf

Consequently. the constraineci forecast error of X (t ± h) is given by:

11—1 h—1

[X(t ± h) It — Y1 = Ôxx E.v(t h— .1) + 0xz z(t h — j) ± (t + h)

31

Page 53: Problèmes dléconométrie en macroéconomie et en finance

associated with the constrained variance-covariance matrix

+ h) I,—

Y) = eF Z 4

where e= [ i, j ] . Thus, we eau immediately decluce the following resuit. by using

tue definition of a causality measure from Y to V [see Definitioii 3].

Theorern 3 Un dec ass umptwns (1.12) tind (1. 13): tmd foi Ii 1. wh eie h is u post te

intege r.

= indet( Z 4)det ( ep,,

where e= [ i o o ] . e

= [ ‘,1 o ]\Ve eau. of course. repeat the same argument switching the foie of tlic variables X and

Example 4 For ci lnvariate 141R (1) inocÏet /see E:rarnpie 3J. ne eau anaiytzcatly compute

the causaiitij in eus aies ai aiiy horizon Ï? itSiit.g oit Ïy flic ait coiistiïrned pararrieteis. For

e:rampte. tire caustiÏity ineusures al h onzons 1 and 2 are giren by.’

(1 + ÷ ± ((1 + + —

C(Y : X)= in[2u2u x

(1.23)

C(Y — X) = (1.21)

lii[o-, _((1b y(T.)2_17ry(T —2ir’-- ]

Eqitations 1.23 003 1.2 07€ obla.inrtt ni (ICI assumptions coz’(uX (t), uy (t)) = O and

((1 + + )2 — o.

35

Page 54: Problèmes dléconométrie en macroéconomie et en finance

Now we vil1 cletermine the paranietric measurc of iiistantaneous causality at given

horizon h. We know from section 1.4 that a measiire 0f instantancous causality is defineci

only in ternis of the variance-covauiaice matrices of unconstrained forecast errors. The

variance-covariance matrix of the miconstraineci forecast euror of joint process (X’(t +

h). Y’(f + h))’ is given bv:

h—1

h). Y(t + h) 1,) =

‘m O Owliere G = . We have,

O 1m7 O

h—1

Z(X(t ± h) I) [t[’

i =0

h—1

(Y(t + h) I,) =

wllere eÇ [ o 1,2 o Tims, we can immecliately decluce the fbllowing resuit hy

using the definitiori of the histantaneous causality measure.

Theorem 4 Undei assu’invtions (1.12,) anti (1.13) aiol jiïr h > 1.

C(XY Z) 1 (let(ZL [e’Z,, ‘e’”]) det(Z [etJ’Z,, te’])h det(Z [G&,Z G’])

1m, O O F 1 twh e re G . e

= [ I,,, o o j . e -

= [ o I,,,., OO I,,,, O

-

The parametric measure of clupenclence at horizon h eau be cleduceci from its clecom

position given by ecluation (1.11).

36

Page 55: Problèmes dléconométrie en macroéconomie et en finance

1.5.2 Characterization of causality measures for VMA(q) processes

Xow, assume that tue { (s) = (X’ (s), Z’(s). ‘(s))’ : s < t} follows an invertihie

VMA(q) moclel:

Ê (ti(t —j) + e(t)

q XXj XYj <‘XZj (t—

j) u(t)

= ZZ.\j ZYj zz uy(t

j) uz(t)

i\Iore compactly,

TT(t) = <I)U(t)

wliere

(L) vy(L) Fxz(L)

(I)(L) = 1y(L) tI(L) (I)y(L)

zx(L) 1?zy(L) zz(L)

= Ïll, + Z 11L’. Ik(L) = njV. fbr / k. 1. k = X. Z. Y

1m t) OFrom Proposition 2 and letthig f = the model of the constrained

O O Iflprocess S(t) = fW(t) is an MA(J) with 7 < q. We have.

5(t) = (L)E(t) O16(t _= [ ] ((t _i))jO j=O ZX.j ZZ,j (t —j)

where

r , i f fors=tE [(t)] O. E V (s)]

O fbrst

37

Page 56: Problèmes dléconométrie en macroéconomie et en finance

iheorem 5 Let h1 and /12 he two c/iffelent horizons. Linder assnmpton. (1.25] ive have,

C(YX I Z) = C(YX Z). V h2 > Ï C].h1 h2

This resuit follows immecliatelv frorn Proposition 1.

1.6 Estimation

We know from section 1.5 that short- and long-run causality measures depencl 011 the

parameters of the rnodel clescribirig the process of interest. Consequently. these measures

can be estimated by replacing the unknown paraineters Lv their estimates from a finite

sample.

Three different approaches for estimating causality measures van be considered. Tue

first, called the nonparametric approach, is the focus of this section. It assumes that

the form of the parametric model appropriate for the irocess of interest is unknown and

approximates it with a VAR(k) model, where k depencis on the saniple size [sec Parzen

(1974). Bliansali (1978). ami Lewis auJ Reinsel (1985)]. The second approach assumes

that the process follows a fuite order VARMA model. The standard methocis for the

estimation of VAR\L4. moclels. such as maximum likelihood ami nonlinear least squales,

require nonlinear optimization. This imght not Le feasible because the nuniber of para

ineters eau increase quickly. To circumvent tins problem. several authors [sec flannan auJ

Rissanen (1982), Hamian anci Kavalieris (19$4b), Koreisha auJ Pukkila (1989), Dufour

auJ Pelletier (2005). aucï Dufour alldÏ Jouini (2004)] have dcveloped a relativelv simple

approach based only on linear regression. Tins approach eiiahles estimation of VARMA

models using a long VAR whose order clepends on the sample size. ihe last anci simplest.

approach assumes that the process follows a fuite order VAR(p) model which can Le

estinated by OLS.

In practice, the precise form of the pararnetric moclel appropriate for a process is

unknowu. Parzen (1974), Uhansali (1978), anct Lewis auJ Heinsel (1985). among others.

38

Page 57: Problèmes dléconométrie en macroéconomie et en finance

consiclered a nouparainetric approach to predicting future values using an autoregressive

model fit ted to a series of T observations. This approach is baseci on a very mild assump

tiou of an influite order autoregressive model for the process which includes flnite-order

st.ationary VARiA processes as a special case. lu this section, we describe the non

parametric approach to estimatiiig the short— ami long—mn causality nwasures. First, we

cliscuss estimation of the fltted autoregressive constraiuecl and uncoristrained models. We

tiien point ont some asstimptions lleccssary for the convergence of the estimated para

rueters. $ecolld. using Theorem 6 in Lewis anci Reinsel (19S). we define approximations

of variance-covariance matrices of tire constrained and unconstrallled forecast errors at.

horizon h. Finallv, we use these approximations to constmuct au asymptotic est iinator of

short- auJ long-ruu causality measures.

In what follows we focus on the estimation of tue unconstrainecl moclel. Let us consider

a stationarv vector process {IV(s) = (X(s)’. Y(.s)’. Z(s)’)’. s < t)}. By Wold’s theorem.

this process can Le written in the form of a VMA(oc) model:

lV(t) = u(t) +— .1).

assume that Z 1 oc anci (let{(z)} O forj z < 1, where

anci •( z)=

z. with I,,. an in x mn iclentitv matrix. Uncler the latter

assumptions, W(t) is invertihie auJ cnn Le written as au infinite autoregressive process:

lI(t) zr,I’V(t — j) + off). (1.26)

where a oc and a(z) = I,—

az z(zY’ satisfles cÏet{7r(z)} () for

zl.

Let fl(k) (a1. 7T2 71k) denote the flrst k autoregressive coefficients in the

VAR(oc) representation. Given a realizatiori {ll(1) (T)}. we can approximate

(1.26) Lv a finite order VAR( k) model, where k depends on the sample size T. The

39

Page 58: Problèmes dléconométrie en macroéconomie et en finance

estiinators of the autoregressive coefficients of the fitteci VAR(k) model anci variance

covariance rnatrix, Z. are given by the following equation:

(k) = 2h 1fl:1. = i(t)’(t)/( — k).t=i±1

wThere ,. = (T — k) -1tt’(t) w(t)’, for w(t) (W(t)’ (t — k + 1)’)’. =

(T — k)’ ti(t)1V(t + 1)’, and û(t) = W(t) — L, *eW(t—

j).

Theorem 1 in Lewis and Reinsel (1985) ensures convergence of 11(k) under three

assumptions: (1) E I u1(t)u1(t)uc(t)u,(t) < oc. for 1 < L). k. Ï < in; (2) k is

chosen as a fmiction of T such that k2/T — 0 as k. T — oc; and (3) k is chosen as a

function of T such that k’2 ° 7TJ oc as k. T — oc. In their Theorem 4

they derive the asyinptotic distribution for these estimators under 3 assumptions: (1)

E uI(t)UJ(t)uk(t)u,(t) < - < oc. 1 < i.j. k. Ï < in; (2) k is chosen as a function of T

such that k3/T O as k. T oc; and (3) there exists {Ï(k)} a sequence of (km2 x 1)

vectors such that O < M1 < 1(k) 12_ i(k)’Ï(k) <M2 <oc. for k = 1.2, ... We also note

that converges to as k and T — oc [sec Lfltkepohl (1993a)].

Remark 4 The upper bound K of flic ai dci’ k 2H flic flUet! L4R(k) inodel depenils on

tue assuinptions icqutred to ens are conveigen.cc a’nci flic asymptotic clistrihutton of flic

estiniator. for conucigence of flic esttmator, ire ‘neetÏ to assume that k2/T —* U. as k anti

T —* oc. Conseqnentiy, ive ccin choose K CT’2. whcre C is a constant. as an upper

bound. To derive tÏ e aSyTflj)tOtic disti’ib ittion of t11ie esttmatoi 11(k), ire flecd to assume

that 1L3/T — 0. as k anti T —÷ oc. tiad iii us ire cati choose as an upper bouti d K = CI’

ihe forecast error of (t + k). based on the ‘4R(oc) model. is givdn by:

l’—1

e,,(.[11(t + h) T1(t). T1’(t — 1). ...] = 1u(t + Ii— j).

j =0

10

Page 59: Problèmes dléconométrie en macroéconomie et en finance

associateci witli tue variance-covariarice matrix

h I

[W(t ± h) W(t), W(t — 1). ...] =

In the same way, the variance—covariance matrix of the forecast error of (t —j— h). based

on tue VAR(k) nioclel, is given by:

.[W(t + h) I W(t). — 1) W(t — Â + 1)]

=E[(1I+k)_Z*W(t+1_i)) (uv(t+1i)_.)Ivt+1_

where [sec Dufour anti Renault (1998)]

+ = .. i, t& j i. ï,

Moreover,

1I + h) — + 1— :1)

= (wt + h) — 5’W(t + 1— J)) — (.)w(t + 1

— + 1— J))

= (t + ï— J)

)wt + i—

— w(t + 1_J)). (1.27)

where [see Dufour alld Renault (1998)]

(h1) Çh1)+ )1•

(1) = (D)1m. for j > 1 antI h 1.

41

Page 60: Problèmes dléconométrie en macroéconomie et en finance

Since the error ternis u(t + h— j), for O <j < (h — 1), are independent of (I1(t). W(t —

1). . .. ) and (ik. the two tenns on the right-hand sicle of equation (1.27)

are indepenclent. Tims.

Zk.[11(t±h)(11(t),W([—1) W(t—ktl)]

E{ W(f +1 - j) -

/i)W(f +1-))

(1.2$)

(z1 IT(t +1- j) - W(t +1-

+[W(t + h) I W(t), W(t — 1). ...].

h anti T —* DC. an asvmptotic approximation of the first terni in equation (1.2$) is

giveli 1w Theorem 6 in Lewis anti Reinsel (1985):

E[(Z)TV(t+1_J)_ZW(t+1_i))

h —1

Collsequently. an asymptotic approximation of the variance-covariance matrix of the

forecast error is given by:

h) W(t). W(t — 1) (t — k + 1)] (1 + ) (1.29)j =0

An estimator of this quantitv is obtaineci by replacing the parameters p1 anti Z,, by their

estimators anti Z, respectively.

We ca also obtain an asvmptotic approximation of the variance-covariance matrix of

the constraineci forecast error at horizon h foilowing the sanie steps as before. We cleiiote

42

Page 61: Problèmes dléconométrie en macroéconomie et en finance

this variance-covariailce matrix hy:

h—1

Z[S(t + h) 5(t). S(t — 1). ... . S(t — + 1)] (1 +‘° m)

where F,. for j = 1..... h — 1, represent the coefficients of a VMA representation of the

constrained process S. anci Z is the variance-covariance matrix of (t) (E(t)’. z(t)’)’.

From the above resuits, an asyinptotic approximation of the causality measure from Y

to X is giveli by:

(iet[Z1_1 eI) ZI’ cÏ ?Ii)C(\lZ)hi +1” 1—

h det[ e’Z’[’] T +

wlwre e’= [ j1 o o ] anti e

= [ j, o ] . An estimator of tins quantity will be

obtamed bv replacing the unknown paIIneters. 1. Z..,.

and Z,,. bv their estimates.

cI. Z. and Z. respectivelv:

det[Z’’ eÎZ’e]

______

C X I Z) = In ,

+ in 1 — -

h det[ZeZ e’] T + km

1.7 Evaluation by simulation of causality measures

In this section, we propose a simple sinulation-based tecimique to calculate causality

measures at any horizon h, for h 1. To illustrate this technique we consicler the same

examples we usect iii section 1 anti limit ourselves to horizons 1 and 2.

Siiice one source of bias in autoregressive coefficients ix saniple size. our technique

consists of siniulat.ing a large sample from tire unconstraineci model viiose paraineters

are assunied to be either known or estimated from a real data set. Once the large sample

(hereafter large simulation) is simulateci. we use it to estiinate the parameters of the

constrained model (imposing noncausalitv). In what follows we describe an algorithin to

calculate the causaiity measure at given horizon h using a large simulation teclnnciue:

43

Page 62: Problèmes dléconométrie en macroéconomie et en finance

1. given the parameters of the ullconstrainecl urodel anci its initial values. sinrulate a

large sample of T observations mider the assumption that the pïobabilitv distrib

ution of the error term u(t) is completelv specified;

2. estiniate the constraiued model using a large simulation:

3. calculate the coustrained auj tincollStraillcd variance-covariance matrices of the

forecast errors at horizon h [see section 1.5 ]

1. calculate the causalitv measure at horizon h using the coistrained and micon—

straineci variance-covariance matrices from step 3.

Now. let us reconsider Example 1 from section 1:

X(t H— 1)

_

X(t)— LI

Y(t + 1) Y(t)

0.5 0.7 X(f) u(f+l)+ . (1.30)

0.4 0.35 Y(t) uy(t + 1)

where

E[u(t)] 0. E[u(t)u(s)’] {Our illustration involves two steps. first. we calculate the theoretical values of the

causalitv measures at horizons 1 anci 2. We know froin Example 4 that for a bivanate

VAR(1) moclel it is easy to compute tire causality rneasure at any horizon h using only

the unconstraineci parameters. Second. we evaluate tire causality measures using a large

simulation technique and wc compare them with theoretical values from step 1. These

theoretical values are recovered as follows.

1. We compute the variances of the forecast errors of X at horizons 1 anid 2 using its

(ail Le ecilial Io 1000000,The feria of the proÏ)abilitv distrihiit ion tjl’ ii (f) cloes net affect the ‘aIue of cet salitv nieienres.

11

Page 63: Problèmes dléconométrie en macroéconomie et en finance

own 1)ast and the past of -. We have.

h —1

Z[(X(t ± h). Y(t + h))’ I X• Y,] = 11’ 11”. (1.31)

From (1.31), we get

ur[X(t + 1) X,. Y,] 1. ur[X(t + 2) X,. Y,]=

e II’ H”e’ 1.74.

where e (1,0)’.

2. We compute the variances of the fouecast errors of X at horizons 1 and 2 ising only

its own past. In this case we neecl to deterrnirie the structure of the collstrained

model. This one ix given by the following equation [sec Example 3]:

X(t + 1) =(yy+xx)X(t)+( v-xxyy)X(t — 1)+r\(t + 1)+Ox(t).

whcre 7ryy + 7rvX = 0.85 aiid zr--ry — 7riryy = 0.105. The parameters & and

tT are the solutions to the following system:

(1 + &2) = 1.6125.

= —0.35.

The set of possible solutions is {(&. o) = (—4.378. 0.08), (—0.2285, 1.53)}. To

get an invertible solutioll we must choose the combination winch satisfies the concÏi

tion I 0 < 1. i.e. the coinhination (—0.2285. 1.53). Thus. the variance of the forecast

error of X at horizoil 1 using onlv its owu past ix given by: Z[X(t + Ï) IX,] = 1.53.

auJ the variance of the forecaxt error of X at horizon 2 ix [X(t + 2) IX,] 2.12.

15

Page 64: Problèmes dléconométrie en macroéconomie et en finance

Table 1.1: Eva1uatio; by simulation of causalitv at h=1. 2

C(YX) C(YV)

0.519 0.5672 0.430 0.2203 0.427 0.2004 0.125 0.1995 0.426 0.19810 0.425 0.19715 0.426 0.19920 0.425 0.19725 0.425 0.19930 0.426 0.19835 0.125 0.198

Cousequeiitly, we have:

C(Y—X) 0.-125. C(Y—X) = 0.197.

In a second step we use the algorithm describeci at the beginnillg of tus section to

evaluate tire causalitv rneasures using a large simulatioll technique. Table 1.1 shows

resuits that we get for different lag orclers p in the constrained model.’ These resuits

corifirini the convergence ensureci by the iaw of large numbers.

Now consicler Example 2 of sectioi 1:

.V(t + 1) 0.60 0.00 0.80 X(t) -(t + 1)

Y(t + 1) = t).00 0.10 0.t]t) Y(t) + (f + 1) (1.32)

Z(t ± 1) 0.00 0.60 0.10 Z(t) -- 1)

lin Example 2, aiialvtjcal calcuiation of the causahtv mensures at horizons 1 and 2 is

not cosy. In this example Y (10es not cause À at horizon 1. btit causes il at horizon 2

W ousider T = 600000 simulations.

46

Page 65: Problèmes dléconométrie en macroéconomie et en finance

Table 1.2: Evaluation by siimllatioll of causality at h= 1. 2: Illdirect causality

C(YXIZ) C(YXIZ)1 0.000 0.1212 0.000 0.123T 0.000 0.1224 0.000 0.123

(].00t) 0.12410 0.000 0.12215 0.000 0.12220 0.000 0.122

0.000 0.12130 0.000 0.122

0.000 0.122

(indirect causality). Consecjueiitly, we expect that causality measure frorn Y to X will be

equal to zero at horizon 1 auJ different from zero at horizon 2. Using a large simulatioll

technique aucl by considering cÏifferent lag orders p in tue constraiied model, we get the

resifits in Table 1.2. These results show clearlv the presence of an indirect causality from

Y to X.

1.8 Confidence intervals

Iii this section, we assume that the process of interest W {W(s) = (X(s). Y(s). Z(s))’

s < t)} follows a VAR(p) inodel

J)

W(t) .jW(t— j) ± u(t)

i=i

(1.33)

Ii I I I(J11OW a VAR (DC) tflO(l(l. theii une tiiii us<- moue 011(1 Ki1iun (20(12) 01JIJr0a(I1 t (J Ot resuitstliat aïe iuhi(aI tu those deve(Ope(1 1H tins secljoii.

17

Page 66: Problèmes dléconométrie en macroéconomie et en finance

or equivalently,

(13—

L3)W(t) =

where the poh-nomial H(z) = 1:3 — wjz satishes det[fl(z)] O. for z e C with

z < 1 and {u (t)} is a secluence of j. j. ci. random variab1es.. For a realization

{W(l) IV(T)} of process W, estirnates of H = (in...,. in) and are given by the

following eqtiations:

= Ê’, È,, = (t)û(t)’/(T - p). (1.31)

wliere f (T— p)’ L1 w(t)w(t)’, for w(t) = (W(t)’ .....W(t

p + 1)’)’. fi

(T—

u’(t)lf (t + 1)’. anci (t) = W(t) — Tl(t J).Now. suppose that we are interested in measuring causalitv froni - to V at given

horizon h. In this case we need to know the structure of the margiHal pi’ocess {S(s)

(X(s). Z(s))’, s < t)}. This one has a VARMA(. ) representation with j1 < 3p and

fj< 2p.

S(t) S(t— j) + 9(t — j) + (t) (1.35)

where {(t)}0 is a sequence of i.i.d. ranclom variables that satisfies

Z ifs=tE [z(t)] O. E [(t)z (s)]

O ifst

and Z is a positive definite matrix. Equation (1.35) cari lie written in the following

reduced tbrm.

O(L)S(t) = O(L)z(t).

where o(L) = 12 — — ... — and 9(L) I + 91L + ... + We assume that

issuine that X. -. anci Z are linivariitte variahle. However. it is eav to generalize lie resu1ticf this seut 1011 to the noiltivaria te case.

1$

Page 67: Problèmes dléconométrie en macroéconomie et en finance

(z) = ‘2 + &jz2 satisfies det[O(z)] O for z C anci j z < 1. Uiider the latter

assmiiption, the VARviA(. J) process is mvertible alld lias a VAR(o) representatioll:

S(t) —

- j) = 9(L)(L)S(t) = (t). (1.36)j=1

Let H (irÇ. irf. ..) cienote the matrix of ail autoregressive coefficients iii model (1.36)

and FL(k) = (7r. .) cleiiote its first k autoregressive coefficients. Suppose that

we approximate (1.36) hv a finite orcler VAR(k) model. where k depends on sample size

T. The estimators of the aittoregressive coefficient.s WU) and variance-covariance niatrix

are given by:

= (fr., *) = ,. = .(t)(t)’/(T - k),/ = k+ I

where f,. = (T — k)-’ 2f k+t S,.(f)S1(t)’. for S1(t) = (S’(t) S’(t — k 1))’. f =

(T — k)’ S(t)S(t + 1)’. and .(t) = S(t)—

,$(t— j).

Frorn the above notations, the theoretical value of the catisality measure from Y to X at

horizon Ï, may lie defineci as follows:

- /G(vec(IT). vech())C O IZ) — in

H(vec(H), veu1i(Z))

k—1

G(vec(W). vech()) = e = (1. 1)’.j=0

h t

II(vec(H). vech(1)) = e, = (1. 1. Ï)’,•j=0

c(j) ‘(j—i) c(j-i) . .t(O) (‘(1)with = K9 + ir,. for 2. = ‘2 and n = 7t [sec Dufour and Re

nault (1995)]. vec clenotes the colunm stacking operator and vecli is the colmnn stacking

operator that stacks tue elenients On and below tlie diagonal onlv. B Corollary 2. there

49

Page 68: Problèmes dléconométrie en macroéconomie et en finance

exists a functioii [o : 9(j1) — 1(k+1) which associates the constrainecï parameters

(vec( Hc). vech( Z-)) with the unconstrained parameters (vec(H). vecli( .,,)) such that [sec

Example 1]:

(vec(W). vech(ZE))’ f((vec(H). vech(,j)’)

ancl

V Z — 1(GCt((t vech(Z,))’))

( / ) —H(vec(H). vech(ZJ)

Ail estimator of C( - —f V Z) is given liv:

/ G( vec( hc( k)). vech( L)) N -C( —X Z) In t . (L3t)h \\ II(vec(fl). vech(Zj) )

where G(vec(1[’(k)), vech(Z.)) and I-I(vec(1I). vcch(Ê,)) are estimates of the corre

spollclig populatioi; quantities.

Now let consider the following assumptions.

Ass’umption 1 : [sec Lewis and Reinsel (1985)]

1) E rh(t)rj(t)(t)r,(t) < < Dc. for 1 <h. i.j. I < 2:

2) k is choseri as a fiinction of T such that k3/T O as k. T

3) k is chosei as a fuilction of T siich that T’2 Zk+1 II O as k, T — c.

4) Series used to estimate parameters of VAR(k) and series used for prediction are

gerierated from two independent processes which have the sanie stochastic structure.

Assumption 2 : f t.) is continuons and differentiahle function.

Proposition 6 (Consistency of C(Y X I Z)) Unde’i fî’sunlptton (1). ((Y

X Z) /s u cousistent estiniutor of C()h’

X Z).

50

Page 69: Problèmes dléconométrie en macroéconomie et en finance

To establish the asymptotic distributioi of Ê’(Y —* X Z). let us start hy recalliug the

following resuit [see Lfltkepohl (1990a. page 11$-119) ancÏ Kiliau (1998a, page 221)]:

t vec(Û) - vec(ll)T’12 ) z*f(O. Q) (1.3$)

vech (Z) — vech (Z,, ) Jwhere

Q(F®U O

O 2(DD3)’D(ZH 0

D3 is the duplicatioii mat.rix. clefiuied such that vecli(f) D:ivecli(E) for any symmetric

3 x 3 inatrix F.

Proposition T (Asymptotic distribution of C(Y —* X Z)) (Ioder ossuinptions (1)

and (2). ive hure:

T”2[Ê’(XtZ) - C(XZ)] 2V(O. Z)

where = DcQD. (lad

DC(Y—XZ)D

O(vec(H)’. vecli(Z,)’)

Q(f®u O

O 2(DD3)’D(Z,, O Zu)D(DD3)

Analytically differentiathig the causality measure with respect to the vector (vec(fl). vech(Z1fl’

is not ftasible. Que wav to huild corifideiice intervals for causalitv measures is to use a

large simulation tecimique [sec section 2.4] to calculate the clerivative uumerically. Au

other way is by building bootstrap confidence intervals. As mentioried by moue and

Kilian (2002), fou bouuclecl measures. as in our case. the bootstrap approach is more reli—

able than the clelta—method. The reason is because the clelta—method interval is not range

respectmg aud may prochice confidence intervals that are Iogically invalid. In contrast.

51

Page 70: Problèmes dléconométrie en macroéconomie et en finance

the boot.strap percentile interval by construction preserves tiiese constraint.s [see moue

anci Kilian (2002) and Efron and Tibshirani (1993)].

Let us consicler the following bootstrap approximation to the distribution of the

causality measure at giveil horizon h.

1. Estimate a VAR(p) process alld save the resicluals

(t) = Tl(t) —ZjW( —j). for t =p± 1 T.

where fr. for j = 1 p. are given by edtuatioll (1.34).

2. Generate (T—

p) bootstrap resicluals ù(t) by random san pling with replacernent

from the residuals ït(t). t + 1 T.

3. Choose the vector of initial observations w (0) (U (1). U’ (p))’.

4. Given H=(, j. ï(t). and w(0). generate bootstrap data for the deperldlellt

variable Il ‘(t) from equatiori:

lr() = lr(t— J) + (t). fhr t = p 1 T. (1.39)

5. Calculate the bootstrap OLS regression estiiriates

= (. ) = Ê’’. Ê = d*(t)d*(t)’/(T-

p).t=p+l

where = (T—p)-’ w(t)w*(t)’. for w*(t) = (U’(t) ‘(f —p+ 1))’.

= (T— p)’ Z=, w*(t)Ir(t + 1)’. anci *(f) = TV*(t)

— Z, frU(t— .1).

“The chuiec of us0ig the initial vectors t If t 1) ,....lf (p)) scems natural, but any block of p vectorsfrom I - { W (I) ,...,tl (T) } woultl approp1iat(. Berkowitz and Nilian (2t)Ot) ) ilote tliat con(litioniiigcadi hool stinp repilcate On the s,ui,e initial value vill understate the nniertaintv associ,,Iecl with thehoot st rap esti nates. anci this clioice is rando,uised in the simulations hy clioosing the starting value from

{W(1) (T)} [sec Pat terson (2007)].

Page 71: Problèmes dléconométrie en macroéconomie et en finance

6. Estimate the coiistrairiecl model of the marginal process (X. Z) using the bootstrap

san,ple {H’(t)}I1.

7. Calculate the causality measure at horizon h. deioted ÊU)*(Y X Z), using

equation (1.37).

8. Choose B such ci(B ± 1) is an iilteger anci repeat steps (2) — (7) B times.

Coriclitional on the sample, we have [sec Irioue and Kilian (2002)],

t vec(H)—r’/2 I I V(0 0) (1.40)

vech ( Z) — vech (Z) Jwhere

t f’®Z OQ=rI

O 2(DD3)’D(Zu O Z)D3(DD3)

D3 is the duplication matrix cleflned such that vech( f) — D3vecli( f) for an svn,met ric

3 x 3 matrix f. We have the following resuit which establish the validity of the percentile

bootstrap tecimique.

Proposition 8 (Asymptotic validity of the residual-based bootstrap) Under as

stimptions (1) and (2), we have

TI/2(â*(YXIZ)- â( XlZ)) t(() Z).

whcre Z De0D and

3C(Y—XZ)

d(vec( H) . vech (

t f’®Z,, O

O 2(DD3)-1D(Z,, O

53

Page 72: Problèmes dléconométrie en macroéconomie et en finance

Kilian (1998) proposes a algorithm to reniove tire Lias in impulse response functions

prior to bootstrappiirg the estirnate.As fie mentioneci. tire small sample Lias iII an

impulse response function may arise from bias in siope coefficient estimates or frorn the

noiihnearity of this function, and this can translate into cirailges in interval wiclth auJ

location. If the orciinary least-squares small-sample Lias can Le responsihie for bias in tire

estimateci impulse response fmiction, then replacing tire biaseci siope coefficient estirnates

by hias-correctecl siope coefficient estimates may heip to reduce tire Lias in the impulse

response functioir. KiliaIr (1998) shows that the adciitionai modifications proposeci iii tire

bias-corrected bootstrap confidence intervals rnethod tic) not alter its asyinptotic vaiidity.

Tire reason is that the effect of Lias corrections is neghgibie asymptoticafiy.

To improve tire performance of tire percentile bootstrap intervals clcscribed above.

we aimost consider tire same algorithmn as in Kilian (1998). Before bootstrapping the

causality measures. we correct the bias in the VAR coefficients. We approximate the

bias term Bicis E[fI — H] of the VAR. coefficients by the corresponding bootstrap Lias

310.3* E*[H*— H]. where E* is the expectation based on tire bootstrap distribution of

fIt. This suggests the Lias estimate

B

We strhstitute H — fias in ecuatioll (1.39) anti generate B new bootstrap replicationsfl4•

\ke use tire saure bias estimnate. 3/0.3. to estimate the mean hias of new fi .1

Then we caicifiate tire bias-corrected Lootstrap estimator = fj*— that we

use to estimate the Lias-corrected Lootstrap causality rneasure estimate. Based on the

discussion by Kffian (1998, page 219), given the nonhnearitv of tire causality nreasure,

tus procedure vili not in generai produce unbiaseci estnrrates. LIIt as long as tire resuiting

Lootstrap estimator is approximately unbiased, the imphed percentile intervals are likeiy

to be gooci approxmrations. To recluce more the bias in tire causahty measures estimate,

11See Kilian (19D5).

54

Page 73: Problèmes dléconométrie en macroéconomie et en finance

oui empirical application we consider another bias correction directlv On the measure

itself. this one is giveri bv

*(y X Z) = (i)*(y X Z) [*(Y X Z) — â(Y X Z)],h h h h.

where

(Y X Z) ± U)*(y Z).

In practice. specially when the true value of causality measure is close to zero. it is

possible that for sonie boot.strap samples

(i)t(y X J Z)<*(y

X z) — ê(ï X Z)],h h h

in this case we impose the following llon-negatwity tnuication:

X Z) max {è(Y X Z). o}.

1.9 Empirical illustration

In this section, we apply our causality measures to measure the strength of relationships

between macroeconomic and fillancial variables. The data set considereci is the one used

hy Bernanke ami Mihov (199$) and Dufour. Pelletier, auJ Renault (2006). Tlns data set

consists of monthly observations 011 nollborrowed reserves (NBR), the federal funcis rate

(r), the gross domestic product cleflator (P). ami real gross domestic procluct (GDP).

The monthly data on G’DP and the GDP deflator were constructecl using state space

methocis from ciuarterlv observations [for more details. sec Bernanke anti 1\Iihov (199$)].

The sample runs froiir January 1965 to Deceniber 1996 for a total of 3$1 observations.

Ail variables are in logarithmic fonn [sec Figures 1 1]. Tliese variables were also tians

formed by taking first cliffurences [sec Figures 5 8], consequently the causalit relations

have to be interpreted in ternis of the growtli rate of variables.

Page 74: Problèmes dléconométrie en macroéconomie et en finance

E

E

(t

z

Q,w

o

u,0(

o

u,

(t

E

U,

(t

oN

(t

E

E

o

N

u-

oo

U,

(t

Eo,

(t

tEN)UI

56

Page 75: Problèmes dléconométrie en macroéconomie et en finance

L9

GrewthrateetNBRGrewthrateetPe,e,e,e,

______________

gge,ggg

C

______

C

-cm

_____

S

_

[e,

GrewthrateefGDP

e,e,e,Growthrateetr-o-o-e,e,e,II

b—ooob—oe,e,0OOOOOOOre,e,—‘e,oe,—e,e,e,e’e,-awe,e,—e,r,

e,I

___

ZZze,

__________

m

____________________________

He,

____________

g,H

_____________________________________________________

ge,——e,O

__________________

e,_—-w

aW

______________

e’0a

__

I2e

___

S

z--DI

Q

Page 76: Problèmes dléconométrie en macroéconomie et en finance

Table 1.3: Dickey-Fuller tests: Variables in Logarit.hmic form

With mi ereept \Vith Intercept auJ TientlADf test statistie 5% Critical Value ADf test stut istie 5% Critical Value

IVBR —0.510587 —2.8691 —1.916128 —3.4234R —2.386082 —2.8694 —2.393276 —3.4234P —1.829982 —2.8694 —0.071649 —3.4234GDP —1.142940 —2.8694 —3.409215 —3.4234

Table 1.1: Dickey-fuller tests: First difference

With Iritercept ‘v\’it h Intercept anci Tuenci4Df test statistic 5 Critical Vaine lDf test statistic 57 Critical Value

N3R —5.956391 —2.8691 —5.937564 —3.9864r —7.782581 —2.8694 —7.817214 —3.9864P —2.690660 —2.8694 —3.217793 —3.9864GDP —5.922453 —2.6694 —5.966043 —3.9864

We performed an Augmented Dickev-fuller test (hereafter 4Df—test) for nonstation

arity of the four variables of interest anci their ftrst differences. The values of the test

st.atistics. as weIl as the critical values corresponding to a 5V significance level. aie given

in tables 1.3 anci 1.4. Table 1.5, below, summarizes the resuits of the stationarity tests

for all variables.

As we eau read from Table 1.5, all variables in logarithrnic forrn are nonstationar. How

Table 1.5: Stationarity test results

Variables in logarithiiiic forrn first clifferenceNBR Nor No

P No NoGDP No

58

Page 77: Problèmes dléconométrie en macroéconomie et en finance

ever. their first diffireuces are stationary except for the GDP deflator. P. We performed

a nonstationarity test for thc secolld cliffereuce of variable P. The test statistic values are

equal to —11.01826 aiid —11.07160 for the 1Df-test with oulv an mtercept and with

both i;itercept and trend. respectivelv. Tue critical values iii both cases are equal to

—2.8695 and —3.4235. Thus, the second difference of variable P is stationary.

Once the data is made stationary. we use a noilparametric approach for the estimation

anci Akaike’s information criterion to specify thc orders of the long VAR(k) models.

To choose the upper botmd ou the admissible lag orders K, we apply tlie resuits in

Lewis and Reinsel (1985). Using Akaike’s criterioi for the tmconstrained VAR model.

which corresponds to four variables, we observe that it is minimizcd at k 16. We use

same criterion to specify the orders of the constraiued VAR models. which correspolld

to ciiffercIit combinations of three variables, alld we find that the orders are ail less than

or equal to 16. To compare the cleterminauts of the variance—covariailce matrices of

the constrained and unconstrainecl forccast errors at horizon h. we take the same orcler

k = 16 for the constrairied and unconstrained moclels. We compute differeut causality

measures for horizons k 1 40 [sec Figures 9—14]. Higher values of rneasures iidicate

greater causality. We also calculate the corresponding nominal 95% bootstrap confidence

intervals as clescribed in the previous section.

from Figure 9 we observe that nonborrowecl rcserves have a considerable effect on

tue ferlerai fuuds rate at horizon one comparatively with other variables [sec figures 10

ancl 11 ]. This effect is well known in the literature and can he explainecl by the theory

of supply ancl deniand for monev. We also note that nouborrowed reserves have a short-

tenu efibct ou GDP and can cause the GDP deflator until horizon 5. figure 14 shows

the effect of GDP on the ftderal funds rate is significant for tue flrst four horizons. The

effect of the fbderal furids rate ou the GDP cleflator is significant oui at horizon 1 [sec

Figure 12]. Otiter significant resuits coricern the causality from r to GDP. figure 13

shows the effect of the interest rate on GDP is significant umitil horizon 16. These result.s

are consisteut with couclusions obtained bv Dufour et al. (2005).

59

Page 78: Problèmes dléconométrie en macroéconomie et en finance

Table 6 represents resuits of other causalitv directions until horizon 20. As we can

read from this table. there is no causalitv in these other directions. f inally. note that tue

above resuits do not change when we consicler the second. rather than first. difference of

variable P.

1.10 Conclusion

i\ew concepts of causalitv were introduced in Dufour and Renault (1998): causality at a

given (arbitrarv) horizon 1, and causalit. up to any given horizon h. where h is a positive

integer ami eau be infinite (1 < h < ). These concepts are motivateci hy the fact that,

in the presence of an auxiliary variable Z, it is possible to have a situation in which

the variable cloes not cause variable X at horizon 1, but causes it at a longer horizon

h > 1. In this case. this is an indirect causality transnntted hy the auxiliary variable Z.

Another related problem arises when measuring the importance of the causalitv be—

tween two variables. Existing causalitv mensures have bee;r established oniy for horizon

1 ancl fail to capture indirect causal effects. This chaptcr proposes a generalization of

such mensures for anv horizon h. We propose paranietric and nonparametric mensures

for feedback and instantaneons eflbcts at anv horizon h. Parametric mensures are defined

in terms of inpulse response coefficients in the VMA representation. Bv analogv with

Geweke (1982), we show that it is possible to define a nieasure of dependence at horizon

h which eau be decomposecl into a suin of fredback measures from X to Y from Y to

X. and an instantaneous effect at horizon h. We also show lrow these causality mensures

cnn be related to the predictability mensures developecl in Diebold and Kifian (199$).

We propose a new approach to estimating thuse mensures based on sinmlating a large

sample from the process of interest. We also a valici nonpararnetric confidence

interval. using the bootstrap technique.

froni an enipirical application wc fonnd that nonborrowect reserves cause the frcleral

fmicls rate only in t.he short term. the eftct of rcal gross doniestic product on the federal

60

Page 79: Problèmes dléconométrie en macroéconomie et en finance

funds rate le significant for the fret four horizons, the effect of the federal fluide rate

on the groes domestic product defiatar le significant only at horizon L and finMly the

federal fluide rate causes the real groes domestic product until horizon 16.

61

Page 80: Problèmes dléconométrie en macroéconomie et en finance

CausalityMeasuresooooooooboooP-‘-

O53C)-&53C)C)

:j>mm

*t

4fHi *4045)0

4-o

0*go**** .)*—C

4.—

CausalityMeasuresCausalityMeasuresooooooooobb°.

bPP 5)C)C)-‘535)C)OC)-.C)53

OO

:]

tII

-4: Co1*t

CD

mg

C

::O#- o

5

CD

°0%

Hh

P

53

CDCC

ooC

o

0

oo

o

C

zC

CC

C

C),C

CD

o

o

C

-nCDCo

o

C

o

o

o

C

o

CausalityMeasuresOOooooo°bboP 05)5)C)C)D)5)C)

Page 81: Problèmes dléconométrie en macroéconomie et en finance

Q

CausalityMeasures99999QQQQQQo-

Q(00)0)-‘D)0)Q

4(D

(D

j Z,/•_0(0-,,

D,//r0’Cnu00çgO(DD’

*00—

.T

(DO(D

T(0-0(D

_____

O

CausalityMeasuresQQQCb99p,

QCD-CDD)CD(0(J

I

(00(J,O-

(DD’

D’(D

Q

Page 82: Problèmes dléconométrie en macroéconomie et en finance

G)

o

Tab

le6.

Surn

rnar

yof

caus

alit

yre

lati

ons

atva

riou

sho

rizo

nsfo

rse

ries

infi

rst

diff

eren

ce

Q

h1

2-1

56

78

910

1112

1311

1516

1718

1920

NB

RR

yes

ÏVB

R—

Pye

sye

sye

sye

sV

BR

GD

Pye

sR

--N

3R

R—

Pye

sR

—G

DP

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

P-+

NB

RP

-H.]

?P

—.G

DP

GD

P-H

.N

BR

GD

P—

Rye

sye

sye

sye

sye

sG

DP

—P

Page 83: Problèmes dléconométrie en macroéconomie et en finance

1.11 Appendix: Proofs

Proof of Proposition 1. From defiuition 3 and for rn1 = ni2 = 1.

- u2(V(t + h1) I Y)C(XZ)=hi112 u2(\ (t —t— h1) I,)

± h1) I,)n2(X(t ± 112) It — Y)1ll(\ + h1) I — Y,)n2(X(t + h2) It)

- u2(X(t + h1) I I,) u2(t + h) I Y,)=C(}—XIZ)+1n - —hih’ u2(\ (t + 112) I I,) u2(\ (t + h2) I, — Y)

Aceording to Diehold anci Kilian (1998), the predict.ability measure of vector X under

the information sets I—Y and It are, respectiveiv, clefincd as follows:

-

n2(X(t + h1) I — Y)— \. h1. hj = 1

— n2(vt + 119) I,—

- 2((t+/) Ii—Y,)Pv(I. h1, /12) 1—2( (t+h2) I —Y)

Hence the resuit to he proved:

C(YXIZ) — C(YXIZ) = in [i — — Y. h1. /12)] —in [ï— P(I. h. h2)].

Proof of Proposition 6. Under assmuption 1 and tising Theorem 6 lii Lewis auJ

Reinsel (1985),

2kG(vec(fl’ (k)). vech(Z c))= (1±7)G( ec(H’ ). vech)

= (1 O(T))G(vec(W’). vecii()). for << 1.

The seconc equality follows from condition 2 of assumption 1. If we considc’r that k =

for ci > O, then condition 2 implies that k3/T = T31 with O < ci < . Sirnllarly. ive

65

Page 84: Problèmes dléconométrie en macroéconomie et en finance

have = 2T’’ aid T(2T’) 2 for < < 1. Thus. fbr << 1.

in (G(vec((k)). vec1i(Ê))) in (G(vec(W). vecii())+ hi (1 + O(T))

in (G(vec(W). recli())Q(T) (1.41)

For H(.) a continuous function in (vec(H). vech(Z1)) and becaise Û — II. Ê,, . weP P

have

ln(H(vec(Û). vech(Ê?I)))—4 hi(II(vec(H). vech(Zj)). (1.12)

liais. froni (1.11)-(1.42) and for < <1. ve get

è (Y X Z) 1(GtvecH). vec11Z)

+O(T) + o(l).h H(vec(fl). vech(Z,))

Conseqaently,

ê(Y X Z)C(Y ,‘ X Z).Ii p h.

Proof of Proposition 7. XVe have shown [sec prool of co;isistencvJ that. for

< <1.

in (G(vec(fr(k)), vec1i(Ê )))= In (G(f(vec(H). vech(1))) + O(T). (1.43)

Uiicler Assumptiori 2, we have

in(G(f(vec(Û). vech(Ê,)))) in(G(f(vec(H). vech(,)))). (1.11)

ihus. froni (1.13)—(1.11) and for < < 1. we get:

in (G(vec(Hc(A)). vech( k)fl= in (G(f(vec(fl). vech(1)))) +O(T)+vJ)(1).

66

Page 85: Problèmes dléconométrie en macroéconomie et en finance

Coriseqiientlv. for < < 1.

X Z) 1(G(f(vec() vec1i()))

+ O(Tj + o( 1)\\ H(vec(fl). vech(Z,)) J

=h’

X Z) + O(Tj + o,(1)

where

X Z) = hi(0tett. vech(,,)))

h \ H(vec(ll). vech(Z,,))

Since(G(f(vec(Û). vech()))

in j j = O(1).H(vec(fI). vech(Z,,)) J

the asymptotic distribution of (Y X Z) will be thc same as that of È’ X

Z). Ftirthermore. using Assomption 2aud a first-order Taylor expansion of (} X

Z), we have:

- t vec(fl) — vec(fl)C’(YzX I Z)=C(Y—XIZ)+De J + o(T),

h h \ vech( Z,,) — vent Z,,) J

where

Da(vec(H)’. vec1i(Z)’)

heilce

T”2 vec(Û) — vec(H)r’2[c(YxtZ) — XtZ)] D(’

h h T’“vecii( Z,1)— vecli( Z,,)

From (1.3$). we have

T’2[(YXIZ) - C( XIZ)](u. Z),

67

Page 86: Problèmes dléconométrie en macroéconomie et en finance

hence

X Z)-C(YXZ)](O, Z)

wliere

=

Q(F®EU O

O 2(DD3)’D,, 0

D3 is the duplication matrix. defined such that vech(f) = D3vecli(f) for a;iy svmmetric

3 x 3 iriatrix f. •

Proof of Proposition 8. We start by showing that

vec (Û *)VCC (Û) vech (Ê) vech( Ê )•

J)

vec(Û(k)) vec(fr(k)). vecli(h.) vech(Ê.).p 1’

vVe first note that

vec(fi*) = vec(’*_I) = vec((T — p)’t=p--1

vec((T — p)[Ùu*(t)û*(t + 1)] li*(t)’i)

t =1,—I

= vec(Û((T—

)l

t=p+1

+ vec((T — j))’ ït(t + 1)w*(f)ï*l)

t /)+ 1

= vcc(fi *_f) + vec((T—

p) r(t +t=p+i

68

Page 87: Problèmes dléconométrie en macroéconomie et en finance

Let . û(t)) denote the o-algebra geiierated by ii*(1).

i*(t). Then,

E* [*(t 1)w*(t)*_h] = E* [E* [*(f + 1)’(t)’

= E*[E*[*(t 1) ]w*(t)*h1 = O.

By the law of large ilumbers,

(T— (t ± 1)w*(t)’hl= E*[*(t ±

tJ)+1

Tluis.

vec(Û) - vec() O.p

Now. to prove that vecli() — vech(,,), we observe thatJ)

vec1i(t—t) vech[(T—

p)’ *(t)(t)’_(T—

p)’I =J)± 1 t=)?—— 1

= vech[(T—

(* (t)* (t)’ (T—

/ =p+ 1 t=p+ 1

Conclitional 011 the sample anci bv the law of iterated expectations. ive have

E* [*(t) (t)’ -(T

-

I=p±1

=E*{E4[*(t)’_(T— ù(t)(t)’ I

(=1,-i-1

=E* [E[ (t) û (t)’ j — (T —

t=p+1

Because

E{E{û*(t)(t)’ I_1]=(T — J))’

I=p±1

69

Page 88: Problèmes dléconométrie en macroéconomie et en finance

then

E*[(t)û(t)’_(T— (t)û(t)’] O.

j =p+1

Since

(T—

(*(f)* (t)’ (T p)’tp-f—I t=p+I

= E*[û(t)û(t)’_(T— (t)(t)’] ± o(1).

tJ)-l

we get

vec(Ê)- vec(,)— O.p

Sirnilarly, we cai show that

vec(fr(k)), vecIi(Ê.) vec1i(Ê).p p

For fI(.) and OC.) continuons functions. we have

in (iI( vec(H*) .vech( Z))) = lu (H( vec(fl) .vecli( EH)) ± O1 (1).

in (G( vec(H(k)).vech( ,.))) in (G( vec(W(h’)).vech(Z))) + o,( 1).

By Theorenis 2.1—3.4 in Paparoditis (1996) and Theorem 6 in Lewis and Reinsel (1985),

we have, for < 1.

in (G(vec(*(()). vech(k))) = in (G(vec( W’). vech()) + O(T).

70

Page 89: Problèmes dléconométrie en macroéconomie et en finance

Thus.

ô*(Y X Z) = in(G(f(vecÛ*). \ree11(*)))

+O(Tj ± o(1)h \\ II(vec(fI*). vech()) J

= *( X ZZ) ± O(T) ± o(1)

where(G(f(vec(). (c1*)))

C ( XJZ) =ln jh \ frJ(r(f*) vecii(*))

We have also showu [sec the proof of Proposition ??] that, for < 1.

ê(Y X Z) = hi(0(fe. vech( 1j))

±O(Tj—o(1).h \\ H(vec(ll). vech()) )

Consequentlv

C*(Y X Z) = h(0Ctt(H) vech(Ê)))

±O(Tto,1.\ H(vec(H). vech(Z1)) J

furthermore, hy Assuinption 2 and a first orcler Taylor expansion of X Z).

we have

t vec() - vec()C*(YXZ) = C(Y X Z)De I I +o(Tr).h h vcch(Z) veeh(Z,) J

anci

(T — I))l/2(\.cc(fl*)— vec(H))Tl/2[C*(YXZ)

— C(Y X Z)]D(T — p) I/ 2(vech( Z) — vech( ,j)

By (1.10),

T2[ê*(YXZ)- (Y X I Z)] (0 Zc).

71

Page 90: Problèmes dléconométrie en macroéconomie et en finance

hence

T2[*(Y X I Z) - ê(Y X Z)] (O, c)

where

Z

Q(F1®ZU O

O 2(DD3)’D(Z,, ® Z,)D3(DD3)’

D3 is the duplication matrix, clefined sucli that vech(F) = D3vech(f) for any symmetric

3 x 3 matrix f. •

72

Page 91: Problèmes dléconométrie en macroéconomie et en finance

Chapter 2

Measuring causality between

volatility and returns with

high-frequency data

73

Page 92: Problèmes dléconométrie en macroéconomie et en finance

2.1 Introduction

Que of the rnany stylized facts about equity returns is an asyiïimetric relationship be

tween returns and volatility. In the literature there are two explanations for volatilitv

asvmmetrv. The first is the leverage effect .A decrease in the price of an asset increases

financial leverage ami the probability of baukrnptcy. making the asset riskier, hence an

increase in volatility [see Black (1976) ancl Christie (1982)]. Wheil applied to an equitv

index. this original idea translates into a dvnamic leverage effect.’ Tue second explana

tion or voiatilitv feedback effict is related to the time—varying risk premitim theorv: if

volatihty is priced. an anticipateci increase in volatihty would raise the rate of return,

requiring an mimediate stock price decline in orcler to allow for higher future returns

[sec Pindvck (1981), French. Schwert anci Stambaugh (1987), Campbell anci Iientschel

(1992). and Bekaert and Wu (2000)].

As mentioned by Bekaert and Wu (2000) and more recently by Bollerslev et al. (2006),

the difference between the leverage anci volatilit feeclback explanations for volatilit.y

asvmmetrv is relat.ecl to the issue of causaÏty. The leverage effect explains why a nega

tive retnrn shock leacls to higher snbseciuent volatility, while the volatility feeclback effect

justifies how an increase in volatility ma resuit in a negative return. Thuis. volatil

ity asvimnetry mav resuit from varions causality links: froru ret.urns to volatilit. from

volatility to returns, instantaneous causalitv, ail of these causal effects, or just soute of

them.

Bollersiev et. al. (2006) lookecl at these relatioiiships uxing high freqtiencv (lata anti

realizeci volatihty measures. ibis strategy increases the chance to detect truc causal links

since aggiegation may make the relationship between returns and volatility siuiultane

ous. Using an observable approximation foi’ voiatility avoids the necessitv to commit to a

Tue concept of leverage effeut. whicli mea os that nega tive retiiriis todav increnses volatility of o—morrow, lias been jiitiodiiued iii t.hC coiitext of the inchvidunl stocks (individual linos). However. thiscoilcept vas also conserved and studied wit,hm the fiafliOwOrk of the stock market inrilces hy Bouchauci,Matacz, auJ Pot.ters (2001). Jacquier. Polson. auJ Rossi (2004). Briiiidt. auJ Nang (2004). Liidvigsonand Ng (2005). Bollerslev et cl. (2006). alnoiig others.

71

Page 93: Problèmes dléconométrie en macroéconomie et en finance

volatility mociel. Their empirical strategy is thtis to use correlation between retnrns anti

realized volatility to measure anti compare the magnitude of the leverage anti volatility

feecÏback effects. 1-Iowever. correlation is a measure of hnear association but does not

necessarilv iniplv a causal relationship. In this chapter. we propose an approach which

consists in inodelling at liigh frecuency both returns and volatility as a vector autoregres—

sive (VÂR) mociel anti using short and long mn causalit measures proposed in chapter

O11C to qnantify aiid compare the strength of clynamic leverage anti volatility fcedback

effects.

Stiidies focusing on the leverage hypothesis [see Christie (1982) anti Schwert (1989)]

conclude that it cannot conipletely account for changes in volatilitv. However, for the

volatility feecihack eflèct, there are conflicting empirical finclings. french, Schwert. anti

Stambaugh (1987). Campbell anci Hetitschel (1992), anti Ghysels, Santa-Clara, anti Valka

nov (2005). find the relation between volatility anti expected returns to 5e positive. while

Turner. Startz. anti Nelson (1989). Glosten. .Jagannathen. anti Runkle (1993). anti Nel

son (1991) finci the relation to 5e negative. Often the coefficient linking volatility to

returns is statistically insignificant. Ludvigson anti Ng (2005), find a strong positive

contemporaneous relation between the contiitional rnean anti conditional volat ility anti

a strong negative lag-volatility-in-mean effect. Guo anci Savickas (2006). conclutie that

the stock Harket risk—return relation is positive, as stipulateci Lv the CAPM: however.

itiiosyncratic volatility is negatively relateti to future stock market returns. for intiiviti

ual assets, Bekaert anti Wu (2000) argue that the volatility feetiback effect dominates the

leverage effect empiricaliy. With high-frequencv data, Bo[lerslev et al. (2006) finti an

important negative correlat.ion between volatility anti current anti laggeti returns lasting

for several tias. Flowever. correla.tions between returns anti lagged voiatilitv aie ail close

to zero.

A second contribution of this chapter is to show that the causality measures inay help

to cuantify the dynaniic impact of batt anti goot news 011 voiatility.2 A conimon approach

2m t his st udv we inean hv bail ami good news negative and positive returns. iespectivelv. Iii parallel.

75

Page 94: Problèmes dléconométrie en macroéconomie et en finance

for empirically visuahzing thc relationship hetween news anci volatility is provicleci hy the

news-impact curve originallv stuclieci bv Pagan and Schwert. (1990) and Engle and Ng

(1993). To stucly the effect of current return shocks on future expected volatility, Engle

and Ng (1993) introduced the News Impact ftmction (hereafter NIf). The basic idea

of this function is to condition at tinie t + 1 On the information availahle at time t anci

earlicr, and then consicler the effect of the return shock at time t on volatility at tinie

t + 1 in isolation. Engle and Ng (1993) explaincd that this curve. where ail the lagged

conclitional variances are evaluated at the level of the asset return unconditional variance.

relates past positive anci negative rcturns t.o current volatility. In this chapter. we propose

a new curve for the impact of ncws on volatiiity baseci on causaiity measures. In contrast

to the NIf of Engle anci Ng (1993), our curve eau be constructed for parametric and

stochastic volatility models and it allows one to consider ail the past information about

volatility and rettirns. furthermore, vie buiM confidence intervals using a bootstrap

techmciue arotmcl our curve, winch provides an improvement over current pi’occ’cliires in

ternis of statistical inference.

Using 5-nnnute observat ions on S&P 500 Index futures contracts, vie measurc a weak

dynarmc leverage effect for the first four hours in hourlv data anci a strong dynaimc

leverage effect for the flrst tliree clas in daily data. 111e volatility feedback effect is found

to be iiegligible at ail horizons. These flndlings are consistent with those in Bollersiev

et al. (2006). We also use the causality mensures to quantif’y anci test statistically the

dynamic impact of good ancl baci news on volatility. First. we assess by siiimlation the

ability of causality measures to detect the clifferential effect of goodi and had news in

varions parametnc volatilitv moclels. Then. empincallv. vie ineasure a much stronger

impact for bad news at several horizons. $tatisticallv. the impact of bad news is found

to be significant for the flrst four davs. whereas the impact of good news is negligible at

there 15 niiothet literature about the impact of lnacroecoflouflt news ;innouncements OH hnanea1 markets(e.g. voltitilitv). see for cxaTIl})ie Entier, Poterba and Simimers (1989). Suhwert (1981). Penne niai Roley(i985), Hardonvelis (1987). Haugen. Talinor and Torons (1991), Jain (1985) .MeQiieen anti Holoy (1993),Balduzzi, Elton, and Groen (2001), Andersen, Bollerslev, Diebold, niai Vega (2003), antI Huang (2007).amorig otlïers.

76

Page 95: Problèmes dléconométrie en macroéconomie et en finance

ail horizons.

The plan of this chapter is as follows. In section 2.2, we define volatility measures

in high frequenc data anti we review the concept of causaiity at clifferent horizons aud

its measures. In section 2.3. we propose anti discuss VAR ïnodels that allow us to

ineasure leverage anti volatility feecihack effi?cts with higli frequenc data, as weil as to

ciuantify the dynamic impact of news on volatility. In section 2.4, we conduct a simulation

study with severai s umietric anti asymmetric voiatility modeis to assess if the proposeci

causality ineasures capture well the clynamic impact of news. Section 2.5 describes the

high frecuency data. the estimation proceclure ami the empirical flndings. In section 2.6

we conclude by stlnmlarizing the main resuits.

2.2 Volatility and causality measures

Since we want to measure causalitv between volatility and returns at high frequency, we

neecl to build measmes for both volatility and causality. for volatility. we tise varions

measures of realized voiatility introduceci by Anclersen, Bollersiev, ami Dieboid (2003) [sec

also Andersen anti Bolierslev (1998). Andersen. Bollerslev. Dieboid. anti Labvs (2001).

andd BarnciorffNielsen anti Shephard (2002a.h). For causahty, we rely on the short and

long mn causalitv measures proposeci in chapter one.

We first set notations. We denote the tinie-t logarithmic price of the risky asset

or portfoho hy Pt and the coutinuously compouncied returns from time t to t ± 1 by

— p,. We assume that Hie price process may exhibit both stochastic volatility

anti •jinnps. It could belong to the class of continuous—time jump chifusion processes.

‘ÏPt = ti,dt + t1111 — K,dtJt. 0 < t < T. (2.1)

where p is a contuuious and locally bounded variation process. o is the stochastic

volatility process. W cienotes a standard Brownian motion, ciq, is a cotmting process

with ckj = 1 corresponding to a jurnp at tinie t anti dq = 0 otheuwise, with jump

t C

Page 96: Problèmes dléconométrie en macroéconomie et en finance

mtensity .). ilie parameter s refers to flic size of the correspontiing jumps. Thus. the

citiadratic variation of return from time t to t + 1 is giveil by:

•/+1

[r, t]t+t uds H- h.

wliere the first component. called iritegrated volatility. cornes front the contrnuous corïi—

ponent of (2.1). and the second terrir is the contribution from cliscrete jurnps. In tire

absence of jurnps. the second teriïi on the right-hancl-side tiisappears, and the qtiadratic

variation is sirnply equal to the integrated volatility.

2.2.1 Volatility in high frequency data: realized volatility, bipower

variation, and jumps

In tins section, we clefine the varions high-frequency measures that we will use to capture

volatility. In what follows wc norinalize the claily tirne—interval to unity and we clivide it

into h periods. Each period lias length 1/h. Let the discretely sampled A-perioci

returns he clenoteci hy I(tA) = Pt — vi—s and the daily return isr, =1 r(+J.,A).

The daily realizeci volatilitv is clefineci as flic summatioti of the corresponcling h high—

frequencv intraclaily squared returns,

/+i

As noted by Andersen, Bolïerslev, anci Diebold (2003) [sec also Anclersen auJ Bollerslev

(1998). Andersen. Bollerslev. Diebolci. anci Labys (2001). Barndorff-Nielsen auJ Shepharci

(2002a.b) and Comte and Renault (1998)]. the realizeci volatility satisflcs

/+1

lim R1= f uds + (2.2)

O<s<t

7$

Page 97: Problèmes dléconométrie en macroéconomie et en finance

alld tins nieans that R4+1 is a consistent estimator of the sum of the integrateci varianceft+I

ucts and the jump contribution. Siiïnlarly, a measure of standarclizeci bipower

variation is given by

U

Baseci On Barnclorf-Nielsen anci $hephard’s (2003e) resnlts [ sec also Barnclorff-Nielsen,

Graversen, Jacoci, Podolskij, and $hepharcl (2005)], under reasonable assumptions about

the clynarnics of (2.1), the bipower variation satisfies,

‘/+I

1imB1= f JdS. (2.3)

eciuation (2.3) rneans that BV+ï provides a consistent estirnator of the integrated vari

ance unaffected by jurnps. Finally, as noteci by Barndorff-Nielsen anci Shepharci (2003c),

combining the resuits in equation (2.2) anci (2.3), the contribution to the quadratic varia

tion due to the discontinuities (jumps) in the underlying piice process may be consistently

estiniated by

1im(R+i — B+) = i. (2.4)0< s t

We eau also clefine the relative measure

= (Rt/+i — 3i<)(2.5)

RV +i

or the corresponcling logarithnnc ratio

J+i = 1og(R1’+i) — 1og(B1+i).

Soe i\IecIdaln (2002) for an interesting relateci literature about a tlieoretieal couiparisou betweenmtegrate(i 011(1 realizeci volatility in flic abseiice ut ]ulnps.

79

Page 98: Problèmes dléconométrie en macroéconomie et en finance

Huang anci Tauchen (2005) argue that these are more robust measures of the contribution

of jumps to total price variation.

Since in practice J÷1 cari be negative in a giveil sample. we impose a non-negativitv

truncation of the actual ernpirical jump rneasurements.

Jt+i max[log(Ri÷1) — 1og(311). 0].

as suggested b BarricÏorff-Nielseir and Shephard (2003e) .‘

2.2.2 Short-run and long-run causality measures

The concept of noncausality that we consider in this chapter is defiried in terrns of orthog

onality conditions between subspaces of a Hiihert space of random variables with fimite

second moments. To give a tbrmal deflintion of noncausality at difibrent horizons. we neecl

to consider the following notations. We denote r(t) {r?±l_. s 1} aiid u= {n+i..

s > 1 } thc information sets which contain ail the past and prescrit values of returns anci

volatility. respectively. We cienote hy I tire information set which coutains r(t) anci 2•

For any information set B. we denote by lar[rth Bu (respectively Vur[u+h B,]) tire

variance of tire forecast error of 1t+h. (respectivelv ÷) based on the information set 3t

Thus. we have the following definition of noncausalit at different horizons [ sec Dufour

and Renault (1998)].

Definition 6 For h > 1. where h. is u postzue integei.

(1) r tÏoes not couse o ut Ï,orïzon h gïven J. tÏciioted ï -* u2 u’. 1ff

Vcii(u1 ) = tu(u+i I I,).

See also AnCIe1’sf-fl, Bollerslcv, onci Diehold (2003).con he eqiiol Lu 1,, i(t). 01

80

Page 99: Problèmes dléconométrie en macroéconomie et en finance

(ii) r cÏoes iot cotise u2 tiji to hor,zon h git’en u. denoted ï —‘- u2 u. if

u7jork L2. h.

(iii r does not cause u2 at any horizon given u. denoted r r’ u2 if() —

u for oÏt h: = 1,2.

Definition 6 corresponds to causalitv from r to u2 and neans that r causes u2 at

horizon h if the past of r iniproves the forecast 0f Uh giveri the information set u. We

caii sirniÏarly clefine nolicausality at horizon h from u2 to r. Ibis definition is u simplified

version of the original definition given by Dufour auJ Renault (1998). IIere we consicler

an information set It whicli contaiiis only two variables of interest r anci u2. Ilowever,

Dufour auci Renault (1998) [sec also chapter one] consicler a third variable. callecl an

aiixiliary variable, which can transmit causaÏity between r auJ u2 at horizon h strictly

higher than one evein if there is no causality between the two variables at horizon 1. In

the absence of an auxiliarv variable. Dufour and Renault (1998) show tha.t noncausality

at horizon 1 implies ioncausalitv at anv horizon h stricti higher thail one. In other

words, if we suppose that I = r(t)Uu. then we have:

9 9 0 9r u u7 rz. j. — u 07.1 — (oc)

u2 r’ j itt) ‘, u2 r’ rI (oc)

For h > 1. where h is a positive integer. a measure of causalitv from r to u2 at. horizon

h. clenoteci (‘(r u2). is given b following ftmction [sec chapter one]:

9 Vnr[u,, u]C (r u-) = in —

1. 1 cu[ui÷i I,]

81

Page 100: Problèmes dléconométrie en macroéconomie et en finance

Similariy, a measure of causality from u2 to r at horizon h. denoted C(u2 r), ix given

by:

9 Var[r!+b I r(t)]C(u r) = in

h (LT[r14 I L]

for example. C(r —÷ u2) measures the causal effect from r to u2 at horizon Ii given

the past of u2. In ternis of preciictability. it measures the information given hy the past

of r that can improve the forecast of uh. Since ur[u, I uj t tr[ue tuefunction C(r — u2) ix nonnegative, as any neasure must be. furthermore, it ix zero

when Vur[u+, = 1r[u+h Ii], 0f Wllen there ix no causality. liowever. as soon as

there ix causality at horizon 1, causality measures at clifferent horizons may consiclerabiy

cliffer.

In chapter one, a measure of instantaneous causalitv between r anti u2 at horizon h

ix also proposeci. It ix given lw the ftinction

Vu [tt+h 1] Ver [?+11 ‘]C(r .‘‘ uj inh clet (rt+h, u+h I L)

where det (tt+1, u11 L) represeots the deter;ninant of the variance—covariance matrix,

denoted (rh. u+h I I,). of the forecast error of the joint process (r. u2) at horizon h

given the information set It. finally. in chapter one we propose a ineasure of dependence

between r anci u2 at horizon li which ix given hy the following formula:

h) )Ver [rt+i, r(f)] Ver {u?÷; I u]

(r. uj=ln9 —det Z(r,. uÎ+h 1)

This last ineasure eau be decomposed as follows:

C°0(r. u2) = C(r u2) C(u2 î) C(r u2). (2.6)

82

Page 101: Problèmes dléconométrie en macroéconomie et en finance

2.3 Measuring causality in a VAR model

In this section, we first stuci the relationship between the return r1+i anci its volatility

Our objective is to measure and compare the strength of dynomc leverage anid

volatilit feedback effects in lugh-frequencv equity data. These effects are quantified

within the coritext of an autoregressive (VAR) linear model and by usiiig short. anci long

ruri causality rneasures proposed in chapter ope. $irice the volatility asymmetry may i)e

the resuit of causality from returns to volatility [leverage effect], from volatility to rettirns

[volatility feedback effect]. instaiitaneous causality. ail of these causal effects. or some of

them. tins section aims at measurhig ail these effect.s and tu compare them in order to

determine the most important one. We aiso measre the dvnamic impact of returil news

on voiatility where we differentiate good and bad news.

2.3.1 Measuring the leverage and volatility feedback eftects

‘vVe suppose that the joint process of returns ami iogarithnnc voiatility, (rt+i,

fobows an aittoregressive linear model

ï’t+l rt±i_,J = p + P1 j J —t— u÷i . (2.7)

\ 1ii(u) j i \ In(u+ ) j

where

t C) t!I tr 1 1 lU t2.j j

p = J for = 1 i, u÷1 =2

\ )J2 J 21.j 22.j \ utl

f ,, fbrs=tE [Ot] = O ancl E [utut] =

O for.t

III the eHpiricai application r xviii 1w repiaced bv the realized voÏatility Ri’÷1 or the

bipower variation 31.

The clisturbance u1 ix the one—step—aheacl error whcn is

‘J ..forecast from its own past auJ the past of ln(u7÷1 ). and siuularlv ut_t ix the one—step—

83

Page 102: Problèmes dléconométrie en macroéconomie et en finance

aheaci error when 1u(u+i) ix forecast from its owu past and the past of Tt+Ï. We suppose

that these clisturbailces are cadi serially iincorrelated. but may be correlatecl with each

other contemporaneously anti at varions leads anti lags. Since ix uncorr1atec1 with

‘t. the eqiiation for i’t represents the linear projection of i on I,. Likewise. the

ecjuation for 1n(cr) represents the linear projection of 1n(u±i) on I,.

Eciuation (2.7) alÏows O11C to model the first two conditional moments of the asset

retnrns. Ve model conditional volatilitv as a exponential fmiction process to guaraiitee

that it ix positive. The first equation of tic iAR(p) in (2.7) clescribes tue dvnamics of

the return as

= + ii,jr+i_j + 1n(u1_) + u1. (2.8)

Tus equation abows to capture tic teinporarv component of Fama anti Frenchs (1988)

peru1a;iert ar;d temporarv component.s moclel, in which stock prices are governeci by a

raudom walk anti a stationary autoregressive process, respectively. For 12,j = 0, tins

mociel of the temporary compoiwnt ix the same as that of Laniourenx arici Zhou (1996)

Brandt auJ Kang (2004), auJ Whitelaw (1991). Tic second equatioi of lÂR(p)

clescrihes tic volatility dynamics as

Ïn(%1) = t’ + Z 21.Jr1+1_J + 22,j 1n(+1_) * u, (2.9)

anci it represents the standard stochastic volatility inodel. For 2Ï,j O, equation (2.9)

can lie viewed as tic stochastic volatility model es’tiiateti liv Wiggins (1987). Andersen

aildi Sorensen (1994). anti many others. Ilowever, in tus chapter we consider that

ix not a latent variable auJ it can lie approximated by realized or bipower variations

from high-frecueucy data. ‘vVc also note that the conditional inean equation inclucles

tic volatullty-in-mean moclel useci by Frencli et al. (1987) and Glosten et al. (1993) to

explore tic contemporaneons relationship hetween tic coHditional nieau anti volatilit

‘It = {i,’ s> 1 i}.

84

Page 103: Problèmes dléconométrie en macroéconomie et en finance

[see Brandt and Kang (2001)]. To illustrate the connection to the volatilitv—in—mean

model. we pre—Hiultiplv the svstem in (2.7) y the matrix

1Cor(r,+i. 1n(÷i))

— tir[1ii(1 )I fi]

Cor(r,+i. 1ii(÷1))1—

1 a,[rti t,j

Then, the first equation of t,1 is a linear function of ï(t), 1n(J+i). anci the disturbance

r C°(t,t, Ill( i)) 2 — . .. . .u,1— (,tI1((72

1Since this cÏisturbance is uncorrelatect witii u, it is un—

correlated with In(u+1) as well as with r(t) and 1n(u). Hence the linear pro jection of

1+ 011 i(t) and ln(u?+i).

rt±i l!, + oy,rt+i_ + I2,j In(u+i_) u1 (2.10)

is provideci by the first equation of the new systern. The iarameters t!,. c11• anci i2.j

for j = 0. 1 p. are frmnctioris of parameters iii the vector tz auJ niatrix j. for j = 1

p. Equation (2.10) is a gcneralized version of the usual volatility—in—mriean modeÏ. in which

the conclitional mean depends contemporaneouslv Ou the col1ditiOflal volatility. Similarlv.

the existeHce of the imear pioject1omi 0f 1n(+i) 01) r(t H- 1) and 1n(o).

In(u1) tJ2 + 021 f”l±I_j + 022,j 1n(11) + ii (2.11)

follows from the second ecyuation of t.he new system. The paranieters 11g2. 21j• anci 22.j

for j = 1 p. are functions of parameters in the vector /1 and matrix.

for j = 1

y The volatilit inodel givcn by equation (2.11) captures the persistence of volatilltv

through the ternis o291. In addition. it incorporates the effucts of the mneari on volatilit.

both at the contemporaneous anci rnterteinporal levels through the coefficients 0211. for

j=0.1 J).

Let us now consider the matnx

Tli1( )= {ln(ut+2_) .s> 1}.

$5

Page 104: Problèmes dléconométrie en macroéconomie et en finance

z cz =

C Z,2

where aid z1,2 represeiit the variances of the one-step-ahead forecast errors of rettiril

ancl volatility. respectively. C represents the covariance between these errors. flased on

eciuation (2.7). the forecast error of (i/+h. 1ii(+i))’ is given by:

h — I

t(rt±h. 1n(±h))’] (2.12)

where the coefficients for i = O h — Ï, represelit the j npnlse response coefficients of

the M4(Do) representation of model (2.7). These coefficients are giveil by the followillg

eclilations

h’0 I.

b1 =

= ib’1 + = j + 2 (2.13)

b’3 = <1’2 + <1)9t’1 <2bO <I + <1)y1)2 + <1)2(1)1 + (1)3.

where J is a 2 >< 2 idelltity niatrix awl

j=O. fbrj>p+1.

The covatialice matrix of the forecast error (2.12) is given hy

h—1

(I ‘[c[(’. 1n(u ) )‘J] = z,, . (2.11)

\‘Ve also consider the following restricteci model:

$6

Page 105: Problèmes dléconométrie en macroéconomie et en finance

( ) ( ) + (2.15)111t7÷1) ln(u1_)

where

— (Ï)11,, O=

- tor j = 1 5, (2.16)O 22.j

- t pt- t±II_I = I I = I

‘\ Ti )

f ,, fors=fE[t]=OanciEtt,Ï =

O for.st

-

u =

C Z,2

Zero values in <I mean that tiiere is noncausalitv at horizon 1 from returns to volatilitv

anti from volatility to returns. As mentioned in subsection 2.2.2, in a bivariate system.

noncausahty at horizon one implies noncausality at anv horizon h strictly higlier tiian

one. This means that the absence of leverage effects at horizon one (respectivelv the

absence of volatility feedhack effects at horizon orie) which corresponds to cI215 = O. for

j 1 p, (respectively cF12,5 O. for .i = 1, ) is eqruvalent to the abseilce of

leverage effects (respectivelv volatility feedback effects) at anv horizon h > 1.

To comparu the forecast error variance of modul (2.7) with that of model (2.15), we

assume that p = p. Baseci on the restricted moclel (2.15), the covariaiice matrix of the

forucast error of (r,±11. ln( uh))’ is given bv:

h — I

[t + h J t] (2.17)

where the coefficients for / = O h — 1. represent the i;nplllse response coefficients

$7

Page 106: Problèmes dléconométrie en macroéconomie et en finance

of the MA(c) representation of model (2.15). They eau he calculated in the sanie wav

as in (2.13). From the covariance matrices (2.11) ancl (2.17). we define the following

ineasures of leverage ami volatility feedback effects at any horizon h. where h > 1.

ph—1‘

((î hi(2)) inL 2

F2 (0 1) (218)c)(L, u

C(in(u2) î) = in [Z .

(1.0)’. (2.19)h i=O i ,L’1)C1

The parallletnc measure of instantaneous causality at horizon h, where h 1. is given

by the following ftinction

C(r ln(u2)) in t’1 Z,n F2) (Z e(j’,1 h—1

det(Z0 _,w1)

Finally. the parametnc measure of dependence at horizon h cnn he detiuced froni its

decomposition given by equation (2.6).

2.3.2 Measuring the dynamic impact of news on volatility

In what follows we stucly the cÏynamic impact of ban news (ncgative innovations in

returns) anci gooci news (positive iimovations in returus) on volatility. We cuantify and

compare the strength of these effects in order to determine the rnost uportant ones. b

aiialyze t lie impact of news on volatility. we consider the following inodel.

1nt1) = ii ln(1_,) + —

+ — E1(r,+1_)] + n1, (2.20)

where for j = 1 p.

88

Page 107: Problèmes dléconométrie en macroéconomie et en finance

— E,1 (r+i_), if 1t+1j — E1(i’11_1) 0.

[Tt+i_j — E_(r+i_)] =

O. otherwise,

(2.21)

— E,(r+i_). if r+_ — O.

— E_ (rt+i_j)]

0. otherwise,

(2.22)

with

f Z fors=tE [u] = 0 anci E [(u1)2] =

Is lorst

Equation (2.20) represents the linear projection of volatility 011 its own past anci the past

0f centered negative and positive returns. This regression model allows one to capture

the effect of centered negative or positive returils 011 volatility through the coefficients

pJ or respectively, for j = 1 p. It also allows one to examine the different effects

that large and small negative and/or positive information shocks have on volatility. This

will provide a check on the resuits obtaineci in the literature on GARCH modeling. which

lias put forward overwhelming evidence on the cffect of negative shocks on volatility.

Again. in our empirical applications. o vill Le replaced by realized volatility RI

or bipower variation 31 ÷i. furthermore. tue conclitional mean return will Le approxi—

mated Lv the following rolling-sample average:

H?

= —

111.1=1

89

Page 108: Problèmes dléconométrie en macroéconomie et en finance

where we take an average arounci m = 15. 30. 90. 120. anti 240 days. Now, let us consider

the following restricted models:

1n(u1) = 9 ± 1n(_,) ± — E,_(i,1j] ± (2.23)

1n(u1) = + 1n(u1_) + [it+y_— EC+_1)] + t. (2.24)

Eqliation (2.23) represents the linear projection of voiatilitv 1n(o÷1) on its own past anti

the past of positive returns. Similarly. equation (2.21) represents the linear proJection of

volatilitv ln(n+1) On its own past auJ the past of ceiltreci riegative retuins.

In our empirical applicatioll we also consider a motiel with 11011 centereci ilegative and

posit ive retifiils:

= w + ô ln(±1) * ff7r_ + oi r1 +

where for j = 1 J).

r,+i_, if r,i_ O

r1_j

0. otherwise,

i’—i_, if “i- O

Jt+1—j —

0. otherwise,

90

Page 109: Problèmes dléconométrie en macroéconomie et en finance

t Y for=tE [c] O and E [(E)2] =

O forst

and the correspoilciing restricted volatility inodels:

1n(u1) = + 1ii(i_) + + L’ (2.25)

1n(u1) = + 1n(u1_1) ± ±.

(2.26)

To compare the forecast en-or variances of model (2.20) with those of roodels (2.23)

alld (2.21). we assume that j) = j5 = j. Thus, a measure of the impact of Lad news on

volatility at horizon h. where h 1, ix given by the following equation:

I ur[e1 1n(). r(f)]Ccr ln(uj) = in [ ].h I ui[u I J1]

Sinnlarlv. a measure of the impact of good news on volatilitv at horizoil h ix given hy:

o- —

91 nt{e, In(o-7). r (t)]

ln(uj) = ln[ 1h I ar[u,__h J]

where

= {[tt_,. — E,_i_(r_)]. s 0}.

____

{[r,,,— E_1_,(i-,_)] .s 01.

J, = hi2 (t)) U r (t) U r (t).

XVe aixo clefine a fimction which allows us to compare the impact of Lad and good news

on volatility. This function eau Le defined as follows:

91

Page 110: Problèmes dléconométrie en macroéconomie et en finance

J +I tir[e_, ln().,’ (t)]C(r/r

—ln(uj) lii [ ].h 1 cir[t,? I 1n(u). r-(t)]

XVhen C(i/r+— In(u2)) 0. tins means that bad ews have more impact on volatility

thau good news. Otherwise. good news will have more impact 011 volatilit than bad

llews.

2.4 A simulation study

In this section we verify with a thorough simulation study the ability of the causality

mensures to cletect the well-docuniented asvmmetry in the impact of bad and gooci news

on volatility [see Pagan anti Schwert (1990), Gouriéroux anti Monfort (1992). anti Engle

auJ Ng (1993)]. To assess the asvmmetrv in leverage effect. we coiisider flue following

structure. first. we suppose that retnrns are governed bv the process

= (2.27)

where ti V(0. 1) antI ut represents the conciitional volatility of teturn tt±i. Since ve

are only interested in studyiug the asymmetry in ieverage effect. equation (2.27) (10es

not allow for a volatility feedback effect. Second, we assmne that u, follows one of the

following heteroskedastic forms:

1. G.4RCII(1. 1) inodel:

u, = w + ;3u,1 + (2.28)

2. EGÂRCH(1. 1) moclel:

log(ut) w ±,3log(u,_1) + ‘ ±o[—

(2.29)

3. Nonlincar VL-G.4RCIi(1. 1) model:

92

Page 111: Problèmes dléconométrie en macroéconomie et en finance

= + 3Ut_i + ( E_ I: (2.30)

1. GJR-GÂRCH(1. 1) rnoclel:

= w + 3u_ + a1 + (2.31)

wliere

f 1. if1_1<0I,_= — forr=1 T:

0. otlierwise

5. Asymmetric :1GARCÏI(1. 1) model:

Ut w + ,;3ut_i + fl(Et_i)2; (2.32)

6. VGÂRC’H(1.1) model:

= w + 3t-i + n( + y)2; (2.33)

7. Nonlinear Asvmmetric G4RCH(1. 1) model or NG4RC1I(1. 1)

= w + ;3u,_1 + n(E_ + 7)2. (2.31)

GÂRCÏI anci NL-G4RCH moclels are. by construction. syrumetric. Thus. we expect

that the curves of causalitv measures for bad ami good ncws will be the saine. $imi—

larly, hecause EGÂRCH. GJR-GÂRCH, AG.4RCH, I T7-1RCI-I, anti NGARCÏI are

asvmmetric we expect that these curves will be diflrent.

Our simulation study consists hi simulating retunis from equation (2.27) and volatili—

tics from oiie of the motels given by equations (2.28)—(2.34). Once return anti volatilities

are simulated. we use the model described in subsection 2.3.2 to evaluate the causalitv

measures of baci anti good news for each of the above parainetnc models. Ail siinulated

93

Page 112: Problèmes dléconométrie en macroéconomie et en finance

samples are of size n. 40. 000. We consider a large sample to eliminate the uncertainty

in tire estimated Iara1nete1s. The paranreter values for the different parametric moclels

considered in our simulations, are reported in Table 1.

In figures 1-9 we report the impact of baci anti gooci news 011 volatility for the varions

volatility mociels, in the orcler showu above. For the NL-GÂRCfI(1. 1) model we select

three values for - t 0.5. 1.5. 2.5. Two main conclusions can he drawn form these figures.

First. from figures 1. 1. 5. and 6 we sec that GÂRCIl anci VL-GÂRCiI are sininetric:

the bad and good news have the same impact on volatility. Second, in figures 2. 3.

7, 8, and 9. we observe tirat EGARCH, GJR-GÂRCH, ÂGARCH, lGÂRCH. and

XGARCII are asvmmetric: the bad anci gooci news have different inrpact curves. I\Iore

particularly, had news have more impact on volatility than good uews.

Considering the parameter values giveil by Table 1 in Appenclix [sec Engle and Ng

(1993)],!] we founci that the above larametric volatihty models provicie differeut responses

to bad and gooci news. In tire presence of baci news. Figure 10 shows that the magnitude

of the volatilitv response is the rnost important in the VGÂRCH motÏel. foÏlowed

by the AGARCH anci GJR-GARCI1 models. The effect is negligible in EGARCH

ami VGÀRCfI moclels. The impact of gooci news on volatility is more observable in

1GÂRCH anci NG.1RCH mociels [sec Figure 11]. Overall, we cari conclude that the

causality measures capture quite well the effbcts of returus on volatility botli qualitatively

ancl cuantitatively. We now apply these measures to actual data. Insteaci of estimating a

moclel for volatilitv as most of the previous studies have clone [sec for exampie Campbell

and Hentschel (1992). Bekaert and Wu (2000), Glosten. Jagannathen. and Runkle (1993).

and Nelson (1991) ]. we use a proxy ineasure given by realizeci volatility or bipower

variation baseci on high-frecuency data.

\Ve also consitier other par;lmeter vaines front a paper by Engie and Ng (1993). Tue rorrespondingresuits are availahie ipon fCtjtteSt from tue allth()rs. Ihese residts are smiilar to tiiose sliown in tinsp;tper.

tThese parameters are the resnlts of an estima t 10H of different parninetric volatiiity moticis using t liedailv returus series of the Japanese TOPIX index tram Jannar 1, 1980 ta Deceitiber 31. 1988 [see Engieanti Ng (1993) for more detaiisJ.

91

Page 113: Problèmes dléconométrie en macroéconomie et en finance

2.5 An empirical application

In this section, we ftrst descnbe the data used to measure causality in the VAR models of

the previous sectiois. Then we explaill how to estimate confidence intervals of causality

measures for leverage alld volatility feedback effects. Finally, we ciiscuss our findings.

2.5.1 Data

Our (Tata cousists of high-fretjuency tick-by-tick transaction prices for the SzP 500 Index

futures contracts tradeci on the Chicago Mercantile Exchange. over the period January

1988 to December 2005 for a total of 1191 traciing clays. We eiiminat.eci a few days

where tradmg xvas thin anti the market was open for a shorteneci session. Due to the

ullusllally high volatility at the opening, we also omit the first five minutes of each trading

day [sec Bollerslev et al. (2006)]. For reasons associated with microstructure effècts we

follow Bolierslev et al. (2006) anti the literature in general and aggregate returns over

five-minute iïitervals. Vve calculate the continuousiy compounded returns over each five

minute interval kv taking the diflerence between the logaritlim of the two tick prices

immediately preceding each five-nnimte mark to obtain a total of 77 observations per

clav [sec Dacorogna et ai. (2001) anci Boilerslev et al. (2006) for more details]. \Ve also

construct homly and dailv returris by suniming 11 aiid 77 successive five—unnute returns,

respectivelv.

Summary statistics for the five-minute, hourly. and daily returns are given in Table

2. The daily returns are dispiaved in Figure 16. Looking at Table 2 and Figure 16 we can

state three main stylized facts. First, the unconditional distributions of the five-minute.

hourlv. anti dailv returus show the expected excess kurtosis ami negative skewness. The

sample kurtosis is nmch greater than the normai value of three for ail three series. Second,

whereas the unconclitional distribution of the hourlv retiirns appears to be skewed to the

left. the sample skewness coefficients for the five—rnimite anti daily returns are, loosely

speaking. hoth close to zero.

95

Page 114: Problèmes dléconométrie en macroéconomie et en finance

We also compute variotis mensures of ret.urn volatilitv. namely realizeci volatilitv anti

bipower variation. both in levels anti in logarithms. Tue tuHe series plots [sec figures

17, 18, 19. anti 20] show clearly tue familiar volatilit clustering effect, along with a few

occasional very large absolute returns. R also follows from Table 3 that the unconditional

distributions of realized anti bipower volatility measnres are highly skewecÏ anti leptokur

tic. fiowever, the iogarithmic transform rentiers both measures approximatel non iai

[Andersen. Boilersiev, Diebolci, anti Ebens (2001)]. We also note that the descriptive

statistics for the relative junlp measure. J,1. clearlv indicate a posit.ively skewed anti

leptokurtic distribution.

Que wav to test if realizeci anti bipower volatiiitv measures are significantlv different

is to test for the presence of jmnps in the data. We recall that,

q+i

Hm(Ri/i)— /

J(iS ± h. (2.35)t O<s<I

where t represents the contribution of juinps to total price variation. In the

absence of julnps. the second tenu on the right—hanti—side disappears. and the quadratic

variation is simplv equaÏ to the integrateti volatility: or asvmptoticailv (S — 0) the

realizeci variance is equal to the bipower variance.

Many st.atistics have been proposeti to test for the presence of jnmps in financial

data [sec for example Barndorff-Nielsen anti Shephard (2003b), Andersen, Bollersiev.

anti Diebolti (2003). 1-luang anti Tauchen (2005), among others]. In tins chapter. we test

for the presence of jumps in our data by considering the following test statistics:

Rt —— -

. (2.36)t zr —

log(ffi,±1) — Iog(Bi +)= (2.3)

± 7T—

____

96

Page 115: Problèmes dléconométrie en macroéconomie et en finance

log(R+y) — 1og(31+1)QP,1rn.t / (2.38)

If(\2 — -t

_____

,, ‘L—

maxBv2V - (+1

where QPHY is the realized Quaci-Power Qtiarticitv [Bariidorff-Nielsei aiKi Shephard

(2003a)]. witli

hf’LT)

_

î —4— ‘itLi (t+j.A) 7 (t+(j—i).zA) t(t+(j—2)) (t+(j—3).,A)

j=4

anci . For each time t. the statistics zQp, zcpt. anci follow a Normal

distribution .A/(O. 1) as A — O. uncler the assumption of no jumps. The restiits of testing

for juinps in our data are plotted in Figures 12-15. Figure 12 represents the Quantile

Q uaiitile Plot (hereafter QQ Plot) of the relative measure of’ jumps given 5v equation

(2.5). The other Figures, see 13. 14. and 15, represeiit the QQ Plots of the ZQp.1.t. ZQP,t.

aiicl ZQPI,n .t statistics. respectivelv. When there are no jmnps. we expect that the blue

alld red unes in Figures 12—15 will coincide. Ilowever, as these figures show. the two

unes are clearly distinct. illdicating the preseuce ofjumps in our data. Therefore. we tvill

present our resuits for both realizecl volatility and bipower variation.

2.5.2 Estimation of causality measures

XVe apply short-run and long-mn causality nieasures to quantify the strength of rela

tionships between retumn and volatility. We use OLS to estimate the AR(p) models

descnbed in sections 2.3 ancl 2.3.2 and the Akaike information criterion to specifv their

orders. To obtain consistent estimates of the causality measures we simply replace the

ullknown paraineters bv their estimates.’° We calculate causalitv measures for various

horizons h = 1 20. A higher value for a causality measure inclicates a strongem causal—

itv. We also compute the corresponding nominal 95% bootstrap confidence intervals

‘°See prouf cf c’oiisitenc’v cf the etiinatiun in (11aper une.

97

Page 116: Problèmes dléconométrie en macroéconomie et en finance

according to the procedure described in the Appendix.

2.5.3 Resuits

We examine several empirical issues regarding the relationship between volatility and

returns. Because volatility is uriobservable and high-frequencies data were not available,

these issues have been addressed before mainly in the context of volatility models. Re

cently, Bollerslev et al. (2006) looked at these relationships using high ftequency data

alld realized volatility measures. As they emphasize, the fundamental difference between

the leverage and the volatility feedback explanations lies in the direction of causality.

The leverage effect explains why a low return causes higher subsequent volatility, whule

the volatility feedback effect captures how an increase in volatility may cause a negative

return. However, they studied only correlations between returns and volatility at various

leads and lags and not causality relationships between both. The concept of causality

introduced by Granger (1969) necessitates an information set and is conducted in the

framework of a model between the variables of interest. Moreover, it is also important

economically to measure the strength of this causal link and to test if the effect is signif

icantly different from zero. In measuring causal relationship, aggregation is of course a

major problem. Low frequency data may mask the true causal relationship between the

variables. Looking at high-frequency data offers an ideal setting to isolate, if any, causal

effects. Formulating a VAR model to study causality allows also to distinguish between

the immediate or current effects between the variables and the effects of the lags of one

variable on the other. It should be emphasized also that even for studying the relationship

at daily frequencies, using high-frequency data to coustruct daily returns and volatilities

provides better estimates than using daily returns as most previous studies have done.

Since realized volatility is an approximation of the true unobservable volatility we study

the robustness of the resuits to another measure, the bipower variation, which is robust

to the presence of jumps.

Our empirical results will be presented mainly through graphs. Each figure will

98

Page 117: Problèmes dléconométrie en macroéconomie et en finance

report the causality measure on the vertical axis while the horizon wilÏ appear on the

horizontal axis. We also draw in each figure the 95% bootstrap confidence intervals. With

five-minute intervals we couid conceivabiy estimate the VAR model at this frequency.

However if we wanted to allow for enough time for the effects to develop we wouid need

a large number oflags in the VAR model and sacrifice efficiency in the estimation. This

problem arises in studies of volatility forecasting. Researchers have use several schemes

to group five-minute intervals, in particular the HAR-RV or the IvIIDA$ schemes.11

We decided to aggregate the returns at hourly frequency and study the corresponding

intradaiiy causality reiationship between returns and volatiiity. As iliustrated in figures

24 (log realized voiatility) and 25 (log bipower variation), we find that the leverage effect

is statistically significant for the first four hours but that it is small in magnitude. The

volatility feedback effect in hourly data is negiigible at ail horizons [see tables 6 and 7].

Using daily observations, calculated with high frequency data, we measure a strong

leverage effect for the first three days. This resuit is the same with both realized and

bipower variations [see figures 22 and 23]. The volatility feedback effect is found to be

negligible at ail horizons [see tables 4 and 5]. By comparing these two effects, we find

that the leverage effect is more important than the volatility feedback effect [see figures

30 and 31]. The comparison between the leverage effects in hourly and daily data reveai

that this effect is more important in daily than in hourly returns [see figures 32 and 33].

If the feedback effect from volatility to returns is almost-non-existent, it is appar

ent in figures 26 and 27 that the instantaneous causality between these variables exists

and remains economically and statisticaiiy important for several days. This means that

voiatility has a contemporaneous effect on returns, and similarly returns have a con

temporaneous effect on voiatility. These resuits are confirmed with both reaJized and

bipower variations. Furthermore, as illustrated in figures 28 and 29, dependeilce between

“The HAR-RV scheme, in which the realized volatility is parameterized as a linear function of thelagged realized volatilities over different horizons has been proposed by Millier et al. (1997) and Corsi(2003). The MIDAS scherne, based on the idea of distributed lags, lias been analyzed and estimated byGhysels, Santa-Clara and Valkanov (2002).

99

Page 118: Problèmes dléconométrie en macroéconomie et en finance

volatility and returus is also economically and statistically important for several days.

Since only the causality from returns to volatility is significant, it is important to

check if negative and positive returns have a different impact on volatility. To answer

this question we have calculated the causality measures from centered and non centered

positive and negative returns to volatility. The empirical resuits are graphed in figures

34-45 and reported in tables 8-11. We find a much stronger impact of bad news on

volatffity for several days. Statistically, the impact of bad news is significant for the first

four days, whereas the impact of good news is negligible at all horizons. Figures 46 and

47 make it possible to compare for both realized and bipower variations the impact of

bad and good news on volatility. As we can see, bad news have more impact on volatility

than good news at all horizons.

Finally, to study the temporal aggregation effect on the relationship between returns

and volatility, we compare the conditional dependence between returns and volatility at

several levels of aggregation: one hour, one day, two days, 3 days, 6 days, 14 days, and

21 days. The empirical results show that the dependence between returns and volatility

is an increasing function of temporal aggregation [see Figure 50j. This is stiil true for the

21 first days, after which the dependence decreases.

2.6 Conclusion

In this chapter we analyze and quantify the relationship between volatility and returns

with high-frequency equity returns. Within the framework of a vector autoregressive lin

ear model of returns and realized volatility or bipower variation, we quantify the dynamic

leverage and volatility feedback effects by applying short-run and long-run causality mea-

sures proposed in chapter one. These causality measures go beyond simple correlation

measures used recently by Bollerslev, Litvinova, and Tauchen (2006).

Using 5-minute observations on $&P 500 Index futures contracts, we measure a weak

dynamic leverage effect for the first four hours in hourly data and a strong dyllamic

100

Page 119: Problèmes dléconométrie en macroéconomie et en finance

leverage effect for the first three days in daily data. The volatility feedback eftèct is

fourni to Le negligible at ail horizons

\Ve aiso use causality measures to quautifv aud test statistically the J namic impact

of good auJ bad news cri volatilitv. First, we assess Lv simulation the abilitv of causalitv

rneasures to detect the Jiffereritial effect of good auJ ban news in varions parametric

volatihtv modeis. Then. empirically, we measure a much stronger impact for Lad news

at several horizons. Statistically. the impact of bad news is siguificaut for the flrst four

Jays, wbereas the impact of good news is negligible at ail horizons.

101

Page 120: Problèmes dléconométrie en macroéconomie et en finance

2.7 Appendix: bootstrap confidence intervals of causal

ity measures

We compute the noiiiinal 95Y. bootst.rap confidence int:ervals of the causalitv mensures

as follows [sec chapter one]

(1) Estimate by OL$ the VÂR(p) process giveil by equation (2.15) and save the residuals

for fp+l T.

\ R1] ln(Rj) Jwhere , and are the OLS regression estimates of ï anci for J 1

(2) Generate (T p) bootstrap residuals û*(t) by random sarnpling with replacement

from the resicluals à(t). t = y + 1 T.

(3) Generate a random clraw for the vector of p initial observations

w(0) ((ï. ln( (Rl’))” .... (r’. 1n(R’)))’)’.

(4) Given fi arid,

for j 1 p. û*(t). anci u’(O), geilerate bootstrap data for the

clepenclent variable (i. ln(R)*)’ from equation:

( ït =

+ j t + (t). for t p + 1 T.lri(R J lii(R J

(5) Calculate the bootstral) OLS regression estiniates

(Î? = (f* (Î) f*_if

C*(t)*(t)’/(T-

p).t/) 1

where f*= (T—p)’ ZT *(t)tt(t)’ for w*(t)

= ((. ln(R )‘ (i7 1• ln(R_+i )*Y )‘.

102

Page 121: Problèmes dléconométrie en macroéconomie et en finance

= (T— p)’ tT=+1 «;(t)(r÷111n(R141)’)’. and

r;

\ 1n(R1)

(6) Estimate the constrained model ofln(R1’) or using the bootstrap sample {(4. ln(R1))’}L1.(7) Calculate the causality measures at horizon h. denoted ÔU)*(r In(RV)) and

ÔU)*(1n(RV)—‘ r). using equations (2.18) and (2.19). respeetively.

(8)ChooseBsuchja(B+1)isanintegerandrepeatsteps(2)-(7)Btimea’2

(9) Finafly. calailate the a sud 1-o percentile intenal endpoints o! the distributions o!

Ôt0*fr ln(RV)) and Ô0(In(R1) — r).

A proof o! the asymptotic validity o! the bootstrap confidence intervals o! the causality

measures le provided in chapter one.

12Vh,re 1-a bi 6w consklered Lewi o! confidence btenid.

103

Page 122: Problèmes dléconométrie en macroéconomie et en finance

Table 1: Parameter values of (jiflereut GARCII moclels

w

GARCH 2.7910 0.86695 0.093928 —

EGÂRCfI —0.290306 0.97 0.093928 —0.09NL-GARCIJ 2.7910—s 0.86695 0.093928 0.5, 1.5. 2.5GJR-GARCI1 2.7910— 0.8805 0.032262 0.10512AGÂRCII 2.7910 0.86695 0.093928 —0.1108IGÂRCH 2.7910 0.86695 0.093928 —0.1108NGÂRCfI 2.7910—s 0.86695 t).093928 —0.110$

Note: The table smmnarizes the parameter valueh for paranitric volatilitnioclels considered in our simulations st udv.

Table 2: Summarv statistics for SP 5(30 futures retitrns, 198$-2005.

VaTial)ICS St.De’. 1(Icdicin Skcwness Avrto.s,sFivc — minute 6.9505e — 006 0.000978 0.00e — 007 —0.0818 73.9998Houiig 13176e — 005 0.0031 000e — 007 —0.4559 16.6031Duity 11668e — 004 0.0089 11126e — 001 —0.1628 12.3714

Note: Tue table suimnarizes the Five—miHute. floitrlv. and Dailv rnti;rns distributions forthe SP 500 index eontrac:ts. The sample covers the period from 1968 to December 2005for a total 0f 4494 tracling days.

Table 3: Sumniary statisties for daily volatilities, 198$-2005.

ia,utblc Metiit St.Dct’. Medttn Skewnes.s AuItos?.sRV 81354e — 005 1.2032e — 004 4.9797e — 005 8.1881 120.75303V, 76250e — 005 10957e — 004 1.6956e — 005 6.8789 78.9491Ïn(Rl) —9.8582 0.8762 —9.9076 0.4250 3.3362Ïn(Bl) —9.9275 0.6639 —9.9663 0.4151 3.2641.[ 0.0670 0.1005 0.0575 1.0630 7.3667

Note: The table summarizes the Dallv volatilities distributions for the S&.P 500 index contracts.The sample covers the period from 1988 to December 2005 for a total of 1191 trading das.

104

Page 123: Problèmes dléconométrie en macroéconomie et en finance

Table 4: Causalitv Mensure of Dailv feedl)ack Effeut: Ïn(RV)

C(ln(RV) — r) h = 1 h = 2 h = 3 h 4

Point estiinate t).0019 0.0019 0.0019 0.001195%. Bootstrap intervaÏ [0.0007, 0.0068] [0.0005. 0.0065] [0.0004. t).0061] [t).0002, 0.0042]

Table 5: Caiisality Measure of Daily feedback Effèct: 171(3V)

C(1n(3V)—.r) h=1 11=2 h=3 h=4

Point estimate 0.0017 0.0017 0.0016 0.001195% Bootstrap intervaï [0.0007, 0.0061] [0.0005. 0.0056] [t).0004, 0.0055] [t).0002. 0.0042]

Table 6: Causalitv Measure of Hourlv Feedback Effect: In (RV)

C(ln(RV)—r) 11=1 Ïi=2 h=3 h=4

Point estimate t).00016 0.00014 0.00012 0.0001295% Bootstrap interval [0.000t), 0.0007] [0.0000. t).0006] [0.0000. 0.0005] [0.0000, 0.0005]

Table 7: Causalitv Mensure of Iioury feedbauk Eifuct: in (3V)

C(hi(B1 ) -r) k = 1 h = 2 k = 3 /1 = 4

Point estimnte 0.00022 0.00020 0.00019 t).0001595% Bootstrap iiiterval [0.0000. t).0008] [0.0000, 0.0007] [0.0000. 0.0007] [0.0000. 0.0005]

Note: Tables 4—7 summarize the estimation results of causality mensures from daily realizecl

volatility t.o daily returus, dai]y bipower variation to daily returns. Itourly realizeci volatilit,yto hourly returus, ami hourly bipower variation to hourly retitrus, respeetively. The second

row in cadi table gives the point estirnate of the causality measures at k = 1 4. Thethird row gives the 95% corresponding percetile bootstrap mterval.

105

Page 124: Problèmes dléconométrie en macroéconomie et en finance

Table 8: Measuring the impact of good news on volathity: Centered positive returus. in(RV)C( [rt+1 -i — E, j (rt+1_j)] +

h’ln(RV))

E \ I \‘15Lt1t+I)

17=1 11=2 113 17=4Point estimate 0.00076 t).00075 0.00070 0.0001195% Bootstrap iiiterval [0.0003. t).0043] [0.0002. t).0039] [t).000l. 0.0034] [0, 0.0030]

E \ I ‘ç-’30L.t!t+1) .L=i 1t±I—j

11=1 17=2 hzr3 h=4Point estimate DOt) 102 0.00071 t).00079 0.0005795% Bootstrap interval [0.00017, 0.00513] [t).00032, 0.00391] [t).00031, 0.00362] [t), 0.00321]

E1) =

17=1 11=2 11=3 11=4Point estimate 0.0013 0.00087 0.00085 0.00085951 Bootstrap interval [0.0004. 0.0059] [t).00032. 0.0011] [0.0002. 0.0041] [0.0001. 0.0039]

1 120E, (rtî) 1 Zj= rt+i_

11=1 11=2 11=3 11=4Point estiniate 0.0011 0.00076 0.00072 0.0007195% Bootstrap interval [t).0004, 0.0054] [0.00029, 0.0041] [0.00024, 0.00386j [t), 0.00388]

1 240E,(r,+i) o Z= ‘‘+ij

17=1 17=2 11=3 17=4Point estiniate 0.0011 0.00069 0.00067 0.0007951 Bootstrap iiiterval [0.t)004. 0.0053] [0.0003. 0.0011] [0.0002. t).0035] [0. 0.Ot)34]

Note: The table smnniarizes tue estimation results of causalitv measures from ceiitered positiveretiirns to realized volatility under five estimnators of the average returns. In cadi of the five smalltables. tue second ïow gives tue point estimate of the causality mensures at h = 1, .4. The thirdrow gives the 95% correspomicling percentile bootstrap iiterval.

106

Page 125: Problèmes dléconométrie en macroéconomie et en finance

Table 9: Measnriug the illlpact of good HCWS on volatilit : C’entred positive returus. tiz(BV)C( [‘÷i- — E,_ (•,.)]+

hln(RV))

F L:)I 1 )

— T j=i

h= 1 h=2 h= 3 h=4Point estimate 0.0008 0.0008 0.00068 0.0006295% Bootstrap interval [t).00038. 0.0015] [0.00029. 0.0041] [0.00021, 0.0035] [0, 0.0034]

1 :30Et(rt÷i) rt+i_

h = 1Point estimate

95% Bootstrap interval

Point estiniate

h=lt). 0012[0.0005. 0.0053]

h = 10.0018[0.0006. 0.0065]

h = 2

0.00076[0.0003. 0.0041]

h = 20.0009[0.0003. 0.0041]

h = 30.00070[0.0002, 0.0039]

0.0008

0.00072[0. 000 1, 0.0038]

1 9t)E,(÷i) = Z=1 1±1j

h=3 h=1

95% Bootstrap interval [0.0002. 0.0041] [0.0001. t).0042]

1 120E,(1) =

h=1 h=2 Ïi=3 h=4Point estirnate t) .0016 t). 000$ 0.0007 0.000995V Bootstrap interval [0.0006, 0.0063J [0.00026, 0.0047] [0.0002, 0.0042] I [0.0001, 0.0044]

1 =210nttTt+1) = L.L:=i rt+i_

11=1 11=2 h=3 h=4Point estimate 0.0015 t).0007 (].0006 0.000895V Bootstrap mterval [0.0005. 0.0057] [0.00029. 0.0041] [0.00020, ((.0038] [0.0001. t).0037]

0.0010

Note: The table sumniarizes the estimation results of causalitv nieasures from centereci posit ivereturns to bipower variation under (ive estiinators of the average returus. In cadi of the (ive 51111111tables. die sceonci row gives 111e point estiiiiate of the causality measures at h = 1, .4. The thir(I

row gives the 95V corresponchug peïtentilc bootstrap mterval.

107

Page 126: Problèmes dléconométrie en macroéconomie et en finance

Table 10: I\Ieasuring the impact of good iiews 011 volatilitv: Nonceiitered positive returns, tut RV)

Table 11: Measuring the impact of gooci iiews on volatilitv: Noucentered positive returns. tii(BV)

C(r—ln(BV)) 17=1 Ïi=2 17=3 k=4

Point estimate 0.0035 0.0013 0.0008 0.001095t Bootstrap interval [0.0016. 0.0087] [0.0004, t).0051] [0.0002. 0.0039] [0.0001. 0.0013]

Note: Tables 10—11 summarize the estimation resuits of causality meastires from noncenteredpositive returns to realized volatility anci noncentered positive retiirus to bipower variation.respectively. The second row in cadi table gives tic point estimate of tic causality measuresat k Ï, .1. Tic third row gives tic 95% corresponding pcrcentile bootstrap interval.

C(r In(RV)) k = 1

Poiflt estimate 0.002795% Bootstrap iuterval [0.0011,

h=2

0.0012[0.0004,

I Ii. = 3

t).00Z7] 0.0018] 0.0038]

0.0008

[0.0002. 0.0041]

k = 4

t). 0009[0.0001, I

108

Page 127: Problèmes dléconométrie en macroéconomie et en finance

Q)toE

ID

(Dwt

EQ)ttooC)ttQ)tQ)-aC

oQ)C-E

cgQ)DC)w

IDŒ

(Dt

EQ)ttCoC)tCQ)tQ).0

C

oQ)o.E

Q)DC)w

I I I

I

u)

t

r0

eJnseej A4qusneQ

Q)toN

oI

C

CI

)Q)sneQ9JflSQ)Q) 1!IusD

®tn*

Q)toN

CI

Q)tC

E

IDŒ

(D

(DC

EQ)C

tCCC)tCQ)tQ)nC

oQ)o.E

nQ)DC)w

109

0

einseatu /Ç3IQ)sneQ

Page 128: Problèmes dléconométrie en macroéconomie et en finance

o

CausalityMeasureCausalityMeasureQQQQQQQQ

PPruPbPbPPuPbm QQ-QruQQQ-QQQQQQ

c

r>oIQ-DI.

I

CausalityMeasuteCausalityMeasureQQQQQQQQbPbPbbPPbPbI QQQQQQQQQQruQQQQ

QQ

DDDZ ‘n‘n-> D

o G)I

H—1

I°I

o

Page 129: Problèmes dléconométrie en macroéconomie et en finance

D-DoEXo‘r4Co

DEEDD

CD

D

tC

DEDCtDDo

Do>

oDDCooDD‘r

o

DD0Iw

DtoE

zo‘r4CzC

DEDCtooo’tCDtDD

ooDo-E

o)DZo’w

Oo)

U)

C

oI

U)

DJflSUGEJ kIDsflDD

OO)

CoN

oI

U)

C

2oI

U) — U)— b °o o

OJflSDDEJ ÂJUBSnDD

U)

U) C’) U) — U)o) O — O Op pO O O

aJnsDaj Ajiji

111

Page 130: Problèmes dléconométrie en macroéconomie et en finance

o

QuantilescfRiQuantilescfzQPIIIII

III-‘-pppppppppptTt

OtON)

_

N)Tt

0101

+++

I‘-I

Q)Q)\-&

oC

I80t-&t-c

oooz- NINI(5—

N oo01N—Naas. ZNzCoOoB

t

EEQQNCcCNNNN—

D—’(5

tt

zNN

01Q)\Q)

Z4\+

±+3

++EIIII111111111

QuantilescfzQPmQuanfilescfzQPII—‘IIIltOt001O10±tOt-Nooot-N -NI-N111111111

++

IIQ)Q)

m t—.

RIN

tt

O\wOO SI-cNI

—D’to—015 NN—

s.—s.s.

3O-a

EI<EO3o8 cNcCNCNN

-,a-’Ça

Do_R

t5s.t

Zo o—

3

Q)“%-+

E—

++++

+I+-NItIII111111111

Page 131: Problèmes dléconométrie en macroéconomie et en finance

Figure 16: S&P 500 futures, daily returns, 1988-2005

D

I I I

0.1

0.08

0.06

0.04

0.r,, fl.IIIl.t J I I Ji Iii.1

-0.04

-0.06

-0.08

-0.1 -

o

IfFi’ Ii ‘H”rr

500 1000 1500 2000 2500 3000 3500 4000 4500Horizons

113

Page 132: Problèmes dléconométrie en macroéconomie et en finance

U)QQc1U)U)D,

o‘Q

‘Q>

Q)EoQ

QQ‘oD

U)

U)

Q)sD,

w

--

QQU)

Q U)Q QQ Q

cJ

QQU)

QQQ

QQU)Q

QQQQ

QQU) Q)Q

N

Q O

Q

QQU)

QQQ

QQU)

Q— Q Q

I I

‘q Q ‘q — U)Q b

A9

— U)Q

U)QQQ

U)o

‘Qo>

Q)N

‘QQ)

QQU)

D

U)

N-

Q)DD,

w

Q

X

QQU)

QQQ

QQU)Q

QQQQ

QQU) U)

N

Q D

Q

QQU)

QQQ

QQU)

QQU)

QQQ

QQU)Q

QQQQ

QQU) O)

N

Q O

Q

QQU)

QQQ

Q

U)QQQ

U)U)D,

>

‘Qo>-oQ)N

‘QQ)II

oEn

‘QD,

O

QQU)

O‘oU)

D,

Q)DD,

w

114

________________

-___________ QU) (O r— U) D, J — Q Q

I I I I ,—..

I I I I

Q

QQU)

(A)uI

Page 133: Problèmes dléconométrie en macroéconomie et en finance

Figure 21: S&P 500 Jumps, 1988-2005

0.8

0.7

0.6

0.5

O.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500Horizons

115

Page 134: Problèmes dléconométrie en macroéconomie et en finance

Fig

ure

24:

Cau

sali

tyM

easu

res

for

Hou

rly

Lev

erag

eE

ffec

t(l

n(R

V))

001

________________________________

—*—

—95

%pe

rcen

tile

boot

stra

pin

terv

al0.

009

\P

oint

esti

mat

e

\*

0.00

8

0.00

7

O004

D

0.00

3

0.00

2

0.00

1 O-

*t

**

*t

**

-*-

**

**

05

1015

Hor

izon

s

o

0.06

Fig

ure

22:

Cau

salï

tyM

easu

res

for

Lev

erag

eE

ffec

t(l

n(R

V))

0.05

o

—t—

-—95

%pe

rcen

tile

boot

stra

pin

terv

alP

oint

esti

mat

e

e o e e

Fig

ure

23:

Cau

sali

tyM

easu

res

for

Dai

lyL

ever

age

Eff

ect

(In(

BV

))

95%

perc

enti

lebo

otst

rap

Poin

tes

tim

ate

t

-k 0)

Hor

izon

s

0.0

1

0.00

9

0.00

8

Fig

ure

25:

Cau

sali

tyM

easu

res

for

Hou

rly

Lev

erag

eE

ffec

t(I

n(B

V))

—*

--—

95%

perc

enti

lebo

otsf

rap

inte

rval

Poin

tes

tim

ate

t

20*

**

-**

**

t*

tt

tt

1015

20H

oriz

ons

Page 135: Problèmes dléconométrie en macroéconomie et en finance

oo

Fig

ure

26:

Mea

sure

sot

inst

anta

nous

caus

alit

ybe

twee

nda

ilyre

turn

and

rela

ized

vola

tility

0.C

Q

Fig

ure

27M

easu

rea

o!in

stan

tanous

caus

alit

ybe

twee

nda

ilyre

turn

and

Bip

ower

vari

atio

n0.c

D D a D E0.

03D C

,D

0.02

—J

Fig

ure

28:

Mea

aure

sot

dep

end

ence

betw

een

daily

retu

rnan

dre

laiz

edvo

latil

ity

10H

oriz

ona

Hor

izon

a

—*—

—25

%pe

rcen

tile

boot

atra

pPo

int

eati

mat

e*

0.

e0.

08D D D w E z,

0.06

D D D

0.04

Fig

ure

22:

Mea

aure

aof

dep

enden

cebe

twee

nda

ilyre

turn

and

Bip

ower

vari

atio

n0.

12—

p

0.1

210.

08D D ‘J E 0.0

6D D D a

0.04

0.02

—*

95%

perc

enti

lebo

otat

rap

inte

rval

Poin

tea

tim

ate

510

1520

Hor

izon

a

Page 136: Problèmes dléconométrie en macroéconomie et en finance

zo

Q1DI

CausalityMeasuteQQQQbRobRbP QQQroQQ

CausatyMeasureQQQQQbPRbPbPb QOQD)QQQ.

QQQD)QQQ.(Cr21QCD

Q

CD<CDQCD0

QQ

CausalityMeasureQQQbPbPbP QQQD)QQ-‘QroQ

QbPQQor

9,CDC

CDQQ

IoC

CDDo

CD

CDeCDCD

CDCD

mCDo

D

03

9U

91CDC

CDQD)

IoC

CDDoDCD

‘eI-CDeCD

CDCDCD

mzCDo

D

zO

D

Q

D)Q

ii- D).Q

CausalityMeasureQQQQbPbPbRbP QQ-QD)QQQ

QQ-QD)orQQ27 QCD

Q

CDo-CDO

CDCDm.CD

Q

o

Page 137: Problèmes dléconométrie en macroéconomie et en finance

6H-

-ntC

o(-z

3tonoooo-D(D3

oD(Doo

D

D,D

I

m(oC

(D(-zo

3tD,ooooo-Do3D’oD(Doo

—C

D

oz-C

D

I.

Q

Q

Q

CausalityMeasureooooobbb-D’010-

zo

D(n*

*

X

X

I*

IoNoD(n

0*

*

*

IoNoD(n

Page 138: Problèmes dléconométrie en macroéconomie et en finance

DoQO)

•0CD

>QC

Do>CoEDC0D

-D

ooD

EC)QDDQu-

DoQC)

CD

>

C

>

DoDCoDEDC

D-aooDQ-E

QQDD

•C)u-

CoN

o

CoN

o

Q Q Q C) —Q Q Q Q Q Q QQ Q Q Q Q Q Q

8JflSEDA Â3IIDSflED aJnsEeJ Âiiriuj

120

Page 139: Problèmes dléconométrie en macroéconomie et en finance

CausalityMeasurePQQQpQQoQQQbQbbo QD)QQQ_JQ

rI*

41‘1

CausalityMeasureQpopQpoQOQOQbQbo OD)Q.QQ-‘JQ

Q

-nC

CD

D)

3rDCooo-DCQ-DCD3oDDCoDC

D

w

DCDo-3

Q

oCDC

17CDCCD

Q

3rDCooo-DCQ-DCD3DCoDDCoDC

‘zD

w

DC

Q

D)

Q

oC

T

Ï

17CDCCD

3rDCoo

DCzo

I17

CDC

CD

Q

3rDCooD-DC

o

DCD

oD

rCDDCoDC

Q

D

w

D)o

Q

Q

CausalityMeasurepppppoQCQQOQOQQ

CD)Q3.QQ-‘J

CausalityMeasurepoppp9Qp bQQQQQO

zH

C

frzTCD

Co

4o

DCrZCD

DC

Page 140: Problèmes dléconométrie en macroéconomie et en finance

Q

CausalityMeasureCausalityMeasureQPQPQP11QCOOQQQQOobobbbbbb QQQQOCQQQ.L.QQ O021

/

_____________________

Q

1’Q-I

(Q

21DCD

21Q

g XDXOCD

DCQ

QDC(QDO

(DQ-0(Q

DCOD—.O(D

Q

QDDCQDC(t(

OgDDC_

Oo gD21

Q

T

CausahtyMeasureQCausalityMeasure

bPbbPbPoPà21PPPPPP QQQQQQQ-D-QQQQQQQQQ Q-.QQQQQQQQCD-(QQ-D-QQ Qr21 Q

DCOQ

I(QQ-IQQOD

Q

Page 141: Problèmes dléconométrie en macroéconomie et en finance

Q)DD

QQf)

Q

u)Q)n

oQ)o0.>

Q)D

C’)

Q)Do)w

>

C

C

D

Q)

CQ)>%

Q)o>CU)Q)

Q).0Q)oCQ)-oCQ)o-Q)

CQ)CoQ)o)Q)o)C)

Q)

oQEQ)HQU)

EU)D C’)

u-

123

Q

X

Q)C

o

SaJflSQ)ef A3!ISflQ)O

Page 142: Problèmes dléconométrie en macroéconomie et en finance

Chapter 3

Risk measures and portfolio

optimization under a regime

switching model

121

Page 143: Problèmes dléconométrie en macroéconomie et en finance

3.1 Introduction

$illce the semillal work of 1-lamilton (1989). Markov switching models have been increas

illgly uscd in flilancial tirne-series econometrics because of their ability to capture some

kev features. siicli as heavv tails. persistence. anci noulinear dynamics in asset returns.

In this chapter. we exploit the superiority of these moclels to clerive SOI11C financial uisk

measures. such as Value-at-Risk (VaR) aiid Expected Shortfall (ES). which take into

account important stylizcd facts that we observe in ecymtv markets. We also characterize

the multi-horizoil rneau-variance efficient frontier of the linear portfolio anci we compare

the performance of the conclitional anci miconditional optimal portfolios.

VaR lias beconie the most widcÏv useci technique to measure and control market risk.

It is a qualitile measure that quantifies risk for financial institutions and measures the

worst expecteci loss over a given horizon (typically a clav or a week) at a given st.atistical

confidence level (typically 1%, 521 or lOtYo). Different methods exist to estimate VaR un

cler different models of risk factors. Generally. there is a trade-off betweeii the simplicity

of the estimation method and the realisin of the assuinptions in the risk tactor model: as

we allow the latter to capture more stvlized effects. the estimation metliod hecomes more

complex. Under the assumptioll t.hat returils follow a conditional imrmal distribution. one

can show that the VaR is giveu bv a simple analvtical formula [sec RiskMetrics (1995)].

However. when ire relax this assumption, the analytical calculation of the VaR hecomes

complicateci and people tend to use computer-intensive simulatioll baseci nrethods. Baseci

on the Markov switching moclel, this chapter proposes an analytical approximation of the

VaR under 1110f e reaÏistic assumpt ions than conditiorial normalitv.

Tire issue of VaR estimation under Markov switclnng regimes lias heen collsiclerecl by

Bilhio and Pelizzon (2000) ancl Guidoliir auJ Timmermanu (2005). Billio anci Pelizzon

(2000) use a switching volatilitv moclel to forecast tire distribution of returirs and to

estimate the VaR of both single assets ancl hinear portfolios. Comparing the calculatecl

VaR values with the variance—covariance approach and GARCH(1. 1) mo(lels, they find

that Vail values under’ switching regime moclels are preferable to the values uncler the

125

Page 144: Problèmes dléconométrie en macroéconomie et en finance

other two inethods. Guidolin anci Timmermanu (2005) examine the tenu structure of

VaR uncler clifferent econometric approaches, incinding mtiltivariate regime switching.

and find that bootstrap and regime switching models are best overail for VaR levels of

5% and 1%, respectively. To our knowleclge. no analytical methoci lias been proposecï to

estimate the VaR uncler \larkov switching regimes. 111e present chapter uses the sanie

approach as Carclenas et al. (1997). Rouvinez (1997), ancl Duffle anti Pan (2001) to

proiicle an analytical approximation to a multi—horizon conclitionai VaR uncler regime

switching moclel. Using the Fourier inversion method, we flrst cierive the probability

distribution function for umiti-horizon portfolio returns. Thereafter, we use an efficient

numerical integration step, designeci by Davies (1980), to approximate tue infinite integral

in the inversion formula auJ make estimation of the VaR feasible. Finally. we use tue

Ilainilton filter to compute the conditional VaR.

Despite its popularity among nianagers anti regulators, the VaR measure lias been

criticized because, in general, it Iacks consistency auJ ignores losses beyond the VaR

level. Ftirtherinore. it is not subadclitive, which means that it penalizes diversification

insteacï of rewarciing it. Consequentiy, reseauchers have proposed a new risk measure.

calleci Expected Sliortfall. whicli is the conditional expectat ion of a loss given that the

loss is bevond the VaR level. Contrary to VaR. Expecteci Shortfall is consistent, takes t.he

frequencv anti seveuity of financial losses into account, auJ is additive. To 0m knowledge,

110 analyticai formula lias been derived for the Expected Shortfall measure uncler Markov

switching regimes. In this chapter we use the Fourier inversion method to clerive a

closed-form solution for the multi-horizon conditional Expected Shortfall measure.

Another objective of this chapter is to stuci portfolio optinuzation under Markov

switching regimes. In tlie literature there are two ways of considering tlie problem of

portfolio optiniization: static anti dynamic. In tlie I\Iean—Variance framework. the differ—

ence between these two approaches is rclateci to how ive calculate the flrst two moments

of asset retiirns. In the static approach. flic structure of the optimal portfolio is choser

once anti for ail at the beginning of the period. Que critical tirawback of this approach is

126

Page 145: Problèmes dléconométrie en macroéconomie et en finance

that it assnnies a constant mean and variance of retiirns. In the dvnamic approach. the

strnctiire of’ the optimal portfolio is continuouslv adjnsted using tire available information

set. One advantage of this approach is that it allows exploitation of the predictability

of the first aiid second moments of asset returns and hedging changes in the investment

opportunity set.

$everal recent stiidies exannire the economic implications of return prcclictability on

investors’ asset allocation decisions and find that investors react differently when retunis

are preclictable.’ In those studies wc distinguish between two approaches. The first

one, which evaluates the economic benefits via ex ante calibration, concludes that return

predictability cari iinprove investors’ decisions [see Kandel and Stambaugh (1996), Bal

duzzi and Lynch (1999), Lynch (2001), Gomes (2002). and Campbeli. Chan. and Viceira

(2002)]. Tire second approach, which evahiates tire ex post performance of return pue

chctability, finds mixed result.s. Breen. Glosten. anci .Jagaimat han (1989) ancl Pesaran and

Timmermann (1995) find that return predictalihty vields significaHt economic gains ont

of sample, whereas Cooper. Guticrrez, and Marcum (2001) and Cooper anci Guien (2001)

(10 not flrid any ecoriomic significance. In the Mean-Variance framework. Jacobsen (1999)

anci \Iarquering and Verbeek (2001) fincl that the economic gains of exploiting return

prechctability are significant. whereas Handa and Tiwari (2004) find that the economic

significance of return preclictability is questionable.2

Recently. Campbell and Viceira (2005) examined the implications of the predictability

of the asset returns for multi-horizon asset allocation using standard vector autoregressive

model with constant variance-covariance structure for shocks. They finci the changes in

investrnent opportunities can alter the risk-retnrn tracie-off of bonds, stocks, ancl cash

across investment horizons, and that asset ueturn predictability lias important effècts

on the variance and correlation structure of returns 011 stocks. bonds and T—buis across

tlI11efous empirical works have askec1 whcther stock retitfns c’an he preclicteti 0f net: sec Fuma andSchwert (1977). Kuim and Staiubaugh (1986), (‘amplieli (1987). Camphell anti SIuller (1985). fama amiFrench (1988. 1959). amI Hodrick (1992). among others.

2See Han (2905) for more discussion.

127

Page 146: Problèmes dléconométrie en macroéconomie et en finance

investment horizons. In this chapter we extenci the moclel of Carnpbell and Viceira (2005)

by allowing for regime-switching in the mean and variance of returns. However, we do

not consider variables sud as price-earnings ratios, interest rate, or yield spreads, to

predict friture returns, as Canipheil and Viceira (2005) did. We derive the conditional

and tmconclitional first two moments of the multi-horizon portfolio return that we tise

to compare the performance of the clynamic and static optimal portfolios. Using daily

observations on $&P 500 and TSE 300 indices, we first find that the conclitional risk

(variance and VaR) per perioci of the multi-horizon optimal portfolio’s returns, when

plotteci as a ftniction of the horizon h, may be increasing or decreasing at intermediate

horizons, and converges to a. constant- the unconditional risk-at long enough horizons.

Second, the efficient frontiers of the multi-horizon optimal portfolios are time varying.

f inally. at short—terni anci in 73.56 of the sample the conditional optimal portfolio

performs better then the unconditional one.

The remainder of tins chapter is organized as follows. In section 3.2. we introcluce

some notations and we derive the conditional and unconditional Laplace Transform of

Markov chains. In section 3.3. we specify oui model and we denve the probability distri

bution function of multi-horizon returns. We use this probability distribution function

to approxiinate the multi-horizon portfo1ios conditional VaR and derive a closed-form

solution for the portfolio’s conditional Expected Shortfall. In section 3.4. we characterize

the mnlti-horizon mean-variance efficient frontier of the optimal portfolio under Markov

switching regimes. A description of the data and the enipirical results are given in section

3.5. We conclude in section 3.6. Technical proof are given in section 3.7.

128

Page 147: Problèmes dléconométrie en macroéconomie et en finance

3.2 Framework

In this section, we introcluce some notations anci we derive the conclitional arid tmconcli

tional Laplace Transform of sii;iple anci aggregated Markov chains. We assume that

(1.0.0 0)T when St = 1

(0. 1.0 Q)Twhen st = 2

rrr

(t). 0. 0 1)T when st = N

where s is a stationary and hornogenous J\Iarkov chain. It is well knowri that (see, e.g.,

ilamilton (1994), page 679)

= P’, Ï > 1, (3.1)

where j ix an information set anci

P = [ j]1<i,j<N = P(st1 = = 1). (3.2)

We assume that the Markov chain ix stationary with an ergodic distribution 11, 11E RN.

i.e.

= H. (3.3)

Observe that

P’TI = H. Vh. (3.1)

129

Page 148: Problèmes dléconométrie en macroéconomie et en finance

In what follows. we aclopt t.he notatiois:

A(u) Diu.g (exp(ui). exp(u2) cxp(uN)) P. Vu E (3.5)

ph=

The conditiorial anci unconditional Laplace Tiansfoum of simple an(Ï aggregat.ed Markov

chaiis are given by the following propositions.

Proposition 1 (Conditional Laplace Transform ofMarkov Chains) Vu E IRA’. Vh

1. we have

E[exp(uT(,) i]=

I =

Proposition 2 (Joint Laplace Transform of the Markov Chain) V/i. 1. Vu, E

R. jr i = 1 h. we haie

E[exp t±) I J1] = eTflA(u,+ij)(t, (3.6)

E[exp u+i)1 CTIIA(u,+ij)H. (3.7)

where e (lenotes the N x 1 tector whose ait components equat one.

3.3 VaR and Expected Shortfall under Markov Switch

ing regimes

There are n risky assets in the economy, the prices of which are given liy P1 = (P11. P

We deiiote by r, = (rit. ro1 tHt) . where r = lut P11) — 1n((,_l)) for i 1 n.

130

Page 149: Problèmes dléconométrie en macroéconomie et en finance

the vector of assets returus. We define the information sets as:

‘t = U(, ç. t) 5T T < t).

1t u(rT.T<t).

We assume that î follows a multivariate \Iarkov switclHng model,

= [i(t + Z((,)÷1. Li.d. N-(o. I,?). (3.8)

E [)T)T J] = V(()I)T = O(()

where ‘r is an n x n identity matrix alld

[L11 [112 [LiN

T Tt2i [122 [12N -2i(f L’22t

ItnI [2 /tnN ‘lÇt ‘(

for i = 1 n. ami j = 1 N. is the mean return of an asset I at state j and

for i. 1 1 n. is a vector of covariances between assets / anci I at the N states. The

processes {s,} ami {r,} are assu;ned jointly independent.

3.3.1 One-period-ahead VaR and Expected Shortfall

To conipute the VaR of linear portioho, we proceecl in three steps. first. we calculate

the characteristic function of the portfoho’s return. Second. we follow Gil-Pelaez (1951)

and use the Fourier inversion niethod to compute the probabilitv distribution of the

portfolio’s return. Tiurci. ive compute the VaR 1w inverting the probability distribution

131

Page 150: Problèmes dléconométrie en macroéconomie et en finance

function arici using ail efficiellt numerical iiltegration step designed by Davies (1980). We

also use the fourier inversion rncthod to clerive a closed-form solution of the Expected

Shortfall rneasure. Let us consider a linear portfolio of u assets, the return of which at

time t ± 1 is given by:

= °‘it+i WT,,+1 (3.9)

where H = (01. 02)T is a vector representing the weight attributeci to each asset

in portfoho. At the horizon one. the conditional characteristic function of is given

hy the followhg proposition.

Proposition 3 (Conditional haracteristic Function) V u R, we have

E[exp (iifl,+) I J,] =exp((iiLpTwu2

T

) (3.10)1l 1 <n

where i is a compleT variable such that i

The function (3.10) depencls on the state variable (, which is not observable. In practice,

we need to filter this function using an observable inforniation set. Using the law of

iterat ed expect ut ions. we get

E[exp(iut’,),±y) I,] = E[exp ((11111Tii Zi<,1,2< 0H012W1112)

T

ç,)

= = .11 I) exp (1itTl1 —

where I, is the observable information set, is tue n X 1 mean returi vector ut state j.and Ç2 is the n x n variance-covariance niatrix of the ii assets’ returns ut state j.According to Gil-Pelacz (1951), the conditional distribution function of r1,+i evaluated

at ‘ii. for i E R, is given by:

Pt(r,t+i <) —

P(s, j I,) / “du. (3.11)

132

Page 151: Problèmes dléconométrie en macroéconomie et en finance

xviiere3

11(u) 1m (JtiFT/i — u(ll.T() 111) exp(—iu) }.Im(z) denotes the irnaginary part of a complex nurnber z. We have.

Ij(u.) = exp (_u21VT .1179) (u(WT[—

In what follows we assume that the VaR is a positive quantitv:

<—VeR) = — P(s, = I Il j du. (3.12)

where

CXJ)( T172) (u(U1 + VaR)).

Tue VaR is a cillantile measure anci it eau be computeci by inverting the distrihutioll

function (3.12). However. inverting equatioH (3.12) analytically is not feasible anci a

ilumerical approach is required.

Proposition 4 (Condftional VaR) The on e-period-ahead portfotio s con dt,rnzoÏ- VaR

wtth couciage pmbulntdy (1 (leu oted uR is [lie sotntion of flic folio Wiflg equation

= il it j — ( — 0 (3.13)

where. for j = 1

I(u) = exp ( U(11T0 11-)) sin (u(1Vti1 + T

Corollary 3 (Uiiconditional VaR) Th e one—period-aÏieact poitoiio s u.n.conditionaÏ— Vu]?

:he s1I1)seript in the ijrobhi1ity distribiit ion fnnttion (3.11) is te inclicate that we uoiiditnm O

the inforuint ion set I.

133

Page 152: Problèmes dléconométrie en macroéconomie et en finance

witlî coler(ige pTVb(Il)iiit/J Q, detiOtefi t cR (pf+J ) . is Mie sotut i on of the fottowing efjuation

rij / ‘du— ( — n)w = O.

where for j = 1.V. oie flic cigoclic or stcndy state probnbïtities.

Corollarv 3 can be deduced from Proposition 4 using the law of iterated expectations.

The conditional VaR can be approximateci by solving the function

f(VciR) = P(s1 = j I) / ‘du,— ( —

)ri = 0. (3.11)

The function f(t oR) can be written in the following forni:

f(VoR) = —7r[P, (Ï÷i <—VuR) — ci]. (3.15)

Using the properties of the probability distnbuhon function (monotoriically increasing.

(ipt+i < ,r) 0. auJ uni P1 (ri,,t+i < .r) 1) one eau show that (3.15) bas a

rinique solution [see proof in appendix 2]. Another wav to approximate the conditional

VaR is to consider the following optimization problem:

VCiR(r.1i) = q min [t ——

.j I,) r ]u)diIÏ2 (3.16)

where

I(u) = exp (_u2(lITQ1F)/2) sin (u(IF ji + I (1R7)).

11w following is au algorithm that orie cari follow to compute the portfolios conditional—

VaR:

1. Estimate the vector of the unknown pararneters

(ieci). irch(01)T rÏi(Qv)’. tc(p)T)T

131

Page 153: Problèmes dléconométrie en macroéconomie et en finance

using the maximum-likelihood methoci [sec Hamilton (1994. pages 690-696)].

2. Estimate the conciitional probability of regimes.

Ht t+iIt = (P(S li I,). .... P(s, = N I 1))T

by iterating on the following pair of equations [see Haniilton (1994)]:

— (t:t—i t))

j-e (I’t_1 ‘ii)

—P 31S l-t-lit — S lit

x\Tllere, for t 1 T.

(P(st_i = 1 I,). ..., P(s1_1 = N

1. f (‘t-, -

)2

tXl) u- Q1W)

1

____________

‘k= f02Tt) (W f120)

1- f W/I\ )2

/(W—t2x W) tXP (W- fIN 14)

the symbol clenotes element-by-element multiplication. Given a starting value anti

the estimator of the vector 9, one can iterate on (3.17) arid (3.18) to compute the

values of anti for each date t in the sample. Hanu ton (1994, pages 693 694)

suggests several options ftr choosing the starting value Que approach is to set

eciual to the vector of uncoHditional probahilities H. Another option is to set p.

where p is a fixeci N x 1 vector of nonnegative constants sunliHing to unity. such as

p N’e. Alternatively, p can lie estimated by maxmmni likelihood. along with 9.

subject to the constraint that ep = 1 and p O flir J 1. 2 7V.

135

Page 154: Problèmes dléconométrie en macroéconomie et en finance

3. Given a’” and fl. the portfolio’s condit.ional-VaR with coverage probabulity ci is the

solution to the following optimization problem:

y 21 roe 1(u)

VuR(r,t+i) Arg min ( — ci)ir — = j I I) J cÏu (3.19)I aR

]=i O U

v1ici’e

I(u) exp ( /2tTT-TÔtifl)/9) (u(w ± VeR?)).

In practice. an exact solution ofecjuation (??) is not feasible. silice the illtegral Jis difficuit to evaluate. Tue latter can be approxi;natecÏ using resuits by Imbof (1961).

Bohmann (1961, 1970, 1972), anci Davies (1973), wlio propose a nurnerical approximation

of the clistributioll function using the characteristic function. The proposeci approxima

tion introduces two types of errors: cliscretization anci truiicatiori errors. Davies (1973),

proposes a criterion for controlling discretization error and Davies (1980) proposes three

different hounds for controlling trmwation error. Fm’thennore. Shepharcl (1991a.b) pr0

vides rules for tlie mimerical inversion of a multivariate characteristic function to compute

the distribution fmictioiv These rtiles represent. a rimitivariate generalizat ion of the Imliof

(1961) and Davies (1973. 1980) resuits.

The VaR measure has been criticized foi’ several reasons; it lacks consistency, ignores

losses beyond the VaR level, anci it is not subadditive, which means that it penalizes

diversification mstead of rewarcling it. Consecuently, researchers have proposed a new risk

measure. called the Expecteci Shortfall, winch is the conditional expectation of Ioss given

that the loss is bevond the VaR level. IJnlike the VaR. Expected Shortfall is consistent.

takes the frequency and severity of firiancial losses into account. ard is additive. Giveil

its importance for evaluat.ing financial ;narket risk. the following propositions give a

closed-form solutioll for the portfolios Expected ShortfaÏl measure.

Proposition 5 (Conditional Expected Shortfail) Tire one-perzoc]-ahead poTfoiu) ‘s

1:36

Page 155: Problèmes dléconométrie en macroéconomie et en finance

condition aÏ—Epectcd $hortfatt with coccrage piobabiity o denoted ES (rJ) +i). i g/veri

by.

ES(r0,i+i)= 1

tc’he ic

/ 1 (Uti1 + VtiR(i1÷ï))2 1 (ITTp + v(IR,(7f),l))2R(t) = Ding exp ), ....exp(—

Corollary 4 (Unconditional Expected Shortfall) The one-period-(zhead pmtfrilio s

un coiiditionat-Expectcft ShottJaÏi witk coverage probabitity ci, denoted ESt1 (ï,,+iD. is given

Ï)y

E5’(rt_i) =

where

/ 1 (1TTp tR(rJ)i+i))2 1 (TVT1 + vaR(iI)t+1 ))2R(u) Dzag exp

(WTyW) ), ..., exp( (wTNW)

Corollary 4 cari be deduceci from Proposition 5 tlsing tue law of iterateci expectations.

3.3.2 Multi-Horizon VaR and Expected Shortfall

\‘e denote by t:t+i r. the multi-horizon aggregated returri, where r,. follows

a rnultivariate Markov switclnllg model (3.8). To compute the rrmlti—horizon VaR anci

Expected Shortfall of linear portiolio. we follow the saine steps as in subsection (3.3.1).

Based On Propositions 1 auJ 2, the characteristic functions of the h—period—ahead port—

folios returii aiid aggregatecl portfolio’s return are given hy the following propositioii.

Proposition 6 (Mufti-horizon Conditional Characteristic Function) V u E R aint

137

Page 156: Problèmes dléconométrie en macroéconomie et en finance

h > 2. ive litue

f[exp(ilJit+,) I ] = JA (TiF—

n:12w1112)ph_2 (3.20)

1<tj,l2<H

/ /

E[exp(ar;,+a) J1] = T \IlJ[iT1F —

1<tt.11<t

x exp ((II1ITTF— 112

)T

)— 1<1.I1<n

alt eec

A (t;wît 1112W1l2) =Dt:ag (exp (ai) exp (aN))

111 .l2<fl

ciîid, Jij = 1 \.2

li T -

(t = t aH — ——I’l Q H

f de7lotC.% the N x 1 vector whose ColTipo7letitS are alt equai 10 one.

The fimctions (3.20)-(3.21) depenci on the state variable (. In practice. the current

state variable ( is not observable anci one needs to use the observable information set

‘ to filter these functions. for the h-period-aheacl portfolios return, the law of iterateci

expectations yields

E{exp(iutj÷h) I I,] eT1 (J11t1TU — u2(17f 0I2/it2) Ph_2H,, (3.22)

— 1<I,l<n

where

ll = (P[s = 1 I] P[s = N I IDT

An estimate of ll eau be obtamecl by iterating on (3.17) and (3.1$). Equation (3.22) is

138

Page 157: Problèmes dléconométrie en macroéconomie et en finance

a co;;iplex function arid if can lie written as follows:

E[exp(iur,,) I 1t] — CT[11(u) + iÂ2(u)]P’’H.

where

A1( u)Diag (exp( ZllT1U) cos(fTTj,1) exp(7TQV)COLT’L\r)).

A2(u)=Diag(exp(12U11Tsin(ltW’[L1) exp( 11-Tç\.1-)

si1 t1Tp))

Siinilarlv. the characteristic function of the h—period—ahead aggregated port folio returri is

given by:

/ /E{exp(iurp,tt+,i) I] = eT 1 l[tTlT — Z CII1WQ11W!t!2)) D(u)fl.

(3.23)

where

D(u)=Diag (exp (iitlt/lTfl2lvTQTT) exp

which can he writtell as follows:

E [exp (i uT.t+ï) I,] eT [D1 (n) + iD2 (u)] ll.

where

h—1D1(u) = P.c (( ii — y<i1i,< fl10bl+)) D(u))

h—1D(u) = 1m ((1 (/[llI — Z1<12<7 0ii0bWiib)) Dtu))

Re(M) anti Im(M) clenote tue real and ilnaginary parts of a complex matrix M. respec—

139

Page 158: Problèmes dléconométrie en macroéconomie et en finance

tively. Accorcling to Gil-Pelaez (1951). the conditional (listribution furiction of 1÷h.

evaluated at ‘, for i, E R, is given by:

t t tI).t+/I < r,) — eT / -42( u)du Ph_lH.,

where

A2( u)= Diag (exPt ‘Zj-Tç21 j- sin(lt(TtTtLi — ‘ri,)) .....expt—W’!1vW) siïi(1j(ltT,i—

Similarlv. the conditional distribution functioll of 1pt:t-l-1i evaluated at. r, for t1, E R. is

given by: —1 1 T “ D(u)

Pt(tpt:I+ï) < ï) — — — —e I d?’2 7C .10 U

where

D2(u) = liii {exP(_iiI.1))—

u, n12w119)) Dt ii) }1<11 1 <n

It is not easy to have an explicit formula for the matrix bo(u) as in the case of 42(u).

However. for a giveil fuite horizoil Ï. one eau easily calculate the expression of D2 (u).

Another wav of calculating D2(u) is to start bv calculating E[exp(iur1,t+h) I,] iii tenu

of sums aiid then to separate the imaginary ancl real parts of E[exp(iur+,1) I 1J.

Proposition 7 (Multi-Horizon Conditional VaR) Th e h -period-ahead portfr)iio ‘s con dit louai

VàR w’ith. couerage probahitity i. denoted aR7 (t,’.h). is flic solution. of the fottowing

equotion.: —

eT12(11)

(111 — (o _) 0.

SinidarÏy, flic pCtZoda/1eafi ugqïegateci pottjoÏïo ‘s ColidittOil ai— ViR it’zfÏi coverage jnob—

ubtiztg n, denoted ciR7 (tplt+h). is flic sotuf?on of flic Joilo wing equation:

T I D9(u) 1e du f1 — (n——)ïv 0.

0 2

1-10

Page 159: Problèmes dléconométrie en macroéconomie et en finance

Corottary 5 (Multi-Horizon Unconditional VaR) Thc h -period-akeucl aggregated port-

folio s unconditionat— Val? ueth cot’erage pi’obtthility ci. deïiotcd (1RJ).t:t±h). /5 tÏ€ 30

Ïution. of flic foïtowing cq itation:

T D2C1I)1fi — (_) — O.

u 2

ichere H represents the uector of flic eigoctic jirobaÏnÏities.

The h—periocl—ahead unconchtiollal VaR is eqnal to the one-period—aliead unconciitional

VaR giveli by Corollary 3. To compute the conditional or uncoiiditional VaR of the

h-period-ahead portfoiio and aggregated portfolio une can fbllow the same steps of the

algorithm describeci in subsection 3.3.1.

Proposition 8 (Mufti-Horizon Conditional Expected Shortfali) Tire h -perzod-ahead

portfoÏio ‘s conditional-Erpected Shorifhlt witÏi couerage piobabitity o. deriotcct ESll(r[)t+h),

is given Ï)g:

C( I .

_______

ni‘ — ,,_-__it uC- 11St•

uv2zr

ah e ce

_

f 1 (WTp + VaR(rJ),l ))2 1 + +h))2

R(u) — Drag exp T111) ) exp(—(WT!uW)

The h-periocï-ahead unconditional Expecteci Shortfall is equal to the one-periocl-ahead

unconditioiial Expecteci Shoutfall givdil by Coiolla.ry 4.

3.4 Mean-Variance Efficient Frontier

In the literature tiiere are two wavs of considering the problein of portfolio optiuuzation:

static and dynainic. In the mean—variance framework. the clifference bctween these two

ways is related to how we calculate the first two moments of asset returns. In the static

approach. the structure of the optimal portfolio is chosen once and for ail at the begliming

111

Page 160: Problèmes dléconométrie en macroéconomie et en finance

of the perioci. One critical drawback of this approach is that it assumes a constant

mean and variance of returns. In the dvnanuc approacli. the structure of the optimal

portfolio is continuously adjusteci using the available information set. One advantage of

this approach is that it allows exploitation cf the predictahulity of the first anct second

moments of asset returns to hecige changes in the investment opportllmty set.

In this section anci next one we study the multi—horizon portfolio optimization problem

in the mean-variance context anci under Markov switching model. We characterize the

dynamic and static optimal portfolios and their t.erm structure. This is to examine the

relevance of risk horizon effects on the mean-variance efficient frontier and to compare

the performance of the clynanuc anci static optimal portfolios.

3.4.1 Mean-Variaiice efficient frontier of dynamic portfolio

\Te consider risk-averse investors with preferences clefined over the conditional (uncon

clitionai) expectation anti variance-covariance matrix of portfoho returns. \Ve provide a

(ivnanllc (static) frontier of ail feasible portfolios characterized 1w a dvnamic vector of

weight T’l (a static vector of weight U). TIns frontier, winch can be constructed from

the n. riskv assets that we consicier. is clefineci as the locus of feasible portfolios that have

the smallest variance for a prescribed expected return.

The efficient frontier of dynamic portfolio eau he cIescribed as the set of dynamic

portfoïios that satisfy the following constrained nunimization problem

tintii {i c1rt[1)t+,] 11’t I (ii [rt+h]T’T’, }

st.

(3.21)

E, [rJ),+fJ = 11 [‘r,+h] p.

i1e 1.

142

Page 161: Problèmes dléconométrie en macroéconomie et en finance

where W is the set. of ail pOsSil)1e portfoiios. p is the target expected return, and the

nieari E, [rt±hj an(i variance Vœrr[r,±ij are given in the following propositioll.

Proposition 9 (Multivariate Conditional Moments of Returns) The first and sec

ond cond?tonat morneits of tue h—period—aÏi ead ïnuttn’cuuite ieturn are given. hy:

Et[r,+,,] E[r,+i, J,] R, tP’’H,. li 1.

I,] ( ® I) ((_l)T) ® L) cl,. h > 2.

wÏie’re

(t’1 — P) (t’y —

T ±

(trv — ,)(jrr— p,)T +

I is an n x n ïdeïtïtj inatiji

The Lagrangian of the minimizing problem (3.21) is given by:

L, = {11lar,[rt+h]11} + { —11E[i,+,]} + 72 {i — lTTe} (3.25)

wherc anci 72 are the Lagrange multipliers. Under the first— and second—orcler concli—

tions 011 the Lagrangian fimction (3.25), the solution of the above optimization problem

is given by the following eqilation:

WOPt = A1 ±A2R. (3.26)

111e n X 1 vect.ors A1 ancl A0 are deflned as follows:

A1 = L1i [Vt+h] ‘C 4: (l1 [it+iJ ‘E, [Tt+h]].

(3.27)

{-4 Vnr, [i,] ‘Et {i,_,,]— -4:i1 fi!, {rt±i1 ‘e].

143

Page 162: Problèmes dléconométrie en macroéconomie et en finance

rhere

A E, [Yt+)]T (7’ [rt+!.] —1E, [Tt+h],

A2 — FTI f[r]1

(3.28)

A:3 TV0i. [It+h]’E, {rt+h].

Â4 = A1Â2 — A.

The trading strategy implicit in equation (3.26) identifies the dynamically rebalanceci

portfolio with the lowest conditioual variance for aiiy choice of conditional expected

return. Froni equations (3.26)-(3.28) it seenis that forecasting future optimal weights

recyuires on forecasting the expectatiou aiid variance of the portfolio’s retnrn. In the

\Iarkov switching regimes context, the first two moments can be predicteci using Propo

sition 9. i\Iany recent stuclies examine the economic implications of return predictabulity

on investors asset allocation decis ions and found that investors react cÏifferently wheu

retmns are preclictahie. In tue mean-variance frarnework. Jacobsen (1999) aiid Marquer

ing and Verbeek (2001) fouird that the cconomic gains of exploiting return predictability

are significant. whereas Handa and Tiwari (2001) found that the econornic significance of

return preclictabihty is ctuestionahle.1 In tins chapter. we use a Markov switching model

to examine the economic gains of return predictabihty. In the empincal application,

we consider an ex alite analysis to compare the performance of the clynamic anci static

optimal portfolios. The measure of performance that we consider is given by the Sharpe

ratioIl-natTE F . 1

SR(lT°’) = t t tt+hj(3.29)

-nptl, [r,+,,] 11 Opt

If an invest.or believes that the conclitional expected return ancl variance-covariance ma

trix of returns are constant, then the optimal weights will lie constant over tirne-we refer

nuire clisci;siun we refer t lie reader tu Han (20t)5).

144

Page 163: Problèmes dléconométrie en macroéconomie et en finance

to them as static weights. The latter can he obtaineci by replaciiig the coiiditional Hrst

two moments given iii Proposition 9 by those given in the the following proposition.

Proposition 10 (Multivariate Unconditional Moments of Returns) The fii’st and

second unconditionaÏ moments of the h —per od—ahead muttivariate return are given. by:

R = lut h 1.

I tr[r,±1] = (11’ 0 I,,) (((ph_1)T) ® I,, ). h> 2.

ah ccc

(t— I’) ([il

p) T +

(t’N P)(uv — p)T + Q

The static optimal portfolio allocation vielcts a constant Sharpe ratio. denoted SR(lTt)t).

In the empirical study, we compare the performance of the conclitional and uncoiiditional

optimal portfolios hy examining the proportion of times where

SRl’t) > SR(W°°t).

Finallv. the relationship between ) anci the standard (leviation of the optimal portfolio

returns. denoted o0 can be found from ecluation (3.26). It is characterized by

the following ecfuatioll:

opt

) = I u ! [t5] 11 pt(3.30)

which clefines the Ineail—variance houlldarv, deioted B (t, u). Equation (3.30) shows

that there is a one-to-one relation between B(p. 71e (tpi+h)) anti the subset of optimal

115

Page 164: Problèmes dléconométrie en macroéconomie et en finance

portfolios in W. We have.

(p OPt(.)) B(, u) u’(r[_h) = + A— A3/Â2)2

(3.31)

where the right-hancl sicle of equation (3.31) clefines a hypeubola in R x R+.

3.4.2 Term structure of the Mean-Varfance efficient frontier

To stucly the term structure of the mean-variance efficient frontier. we consider the fol

lowing opt iuzatiou prob1er in which the efficient froiitier ut tinie t of the h—period—ahead

aggregated porttolio can be clcscribecl as the set of cl nailiic portfolios that satisfy the

following constrained minimizatio;i prohlem

1 { 1’uï, [ip,/:t+hj 111T[ri.t+h] 1Ï }

st.

(3.32)

E, [‘p.t:t±/?]= [T,fh] = P,

= 1.

where W is the set of ail possible portfolios. p is the tauget expecteci return. and the

mean Et[i’,,+ij and variance (1Ït[/’(:t±/?] are given hy the followmg proposition.

Proposition 11 (Multivariate Conditional Moments of the Aggregated Returns)

The fivst tind secon (I condition al in O’ifle?its t th e h —period—ah cati inuÏfniarzate aggr’cgatecÏ

r’cturn aie giten by.

116

Page 165: Problèmes dléconométrie en macroéconomie et en finance

I—

= i[I + P’]H. h 2.

V(Lî, [‘tt+h] = 07[t:t+it, I,] = (ll 0 I)t + 2/i(Z11 P’)Diaq(H ) [ — ® ,JT

+2p[Z P1Diaq(P’fl )j,T

0 1) ((Z pl)T ® I)Q. h > 3.

mb ere

t1tT + Qi (l — P) tt’ — p) T + Q1

(j, — p)( — p,)T

Dioq(fI) Diag (P[s, = i 1,1,,P[st = N I,]).

The Lagrangian of the mimiiiization pioblem (:3.32) is given by:

L, = {TÏT ai [r ,]W} + — TÏTEf[Ttl+h]} + 2{1 — ÏTe}. (3.33)

wbere anci j are the Lagrange nuiltipliers. Thiis, under the flrst— and secoiid-order

conditions of the Lagrangian ftmct.ion (3.33). the solution to problem (3.32) is giveil b:

lÏ = A1 + A2P. (3.31)

147

Page 166: Problèmes dléconométrie en macroéconomie et en finance

The n x 1 vectors À1 auJ À9 are defined as follows:

A1 [-4 0î’t[it:l+hj’C —Â Vorj[rt:,+,j’ E,{rt:,÷,?]].

A2 [J21urt [‘t:t] E, [r,.,÷,,1 J; [rtt+,j’r]

auJ

À1 = E1 [r,.t+1JTVUÏ., [Tt:t+h] ‘E, [Vt:t+h].

A2

A3 = eT Ver1 [r,.,+;j — E1 [r]

1= l2 -

The unconditional weights of the aggregated portfolio siniplv follows from taking

lirnits iII (3.31) as h — Dc. That is. we use tue unconditional expectation and variance

covariance matrix of portfolios returns implied 1w the 1\Iarkov switcliing iodel (3.8).

Proposition 12 (Muftivariate Unconditional Moments of the Aggregated Returns)

The first a’ndsecoi7c] u’nconditionaÏ iiioiizents of ike h—peiiod—oÏiead multva’riate agglegcited

return are gnen by:

E[rt.,+,j = R = Ï1/IfI, h 2.

Clï[ï’t:th]= (11T

® In ) + 2i(J’ P’)D/oq(H) [t’ — eT ®

+2i[‘ .=‘1 ‘P’Diog(H)]t’

±(HT j) ttz:1’ pt)T Ç I,)Q. h > 3

14$

Page 167: Problèmes dléconométrie en macroéconomie et en finance

wheTe

+ ( ) —

T +

= ... , Diag(ll) Dzag (in.. ,7TN).

tN/ + N (!N — —+

An investor who uses the dynamic optimization approach will perceive the risk-return

trade-off differently than an investor who uses the static approach. With the dynamic

optimization approach we will have a different return expectation and risk (variance)

each period. Long-term risks of asset returns may differ from their short-term risks. In

the static approach, the variance of each asset return is proportiollal to the horizon over

which it is held. It is independent of the time horizon, and thus there is a single number

that sumrnarizes risks for ail holding periods [see Campbeil and Viceira (2005)1. In the

dynamic optinilzation approach model, by contrast, the variance may either increase or

decline as the holding period increases [see our empirical resuits].

The relationship between ) arid the standard deviatioll of the optimal portfolio return,

denoted 0Pt(rh) can be found from equation (3.34). This is characterized by the

following equation:

___________________

opt(Tp,t+h)

= WoptT Vart [rt:t+h] WoPt

which defines the mean-variance boundary, denoted o-). Equation (3.34) shows

that there is a one-to-one relation between (j2, ôt(rp,j+h)) and the subset of optimal

portfolios in W.We have,

(,Pt(Tp,t:t+h)) E o-) Pt(Tp,t:t+h) = + À— À3/À2)2

(3.35)

where the right-hand side of equation (3.35) defines a hyperbola in R x

149

Page 168: Problèmes dléconométrie en macroéconomie et en finance

3.5 Empirical Application

In this section, we use real data (Standard and Poor’s and Toronto Stock Exchange Com

posite indices) to examine the impact of the asset return predictability on the variance

and VaR of linear portfolio across investment horizons. We analyze the relevance of risk

horizons effects on the multi-horizon mean-variance efficient frontier and we compare the

performance of the dynamic and static optimal portfolios.

3.5.1 Data and parameter estimates

Our data consists of daily observations on prices from S&P 500 and TSE 300 indices

contracts from January 1988 through May 1999, totalling 2959 trading days. The asset

returns are calculated by applying the standard coutinuous compounding formula, Tit

lOOx (tn(P) —tn(P_1)) for j = 1, 2, where is the price of the asset i. Summary

statistics for S&P 500 and TSE 300 daily returns are given in Tables 4 and 5. These daily

returns are displayed in Figures 1 and 2. Looking at these tables and figures, we note

some main stylized facts. The unconditional distributions of S&P 500 and TSE 300 daily

returns show the expected excess kurtosis and negative skewlless. The sample kurtosis

is much greater than the normal distribution value of three for all series. The time series

plots of these daily returns show the familiar volatility clustering effect, along with a few

occasional very large absolute returns.

To implement the resuits of the previous sections, we consider two-state bivariate

Markov switching model. The resuits of the estimation of this model are given in Table

6. We see that there are significant time-variations in the first and second moments of

the joint distribution of the S&P 500 and TSE 300 stocks across the two regimes. Mean

returns to the SP 500 stock vary from 0.0890 per day in the first state to -0.0327 per

day in the second state. IVIean returns to the T$E 300 vary from 0.0738 per day in the

first state to -0.1118 per day in the second state. All estimates of mean stock returns

are statistically significallt except for the S&P 500 in the second state. For the volatility

150

Page 169: Problèmes dléconométrie en macroéconomie et en finance

and correlation iarameters, we founti that $&P 500 stock return volatility varies between

0.109$ anci almost 2.0895 per day. with state two clisplaying the highest value. T$E 300

stock returns show less variation auj their volatility varies between 0.2039 and 1.4354

per clay, with more volatility in state two. Courelations hetween $&P 500 anci TSE 300

returns varv between 0.5584 in state one and 0.7306 in state two. finallv. the transition

probabulit.y estimates anci the smoothecl and filtered state probabilit.y plots [see figures

3 antI 4] reveal that states one and twf) capture 80 and 20 of the sample, respectively,

implying that regime one is more persistent than regime two.

3.5.2 Resuits

We examine the implications of asset return piedictability for risk (variance ami VaR)

across iuvestment horizons. We analvze the relevance of risk horizon effects on the mean

variance efficient frontier anci we compare the performance of the clynamic anci static

optimal portfolios. We preset our empirical restilts rnainly through graphs.

By considering linear portfolio on S&P 500 and TSE 300 indices, we find that the

muit i—horizon conclitional variance of the optimal portfolio is time—varying ami shows the

familiar volatility clustering effect [sec Figures 5-7]. This the abilit of the Markov

switching model to accoimt for volatilitv clustering observed in the stock prices. At a

given point in time t ami when we lengthen the horizon h. figure 8 shows the convergence

of the conditional variance to the unconclitional one. Tue conclitional variance per perioci

of the multi-horizon optimal portfolios returns. when plotted as a functioii of the horizon

h iiiay be increasing or ciecreasing at internHediate horizons, anti it eventually converges

to a constallt—the unconditional variaiice—at long eiiough horizons.6

Figures 9—11 show that the conditional 57o VaR of the optimal portfolio is time—varving

ami persistent [sec Engle ami I\Ianganelli (2002)]. At a given point in time t. figure 12

shows that the conditional VaR converges to the unconditioiial onie. The latter is given

for i(liistiation we tuke = 680. t. = 1000. and t; = 2958.Thi resuit is sinar tu the une Iniinci in CmipleH and Viceini (2(105).

151

Page 170: Problèmes dléconométrie en macroéconomie et en finance

by a flat une anti ineans that the level of risk is the saine at short anci long horizons.

Flowever. the concÏitioiial VaR iiiay increases or decreases with horizons dependiiig on

the point hi time where we are. For example. at t = 680 anci t 1000. the conclitional

VaR decreases with the horizon anti it is bigger tlian the unconclitional VaR [see Figure

12]. Conseqtiently. considering only uncoilditional VaR may under- or overestiinate risk

across investment horizons. Sanie resuits hold for the 10% VaR [see Figure 13].

Figures 15—1f show that the conditional meail—variance efficient frontier is time

varying anti coilverges to the unconditional efficient frontier given in Figure 14. When

the multi-horizon expecteci returns and risk (variance) are flat, the efficient frontier is the

same at ail horizons, and short—terni mean—variance analysis provides answers that are

valid for ail inean-variance investors. regardless of their investment horizon. Ilowever,

when the mufti—horizon expected returns anti risk are time—varving. efficient frontiers

at different horizons may not coincide. In that case short—terni mean-variance a;ialysis

can be misleacling for investors with longer investment horizons. The ahove resuits are

similar to these fomid by Campbell anti Viceira (2005) anti may conffrmed by Figures

18-20 who show that the conditional Sharpe ratio of the optimal portfolio is time—var’yiiig

and converges to n constant- flic unconclitional Sharpe ratio. Figures 18-20. also show

the presence of clustering phenomena in the conditional Sharp ratio. At a given point

in time t fLic conditional menu—variance frontier may be more efficient than the uncon—

ditional one [sec Figure 15]. To check tue latter result, we compare the performance of

the conditional anti uncomÏitional optimal portfolios. We look at the proportion of times

where the conclitional one period—ahead Sharpe ratio is bigger than the unconditioiial

one:

SR1(1I0) > SR(lI°).

and the empirical resuits show that in 73.56% of the sample the conditional optimal

portfolio performs better then the unconditional one.

For the aggregatcd optimal portfolio. we first note fLic time-varying anti volatiÏity

cfttst.ering effcct in the condlitional variance [sec Figures 23—2_1]. The comiditional and

152

Page 171: Problèmes dléconométrie en macroéconomie et en finance

unconditional variances increase with the horizon h [sec figure 25]. Speciaily, the uncon

clitional variance is a linear iucreasing function of h. and this means that the unconditional

variances are mdependent of the time horizon. and thus there 15 a single number that

summarizes risks for ail holding periods. Second. it seems from Figures 27-29 that the

conditional 5 ¾ VaR is time—varying and it is a nou—linear increasing function of the

horizon h. Figure 29. shows that the conclitional 5 ¾ VaR inay be bigger or smalier than

the unconditional one clepending on the point in time where we are. For t = 680 and

t 1000. we sec that the unconditional 5 ¾ VaR miderestimates risk. since it is smaller

than the conditional 5 % VaR. Again. co;isiclering only unconditional VaR may under- or

overestimate risk in the aggregatecl optimal portfolio across investment horizons. Same

resuits holcls for the 10% VaR [sec Figure 30]. finally. Figures 31-34, show that the

conditional ancl unconditional mean-variance froutiers of the aggrcgated optimal por t-

folio beconie large auJ more efficient when we increase the horizon h. These results are

confirmecl bv figure 38 who show that the conclitional auJ unconditional Sharpe ratios

increase with the horizon h.

3.6 Conclusion

Iii tins ehapter. we consider a Markov switcluing model to capture important features

such as hcavy tails, persistence, auJ nonlinear dvnamics in the distribution of asset re

turns. \iVe compute the conditional probabihty thstrihution function of the rnulti—horizon

portfolio’s returris, which we use to approxirnate the conditional Valuc-at-Risk (VaR).

We derive a close(l—form solution for the multi—horizon conditional Expectecl Shortfall and

we characterize the multi—horizon i;iean-variaucc efficient frontier of the optimal portfo

ho. Using daily observations on SP 500 and TSE 300 indices, we first found that the

conditional risk (variance arici VaR) per period of the rnulti—horizon optimal portfolio’s

returns. when plottecl as a function of the horizon, may be increasing or decreasiug at

intermediate horizons. auJ converges to a constant— the unconchtional risk—at long euough

153

Page 172: Problèmes dléconométrie en macroéconomie et en finance

horizons. Secoid, the efficidllt froiitiers of the lllulti-llorizoll optimal portfolios are tirne

varving. Firially. at siiort-terin and in 73.56% of the sample the COfl(iitiOllaÏ optimal

1)OftfOliO performs better then the tinconditional one.

154

Page 173: Problèmes dléconométrie en macroéconomie et en finance

3.7 Appendix: Proofs

Appendix 1: Proof of Propositions

Proof of Proposition 1. We have

E[exp(T(,i) J] exp(u)P(s+1 / J)= 1

= (exp( u’) exp(u.)) (P(s, = 1 P(sty =

CTD(el(l) exp(u)) P,

e1(u). (3.36)

iherefore. fbr h > 2

E[exp(uT(1) Jt] E[CTA(u)(t+h_l I= eT4(U)E[(t,i .J]

=

where the last equality follows from (3.1). Similarlv.

Jt]=

exp(U,)P(S t+i =

= D/aq(exp(u,) exp(uv))(P(.i = 1 I .1,) P(s,1 = N I= Diuq(exp(u1) exp(u)) P(,

= A(u). (3.37)

Observe that 011e get.s (3.36) from (3.37) by inultipiving it 1) T.

CTE[exp(UT(t+i)(t+i J] = E[exp(uT,+i)eT(+, I .J1] = E[exp(uT,+i) Je].

given that Tç,1= 1..

155

Page 174: Problèmes dléconométrie en macroéconomie et en finance

Proof of Proposition 2.

E[exp(

u(t+) J,] = E[exp (‘ iii(t+i) E[cxp(ut+,,) I J]

h — I

E[exp(z

eTA(u,l,),+h_l I J,]

h— I

= eT 1(u )E[exp (z t+h_1

h—2

T4E{ (z ‘iTi÷) E[exp(u_l(,+,,_i)(t+h_y J,+h—2] I J,]

h—2eT1(u,)4(,,,1)5[exf) (z t1Ti+) t+I,2 I J1].

Bv iterating the last two eqnalities. one gets (:3.6). Bv taking the uiico;iditional expec

tatimi of (3.6) anci by using (3.3). mie gets (3.7).

Proof of Proposition 3. Giveil the information set J, the distribution of l+i is;\t(1j(ç)) Thus. V U = (u1 u,,) ll”. ive have

E[exp(iUTr,1) ] exp (/uT[/(,—

________

Observe t hat.

, /L!TQ(, )L z z 1111 = z I!12.’/1/2) t.

lt=I l2i l<I.0<r,

If we take U = 1L (°i. n 2(i)T

. then the characteristic function of r1,,1 is

E[exp (/ltï[,,+l) J,] = exp ((ttlT11_ z 11 (i/Wlll)

T

111 .0<,,

i.e., (3.10). •

156

Page 175: Problèmes dléconométrie en macroéconomie et en finance

Proof of Proposition 5.

ES (r1t÷i) = E [ijt±1 1p,t+ t < —‘ uR (r1)(l)j—X tR (rj,f+I)

= J f,(r1, r[) <

1 1 (p— ii,)(ri+i) Zj=i ( st .) I,)

W)exp( —

(W Q «) )— J Ï p

Pt ( — R (“pt+fi.

Since P (r1, < — VuR f r+ )) = Q. we have

1 —VuR)(r,,,) . 1 (ï— 11T

/ )2P(s = il IÏ)

y(WTQW)exp (— ) ctr

1x

/ 1 -T,1 + 1(IR? (‘p/+1))2= =j It)exp

(WTQW)

can he written as follows:

ES1 (r)/±1)= ‘eTR(u)ll

where

/ 1 (t1 + uR, (,,,))2 1 (UT[,v + VaR, th/)?±1))R (u) = Dwq exp(WTOW) exp

(11T\.TT)

Proof of Proposition 6. Given the information set .J Jt U {St+,i}. ‘.rc have

(+h—1))

157

Page 176: Problèmes dléconométrie en macroéconomie et en finance

Consecinentlv. V Li = (u i. u11) e

E [exp t UTr) I J,] = E [E [exp 1T r, J] I J,]

E[exp (iuT[I(1+1 I— LiT1(f

i)u) I

= E] eXp lii, 1JiWiIb)

T

)Using Proposition 1.we get

E[exp (LiTr,+h) J,] (//lTLT — u1 iIl9/12)p/_2,

— 1<1.1,<n

wliere

— u ui1iii2) =Dag (exp (1rT11— exp (/U p — QxU)).

If we let U = u (n1. 02)T

then the conclitional characteristic ftinction of portfolio’s

returns. rjt±,. is giveil bv:

E[exp tiltîp,t+h) J,] eTÂ(/,i/,TTT_

- 1</1.11<11

i.e., (3.20). $imilarly. from (3.8)

=

+ Z((+ )Et+b) . .Ld. jV(0. 111). (3.38)

15$

Page 177: Problèmes dléconométrie en macroéconomie et en finance

Given the information set. J = J, U {s,i .S,±,i}. we have

J Jt**/i—i.

Coiisecuent1y. V U (Iii ufl,)

E{exp (lUTrt.t+i) I .Jj = E[E [exp jUTflt±h) .J I

E[exp (iUTIJ.1+.1 — J]

E[exp ( lUTP,+h 1— UTQ(1i)U) J1]

= E[exp ( (l,1T(I —

uituiwiri2)

T

h=1 1<1k .12 fl

E[ exp ( (IIJZU1

ii u12

T

)1=1 1<l.i2<?

X exp ((itJ.LT — U’1 121i12)

T

)1<i,i2<1i

Usiiig Proposition 2. we get

E[exp ( (i/.i.TU —

.11121i10)

T

) J,lT (4 (/.tL U —

‘i1 U19W/112)

h Y

— 1<(1d2<n, 1<i.i1<l1

anci

E[exp (IUTrt,+,) J J,] = CT(A(ipTLr — u1 ))h_1

1<t1 /1 fl

1. T

X exp (t’t’• t’ —

— Z “ii— 1<Il.12<H

159

Page 178: Problèmes dléconométrie en macroéconomie et en finance

1f we let U = u (o’. 2)T

. tixen the conclitional characteristic function of the ag

gregated portfolio’s returu. rf).j/1. is given hv:

I = T ( (I[ITT1. lcI1) )1<11 .12<fl

x exp—

I <t1 /1

i.e., (3.21). •

Proof of Proposition 8. $ame pioof as in Proposition 5. •

Proof of Proposition 9. Given the constant E E R. we have

- Tt+h(u) = E[exp(iu(r1+j, — E)) I,] = e 4(u)P f1,

where. Vu E R.

À(u) = A (iut[tTw— È e)

— U )1<11 .J,<n

Dicig (exp(;ti(irTpi

— ) — (11QT)) exp (;utwutiv — È) — u(llTfll)))

The first derivative of (u) with respect to u is given by:

(/Oi+/ (u)=

cL( u) _2 = eT( u )P)1_2H,,tltt tiu

xvhere

B (u) = .Diuq( B (u)1 B (u) .) P.

160

Page 179: Problèmes dléconométrie en macroéconomie et en finance

aiicl, for j =

[!(W1z1 — E)—u11TQl1] exp (iul1ii1 — È)_tIQ,W).

Cousequeiitly.(ÏÔ ,(O) —=

du

where

](O) Diag ((WT1J1— È) (1lTt — È)) P. (3.39)

For E = O. we get

DE1 [r+,] eT(o)P1_2H9, 1 .T1p1i_1

Now. let us caictilate the variance of !,+/?. Setting È E, [‘p.t+/i].

T d(u)ph_2H =

where.

((y) Diuq(C,(u), C(u))P.

aiid, for j = L ...N.

C(u)=exp (iiI(wT È)(WT!1W)) [(i(\VTI È)tw O1\V)2(WTO,W)]

Consequently,

o t D) = cT(O)P’

where. Vu E fiL

= Diuq ((WT,,1— È)2 + H’Ç11T

.....(IF’i È)2 ± TT’tT) P.

161

Page 180: Problèmes dléconométrie en macroéconomie et en finance

For È = we get

(2)0)= 0t±h

= WT [(ET ® J ((ph_1)T ® I) ] U

where

(tu — P) (t’i — ) T + 1

1P’’ fl.

(l’N P)tN — p)T + QN

I

Proof of Proposition 10. Proposition 10 con be detluced froni Proposition 9 using

the law of iterated expectations. •

Proof of Proposition 11. Given the constant È E R. we have

6t:t±1( u) E[exp ( u t ‘p.t:tIi — È)) I I]

= pts = j I ‘ exp (iu(wTïi.— È) — (1Tf1T1.)) (FTA(u)hl_lej).

where. Vu E R.

(u) = Diaq (exp (iuuII — U2(ivTQll)) exp (iuw’ïux — 1(WTQ w)))

e is an N x 1 vector of zeros with a oe as its ;t/i element. The first derivative of 6.+(u)

162

Page 181: Problèmes dléconométrie en macroéconomie et en finance

H

__

__

_

H.

ï’j

HII

H

iLi

__

_

III

—H

F-

__

I

HH

—+

__

III

Il

++

oo

e

Page 182: Problèmes dléconométrie en macroéconomie et en finance

Observe that. Vi = 1. N aI1cl Vii > 0.

I Z12 P’21B(0)P’.

À(o)h_1 ph_I

1, eXP” =

where,

= Dug(WTjt1 WTji)P (3.10)

Consecueiit1y,

E [‘pi :t+/J 11 t’st + P(’St = J ‘) (T P/2_/B(o)Pte)

7 h—2

= + P(s, i I i :Tfpl+l.

j=1 1=0

= liT,,ll +11T,1 ( P1+l)

h — 1= 11T[1

[I+ZP1] Hs

164

Page 183: Problèmes dléconométrie en macroéconomie et en finance

Now. let us calculate the variaice of 1pt(h Settillg t =

= = I I{ ((W’ji — È) — u(WTQW))

x exp (/u(wTit— t) — u(11-TQ TV)) (eT(u)h_1e)}

+ Z1(t j i,) {exp (i(wT1— È) — u2 (T1TQ w)) (T

dJ(u)h I ) }= ZiP(st = j I) exp (u(wT

— È) — L(TVT.W))

x { [(i(iiTïi]— t) — 1V))2 — (WTQ1TV)] (eTJ(t)hlej) }

—2 = .i I I,) exp (Iu(WT,ij— È) — u2(TITTQIV))

x {(i(wTp.1— È) — u(W’Qw)) (eT’ej)}

+ = .1 It) exp (/u(wT[11 — t) — (1 T21V)) (Td2u) ci).

where

c12À(u)’’ = d [ )h21 ctÀ(u)

=lJ(u)’

1=0

h —2

+ J( u)’ 2’C( u) J(u )l

± ( u)2’B( u)(ÏA(u )1

C(u) = D/uq(C1(u) Cv(u)) P.

165

Page 184: Problèmes dléconométrie en macroéconomie et en finance

oo

Q CI)

(D

(D

II+

___

zIa

It

MM

__

__

—H

M

_

IIC

I)

CI)

HH1

M

__

I-

H+

HII

-

H

__

I-

CICI

—H

I (D

(D(D

zCI

z

Page 185: Problèmes dléconométrie en macroéconomie et en finance

Observe that

(i21(u)h -1Zb9 d.(u)h 2-l

B(O)À(O)1

+

+(111(U)’ IU=O

j2Zh2[ ‘P131(O)PhIB(O)Pl

+,:2 ZP”2’(O)P1

Zh2 pl1f(())pf)

where, V?/ E R.

(O) = Diag((WT/ji)2 + ITTQ j1 (WT/j)2 + I1TQNTV)P,

Thiis.

Vct!t[pt;t+ï,] eTDioq ((11T111 — È)2 + (TT1W) (WT/J — È)2 + (WmQNW)) H,

+2WT/j, (1 pi) Diag (W’ji’ — È T/1T/IN— È) H81

(z;: zz’ PkB(o)P1_’) +(1

pi_1)

+WT,i, (h_2 1 Pl_f+1B(o)Pf_[) H81. h 3.

167

Page 186: Problèmes dléconométrie en macroéconomie et en finance

whicli cari be written in the following forrn

= I] = (HT 0 I,) + 2jt. (i pi) Diag(H.,) [ —

e 0

±2ji [zZ’ PADïag(PhHs)] ttT

+ I)((hi

)T

® i) h 3.

Proof of Proposition 12. Proposition 12 cari 5e dednced from Proposition 11

using the law of iterated expectations. •

168

Page 187: Problèmes dléconométrie en macroéconomie et en finance

Appendix 2: Existence and Uniqueness of the solution of Equation (3.15)

Proof of the existence of a solution of Equation (3.15). We have to show

that the folÏowillg fmiction:

f(VuR) —ir[Pt(rt+i < —VciR) — c] = 0. (3.41)

bas a solution. To do so we rieed to check whether the function (3.41) satisfies the

followirig two collfÏitiolls:

1. f(VciR) is monotone,

2. there exists some :r ancl .12 such that:

f(.ri) < (>)0 anci j(i2) > (<)0.

Tue first condition follows from oiie of the properties of the probability distributioll

function. We know that Pt(i1+1 < —VaR) is mollotonically ilicreasillg, then f(VuR)

is mollotorncally decreasing because of the factor —r < 0. The secolld condition eau

cleriveci from other properties of the probabihty CliStfiblltiOll function. for r E R. we

have

liiri Pt(rt+1 < u) 0.

liin— rr[P(r+1 <r) — = n > 0. for O < ci < 1.

Similarly,

lim Pt(r÷i < tu) 1.

169

Page 188: Problèmes dléconométrie en macroéconomie et en finance

lim — < :r)—

c] —ir(1 — c) < 0. for O <cv < 1.x—+00

Tiuts. f(TuR0) satisfies the above two conditions anci admits a solution. •

Proof of the uniqueness of the solution of Equation (3.15). The uniqueness

of the solution to equationi (3.41) is hrnnecÏiate because P(i+i < —VeR0) is a strictly

increasing function alld ,f(1TaR0) is a strictly clecreasing fimction. •

170

Page 189: Problèmes dléconométrie en macroéconomie et en finance

171

Appendix 3: Empirical Resuits

Table 4: Suurmary statistics for S&P 500 index returns, 1988-1999.

IIectn. St.D€v. 7iedza? Skcwncss KartosisDaiiy rctur’!i$ 0.0650 0.8653 0.0158 —0.4875 9.2644

Note: This table sumrnarizes the claily returu distributions for the SP 500index. Tue sample covers the perioci from January 1988 to May 1999 for atotal of 2959 tracling days.

Table 5: Summary statistics for TSE 300 index returns, 1988-1999.

illcart St.Dev. ]lIedaui Skcwness I’’ujto,sisDiiiy rctrons 0.0365 0.6752 0.0415 —0.9294 12.1580

Note: This table stiurmarizes the ciaily return distributions for the TSE300 index. The sarnple covers the period from Ja;iuary 1988 to May 1999for a total of 2959 trading days.

Table 6: Parameter estimates for the bivariate Markov switching niodel.

Parciirzcte’rs Value St.Error T—Sttitisfies

Pli 0.95535 0.00876073 109.05

P12 0.17841 0.032071 5.56381/ty 0.08903 0.0111436 6.29475

t’21 t).073$07 0.0103029 7. 1637

b12 —0.032711 0.0452018 —0.723676

P22 —0. 11181 0.0496294 —2.25319a 0.10985 0.018317 22.3757

2,1 0.20396 0.00911366 22.3798

2l.l 0.16116 0.0099733 16.1893UT1,2 2.0895 0.162652 12.8465

22.2 1.1351 0.124571 11.5231

J21,2 1.2653 0.119861 10.5562

Note: Ibis table shows the estimation resuits for the two—state bivariate

I\Iarkov switching iïiodel. Tire second column represents the parameterestimation resiilts for the eierneuts of the transition probability matrix.mean retunis in states 1 ancl 2. and the variance—covariairce matrix instates 1 ancl 2, respectively. The thirci column represents tire staiidarderrors of tue estimates. finally. the fourth column gives the t-statistics.

Page 190: Problèmes dléconométrie en macroéconomie et en finance

6

172

Figure 1: S&P 500, Daily returns, 1988-1999

C

D

G)

4

n

iii t J i.1 L .11 f

3000

2

Ï—2 j’t1 I

‘ ‘ ‘‘

“ ‘1 1’ ‘J 1 r

-6

‘I Il‘ii

-U

U 500 1000 1500 2000flme

Figure 2: TSE 300, Daily returns, 1988-1999

2500

1500Time

Page 191: Problèmes dléconométrie en macroéconomie et en finance

173

U)G)

CG

2Q

G)

w

0.9

0.8

0.7

-QCG

o°- 05G)

0.4

U) 0.3

0.2

0.1

1Figure 4: Smoothed probabilities of regimes 1 and 2

‘r r I I’ 1’ rJ I

Regime 1Regime 2

II L JJ . LU

0 500 1500]ime

1000 2000 2500 3000

Page 192: Problèmes dléconométrie en macroéconomie et en finance

11CD

CD

D)

ztCD

oD-

CD

CDCDD

CD

CDD

CD

o

zCDto

ooCD

CD

D

VL[

VarianceppppppppppD)O)O)O)0)0)0)0)P-jD)r’OD)-J“)CDD)

3-

VarianceP)(D(DD)(D()(D

QQo

o’QQ

CDQ

Q

D)QQQ

-nCD

O-‘J

(D

tO

OO.

CD

OCDO.

CD

CD

O

30CDQ

D)(DQo

-nCm

CD(D

oDOtO

oQ-CD

OCDD

CD

CDDOO

(DQQo

D)(DQQ

Variance

D)

VarianceQp-

4.O)P

(Do

Q

(D

zO

D

D)Q

o

CDCDCDO———D

CDCDCDCD

DDDD.0000OOCDD

o

D)-D)CDQD)(D0QD)o

-nCD

CDD)

(DtO

oO-

CD

Q

‘o(D

o

C

CDC

Page 193: Problèmes dléconométrie en macroéconomie et en finance

Œ‘t>

t‘twn‘t

toQo‘oC

Q

o,u

Œ‘t>

‘ot‘tQ

‘ttoQoQCoo,Q

w

Œ‘t>

‘ot

wn‘t

Q QE t‘z .

wo-n“J

Q

u-

oz

dA %

ooo

o- C

uC”

‘r‘t>

‘ot‘tQn‘t

towo‘o

w

o,u-

ooC

oo‘o

oI ‘o ‘o o ‘o ‘o ‘o‘o ,o ‘o ‘o ‘o ‘o ‘oo ‘o o ‘o o ‘o o ‘oO e b e b e b Q

C C C C

UA %

175

Page 194: Problèmes dléconométrie en macroéconomie et en finance

0.05

0.045

0.04

>

0.03

0.025

0.02

0.015

0.035

176

Figure 13: h periods ahead 10% VaR

Unconditional 10% VaRI Conditional 10% VaR (t680)

Conditional 10% VaR (t1000)* Conditional 10% VaR

0 2 4 6 8 12 14 16 18 2010Horizons

Page 195: Problèmes dléconométrie en macroéconomie et en finance

O)O)

n

O

uCn

unCnn>Cnn

nC.

E

tnnnn

tO

nO.

u)

n

O,w

nCO

wCnO

wnOCnn>Cnn

nC-E

tnnnn

tO

nC-

nnO

tCOOC

n

O) —

CO

—.5ntt

ntCn

Q)

u)

CO

—5nt-Q

n— -Q

Cn

(I)

O

n

nt

— -O

nt

nC’Q)

C

O)

C

UJfl19H pepedx3 wnjej pepadx3

177

Page 196: Problèmes dléconométrie en macroéconomie et en finance

oQoU)

nnoo.Q 50 OCG

QU)

O

n

no-nrU)tnnrn

-oO

no-U)

o)

n

o,w

QoU)U)

on

nEnCU r(otnn

onn

no-n

Q —Q

C’,nzo,u-

U)

C

oz

U)

QQU)

r—Qo

01mb edicq

Q Q

no-oCoo

It

QQQC,)

O

nŒwo-n

U)-onwntowO-wCoU)

w

o’w

QQU)C’,

oQQU)

QQU)U)

onŒnE

Q nU) r

U)-OnnrQw no

-Xno-U)

o -.

Q QQ U)— n

w

QQU)

- QU)QQ

QQQC”

QQQ

t’, — — U, U) N- (O U) U)— — Q q o Q Q q qb b Q Q b b Q Q Q

oije edjni

QQU)

U) U) —r— r— r- r-q q q qQ Q Q Q

oimnb adinq

Q

178

Page 197: Problèmes dléconométrie en macroéconomie et en finance

D)

CC

-ri(D

(DD)D)

o(D-o(D

oaD,r(D(Do(D

(D‘o

‘D‘o(D(Do

(D

De(D

61.L-

(Doo

C

VarianceC-.‘)

o-D)Q,D)Cri

CoC

CriCC

VarianceD)D)D)

Ci‘‘Ct’)C)(DCD)C

(1(o

(DD)(D

(Dt(D

oo-

r(D(Do-(D(o(D

(D(D(D(Do

(D

(D

e(D

(DO

CCC

(DC

D)(DCC

t’)CCC

r’)(DCC

D)oCC

C

D)

o

Variance

(D

o

Q

C

Variance-&--&-.-&D)

ZD)Ci(DCD)C,(DCC

r

\\IHJ

‘1(D

(DD)D)

(Dt(D

oo-

(Dr(D(Do-(D

(D

(D(D(D(DoC(D

(DDn(D

D)C

C

Page 198: Problèmes dléconométrie en macroéconomie et en finance

Q

5%VaRpppp,cC)C)

QQPb )CQ)Q)

.Q

(J,QQ

QQQ

PPPQQQ-q(D

r’)QQQ

Q)o,QQ

(D

or’)o,

ootoooQ,DoQ,o-Q,

‘D(D(D

(DQ’oQo)

Q

Q

CDQo

QQQ

50(DQ

r’)QQo

Q)o,QQ

r’)QQQ

Q

zo

D

r’)Q

ilj C’)oQQ

-n(D

or’)o,

o,tooo

(DQ)QQ,

(D(DQ,(Doo,

•0Q,z

r1‘Q

(DQ)(D

rtooo-

Q)r(DQ,O.Q,

(D(D

o(DQ,(DQ

Q,z

5%VaRQ

Qr’)

;H,5%VaR

DQQQQQQCDQbbP

S0+000C0000

o-o-o-o

DDD(Q(Q)0

(Cc(Q,

---_-C),<<<-e Q)Q,)

Czz< —-—--—-Q)irirz Q)-C)(OQC)o)QOC)

Q

Q

PPP0C)

CDoQ

QQQ

3Q(DQ

QQ

Q—C

r’)QoQ

Q)QQQ

r1(D

(DQ)-q

o,t(D

oQ-

Q,

(DQ,o-Q)

(Q(D(D

(DQ,ooo,

Q)z

Q)01Qo

—00—IDO

ooDQ)

Page 199: Problèmes dléconométrie en macroéconomie et en finance

(‘3>

o

181

Figure 30: h periods ahead aggregated 10% VaR

• Unconditional 10% VaRO Conditional 10% VaR (t=680)

I Conditional 10% VaR (t=1000)* Conditional 10% VaR (t=2958)

Horizons

Page 200: Problèmes dléconométrie en macroéconomie et en finance

03

M

o

C

0.25

-o w u w o X w

Fig

ure

31U

ncon

diti

onat

agg

reg

ate

Mea

n—V

aria

nce

Eff

icie

ntF

ront

ier

o

Fig

ure

32:

Unc

ondi

tion

alh

peri

ods

ahea

dag

gre

gat

eM

ean—

Var

ianc

eE

ffic

ient

Fro

ntie

r1.

4

1.2

C

0.8

0.6

X w

0.4

0.2

o

“12

34

56

78

910

Sta

ndar

dde

viat

ion

6S

tandar

dde

viat

ion

45

Sta

ndar

dde

viat

ion

Page 201: Problèmes dléconométrie en macroéconomie et en finance

VarianceQQQQbPP

)Q—QD)Qk)Q

000C000DDDDO

(DD9. DDDQ

wwwO

CI)U)CI)D)QQQ—wwwU)

(D(D(D

ooo

rrirw° e)QQ(DQQQQQQ—.-

SharpeRatioPPQpppppppQQQQQQQQp-D)k)QQJQ(D-‘-e)

Q-______________

-n

D)

k)Q

oo-c‘e

O

wQ(DwOwe)e)

CD

o

C9[

SharpeRatioQQQQQQQQ

Pe)D))e))Ik)Qe)e)QQk)e)Q

Q

QQQ

QQQ

3Q(DQ

e)

C”QQ

QoQ

Dl0’3Q(DQ

e)QQQ

D)OCQQ

k)QQQ

C1t

(Dk)—J

Qt(D

OC

w

(Dw0.we)(D

(De)w(DC

U)Qwt(D

Diw

O

T1e)

ok)Q

Qto

OD-

wQoDCD-

Q

wto

Diw

oO

owt

otwoD-0ODO

O

(D

D

o

o

o

QC)

Q

OC

zO

D

OC

‘OQ

Q

QoQ

QoQ

30(DQ

D)QQQ

e)C”QQ

k)QQQ

SharpeRatioDQQQQQQDQ——p DQe)QQe)e)

-—

---——

—.—

;z—E -I.___

(D

k)Q

QtooDwQoDCDwe)e)oe)woO-

(DQw-2ozw

O

Page 202: Problèmes dléconométrie en macroéconomie et en finance

Chapter 4

Exact optimal and adaptive

inference in linear and nonlinear

models under heteroskedasticity and

non-normality of unknown forms

181

Page 203: Problèmes dléconométrie en macroéconomie et en finance

4.1 Introduction

In practice, most econonnc data are heteroskedastic ami non—normal. In the presence

of some types of heteroskeclasticity, the parametric tests proposed to improve infcrence

may exhibit poor size control and/or low power. For example, when there is a break in

the clisturbance variance, our simulation resuÏts show that the usual test statistic based

on White’s (1980) correction of the variance, which is supposeci to be rohust agaiust

heteroskedasticitv. has verv poor power. Other forms of heteroskcdasticity for which the

usnial tests are less powerful are exponential variance and GARCH with 0110 or several

outiiers. At the same t.inie. inanv e.roct Iaran1etric tests developeci in the literature

typicallv assume normal disturbailces. The latter assumption is unrealistic and, in the

presence of heavy tails or asvmiiietric distributions, our simulation resuits show tliat these

tests may iiot perform very well iII terms of power aind do not cointrol size. Furthermïmore,

the statistical procedures developed for inference on parameters of no ntinear models are

typicallv based on asymptotic approximations and there are oui a few exact inference

mnethods outside the linear model framework. However. these approximations mav be

illvalid, even in large samples [see Dufour (1997)]. lIme present chapter aims to propose

exact tests which work ullder more realistic assumptions. We derive simple optimal sigil—

based tests to test tue values of parameters in Hnear and nonlinear regression models.

These tests are valici under wcak distributional assumptions such as heteroscedasticity of

unikuowu forrn aiid non—niormality.

Several authors have provided theoretical arguments for why the existing parametric

tests about the meaii of i.i.d. observations fail under weak distributional assumptions.

snicli as non-normalit ancl lieteroskedasticit of unkiown form. Bahadur and Savage

One characteristic of the finit ncid markets is the presence of episocli occasional of crashes and rallies.as shown Lv the extreme values in Figure 1 [see appenciix]. winch iepresciits a time sertes plot uf dailvreturns ot die StP 500 stock price idix. Tiiese exi renie values eau Le viewed as ml rotiucing out bersin die GÂRCH noclel . \Ioreover, it may oucur tliat financial rettirns series contain other atvpicalobservai ions such as additive or innovation outiiers. The reader eau consuit Flotta and Tsay (1998) fora recent classification of outiiers in GARCH niodels and Friedman anti Laibson (1989) for thc economicarguments for the possible presence of atypical observations.

185

Page 204: Problèmes dléconométrie en macroéconomie et en finance

(1956) show that mider weak clistributional assumptions on the error ternis, it is not

possible to obtam a valid test for the mean of LLc1. observations even for large samples.

Many other hypotheses about various moments of i.i.ci. observations lead to similar diffi

culties. This can be explained by the fact that moments are not empirically rneaningftil

in non-parametric mociels or models with weak assumptions. Lehmann and Stem (1949)

and Pratt and Gibbons (1981, sec. 5.10) show that conditional sign methotls were the

only possible way of procincing valid inference fuite sample procedures under conditions

of heteroskedasticity of unknown form anti non—normality. More discussion about the

statistical inference problems in non-pararnetric models can be find in Dufour (2003).

This chapter introduces a new sign-baseti tests in the context of linear and nonlinear

regression models. The proposed test.s are exact, distribution-free, robust against het

eroskeciasticity of unknown forrn, anti they may be inverteci to obtam confidence regions

for the vector of unknown parameters. These tests are derived uncier assumptions that

the chsturbances in regression mociels are independent, but not necessarily icientically

distributed, with a miii median conditional on the explanatory variables. A few sign

based test procedures have been developeci in the literature. In the presence of oniy oiie

expianatory variable, Cainpbeil auJ Dufour (1995, 1997) propose nonparametric ana

logues of the t-test, based on sign anti signed rank statistics, that are applicable to a

specific class of feedback mociels including hoth Mankiw anti Shapiro’s (1986) motlel and

the random waik niociel. These tests are exact even if the disturbances are asvmmetric,

non—normai, and heteroskedastic. Boidin, Simonova and Tyurin (1997) propose iocally

optimal sign-based inference anti estimation for linear modeis. Coudin anti Dufour (2005)

extend the work by Bolthn anti al. (1997) to some forms of statistical tiependence in the

data. Wright (2000) proposes variance-ratio tests based 011 the ranks and signs to test

the miii hypothesis that the series of intercst is a martingale difference sequence.

The present chapter acldress tue issue of the optimality and seeks to tierive point-

optimal tests based on sign statistics. Point-optimal tests are useful in a number of

ways anti they are iïiost attractive for problems in which the size of the parameter space

186

Page 205: Problèmes dléconométrie en macroéconomie et en finance

can be restricted by theoretical cousiclerations. Because of their power properties, these

tests are particularly attractive when testing one econonric theory against another. for

example a new theory against an existing theory. They would ensure optimal power at

given point and, clepending on the structure of the problem, yield good power over the

entire parameter space. Another interesting feature is that they can be useci to trace

ont the maximum attainable power envelope for a given testing problem. This power

envelope provides an obvions benchmark against which test proceclures eau he evaluated.

More discussion about the usefulness of point-optimal tests eau be found in King (19$8).

Many papers have derived point-optimal tests to improve inference in the context of sonie

economic problems. Dufour and King (1991) use point-optimal tests to do inference on

the autocorrelation coefficient of a linear regression model with first-order autoregressive

normal clisturbances. Elliott, Rothenberg, and Stock (1996) derive the asyrnptotic power

envelope for point-optimal tests of a unit root in the autoregressive representation of a

Gaussian time series uncler varions trend specifications. Recently, Jansson (2005) derives

an asymptotic Gaussian power envelope for tests of the nuil hypothesis of cointegration

and proposes a feasible point-optimal cointegration test whose local asymptotic power

function is found to be close to the asymptotic Gaussian power envelope.

Since the point-optimal conditional sign tests depend on the alternative hypothesis,

we propose an adaptive approach based on split-sample technique to choose ai) alterna

tive that makes the pmer cmve of tlie point-optimal conditional sign test close to that

of the power envelope.2 The idea is to clivide the saruple into two independent parts

and to use the ffrst oiie to estimate the value of the alternative and the second one to

compute the point-optimal conditional sign test statistic. The simulation resuits show

that using approxiniately 10% of sainple to estimate the alternative yields a power which

is typically very close to tlie power envelope. We present a Monte Carlo study to assess

the performance of tue proposed “quasi”-point-optimal coiiditional sign test by compar

2 For more details about the sample—spiit. technique, the rentier cnn consuit Dufour and Torrès (tD9)and Dufour and .Jasiak (2001.).

187

Page 206: Problèmes dléconométrie en macroéconomie et en finance

ing its size auJ power to those of some cominon tests winch are supposed to be robust

against heteroskedasticity. The resuits show that our procedure is superior.

The plan of this chapter is as follows. In section 1.2, we present the general frainework

tliat we neecl to derive the point-optimal conditional sign tests (hereafter POS tests or

POST). In section 4.3, we derive P05 tests to test the value of parameters in the context

of linear and noilinear regression motiels. hi section 4.4, we study the power properties

of the P05 test auJ we propose an adaptive approach to choose the optimal alternative.

In section 4.5, we cliscuss the construction of the point-optimal sign confidence region

(hereafter POSC) using projection techniques. In section 1.6, we present a Monte Carlo

simulation to assess the performance of the P03 test by comparing its size anti power

to those of some popular tests. The conclusion relating to the results is given iII section

4.7. TechnicaÏ proof are given in section 4.8.

4.2 Framework

In this section. we introduce a framework for deriving point—optimal conditional sign

tests in the context of some statistical problems such as testing the parameters in linear

anti noiilinear regression models. Point-optimal tests are usefiii in a riumber of wavs

anci they are iriost attractive for piobierris in which the size of the parameter space cai

be restricteci by theoretical considerations. They woulcl cnsurc optimal power at givdil

point and, depeilding on the structure of the problem, yield goocl power over the entire

parameter space. In our clevelopment we consider simple hypotheses that can he constant

or not. We use Neyman-Pearson lemina to derive concÏitioiiai sigu-baseci tests, for both

hypotheses.

In the reniainder of the chapter we suppose that {yt}7 is a ranclom sample ancl. for

[=1 n.

y, are independent. (4.1)

• 188

Page 207: Problèmes dléconométrie en macroéconomie et en finance

\Ve defiuie the followbg vector of signs

U(n) = [s(!j)

where. for t = 1 n.

1. U i > O.

s(y,)

O. if y, < O.

Ilere we assume that there is rio probability mass a.t zero, or, for t 1 ri, P[y, O].

This holds. for example, when is a contirmos variable.

4.2.1 Point-optimal sign test for a constant hypothesis

Let y = (Yi y,)’ be an observable n x 1 vector of iriclependent random variables such

that P[j O] p. We wish to test:

H:p=Ô. ÔEQ (4.2)

agaiust

1 : p = 7]. y E e

where Q acl O are subsets of [0. 1]. H0 muid D correspond to composite hvpotheses and

represent very general t.esting problems. If we coilsider the following test problem which

consists in testiiig

HO : P = Po (4.3)

against

H1 : p = Pi (4.4)

where Po and Pi are fixeci anci known. t heu we have simple null and alternative hypothesis.

1-lere we consider au optimal test hi the Nevman—Pearson sense winch minimizes the Type

189

Page 208: Problèmes dléconométrie en macroéconomie et en finance

II error. or maximize the power, uncler the constraint

P[reject 110 H0] o.

If we clenote the density of j under the nuli by ,fty I H0) and its density under the

alternative hy [(y iii). then t.he Neyman-Pearson lemma [see e.g. Lehmaim (1959.

p.65)] implies t.hat rejecting H0 for large values of

f(j I 111)$

[(y U0)

is the most powerful test. Iii this case the critical value. denoteci e. for the test statistic

is given by the smallest constallt e such that

P{s > e H0] <cï

where o is the desirecl level of significance or a Type I error. The choice of a significance

level o’ is usually somewhat arbituary, since in most situations there is no precise liniit

to the prohability of a Type I error tliat can he tolerated. Standard values, such as 0.01

or 0.05. were originally chosen to effect a reduction iII the tables neecieci for carrying ont

varions test. Flowever, the choice of significance level should take into consideration the

power that the test will achieve agaillst the alternative of interest. Rules for choosing

in relation to the attainahie power are ciiscusseci by Lehmann (195$), Arrow (1960),

Saiiathanan (1974), and Lehmann anti Romano (2005).

For our statistical problem which consists to test for some values of P[y 0]. the

hkelihood fmIction of the sainple {!Jt }L1 is given bv:

L( U( n). p) HP[y1 > 0]’’ (1— P[y > 0]) 1-s,) (1.6)

The Neyman—Pearson test is based oll the values of likelihood function uncler H0 ailci H1.

190

Page 209: Problèmes dléconométrie en macroéconomie et en finance

Under FI0, the ftmction (4.6) bas the form

Lo(U(n).po) = p’(i — plS(Yt) p’ (1—

where S,, = Z’=i s(y,.) anci. under the alternative H1. it takes the form

Li(U(rz), pi)H1p)(1 —

)is(Yt) = pS (1—

Tlie likelihood ratio is then given by:

Li(U(n). pi)— f s(y) (1

— Pi‘°‘

— (pi (1_— rt-S

Lo(U(ii),po) — ti po) 1 —Vo) f —

po) 1 po)

for simplicity of exposition we assume that p0. Pi 0, 1. This allows us to work with

the log-likelihooci ftmction which simplifies the expression for the test statistic. When

Vo 0. 1. xre could work directly with likelihoocl ftmction. From (4.7) we decluce the

log-likelihooci function:

f L1(U(n).pi) t /i / 1— Pi / 1

p’in hi

j — in j j + n inLo(L’ (n).po) j \Po J 1

— Vo!) \ 1— Vo

The best test of Ho against H1 baseci on sCji) ....,s (y,) rejects H0 when

f L1(U(n).p1)in > e. (1.8)

Lo(L (n). Vo))

If we choose the alternative Pi such tliat py > Vo > O. tileil the above test is equivalent

to rejecting 110 whene— nin(i)

o — 1—1)0

iii() — hi(Z.1)

where eï satisfies

P[S,, > (y H1,] <o.

This test is tue same for ail pi > po. Sinnlarly. if O < ii < Vo. the test (1.8) is equivalent

191

Page 210: Problèmes dléconométrie en macroéconomie et en finance

to rejecting wlieiie—

— ‘—p0,3fl < i =

111(pu) —

where cy satisfies

P[S,, <e I-In] < (.

Thuis. uncler assumption (4.1) anci for Pi > P > O the test with critical region

C {(‘, .... y,.) t S,. > e1}

is the best poillt-optimal conclitional sigil test for the miii hypothesis (4.3) against the

alternative (4.4). Simllarly. for O < p, < Pu. the critical region of the best point-optimal

sign test is given hy

C = {Ci y,.) :

The value of e is choseil so that

P((91

In hoth cases. i.e. for p, > Pt) > (J anci O < p, < Pu. the test statistic is giveil by

S,.

Under I1. S,. follows a binomial distribution B/(ri. Pu)’ i.e. P(S,, = I) = C,’,pb(l

for i — 0. 1 n. where C,,[i!(n—i)H

. This resuit correspollds to a uhiifor7niy mort

poweifui (UMP) test, since S,. does not clepend on the alternative Pi

Example 5 (Backtesting Value-at-Risk) Backtestin.g Vaiue-af-Risk (Va]?) is a key

port of flic infernal iriodet ‘S approach f0 inarket rzsh’ [n an(igement as laid ont 1)9 flic Baste

Committec on Banking Supervision (1996f3 C’hristojfrrsen (199$) 9?OjJ05e5 (L test for

‘For îuore dscussioîi (thOut the Baektes/inq itR. the 7CUCICÏ cari consoït. GÏtiistofJiscn and Pelletier

192

Page 211: Problèmes dléconométrie en macroéconomie et en finance

unconditionai couerage of ihR bcised on the standard Ïikelihood Tntio test.

Consider a tirne series of daily ex post portfolio retmns, R, anci a corresponding time

series of ex ante VaR forecasts, VaRt(p), with promiseci coverage rate » such that P_1(R

< 1.aR,(p)) p. If we define the hit sequence of VuR(p) violations as

1. if R <VuRt(p).

Itrrr

O. cisc

then Cliristoffersen (1998) tests the nuli h pothesis that

II : I Bernouii(p)

against

I, i.i.d: Bernouit(ji)

which is a test that on average the coverage is correct. This test eau be performeci

using the sigu procedure that we propose here. Uncler I1 the likelihood function of the

seciuence of hit is giveri by

L0(11. •••‘T ) = 11p (1 — p)i_It = pSf (1 —

where ST = I,. and uncler the alternative H this funiction takcs the forrn

L1(I1....IT.) =T(1_)TT.

Thus. the test statistic for testing 110 against H1 is given by:

Z

(2OO).

193

Page 212: Problèmes dléconométrie en macroéconomie et en finance

where uilder H0 $T follows a biiiomial distribution 3i(T. p).

4.2.2 Point-optimal sign test for a non constant hypothesis

Now. let y (yi YrY be a observable n x 1 vector of indepeiident ranclom variables

such that P[y 0] Pt. for t = 1. ...n. anci suppose we wish to test

H0: P[s(j) = 1] = Pto = 1 fl. (49)

against

H1 : P[s(yt) = 1] Pti. t = 1 n. (1.10)

Again for simplicity of exposition we assume that Pt,o• Pt.i 0. 1.

Theorem 1 Under assumjtion (4.1) the test with cihicat iegon

C = {Ci’ y,) : 1n[ _]s(jt) > ci}

is the best point-optrnal sign test for th e kypothesis (4.9) agaiist the atternative (4. 10,).

The value of ci is chosen so that

where n is an ailntrary significance level.

We use the sanie steps as in subsection (4.2.1) to prove Tlieorem 1. The test statistic is

given by:

= (l(0 1)scj. (4.11)

wheret)ti(1 pt.o)

(it(O Il) = ln[ j.— pti)

194

Page 213: Problèmes dléconométrie en macroéconomie et en finance

Contrary to the resuits in the pervious subsection. the test that rnaximizecl the power

against a particular alternative ptj depends on this alternative. Some aciditional principal

lias to he introcluceci to choose the optimal alternative that maximize the power of POS

test. In the special case of Pt.o — po and pt,i = Pi. where p and Pi are constants,

the test statistic (1.11) corresponds to unzjorfnty most poweifut (UMP) test basecl on

4.3 Sign-based tests in linear and nonlinear regres

sions

In the presence of sonie types of heteroskedasticity, tue parametric tests proposed to im

prove inference may exhibit poor size control and/or low power. For example. when there

is a break in the disturbances’ variance, simulation resuits show that usual tests hased

on White’s (1980) correction of the variance, which is supposed to be robust against het

eroskeclasticity, have very low power. On the other hand, many exact pararnetric tests

developed in the literature typically asstune normal clisturbance. The latter asstmiption

may be unrealistic anti, in presence of heavy tails and asymmetric distributions, simula

tion studies show that these tests may not do very well in ternis of power. Furthermore,

the statistical procedures cleveloped for inference on the parameters of nontinea’r mod

els are typically based on asymptotic approximations anci there are few exact inference

methocls outside the linear model framework. This section proposes exact simple optimal

sign-based tests to test the parameter values in linea.r arcl nonlinear regression moclels.

These tests are valid under weak clistributional assumptions such as heteroscedasticity

of unknown form aiid non—normality. We propose a test for the nuil hypothesis that a

vector of coefficients iii a linear moclel is zero. We also derive a test for the nuil that a

vector of coefficients in linear or norilinea.r model is equal to an arbitrary constant vector.

195

Page 214: Problèmes dléconométrie en macroéconomie et en finance

4.3.1 Testing zero coefficient hypothesis in linear models

Let y = (yi: .... tin)’ be an observable ri x 1 vector of ilidepeildent random variables.

Suppose that the variable y cari he linearly explained by a variable [rt

Yt = i3’.r, + OE1. t 1 n. (4.12)

where 3 R’ is an miknown vector of parameters and rt is a clisturbance variable such

tiiat

I X ft(. I X) (4.13)

and

P[1>OIX]=P[<OIX]= (4.14)

where X [ii ]‘ is an n x k matrix. Suppose that we wish to test

H0 : 3 = O.

against

H1: (4.15)

The likelihood fullctioll of the sample {yt}71 is giveil by

L(U(n). ,3. X) = > O X] (1— P[11t O ])1_stYt)

\\There

P[g > O I X] = 1— P[E <—/‘.r X].

Uncler H0 we have,

196

Page 215: Problèmes dléconométrie en macroéconomie et en finance

and, under the alternative 1I

P[ > O X] 1 — P{r < —,it X]. (4.16)

Based 011 Theorem 1 auJ from the value of P [t,, O X] under H and H1, we deduce

the following resuit.

Proposition 2 Undej assumptions (.4.1) and (4.14,), flic best point-optimal con ditionat

sign test for flic Ïiypothes’,s 110 against H ‘rejects H ‘when

ci(O I 1)s(yt) > c1(,;3)

‘where. f0? t — 1. .., n,.

at(O 1) = lii[1

1P[,<—d.r,IX1 —

The value of c1(31) is chosen snch tÏiat

P( a1(O 1)s(yt) > ci(i31) H) <o’

‘where ci’ is an arbitrary significance te oct.

Note that tue poi it-optirnal conclitional sign test given by Proposition 2 controls size for

any distribution of the error terni winch satisfies our assumption that the niedian equal

zero. Under H0 the test is clistribution-free and allows for heteroskedasticity of unknown

form. However. uncler II the test statistic will clepencl on the form of the chstribution

funct ion of the error tenu. Consequently, the function of the POS test will depenci

on distribution of r. In what follows, we consicler that uncler H the clisturbances follow

a homoskeclastic Normal distribution. In other words, we substitute the optimal weight.s

a1(O 1) by weights cleriveci from the normal distribution. This may affect the power of

POS test. However, the simulation study shows that there is almost no loss in ternis of

197

Page 216: Problèmes dléconométrie en macroéconomie et en finance

power when we misspecify the clistributioii fmction of s [sec Tables 7-8]. If we consicler

that uncler H1

(O. 1).

tiien the test statistic is given by

= 0(O I l)sCjt) (1.17)

where, for t = 1, .., ri.

1) = in [1

(4.18)

where c1(.) represents the CDf 0f normal distributio;i. b illlplemellt the POS test de—

rived above, we compute the quantiles of the random variables (1.17). To sinmlate (4.17)

we need to generate a sequeuce of { s ( Yt ) } untier H0. In particular we need a sequence of

{s(6,)} satisfying (1.14). Since the variable .s(,) takes only two values t) and 1. the com

putation 0f the test statistic (4.17) reciuces to generating a sequence of Bernoulli ranclom

variables of given length with subsecuent surnmation with the correspondiug weights

(4.18). We now clescribe the algorithm to implement the poiiit—optimal comiitional sigli

test:

1. compute the test statistic S(3)° based on the observeci data;

2. generate a sequence of Bernoulli ranciom variables {s(i)}7i satisfying (4.11);

3. compute S(3 )‘ using the generated secyuence {s() }L1 and the corresponding

weights {ft.,(U 1)}z1:

1. choose B such that n(B ± 1) is au integer antI repeat steps (1) — (3) B times:

5. compilte the (1 — n)% quantile, clenoted c(;31), of the secpience

6. reject the nuli hypothesis at level o if 5(3j° c(3).

198

Page 217: Problèmes dléconométrie en macroéconomie et en finance

4.3.2 Testing the general hypothesis 3 = t3o in linear and non

linear models

Now let us consider the following general model:

= .t’(.t. 3) + t = 1 fl (1.19)

where f(.) is a scalar function. 3 G W” is an uuknowri vector of parameters, anci ‘, is a

disturbance stich that (4.13) ancl (1.14). Suppose we wish to test

H0 : 3 = (4.20)

against

The test of H0 against H1 can he constructeci in the saine way as in the previous stihsec

tioi. We first neecl to trallsforul equatioll (4.19) such that we caii fiuid the same structure

as before. The model (1.19) is equivalent to the following transformed rnoctel

= g(u,. 3. 3) ± rt

where

= — f(.r. 3) anci q(rt. 3. :3e) = (.rt. 3)—

ft.rt. ,3).

For simplicitv of exposition. iii the l’est of this section we focus on the hilear case

where f(.t’,. 3) = 3’’. We deal with the nonlinear case in the appenclix. We have.

J’i + r.

199

Page 218: Problèmes dléconométrie en macroéconomie et en finance

where

= !Jt — and (.z’,. .3. 3) = 3:r = (3—

The hvpothesis testing (1.20) is equivalent to test

Ii ,3 = 0.

against

H1 : = i —

Consider the following vector of signs

T(r,) [s

where. for t 1 n.

1. if O

sCt)

0. if < O

The test of H0 against H cari be clerived using iheorem 1 auJ following the saure st.eps

as 111 subsection 4.3.1. We have the following resuit.

Proposition 3 Under assumption.s (4.1) ami (4.14), the best point-optimat conditionat

sign test Jb’r H0 agai’ast II rejects H0 when

(0 I l)s(j, — %i,) > ci (3f),

ithere. for t = 1. ... n

(o)

1) = in [1

1PtK—(3i—3o)’.rtIXj— 1

200

Page 219: Problèmes dléconométrie en macroéconomie et en finance

The value ofciG3i) is chosen so that

I 1)s(y — 3.r) > ci(j1) HD)

and c is an aTbzLTYwy significan ce te cet.

If uder H1 Àt(0. 1). then the test statistic is given by;

S(.31) = i,(0 l)sC,—

(1.21)

where

a(o 1) hi [1

— 1L t = 1. ... ‘n.. (1.22)

4.4 Power envelope and the choice of the optimal

alternative

We stlldy the power properties of the POS test. We derive the power envelope alld

analyze the impact of the choice of the alternative hvpothesis on the power function.

Since the P05 test depends on the alternative hvpothesis. wc propose an approach.

called the adaptive approacli. to choose an alternative / such that the power curve of

the P05 test is close to the power envelope curve.

4.4.1 Power envelope of the point-optimal sign test

We derive the UCf 1)01111(1 of the power function of the P05 test (hereafter the power

envelope). One advantage of point-optimal tests is they can he usccl to trace ont the

maximum attainable power for a given testing problem. Tins pow envelope provides

a natural benchmark against which test procedures can be conipareci. The P05 test

optirnizes power at given point of the parameter space. The test statistic is a hinction of

201

Page 220: Problèmes dléconométrie en macroéconomie et en finance

S(3) ottO 1)s(yt)

wliere

ci(O 1) = in [1

1— P[ <—3 rt [X]

Its power function is also a function of anci it is given by:

11(3. !3) P[S(31) > Ci]

where e1 satisfies

P[S(,31) > e1 Ho] <n.

Theorem 4 Under assumptions (4.1) and (4.14), tue power fimetion of the POS test

at given point is given hy

HG. 3) +

wkere, for u E R,

1(u) = L {,1exi _iti) + exp(iu( a1( 1) — }and, for t = 1 n,

at(OI1)=ln[ 11

= /Ef Im{z} (le’tl oies tue imaqznary part of a compleT number Z. and ihe value j y

15 cÏioseii SO fluai

P[S(;31) > e1 H0] <n

where n is an arbifrary significance levet.

202

Page 221: Problèmes dléconométrie en macroéconomie et en finance

Since the test statistic is optimal against an alternative ,3. the envelope power

fm;ction, denoteci (3). is a ftmction that associates the value 11(3, to each element

;3 E

i(3) — H(./3) = P[S(3) > ci]. (1.23)

Tue objective is to finci a value 0f at which the power curve of the POS test remains

close to the relevallt power eiivelope. For a giveil value fi of the power fmctiori ami level

cv of the P05 test, one eau fiuid an alternative (H. u) by inverting the power envelope

functioii l(3). Thus, for auy given value H E [n. 1], the family of P05 test statistics

cari be xrv’jtten as follows

S(H) = a,(0 l)s(gt).

where

ctt(0I1)ln[1

/

i—P[<—1(H,) xtIX]

Although every meniber of this family is adrmssible, it is possible that some values of H

may yielcl tests whose power ftuctions lie close to the power eiwelope over a considerable

range. Past research suggests tliat values of 11 near one-half ofteii have this prol:)erty,

sec for example Kiiig (1988), Dufour alld King (1991). auJ Elliot, Rothenberg ancl Stock

(1996). Consequently, oue eau choose as au optimal alternative the oiie which corresponds

to H = 0.5.

Based on Theorem 4 aucl equation (4.23), the value of / corresponcling to 11 = 0.5

is the solutioll of the following equatiou’

f [exp(_iue1) + exp(iu( cit(0 1) — ))]J lui du = 0. (4.24).0 u J

Using the propeities of the cmnuhitive (lensity finietion (iioiiotonically iflCre1si1ig. (OiitiiiliOIiS

uni Pr(z < c) = O. anci lim P (z < e) = 1) one con show Unit equation (1.24) has n lulique solution.

203

Page 222: Problèmes dléconométrie en macroéconomie et en finance

In practice, an exact solution of equation (4.21) is not feasible, since it is hard to

compute tire expression of Im{I(u)} and tire integral J -du is difficuit to evaluate.

The latter cari lie approxirnated using resuits b Inrhof (1961), Bolimann (1972), and

Davies (1973), who propose a numerical approximation of the distribution function using

the characteristic function. The proposeci approximation introcluces two types of errors:

cliscretization anci truncation errors. Davies (1973), proposes a criterion to control for

ciiscretization error and Davies (1980) proposes three different bouncis to control for

truncation error. Another way to solve the power envelope function for ,‘3 is to use

simulations. Que cari use simulations to approximate the power envelope function anci

calculate tire optimal alternative which corresponds to the value of (/3) near one-haif.

Let us now examine tire imipact of the choice of the alternative on the power

fmrction. In what follows, we use simulations to plot tire power curves of the P05

test under diffèrent alternatives and compare them to the power envelope. We find tue

foliowing results:

Insert figures 2-7.

Tire above figures compare tire power curves of tire P0S test under different alternatives

to the power envelope for different data generating processes (hereafter DGP’s). We

corisider a linear regression moclel with one regressor anci the error tenus follow one of

the following distributions: Nonrrial, Cauchy, mixture of Normal and Cauchy, Normal

witir GARCFI(1,1) and junrp, Normal with non-stationary GARCf1(1. 1), and Normal

with a break in variance. We describe these DGP’s iir more cletaii in section 1.6. Based on

simulation restilts, we find that tire value of tue alternative affects the power function.

Particularly, wiren tire alternative is far from the nuil ‘3 = t) the power curve of tire POS

test moves away fronr the power envelope curve.

Since the previoirs approach to finciing tire optmral alternative is somewhat arbitrary

way, we propose a natural approach, calleci tire aciaptive approach, based on split—sainple

technique to estimate tire optiirial alternative.

204

Page 223: Problèmes dléconométrie en macroéconomie et en finance

4.4.2 An adaptive approach to choose the optimal alternative

Existing adaptive statistical metliods use the tinta to cletennine which statistical proce

dure is most appropriate for n specific statistical prohiem. These methods are usually

performeci in two steps. In the first step n selectioll statistic is coinputecl that estimates

the shape of the error distribution. In the second step tue selection statistic is used to

cleternune an effective statistical procedure for the error distribution. 1\Iore details about

the aclaptive statistical methods Cari be found iII Corman (2004).

The aclaptive approach that we consicler here is somewhat different from the existing

adaptive statistical approaches. We propose the spiit-sample tecinuque to choose an

alternative 3 such that the power cm’ve of the POS test is close to the power ellvelope.5

The alternative hypothesis is miknown anci a practical problem consists in finding its

independent estimate. To make size contuol casier, we estimate ,3 from a sainplc which

ix mdependent from the mie that we use to run the P05 test. This cnn be easilv clone by

splitting the sample. The iclea is to clivicle the sample mto two mdependent parts and to

use the ftrst one to estimate the value of the alternative and the second one to compute

the P05 test statistic. Consider again the motel given bv (1.12) and let n = n1 + n2.

= t!J 2) X = (Xt) 2)) anti r = (r1), r(9)) where the matrices Y)). À0. and

E(i) have n1 rows (i = 1. 2). We use the first i observations on y and \. respectively 11(1)

ami X(i). to estimate the alternative hypothesis using, for example, OLS estimation

niethocl:

= (X(0X(l))X(l)y(l).

1-Iowever, the OLS estimator ix known to be very sensitive to ont liers and non-normal

errors. consequently it ix important to choose a more appropriate methocl to estiniate

•3i In preseuce of outliers mnanv estimators are proposeci to estiniate the coefficients in

regression model such that the least median of squares (LMS) estimator [Rousseeuw anti

Leroy (1987)], the least trinnïied sum of squares (LIS) estimator [Rousseeuw (1983)].

5ftjr inor d(tHh1 about sp1it-airip1e technique. die reader can consuit Duifouir and Torrè t 1998) andDuifoor niai .Jnuuiuik (2001).

205

Page 224: Problèmes dléconométrie en macroéconomie et en finance

the S-estimators [Rousseeuw and Yohai (1984)], aïid the T-estirnators [Yoliai anci Zamar

(1988)].

Because,

is independent of X(2). one eau use the last 712 observations on y and X,

respectivelv Y(2) and -(2). to calculate the test statistic and to get a valici POS test:

= f’t(O l)s(i).t=, i±1

where, for t ni -- 1 n.

(I,(0 1) in [ 1

1

1P[E, S—((XY1X0)) ‘V’Y( )).Fl IX]

Note that different choices for n1 and 02 ire clearly possible. Alternatively. one couiC

select uanciomlv the observations assigned to the vectors !Jf 1) anti Y(2). As we wiÏl show

latter the imniber of observations retaineci for the flrst anti the second subsample have

a direct impact on flic power of the test. lil particuiai. if appears that. one can get a

more powerhrl test once we use a relativelv small number of observations for computing

the alternative hypothesis anti keep niore observations for the caiculation of the test

statistics. This point ix illustrateci below by simulation experiments. We use simulations

to compare the power curves of flic spiit-sample-baseci P05 test (hereafter SS-P0S test)

to the power envelope (hereafter PE) under different spiit-sample sizes anti for dliflèrent

DC1Ps. W’e use the sanie DGPs as those we have considered in flic last subsection We

find the following resuits:

Insert Figures 8-13.

From the above figures. we sec that using approxiniately 10% of sample to estimate the

alternative yieids a power which ix tpicail very close to the power cuvelope. Tlns is

truc for ail DGP’s that we have considered in our simulation stuciy.

206

Page 225: Problèmes dléconométrie en macroéconomie et en finance

4.5 Point-optimal sign-based confidence regions

We will briefiy clescribe liow we can build confidence regions, say c(n). for a vector of

unknown pararneters 3. with knowi level n, using POS tests. Consider the follewiug

moclel:

Yt 3 .U + t = 1 n.

where , R1 is an unknowll vector of paranieters anci r is a disturbance such that (4.13)

and (4.14). Suppose we wish to test

against

H1 : t3. (1.25)

The iclea consists to find ail tire values of E R1 such that.

5*(Q)(3) = {in [ Ï

1— 1]s(yt — 3i)} <c(1).

(=1 1 —P, < —(3f —30)’:rt X]

where 0)(3f) is the observeci value of S The critical values for the former test

are fouiid by soiving

P [S (3f) > c( ;) = 3] <.

Tims, the corificleilce regiori C3(ci) cari be defiued as follows:

= {,°5)(,3) <c(31). for P[S(31) > c(i1) 3 ;3] <n}.

Moreover, given tire confidence region C11(n). one can derive confidence intervals for the

components of the vector : using tire projection techniciues.G The latter cari be useci to

i\1ore details about the projection technique can ho lmci in Dttfonr (1997). Abdelkhalek auJ Dtihiur

(1998), Dnlonr and kiviet (1998), Dufour anci Jasiak (2001), and Dufour auci Taaniouti (2005).

207

Page 226: Problèmes dléconométrie en macroéconomie et en finance

finci confidence sets, say q(Cj(c)). for gelleral trallsformations q of 3 in R. Since

3 e C3() g(;3) e q(C)). (4.26)

for ally set C3 (o), we have:

P{/3 e Ç3(n)] > 1 — P[q(;3) e q(C))] 1 — n. (4.27)

\rfiere

= { e W : 3 e Cj(c). g(/3) =

Given (4.26)-(4.27). q(C113(n)) isa conservative confidence region for g(3) with level 1—n.

If g(3) is a scalar, then we have

P [in f {g(30). for e C3(n)} q(3) <p {g(!30), fhr ‘3 e C3()}] > 1 — n.

4.6 Monte Carlo study

We present simulation resuits illustratiiig the performance of the procediires given in

the prececling sections. Since the iimiiber of tests aiicl alternative moclels is large, we

have limiteci oui restllts to two groups of data generating processes (DGP) which corre

spoiicl to (hfierellt forins of symnietric auci asy;nmetric distributions and diffèrent fornis

of heteroskeclasticitv.

4.6.1 Size and Power

To assess the performance of the POS test, ive rim a siirmlation study to compare its size

and power to those of some common tests uncler varions general DGP’s. We choose our

DGPs to illustrate performance in diffèrent coutexts that one can encounter in practice.

208

Page 227: Problèmes dléconométrie en macroéconomie et en finance

The model mider consicleration is given bv

= 3.U + 6. t 1,.... n. (1.28)

where is an unknown parameter and the clisturbailces are independent and can follow

different distril)utions. We wish to test

H0 : 3 = O.

Let us iiow specify tue DGPs that we consider in the siinulatioii study. The flrst group

of DGP’s that we examine represents clifferent forms of svmmetric anci asyirnnetric

distributions of the error terms:

1. Normal:

jV(O. 1). t = 1 n.

2. Cauchv:

Cauchy. t = 1 n.

3. Student:

Studcnt(2),t = 1,.... n.

4. i\iixture:

n,

with

P[s, = 1] = P[s = O]= 4 anci Cauchij. (O. 1).

The second group of DGPs that we consider represelits dlifferent forms of heteroskeclas

ticitv:

209

Page 228: Problèmes dléconométrie en macroéconomie et en finance

5. Break in variance:

/(0. 1) for t 25

r_t

VI5At(0. 1) for t = 25

6. GÂRCH(1. 1) with mmlx

I(0. u(t)) for t 25

50 jV(0, u(t)) for t 25

anci

= 0.00037 + O.0888r__ + 0.9024u(t — 1).

T. Non stationary GARCH(1. 1):

[=1 n.

and

t) = 0.75r__ +O.75cT(t— 1)

In this case wc run two different simulations which correspond to two tiifferent initial

values of u(t). Figure 19 corresponds to n(0) = 0.2 and figure 20 to u(0) = 0.0002.

8. Exponential variance:

r, (0.u(t)). t= l...,’n

and

= exp(0.5t). t 1 n.

The explanatory variable r, is generated from a. mixture of normal anti 2 distributions,

anci ail siniulated samples are of size n = 50. We perform ilIl = 10000 simulations to

evaluate the probability distribution of the P03 test statistic and M2 = 5000 simulations

to estimate the power functions of the P03 test anti these of other tests.

210

Page 229: Problèmes dléconométrie en macroéconomie et en finance

4.6.2 Resuits

We compare the power envelope curve to the power curves of the 10% spiit-sample POS

test, the t-test (or CT-test)7, the sign test proposeci by Campbell and Dufour (1995)

(hereafter CD(1995) test)8, and the t-test based on White’s (1980) correction of variance

(hereafter WT-test or CWT-test)9. The simulation resuits are giveu iII Tables 1-6 ancl

figures 14-22. These resuits correspond to differeut DGP’s that we have descrihed hefore.

Tables 1-6 compare the power envelope, the P05 test, the t-test, the CD(1995) test, and

the WT-test under differeut spiit-sample sizes and alternative hypotheses. Figures 14-22

compare the power envelope curve to these of the 10% spiit-sample P05 test, GD(1995)

test. the t-test (or CT-test), and the WT-test (or CWT-test).

Table 1 aud Figure 14 correspond to the case where the error terms follow normal

distribution. Table 1 shows the power function depends on the alternative hypothesis.

Wheu is far from the null, thc power curve moves away from the power envelope curve

[sec also Figure 2]. When we use the split-sample techmique to choose the alternative

hypothesis, we sec that using approximately 10% of the sample to estimate yields a

ower which is typically very close to the power envelope. Figure 11 shows that the t-test

is more powerful than the C WT-test, tue 10% split-sample P05 test. aiid GD(1995)

test. This is ail expectecl result. since uiirier normality the t-test is the most powerful

test. 1-Iowever, the power curve of 10% sphit-sarnple POS test is still very close to the

power envelope aud do better than the CD (1995,) test. We also note that tue t-test based

oi White’s (1980) correction of variance does not control size. The last coltunil of Table

1 gives the power of WT-test after size correction.

Table 2 ancl Figure 15 correspoucl to the Cauchy distribution. From table 2. we sec

that the power of the POS test depends agaiil on the alternative hvpothesis that we

CT-test corresponds to the 0V1’ of t-test itter size correction. Under some DGPs the t-test mnyflot control its size. thus ‘e a(I,just the l)o1 fonction such that CT—test controls its size.

8The sign test of Campbell and Dufour (1995) bas discrete distribution and it is ïiot possible (withoutrandoniization) to obtai test whose size is preciselv 5f here the size of this test is 5.95i4 for n. = 50.

CWT—test corresponds to the power of WT—tesl after size correction. Uncler some DGPs the ItT—test inay not control its size. thus we adjust the power lunction such that CWT—Iest controls its size.

211

Page 230: Problèmes dléconométrie en macroéconomie et en finance

consider. In particular, wheu the value of is far from the nul. the power curve moves

away from the power eiivelope curve. We also note that using approximately 10 of

sample to estimate 3 vielcis a power wlilch is typically very close to the power eiwelope.

Figure 15 shows that the 10% spiit-sample P03 test is more powerful than the CD (1995)

test, the t-test, the WT-test, and it stili close to the power envelope.

Tables 3. 5. aird 6 and Figures 16. 18, and 19-20 correspond to the Mixture, GARCII(1,1)

with jump, and Noir stationary GARCH(1.1) cases. respectively. We get similar results.

as in the Normal and Cauchy clistributiotis, in terms of tire impact of 3 o the power

fmiction and the values flj anci n.2 that we have to consider. figures 16. 18, antI 19-

20 show that the 10% spiit-sampie P03 test is more powerful than the WT-test. the

CD (1995) test. the t-test, and is very close to the power eiwelope. For the mixture error

terms, the WT-test anci tire t-test do not control size, thus we adjust the power fbnction

such that tirese tests control their size. Table 4 and Figure 17 correspond to the Break

iii variance case. As we eau see the power curve of the t-test antI the WT-test are almost

ftat, whereas tire 10% spiit-sample P03 test does very well and is more powerful than

the CD (1995) test. Finally, for the Studerit case, figure 21 shows that 10% split-sample

P03 test is more powerful than the CD (1995) test and the t-test.

From the above resuits, we cÏraw the following conclusions. First. it is clear that

tire choice of the alternative bas an impact on the power functioll of the P03 test.

Second, the adaptive approach hased 011 split-sample technique allows one to choose an

optimal value of the alternative We should tise a small part. approxiïnately 10%. of

the sample to estimate the alternative and the rest to calculate the test statistic. Thirci.

for DGP ‘s with normal and heteroskedastic disturbances, the power curve of 10% split

sample P03 test is close to the power envelope. Flowever. for non-normal clisturbances

the power curve of tire 10% split-sampie P03 test is somewhat far from the power

eirvelope. Finally, except for the Normal distribution, ail simulations results show that

tue 10% split-sample P03 test performs better than tire CD (1995) test. the t-test. and

the WT-test ( including CT-test arid tire WCT-test).

212

Page 231: Problèmes dléconométrie en macroéconomie et en finance

We also run simulatiolls to compare the power of the 10¾ spiit-sample POS test

calculated under the trrie weights ct(0 I 1) with that of the 10¾ spiit-sample P05 test

calculated i;sing normal weights. The resuits are given in tables 7 auJ 8. We see that by

rising the true weights one lilay improve the power of tue 10¾ spiit-sample P05 test.

However, the power loss when we substitrite the true weights by normal weights is stili

very small.

4.7 Conclusion

In this chapter, we have proposeci au exact auJ simple conditionial sign-based point-

optimal test to test the parameters in lillear ailci iloulillear regression models. The test

is distribnition-free. robust against heteroskedasticity of an unknown form, auci it may he

inverteci to obtain confidence sets for the vector of ullknowll parameters. Since the point-

optimal conditiollal sigil test maximizes the power at a given value of the alternative.

we propose a approach hased on spiit-sample technique to choose an alternative such

that the power cnirve of the point-optimal conditional sigu test is close to that of power

e;welope. Oui simulation study shows that by usillg approximately 10¾ of sample to

estimate the alternative hvpothesis ancl the rest to calculate the test statistic, the power

cnirve of the proposeci “quasi” point-optimal collchtional sign test is typically close to the

power envelope cnirve.

To assess the performance of the point-optimal conditional sign tests, we ruai a sim

ulation st.ucly to compare its size and power to those of some usual tests nmcler various

general DGP’s. We consider different DGP’s to illustrate clifferellt coiitexts that one can

encounter in practice. These DGPs are relative to the non-normal, asymmetric, auJ

heteroskeclastic disturbauces. The results show that tlie 10¾ spiit-sample point-optimal

conclitional sig test performs better than the t-test, the Campbcll auJ Duifoufs (1995)

sigul test. auJ the t-test with White’s (1980) variance correction.

213

Page 232: Problèmes dléconométrie en macroéconomie et en finance

4.8 Appendix: Proofs

Proof of Theorem 1. Foi’ our statistical probleni. the likeliirooci function of the saniple

{yt}7 is giveil by:

L(U(n).p,) HP{ij, > o](Yt)(i— P[g, >

Under H0 this fmiction lias tire forrn

L0(U.po) H{p(i — p1,0) }

ailci mider the alternative H1 it takes the forni

L1 (LT(n). Iki)= (1

)i-S(Yt) }.

The iikelihood ratio is given hy:

fi {(Pi)R(/f)} 1— J/.i)1Ct)}. (4.29)

L0(L (n).p1,0) =i Pi,o /=1 1

For simplicitv of exposition we suppose that Pt.o ptj 0. 1. FroIH (1.29). the log

hkeliliood ratio is giveir hy:

in {L1r

= {sCt) in (“) + [1- s(yjt)]in ( ‘a»

= [q,(l)—

(]t(0)]SC],) + ZcJt(O).

where

tj,(l) = in(), (11(0) 111(1 P11)

Pt.o 1— ?t,o

214

Page 233: Problèmes dléconométrie en macroéconomie et en finance

The log-likelihoocl ratio can also Le written as follows:

in { } = a( l)s(h) + b(n),

wliere

at(0 1) = ït(i) — f]/ (0). = h (0).

Thus. based on the Nevinan-Pcarson lemma {see e.g. Lelnnann (1959. p•65)1. the Lest

test of H0 agaiust H1 rejects H0 when

1n[’ Po)j()b(n.) > c.

or equivalently when

Ê 1{P/.i (1— Pt.o)

> . —

Pt.o(1 — Pi,i)

Proof: P05’ test in the context of nonliriear regression function. Consicler

the following nonlinear rno lei.

Yt = f(.r,. 3) + . (4.30)

Suppose that we wish to test

:13 = o. (4.31)

agaist

H1 : 3 = 3. (1.32)

The moclel (4.30) is equivalent to the following transfonneci riiodel,

fJ(’i. 3. 3) + E1.

215

Page 234: Problèmes dléconométrie en macroéconomie et en finance

rhei’e

= — f(x. 3). g(it. 3. 3) = f(,. 3) — f(.r. /3e).

Note that, under assumptiori (4.1) ancl coriditional on X. we have

t. t 1 n. are inclependent.

The hvpothesis testing (1.31)-(4.32) is equivalent to testing

H0: g(.c. 3. ;3) = O. t = 1. . . n.

against

g(.v, B. Bo) = c](r1. 3, ;3) = f(.rt. — f(.r(, t = 1, ... n,

The likelihood ftinction of our sample is given by.

L(Û(n). ,3. X) = HPWt O X]!t)(1— P[ > O

where

ÙQ) (s() (,))‘.

anci

s(yt) , t = 1 n.O. if < O

Uuder II we have,

Lo(Ù(n). B. X) = (.

ancÏ micler II.

L1 (Û(n). B. X) = —g(.r, 3) X] (1 — P[r —g(.r. 3. 3)

216

Page 235: Problèmes dléconométrie en macroéconomie et en finance

111e log-likelihood ratio is given by

‘ { I- Z (O 1)(

- f(r. i3)) + b(TL).

where1

attO 1) =In[ 1 ],i—P[c, <f(.rt .31))—f(.rf.d )X] — 1

and

= Z in [P[ f(’ ,3)— f(t. ‘D X]] —

Thus, the Lest test of I-In against H1 reject H0 wlien

1)s(j,—

f(i. )) > c(3).

where

1) = in [ 1

1

_______________________

and ci (3) is chosen such that

(Z (O 1)s(yt—

(r,. 3) > c1 (3) H0) n.

where u is an arhitrary significance level. •

Proof of Theorem 4. Vu and conditionally on X the characteristic function

of S;(/31)

ø (u) = Ev[exp(iu S(31))] = E[ exp(iu utst)1.

217

Page 236: Problèmes dléconométrie en macroéconomie et en finance

where at = u,(O 1). s() = St. anci = . Since.

for t = 1. n.. are independeiit.

O (ii.) HE [exp(iu CtSt)]

= Z [.s = J X] exp ( / U (t J)]i=o

1 n’H[1 + exp(i’u at )].

Accorcling to Gil-Pelaez (1951), the conditional distribution fimctioii of S(:31) evaluated

at e1. for ci E R. is giveil by:

P(S(;31) <ci X) = — f “d’e,, (4.33)

where

1(u) =(‘ ji + exp(i’u( c, — )] }.

Im{z} denotes the imaginary part of ii complex rnmiher z. Thils, the power ftmction of

the P03 test is given by the followillg probabihty function:

fl(3. 3) P[S(d1) > c1(/3)] = 1 — P[3(,31) ci(d1)] = — +— J —dii.

2 i u

where

1(u) = (Y 1m {[exP(_iu) + exp(i’u( (ï. — )] }.

218

Page 237: Problèmes dléconométrie en macroéconomie et en finance

219

Table 7: True weights versus Normal weights (Cauchy case).

$8 — P08 test ‘‘ with truc wezqhts $8 — P08 test v’zth Normal weights3 PE 10% 20% 10% 20%

t) 5.1 5.16 5.16 5.3 5.480.005 34.22 33.58 31.18 33.3 30.86t).01 66.38 61.91 62.47 61.74 62.280.015 84.44 80.32 80.32 76.24 77.020.02 92.2 89.76 69.76 84.9 85.140.025 96.44 95.22 95.22 89.88 88.820.03 98.12 96.98 96.98 92.92 92.580.035 99 98.26 98.26 93.7 93.10.04 99.36 99.14 99.14 94.7 94.30.045 99.68 99.3 99.3 94.92 95.710.05 99.8 99.41 99.44 95.92 95.92t).055 99.98 99.7 99.7 96.42 96.480.06 99.94 99.82 99.62 97.02 96.1$0.065 99.94 99.9 99.9 96.66 96.9

Table 8: Truc weights versus Normal weights (Mixture case).

88 — P08 test with truc weigkts 88 — P08 test with Normal weights3 PE 10% 20% 10% 20%

0 4.96 4.74 5.26 4.7 5.020.001 9.96 8.96 9.0$ 9.98 9.160.002 15.7 11.34 16.7 15.9 14.60.003 25.26 24.84 24.67 24.76 21.60.004 35.46 34.52 :34.46 34.08 34.2$0.005 46.0$ 44.26 44.06 44.14 42.960.006 56.68 53.24 54.96 51.78 52.060.007 67.61 62.92 62.8$ 61.9 61.840.008 75 71.66 7t).14 69.48 69.50.009 82.06 79.24 79.54 76.52 75.320.01 68.4$ 65.52 $4.34 80.84 79.90.011 90.68 88.8 89.22 84.16 84.940.012 94.36 92.06 91.5 67.66 87.420.013 95.7 91.32 94.62 9t).54 69.22

“SS-PQST—Split-Saiiiple P081.

Page 238: Problèmes dléconométrie en macroéconomie et en finance

Figure 1: Daily return of S&P 500 stock price index (¾)

la

-20

-25U4188 1I0/a9 1/20 Il l,2’52 1J4l9 114/54 1212554

220

Page 239: Problèmes dléconométrie en macroéconomie et en finance

Figure 2: Power Comparison (Normal case)

ooo

oo

o-

PEPOST, bl=0.2POST, bl=0.4POST, bl=0.6POST, bl=1

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01Parameter value

1Figure 3: Power Comparison (Cauchy case)

PEPOST, bl=0.2POST, bl=0.4POST, bl=0.6POST, bl=1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1Parameter value

221

Page 240: Problèmes dléconométrie en macroéconomie et en finance

Figure 4: Power Comparison (Mixture case)

woo

cl)

oQ-

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02Parameter Iue

Figure 5: Power Comparison (GARCH(1,1)withjump case)

0 1 2 4 53 6Parameterwlue x io

222

Page 241: Problèmes dléconométrie en macroéconomie et en finance

100Figure 6: Powet Comparison (Nonstationary GARCH case)

wo

D-

90

80

70

60

50

40

30

20

10

O

PEPOST, bl=0.2POST, bl=0.4POST, bl=0.6POST, bl=1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1Parameter wlue

100Figure 7: Power Comparison (Break in wriance case)

PEPOST, bl=0.2POST, bl=0.4POST, bl=0.6POSI, bl=1

Parameter Iue

223

Page 242: Problèmes dléconométrie en macroéconomie et en finance

liFigure 8: Power Comparison (Normal case)

PE4% SS-POST10% SS-POST20% SS-POST40% SS-POST60% SS-POST80% SS-POST

0.07 0.08 0.09 0.1

PE4% SS-POST10% SS-POST20% SS-POST40% SS-POST60% SS-POST80% SS-POST

oD-

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01Parameter value

90

Figure 9: Power Comparison (Cauchy case)

80

70

60

50

40

30

20

10

“O 0.01 0.02 0.03 0.04 0.05 0.06Parameter value

224

Page 243: Problèmes dléconométrie en macroéconomie et en finance

Figure 10: Power Comparison (Mixture case)

Q)

oQ-

Q)

oD-

Parameter Iue

90

Figure 11: PowerComparison (Break in riance)

80

70

60

PE4% SS-POST10% SS-POST20% SS-POST40% SS-POST60% SS-POST80% SS-POST

10

oO 0.002 0.004 0.006 0.008

Parameter lue

225

0.012 0.014 0.016

Page 244: Problèmes dléconométrie en macroéconomie et en finance

•1 fl-’

0

oD

G)

o

90

80

70

60

50

40

30

20

10

o

Figure 12: Powet Comparison (GARCH(1,1) with jump case)

Figure 13: Power Compahson (Nonstationary GARCH case)100 r r r r r

90 -

80

— PE70

_____

4% SS-POST

60 —10% SS-POST

20% SS-POST

50 40% SS-POST60% SS-POST

40

30

20

10

o I I I I

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1Parameter oIue

PE4% SS-POsi

10% SS-POST20% SS-POST

40% SS-POST60% SS-POS780% SS-POS

Parameter value x 10

226

Page 245: Problèmes dléconométrie en macroéconomie et en finance

Figure 14: Power Comparison (Normal case)

0

on

Q

100

90

80

70

60

50

40

30

20

10

O

100

90

80

70

60

50

40

30

20

10

O

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01Parameter aIue

Figure 15: Power Comparison (Cauchy case)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1Parameter Iue

227

Page 246: Problèmes dléconométrie en macroéconomie et en finance

Figure 16: Power Comparison (Mixture case)100

90

80

70

60

30

20

10

100

90

80

70

60

O0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Parameter Iue

Figure 17: Power Comparison (Break in variance)

wo

D-50

40

30

20

10

o o 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016Parameter Iue

228

Page 247: Problèmes dléconométrie en macroéconomie et en finance

0

QQ-

Figure 18: Power Comparison (GARCH(1l) with jump case)

PE10% Ss-P0sTCD (1995)T-test

WT-test

o 1 2 3 4 5 6

x 10Parameter aIue

Figure 19: Power Comparison (Non-stationary GARCH case)

Q50

PE10% SS-PQSTCD (1995)T-test

WT-testo

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1Parameter lue

229

Page 248: Problèmes dléconométrie en macroéconomie et en finance

onFigure 20: Power Comparison (Non Stationary GARCH(1,1) case)

PE10% SS-PDSTCD (1995)T-testWT-test

G)

oD-

G)

on-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Parameter olue -3

X 10

100Figure 21: PowerCompa,ison (t(2) case)

10% SS-POSTCD (1995)T-test

Parameter aIue

230

Page 249: Problèmes dléconométrie en macroéconomie et en finance

on

Q

Figure 22: Power Comparison (Exp(O.5t) case)

4% SS-POSTCD (1995)T-test

W T-test

30 40Parametr Iue

231

Page 250: Problèmes dléconométrie en macroéconomie et en finance

oo

P051

Spii

i—

Soin

pi

Oth

ci—

Tes

ts3

PE

0.2

30.

44:

10%

20%

40%

CD

(199

.5)

IT—

1IT

—C

TT

T—

Itt

05.

25.

145.

344.

824.

8$5.

364.

785.

944.

887.

524.

940.

0005

7.44

5.96

6.5

7.58

7.44

6.62

6.78

6.96

7.42

10.7

7.3

0.00

19.

28.

247.

969.

989.

829.

488.

28.

2411

.415

.411

.50.

0015

12.7

811

.28

10.2

412

.612

.912

.76

11.0

410

.06

16.2

420

.08

16.5

0.00

216

.34

13.3

411

.96

16.2

816

.18

17.2

613

.18

11.0

221

.726

.78

20.6

80.

0025

21.3

$16

.36

14.0

22t

).56

21.8

21.7

15.7

614

.12

29.4

234

.42

27.7

40.

003

27.7

420

.74

17.6

226

.0$

25.8

427

.26

18.7

417

.02

39.3

241

.234

.24

0.00

3533

.26

23.4

820

.86

32.4

132

.08

31.4

223

.28

19.2

245

.22

49.1

643

.48

0004

35.1

428

.2$

23.4

636

.43

.08

37.5

224

.55

21.5

655

.36

58.5

252

.38

0.00

1.5

44.6

532

.68

27.6

843

.28

44.1

44.3

28.1

423

.46

62.3

666

.96

57.4

40.

0(15

52.2

36.6

829

.749

.44

51.7

450

.635

.24

27.5

71.0

473

.16

67.3

20.

005.

557

.76

40.7

533

.555

.42

56.6

856

.06

35.6

429

.879

.16

79.9

274

.70.

006

63.9

245

.44

37.2

660

.78

63.1

262

.62

42.4

432

.384

.18

85.7

80.8

4O

006w

6922

1766

4068

6644

6868

946

7434

7569

aS89

748i

06

fab1

e1:

Puw

eru

on

ipari

solt

:\o

rnia

1cis

e

PE

=P

ow

ereT

1ve1

O1)

C.

P0

ST

=1oii

it.—

opti

ma1

sign

test

.

Sp

iIi

—St

iiiip

ieP

oin

t—opt,

iinal

sigri

tCS

tIJ

JS(’f

I01

1sa

ïnple

spii

tte

ihn

iqu

e.

C[)

(1995)r

rC

atnp

bell

anti

Duf

onr’

s(1

99

5)

test

.

ITT

-.

lest

=T

—le

stha

seci

onW

lute

’s(1

980)

corr

etti

ori

of

var

iante

.

CT

IT—

tesi

=11

T—

lesl

.w

ith

torr

ecti

oti

of

size

.

23

2

Page 251: Problèmes dléconométrie en macroéconomie et en finance

QQ

PO

ST

Spi

ii—

Sam

pte

Oth

er—

Tes

tsP

E=

0.2

I=

0.4

10%

20%

1t)%

CD

(199

5)T

—te

stIV

T—

les!

95.

14.

884.

85.

025.

35.

184.

465.

785.

683.

940.

00.5

34.2

225

.1$

20.9

426

.72

33.3

30.$

623

.4$

18.4

19.

51.5

0.01

66.3

848

.42

39.5

850

.46

61.7

162

.2$

47.8

635

.16

16.6

28.9

20.

015

84.4

462

.56

52.9

464

.74

76.2

477

.02

61.3

848

.925

.76

43.8

2t)

.02

92.2

74.3

63.0

874

.36

84.9

85.1

473

.760

.36

36.2

854

.72

0.02

596

.44

79.6

269

.679

.06

89.8

8$8

.82

81.7

869

.58

42.7

462

.08

0.03

98.1

282

.86

74.3

81.0

892

.92

92.5

884

.776

.650

.14

67.0

60.

035

9986

.02

78.3

682

.86

93.1

93.1

88.3

881

.88

5670

.72

oUI

99.3

689

.16

79.6

85.6

294

.791

.390

.76

86.4

260

.56

73.3

40.

015

99.6

$89

.92

81.8

885

.11

94.9

295

.74

92.2

488

.81

63.3

77.1

80.

0599

.891

.12

84.2

486

.76

95.9

295

.92

9391

.18

66.6

78.7

0.05

599

.98

91.9

486

.287

.14

96.4

296

.4$

91.5

692

.98

69.8

881

.30.

0699

.94

92.5

86.3

887

.08

97.0

296

.18

95.9

691

.16

12.7

282

.96

0.06

599

.94

93.0

886

.81

88.0

296

.86

96.9

96.9

294

.68

74.1

$3.2

2

Tab

le2:

Pow

er

coln

pari

soii

:C

auch

yca

se

PE

=P

ow

eren

velo

pe.

PQ

ST

=P

oint

.-op

tiri

ial

sign

test.

Spht

—S

an,p

ie=

Poin

t—opti

rnal

sign

test

I)as

ed01

1sair

iple

S1)

lit

tech

niqu

e.

CI)

(199

5)=

Cam

pbel

lar

idD

iifo

ur’s

(199

5)te

st.

11T

—It

st=

Tie

st

hasc

d01

1\V

lute

’s(1

980)

tC)Ï

1Ïs

tiO

tlo

fv

ari

an

ce.

233

Page 252: Problèmes dléconométrie en macroéconomie et en finance

Q

PE

=P

ow

eren

vel

cipe.

PQ

ST

=z

Po

int-

op

tim

alsig

nte

st

o

Uth

CT

—T

ests

Tab

le3:

Pow

er

cott

lpali

s()n

:M

ixtu

recase

Q

Sp

l1—

S7I)

JJÏP

=P

oin

t—opti

rlla

lsi

gn

test

hase

d01

1sa

Inple

spii

tte

chni

que

CD

Cantp

bell

and

Dti

four’

s(1

995)

test

,.

T1

Tte

st=

Tt f

at

haae

d01

1\V

hite

’sva

rian

ceco

rrec

tion

.

CT

teat

=T

ir’s

tvit

Iisi

zet:

orrt

’tti

uii.

ClV

Tte

s/=

rlfT

—te

stw

ith

sise

cOÏr

C’C

ti()

I1.

P0

5’!

Spi

ii—

Sco

pie

1JP

f=

0.2

=0

.4I%

2U

•10

.C

DT

tcat

11’T

leal

CT

lcaI

CIV

Th

s/0

4.96

5.3

4.9

4.58

4.7

5.02

5.18

.5.9

89.

92lt

).74

5.08

5.04

0.00

19.

968.

088.

148.

869.

989.

168.

028.

9111

.28

]3.1

25.

97.

920.

002

15.7

11.5

211

.314

.46

15.9

14.6

12.2

411

.76

13.9

$18

.8$

7.5

12.9

40.

003

25.2

618

.48

14.2

423

.526

.26

26.1

21.1

415

.72

16.9

25.7

610

.118

.74

0.00

435

.46

23.8

418

.12

31.1

35.5

$3

5,7

52

8.8

621

20.6

831

.76

11.8

225

.68

0.00

.546

.08

28.7

23.6

640

.66

45.6

444

.46

36.1

26.2

424

.32

40.0

414

.64

31.7

40.

006

56.6

$35

.52

27.5

648

.94

53.2

$53

.56

42.7

220

)28

.24

47.0

618

.16

37.8

20.

007

67.6

440

.66

32.3

56.8

463

.464

.44

52.6

634

.06

33.5

1.22

21.9

244

.76

0.00

875

45.3

237

.46

61.9

470

.98

7161

.638

.96

36.6

256

.724

.56

49.1

40.

009

52.0

650

.439

.61

68.7

878

.02

76.8

268

.18

44.2

24t

).16

60.5

30.1

854

.60.

0188

.48

54.9

43.2

472

.282

.34

81.4

75.1

849

.56

45.8

663

.74

33.6

455

.80.

011

9t).6

855

.48

45.2

475

.42

55.6

686

.41

81.4

252

.148

.666

.938

.06

61.7

0.01

294

.38

62.4

450

.78

78.9

459

.16

88.9

286

.68

58.5

451

.16

69.2

639

.72

65.6

20.

013

95.7

65.7

653

.12

80.3

292

.04

90.7

290

.11

60.1

55.2

672

.16

13.6

667

.42

23

4

Page 253: Problèmes dléconométrie en macroéconomie et en finance

OO

Q

PO

ST

Spti

t—

San

ipie

Oth

er—

Tes

ts/

PE

=1.

2=

0.4

1%10

%j2

0%40

%C

D(1

995)

T—

test

IVT

—te

st.

05.

44.

984.

921.

845.

245.

14.

965.

780.

010.

160.

0008

9.22

7.96

7.9

8.28

9.32

8.38

7.68

6.24

0.04

0.42

0.00

1614

.78

1210

.18

13.1

213

.76

12.9

810

.42

10.4

40.

060.

60.

0024

2(1.

161.

5.88

14.6

218

.220

.12

19.8

615

.58

12.9

50.

121.

080.

0032

29.3

222

.12

19.6

25.2

428

.34

28.2

619

.64

]7.3

40.

31.

620.

004

3t.

0427

.06

25.3

$35

.72

38.3

238

.68

25.2

421

.40.

221.

860.

0048

49.7

835

.729

.12

43.9

847

48.0

632

.38

26.1

20.

462.

30.

0056

59.6

641

.62

34.1

252

.82

59.1

658

.24

39.7

630

.42

0.84

3.6

0.00

6466

.66

48.5

39.1

462

.367

.967

.26

45.9

631

.78

0.7%

4.58

0.00

7277

.32

55.9

4.5.

368

.78

75.6

676

.553

.54

38.3

80.

911.

680.

005

83.9

661

.95]

.6$

76.1

453

.14

82.2

60.9

242

.72

0.94

5.58

0.00

8888

.76

6.5.

955

.52

60.1

168

88.5

67.4

647

.04

1.22

6.54

0.00

9692

.22

72.9

460

.32

8.5.

691

.793

.02

73.0

651

.76

1.5

8.14

0.01

(11

95.4

278

.52

61.4

667

.42

94.6

695

.34

79.7

655

.02

1.42

7.88

Ta1

e4:

Pow

erco

lnpar

ison:

Bre

kin

var

ian

ceca

se

PE

=P

ow

eren

velo

pe.

PQ

ST

=Po

int—

optim

alsi

gnte

st.

Sp

ta—

Saî

npÏe

=P

oint

—op

tini

alsi

gnte

stba

sed

on

sam

pie

spii

tte

chniq

ue.

Cl)

(199

5)=

Cai

npbe

l]an

dD

itfo

ur’s

(199

5)te

st..

—te

t=T

-tt’

sha

sed

onW

hite

’s(1

960)

corr

ecti

onof

var

ian

ce.

235

Page 254: Problèmes dléconométrie en macroéconomie et en finance

Qo

o

PO

ST

Spi

ii—

Sam

pie

Oth

er—

Tes

tsj

PE

/3=

0.2

8=

0.4

I10%

20%

10%

CD

(199

5)IT

—te

stW

T—

frst

t)5.

075.

744.

984.

75.

245.

45.

046.

421.

224.

960.

0003

11.9

89.

069.

1611

.18

11.0

210

.76

7.86

8.06

2.36

8.92

t).0

006

21.2

$15

.512

.919

.3$

19.2

18.8

410

.74

12.1

$5

14.6

0.00

0932

.821

18.1

433

.12

31.3

432

.12

15.9

817

.24

8.9

21.2

0.00

1246

.28

28.1

423

.942

.46

42.4

642

.72

19.9

$21

.913

.36

27.1

60.

0015

53.6

234

.62

28.2

53.5

252

.752

.224

.56

25.8

616

.76

30.8

60.

0018

62.2

439

.133

.74

61.3

659

60.4

28.8

30.1

219

.06

36.5

80.

0021

70.2

246

.06

38.1

67.5

266

.44

66.1

431

.96

34.4

424

.242

.58

0.00

2474

.66

48.7

440

.72

73.6

671

.94

71.8

36.2

837

.68

27.2

645

.10.

0027

78.2

$50

.88

43.9

477

.36

75.9

875

.44

38.9

84(

1.12

29.2

248

.82

1)00

380

.72

54.0

447

.76

79.9

679

.22

79.6

641

.54

44.3

232

.451

.02

0.00

3384

.22

56.1

251

.882

.76

81.3

882

.62

44.9

646

.72

36.1

55.0

80.

0036

$5.1

258

.82

53.4

484

.46

83.5

284

.547

47.8

438

.32

56.4

20.

0039

87.6

660

.52

54.7

8$6

.58

85.7

68.

5.94

49.1

851

.04

41.2

260

.18

Tab

le5:

Pow

erco

lilp

aris

on

:O

uil

ler

inG

.4R

CfI

(1,

Ï)ca

se

PE

=f’

ow

eren

velo

pe.

PQ

ST

=P

oin

t—o

pti

nia

lsi

gn

test

.

Spi1

t—

San

,pie

=P

oin

t—opt.

irnal

sigr

ite

sthas

edou

sam

ple

spii

tte

chn

iqu

e.

CD

(I 9

95

)=C

ainp

bell

aol

Diu

four

’s(1

995)

test

.

IPT

—1

(51

T-t

(St

has

(cl

01

1W

1iit

t’s

(196

0)co

rrec

tion

cfva

rian

ce.

236

Page 255: Problèmes dléconométrie en macroéconomie et en finance

SpÏH

—S

anip

le,3

PE

,3=

0.2

=0.

1,i

t/10

V20

V,

40V

CD

(199

5)T

—te

stW

T—

test

05.

9.5

.5.5

86.

086.

025.

766.

046.

166.

260.

94.5

0.00

537

.34

29.6

827

.72

3.0

440

.28

3928

.78

23.5

814

.26

34.1

8D

Ot

57.3

644

.54

41.3

658

.86

56.5

858

.04

42.6

439

.75

2751

.22

0.01

567

.356

.51

53.5

867

.92

66.5

468

49.7

49.8

435

60.4

40.

0273

.46

63.7

660

.56

73.6

473

.16

73.3

658

.74

58.0

442

.04

67.2

80.

025

79.0

267

.86

64.7

80.6

77.6

478

.04

62.3

465

.88

47.1

672

.36

0.03

81.6

672

.569

.38

82.1

8$0

.88

s1.g

866

.669

.72

50.9

75.1

40.

035

84.5

874

.72

72.5

685

.483

.42

82.8

69.1

$74

.78

54.2

278

.24

0.04

8.5.

8277

.86

7.5.

0886

.86

85.3

84.8

271

.84

77.8

257

.52

80.t1

40.

04.5

88.4

6$0

.52

77.2

87.9

886

.986

.12

75.4

680

.44

61.1

882

.96

0.05

89.0

281

.48

79.2

289

.92

89.1

88.9

877

.84

83.0

462

.48

84.3

40.

05.5

90.0

483

.281

89.9

489

.94

89.2

279

.08

$3.8

264

.16

84.8

80.

0691

.76

54.5

281

.96

91.1

190

.190

.58(

1.86

8.5.

767

.287

.26

0(16

591

.82

8.5.

2283

.22

91.3

90.8

691

.12

82.3

887

68.8

88.2

2

FE

=P

ow

erenvelo

pe.

PQ

ST

=P

oin

t.o

pti

maI

sign

test

‘Lri

b16:

Po

er

c:û

I1L

pari

’on:

Non

—sc

aLio

narv

G.4

RC

’iî

ucse

SpI

—S

ampÏ

e=

Poin

t—opti

mal

sig

nte

sthn

sc’d

011

sam

ple

spli

tte

eFir

ncu

e

C[)

(1

99

5)=

Çatn

pbell

arid

Du

fcrn

r’s

(19

95

)te

st.

ITT

—tr

st=

T-t

est

hisc

’c1

oit

Whi

te’s

varia

nce

correcti

on.

QQ

PO

ST

Otl

teî

—T

ests

23

7

Page 256: Problèmes dléconométrie en macroéconomie et en finance

Bibliography of Chapter 1Berkowitz, J. and L. Kilian. (2000). “Recent Developments in Bootstrapping limeSeries,” Econometric Reviews, 19, 1—4$.

Bernanke, B. S. and I. Mihov. (1998). “Measuring Monetary Policy,” The QuarterlyJournal ofEconomics, 113(3), $69—902.

Bhansali, R. J. (1978). “Linear Prediction by Autoregressive Model Fitting in the TimeDornain,” Ann. Statist., 6, 224—231.

Boudjellaba, H., J.-M. Dufour, and R. Roy. (1992). “Testing Causality Between TwoVectors in Multivariate ARMA Models,” Journal of the American Statistical Association,87, 1082—1090.

Boudjellaba, H., 1.-M. Dufour, and R. Roy. (1994). “Simplified Conditions for NonCausality between Two Vectors in Multivariate ARMA Models,” Journal ofEconometrics, 63, 27 1—287.

Diebold, F. X. and L. Kilian. (2001). “Measuring Predictability. Theory andMacroeconomic Applications,” Journal ofApplied Econometrics, 16, 657—669.

Dufour, 1.-M. and D. Pelletier. (2005). “Practical methods for modelling weak VARMAprocesses: Identification, estimation and specification with a macroeconomicapplication,” Technical report, Département de sciences économiques and CIREQ,Université de Montréal, Montréal, Canada.

Dufour J.-M. and E. M. Iglesias. (2007). “Finite sample and optimal adaptive inference inpossibly nonstationary general volatility models with Gaussian or heavy-tailed errors,”Mimeo.

Dufour, J.-M., D. Pelletier, and É. Renault. (2006). “Short Run and Long Run Causalityin lime Series: Inference,” Journal ofEconometrics 132 (2), 337—362.

Dufour, J.-M. and T. Jouini. (2004). “Asymptotic Distribution of a Simple LinearEstimator for VARMA Models in Echelon Form,” forthcoming in Statistical Modelingand Analysis for Complex Data Problems, ed. by Pierre Duchesne and Bruno Remillard,Kluwer, The Netherlands.

Dufour, 1.-M. and E. Renault. (199$). “Short-Run and Long-Run Causality in limeSeries. Theory,” Econometrica, 66(5), 1099—1125.

Efron, B. and R. J. Tibshirani. (1993). “An Introduction to the Bootstrap,” New York.Chapman Hall.

Geweke, J. (1982). “Measurement of Linear Dependence and Feedback between Multiple

238

Page 257: Problèmes dléconométrie en macroéconomie et en finance

lime Series,” Journal ofthe American Statistical Association, 77(378), 304—313.

Geweke, J. (1984). “Measures of Conditional Linear Dependence and Feedback betweenlime Series,” Journal ofthe American Statistical Association, 79, 907—9 15.

Geweke, J. (1984a). “Inference and Causality in Economic Time Series,” in Handbook ofEconometrics, Volume 2, ed. by Z. Griliches and M. D. Intrilligator. Amsterdam. NorthHolland, pp. 1102-1144.

Gouriéroux, C., A. Monfort, and E. Renault. (1987). “Kullback Causality Measures,”Annales D’Economie et De Statistique, 6/7, 369—410.

Granger, C. W. J. (1969). “Investigating Causal Relations by Econometric Models andCross- Spectral Methods,” Econometrica, 37, 424—459.

Hannan, E. J., and L. Kavalieris. (1984b). “Multivariate Linear Time Series Models,”Advances in Applied Probability, 16, 492—561.

Hannan, E. J., and J. Rissanen. (1982). “Recursive Estimation of Mixed AutoregressiveMoving Average Order,” Biometrilca, 69, 8 1—94. Errata 70 (1983), 303.

Hsiao, C. (1982). “Autoregressive Modeling and Causal Ordering of EconomicVariables,” Journal ofEconomic Dynamics and Control, 4, 243—259.

moue, A. and L. Kilian. (2002). “Bootstraping Smooth functions of Siope Parametersand Innovation Variances in VAR(Infinite) Models,” International Economic Review, 43,309—332.

Kang, H. (1981). “Necessary and Sufficient Conditions for Causality Testing inMultivariate ARMA Model,” Journal ofTime Series Analysis, 2, 95—10 1.

Kilian, L. (1998). “Small-sample confidence intervals for impulse response functions,”Review ofEconomics and Statistics 80, 2 18—230.

Koreisha, S. G. and T. M. Pukkila. (1989). “Fast Linear Estimation Methods for VectorAutorgessive Moving-Average Models,” Journal of Time Series Analysis, 10(4), 325—339.

Lewis, R. and G. C. Reinsel. (1985). “Prediction of Multivariate lime Series byAutoregressive Model Fitting,” Journal ofMultivariate Analysis, 16, 393—411.

Ltitkepohl, H. (1993a). “Introduction to Multiple lime Series Analysis,” second edn,Springer-Verlag, Berlin.

239

Page 258: Problèmes dléconométrie en macroéconomie et en finance

LUtkepohl, H. (1993b). “Testing for causation between two variables in higherdimensional VAR models,” in H. Schneeweiss and K. Zimmermann, eds, ‘Studies inApplied Econometrics’, Springer-Verlag, Heidelberg.

Newbold, P. (1982). “Causality Testing in Economics. in lime Series Analysis. Theoryand Practice 1,” ed. by O. D. Anderson. Amsterdam. North-Holland.

Paparoditis, E. (1996). “Bootstrapping Autoregressive and Moving Average ParameterEstimates of Infinite Order Vector Autoregressive Processes,” Journal of MultivariateAnalysis 57, 277—96.

Parzen, E. (1974). “Some Recent Advances in lime Series Modelling,” IEEE Trans.Automat. Control, AC-19.

Patterson, K. (2007). “Bias Reduction Through ffrst-Order Mean Correction,Bootstrapping and Recursive Mean Adjustment,” Journal of Applied Statistics, 34, 23—45.

Pierce, D. A. and L. D. Haugh. (1977). “Causality in Temporal Systems.Characterizations and Survey,” Journal of Econometrics, 5, 265—293.

Polasek, W. (1994). “Temporal Causality Measures Based on AIC,” in H. Bozdogan,Proceedings of the frontier of Statistical Modeling. An Informal Approach, Kiuwer,Netherlands, pp. 159— 168.

Polasek, W. (2000). “Bayesian Causality Measures for Multiple ARCH Models UsingMarginal Likelihoods,” Working Paper.

Sims, C. (1972). “Money, Income and Causality,” American Economic Review, pp. 540—552.

Sims, C. (1980). “Macroeconomics and Reality,” Econometrica, 48, 1—48.

Wiener, N. (1956). “The Theory of Prediction,” In The Theory ofPrediction, Ed by E. f.Beckenback. New York. McGraw-Hill, Chapter 8.

Bibliography of Chapter 2Andersen, T. and Sorensen, B. (1994). “Estimation ofa Stochastic Volatility Model: AMonte Carlo Study,” Journal of Business and Economic Statistics 14, 328—352.

Andersen, T.G., T. Bollerslev, and f.X. Diebold. (2003). “Some Like it Smooth, andSome Like it Rough. Untangling Continuous and Jump Components in Measuring,Modeling, and Forecasting Asset Retum Volatility,” Working Paper.

Andersen, T.G., T. Bollerslev, f.X. Diebold, and H. Ebens. (2001). “The Distribution of

240

Page 259: Problèmes dléconométrie en macroéconomie et en finance

Stock Return Volatility,” Journal of Financial Economics, 61, 1, 43-76.

Andersen, T.G., T. Bollerslev, F.X. Diebold, and P. Labys. (2001). “The Distribution ofRealized Exchange Rate Volatility,” Journal of the American Statistical Association, 96,42-55.

Andersen, T.G., T. Bollerslev, and F.X. Diebold. (2003). “Parametric and NonParametric Volatility Measurement,” Handbook of Financial Econometrics (L.P Hansenand Y. Aït-Sahalia, eds.). Elsevier Science, New York, forthcoming.

Andersen, T.G. and T. Bollerslev. (1998). “Answering the Skeptics. Yes, StandardVolatility Models Do Provide Accurate Forecasts,” International Economic Review, 39,$85-905.

Andersen, T. G., T. Bollerslev, f. X. Diebold, and C. Vega. (2003). “Micro Effects ofMacro Announcements. Real-Time Price Discoveiy in Foreign Exchange,” AmericanEconomic Review, 93, 38-62.

Ang, A. and J. Liu. (2006). “Risk, Retum, and Dividends,” forthcoming Journal ofFinancial Economics.

Balduzzi, P., E. J. Elton, and T. C. Green. (2001). “Economic News and Bond Prices.Evidence from the U.S. Treasury Market,” Journal of Financial and QuantitativeAnalysis, 36, 523-544.

Barndorff-Nielsen, O.E. and N. Shephard. (2002a). “Econometric Analysis of RealizedVolatility and its Use in Estimating Stochastic Volatility Models,” Journal of the RoyalStatistical Society, 64, 253-280.

Barndorff-Nielsen, O.E. and N. Shephard. (2002b). “Estimating Quadratic VariationUsing Realized Variance,” Journal of Applied Econometrics, 17, 457-478.

Barndorff-Nielsen, O.E. and N. Shephard. (2003c). “Power and Bipower Variation withStochastic and Jumps,” Manuscript, Oxford University.

Barndorff-Nielsen, O.E., S.E. Graversen, J. Jacod, M. Podolskij, and N. Shephard.(2005). “A Central Lirnit Theorem for Realized Power and Bipower Variations ofContinuous Semimartingales.” Working Paper, Nuffield College, Oxford University;forthcoming in Yu Kabanov and Robert Liptser (eds.), From Stochastic Analysis toMathematical finance, Festschrift for Albert Shiryaev. New York. Springer-Verlag.

Bekaert, G. and G. Wu. (2000). “Asymmetric Volatility and Risk in Equity Markets,”The Review offinancial Studies, 13, 1-42.

Black, F. (1976). “Studies of Stock Price Volatility Changes,” Proceedings of the 1976Meetings ofthe American Statistical Association, Business and Economic Statistics, 177-

241

Page 260: Problèmes dléconométrie en macroéconomie et en finance

181.

Bollerslev, T. and H. Zhou. (2005). “Volatility Puzzles. A Unified framework forGauging Return-Volatility Regressions,” Journal of Econometrics, forthcoming.

Bollerslev, T., U. Kretschmer, C. Pigorsch, and G. Tauchen. (2005). “A Discrete-TimeModel for Daily S&P500 Retums and Realized Variations. Jumps and Leverage Effects,”Working Paper.

Bollerslev, T., J. Litvinova, and G. Tauchen. (2006). “Leverage and Volatility FeedbackEffects in High-Frequency Data,” Journal ofFinancial Econometrics 4 (3), 3 53-384.

Bouchaud, J-P., A. Matacz, and M. Potters. (2001). “Leverage Effect in FinancialMarkets. The Retarded Volatility Model,” Physical Review Letters, 87, 228 701.

Brandt, M. W., and Q. Kang. (2004). “On the Relationship Between the ConditionalMean and Volatility of Stock Retums. A Latent VAR Approach,” Journal of FinancialEconomics, 72, 2004, 2 17-257.

Campbell, J. and L. Hentschel. (1992). “No News is Good News. An Asymmetric ModelofChanging Volatility in Stock Retums,” Journal ofFinancial Economics, 31, 281-331.

Christie, A. C. (1982). “The Stochastic Behavior of Common Stock Variances- Value,Leverage and Intercst Rate Effects,” Journal ofFinancial Economics, 3, 145-166.

Comte, F. and E. Renault. (1998). “Long Memory in Continuous Time StochasticVolatility Models,” Mathematical Finance, 8, 29 1-323.

Corsi, F. (2003). “A Simple Long Memory Model of Realized Volatility,” Manuscript,University of Southern Switzerland.

Cutler, D. M., J. M. Poterba, and L. H. Summers. (1989). “What Moves Stock Prices?”The Journal ofPortfolio Management, 15, 4-12.

Dacorogna, M.M., R. Gençay, U. MUller, R.B. Olsen, and O.V. Pictet. (2001). “AnIntroduction to High-Frequency Finance,” San Diego. Academic Press.

Dufour J-M. and E. Renault. (1998). “Short-Run and Long-Run Causality in Time Series.Theory,” Econometrica 66(5), 1099-1125.

Dufour J-M. and A. Taamouti. (2006). “Nonparametric Short and Long Run CausalityMeasures,” in Proceedings of the 2006 Meetings of the American Statistical Association,Business and Economic Statistics, forthcoming.

Dufour J-M. and A. Taamouti. (2005). “Short and Long Run Causality Measures. Theoryand Inference,” Working Paper.

242

Page 261: Problèmes dléconométrie en macroéconomie et en finance

Engle, R.F and V.K. Ng. (1993). “Measuring and Testing the Impact of News onVolatility,” Journal of Finance, 42, 1749-1778.

French, M., W. Schwert, and R. Stambaugh. (1987). “Expected Stock Returns andVolatility,” Journal offinancial Economics, 19, 3-30.

Ghysels, E., P. Santa-Clara and R. Vallcanov. (2002). “The MIDAS Touch. Mixed DataSampling Regression,” Discussion Paper UCLA and UNC.

Ghysels, E., P. Santa-Clara, and R. Valkanov. (2004). “There is a risk-return trade-offafter ail”, Journal offinancial Economics, 76, 509-548.

Glosten, L. R., R. Jagannathan, and D. E. Runlde. (1993). “on the Relation Between theExpected Value and the Volatility of the Nominal Excess Retum on Stocks,” Journal ofFinance, 48, 1779-1801.

Gouriéroux, C. and A. Monfort. (1992). “Qualitative threshold ARCH models,” Journalof Econometrics 52, 159-200.

Granger, C. W. J. (1969). “Investigating causal relations by econometric models andcross-spectral methods,” Econometrica 37, 424--459.

Guo, H., and R. Savickas. (2006). “Idiosyncratic Volatility, Stock Market Volatility, andExpected Stock Retums,” Journal of Business and Economic Statistics, 24(1), 43-56.

Hardouvelis, G. A. (1987). “Macroeconomic information and stock prices.” Journal ofEconomics and Business, 39, 131-140.

Haugen, A. H., E. Talmor, and W. N. Torous. (1991). “The Effect ofVolatility Changeson the Level of Stock Prices and Subsequent Expected Returns,” Journal of Finance, 46,985-1007.

Hull, J. and A. White. (1987). “The pricing of options with stochastic volatilities,”Journal of Finance, 42, 28 1-300.

Huang, X. and G. Tauchen. (2005). “The Relative Contribution of Jumps to Total PriceVariance,” Working Paper.

Huang, X. (2007). “Macroeconomic News Announcements, Financial Market Volatilityand Jumps,” Working Paper.

Jacquier, E., N. Polson, and P. Rossi. (2004). “Bayesian Analysis of Stochastic VolatilityModels with Leverage Effect and Fat tails,” Journal ofEconometrics, 122.

Jain, P. C. (1988). “Response of Hourly Stock Prices and Trading Volume to Economic

243

Page 262: Problèmes dléconométrie en macroéconomie et en finance

News,” The Journal of Business, 61, 219-231.

Lamoureux, C. G. and G. Zhou. (1996). “Temporary Components of Stock Retums:What Do the Data Teli us?” Review offinancial Studies 9, 1033--1059.

Ludvigson, S. C. and S. Ng. (2005). “The Empfrical Risk-Return Relation. A FactorAnalysis Approach,” Forthcoming, Journal of Financial Econornics.

McQueen, G. and V. V. Roley. (1993). “Stock Prices, News, and Business Conditions,”The Review offinancial Studies, 6, 683-707.

Meddahi, N. (2002). “A Theoretical Comparison Between Integrated and RealizedVolatility,” Journal ofApplied Econometrics, 17, 475-508.

Mifiler, U., M. Dacorogna, R. Dav, R. Olsen, O. Pictet, and J. von Weizsacker. (1997).“Volatilities of different time resolutions - analyzing the dynamics of marketcomponents,” Journal of Empirical Finance 4, 213 {39.

Nelson, D. B. (1991). “Conditional Heteroskedasticity in Asset Retums. A NewApproach,” Econometrica, 59, 347-370.

Pagan, A.R., and G.W. Schwert. (1990). “Alternative models for conditional stockvolatility,” Journal ofEconometrics 45, 267-290.

Pearce, D. K. and V. V. Roley. (1985). “Stock Prices and Economic News,” Journal ofBusiness, 58, 49-67.

Pindyck, R.S. (1984). “Risk, Inflation, and the Stock Market,” Arnerican EconomicReview, 74, 334-35 1.

Schwert, G.W. (1989). “Why Does Stock Market Volatility Change Over Time?” JournalofFinance, 44, 1115-1153.

Schwert, G. W. (1981). “The Adjustrnent of Stock Prices to Information AboutInflation,” Journal of Finance, 36, 15-29.

Turner, C.M., R. Startz, and C.R. Nelson. (1989). “A Markov Model ofHeteroskedasticity, Risk and Learning in the Stock Market,” Journal of FinancialEconomics, 25, 3-22.

Whitelaw, R. F. (1994). “Time Variations and Covariations in the Expectation andVolatility of Stock Market Retums,” The Journal of Finance, 49(2), 515--41.

Wiggins, J. (1987). “Option Values Under Stochastic Volatility: Theory and EmpiricalEstirnates,” Journal offinancial Economics 19, 35 1—372.

244

Page 263: Problèmes dléconométrie en macroéconomie et en finance

Wu, G. (2001). “The determinants of Asymmetric Volatility,” Review ofFinancialStudies, 14, 837-859.

Yu, J. (2005). “Is No News Good News? Reconciling Evidence from ARCH andStochastic Volatility Models,” Working Paper, Department ofEconomics, SingaporeManagement University.

Bibliography of Chapter 3Balduzzi, P. and A. W. Lynch. (1999). “Transaction Costs and Predictability. SomeUtility Cost Calculations,” Journal of financial Economics, 52, 47--78.

Breen, W., L. R. Glosten, and R. Jagannathan. (1989). “Economic Significance ofPredictable Variations in Stock Index Retums,” Journal of Finance, 44(5), 1177--1189.

Billio, M. and L. Polizzon (2000). “Value at Risk. a Multivariate Switching RegimeModel,” Journal of Empirical Finance Vol 7, 53 1-554

Bohmann, H. (1961). “Approximate Fourier analysis of distribution function,” Ark. Mat.4, 99-157.

Bohmann, H. (1970). “A method to calculate the distribution when the characteristicfunction is known,” Nordisk Tidskr. Informationsbehandling (BIT) 10, 237-42.

Bohmann, H. (1972). From Characteristic Function to Distribution function Via FourierAnalysis. Nordisk Tidskr. Infonnationsbehandling (BIT) 12, 279-83.

Campbell, J. Y. (1987). “Stock Retums and the Term Structure,” Journal of financialEconomics, 18, 373--399.

Campbell, J. Y. and R. J. Shiller. (1988). “Stock Prices, Earning, and ExpectedDividends,” Journal of finance, 43, 661--676.

Campbell, J. Y., Y. L. Chan, and L. M. Viceira. (2002). “A Multivariate Model ofStrategic Asset Allocation,” Journal ofFinancial Economics, forthcoming.

Campbell, J. Y. and L. M. Viceira. (2005). “The Term Structure of the Risk-ReturnTradeaff,” Working paper.

Cardenas, J., E. Fruchard, E. Koehler, C. Michel, and I. Thomazeau. (1997). “VAR. OneStep Beyond,” Risk 10 (10), 72-75.

Cooper, M. R. C. Gutierrez, Jr., and W. Marcum. (2001). “On the Predictability of StockReturns in Real Time,” Journal of Business, Forthcoming.

245

Page 264: Problèmes dléconométrie en macroéconomie et en finance

Cooper, M., and H. Gulen. (2001). “Is Time-series Based Predictability Evident in Realtime?,” Working Paper.

Davies, R. (1973). “ Numerical inversion of a characteristic function,” Biometrika 60,415-417.

Davies, R. (1980). “The distribution of a linear combination of chi-squared randomvariable,” Applied Statistics 29, 323-333.

Duffie, D. and J. Pan. (2001). “Analytical Value-At-Risk with Jumps and Credit Risk,”Finance and Stochastics, Vol. 5, No. 2, pp 155-180.

Engle, R. and S. Manganelli. (2002). “CAViaR. Conditional Autoregressive Value AtRisk By Regression Quantiles,” Forthcoming in Journal of Business and EconomicStatistics.

Gil-Pelaez, J. (1951). “Note on the Inversion Theorem, “Biometrika 38, 481-482.

Gomes, F. (2002). “Exploiting Short-Run Predictability,” Working Paper, LondonBusiness School.

Gordon, J. A., and A. M. Baptista. (2000). “Economic Implications of Using a MeanVaR Model for Portfolio Selection. A Comparison with Mean-Variance Analysis,”Working Paper.

Guidolin, M. and A. Timmermann (2005). “Term Structure of Risk under AlternativeEconometric Specifications,” Forthcoming in Journal of Econometrics.

Fama, E., and W. Schwert. (1977). “Asset Retums and Inflation,” Journal of FinancialEconomics, 5, 115-146.

Fama, E. F. and K. R. French. (1988). “Dividend Yields and Expected Stock Returns,”Journal ofFinancial Economics, 22, 3--25.

Fama, E. F. and K. R. French. (1989). “Business Conditions and Expected Returns onStocks and Bonds,” Journal ofFinancial Economics, 25, 23--49.

Feller. W. (1966). “An introduction to probability theory and its applications,” Vol.2.New York. Wiley.

Hamilton, D. J. (1989). “A New Approach to the Economic Analysis of NonstationaryTime Series and the Business Cycle,” Econometrica, Vol 57, No.2, 357-324.

Hamilton, D. J. (1994). “lime Series Analysis,” Princeton University Press.

Handa, P. and A. Tiwari. (2004). “Does Stock Return Predictability Imply Improved

246

Page 265: Problèmes dléconométrie en macroéconomie et en finance

Asset Allocation and Performance?,” Working Paper, University oflowa.

Han, Y. (2005). “Can An Investor Profit from Return Prcdictability in Real lime,”Working Paper.

Hodrick, R. J. (1992). “Dividend Yields and Expected Stock Retums. AlternativeProcedures for Inference and Measurement,” The Review of Financial Studies, 5, 357--386.

Imhof, J. P. (1961). “Computing the Distribution of Quadratic Fonus in NormalVariables,” Biometrika, 48, 419-426.

Jacobsen, B. (1999). “The Economic Significance of Simple Time Series Models ofStock Retum Predictability,” Working Paper, University of Amsterdam.

Kandel, S. and R. F. Stambaugh. (1996) . “On the Predictability of Stock Retums. AnAsset-Allocation Perspective,” Journal of finance, 5 1(2), 385--424.

Keim, D. B. and R. F. Stambaugh. (1986). “Predicting Retums in the Stock and BondMarkets,” Journal ofFinancial Economics, 17, 357--390.

Lynch, A. W. (2001). “Portfolio Choice and Equity Characteristics. Characterizing theHedging Demands Induced by Retum Predictability,” Journal of Financial Economics,62, 67--130.

Marquering, W. and M. Verbeek. (2001). “The Economic Value of Predicting StockIndex Retums and Volatility,” Working Paper, Tilburg University.

Meddahi, N. and A. Taamouti. (2004). “Moments of Markov Switching Models,”Working paper.

Michaud, R. 0. (1998). “Efficient Asset Management. A Practical Guide to StockPortfolio Optimization and Asset Allocation,” Harward Business Scholl Press.

Mina, J. and Ulmer, A. (1999). “Delta-Gamma Four ways,” Working paper.

Pesaran, M. H. and A. Timmermann. (1995). “Predictability of Stock Returns.Robustness and Economic Significance,” Journal of finance, 50(4), 1201--1228.

RiskMetrics. (1995). Technical Document, W Morgan. New York, USA.

Rouvinez, C. (1997). “Going Greek with VAR,” Risk 10 (2).

Shephard, N. G. (1991 ,a). “Numerical integration rules for multivariate inversions,”Journal of Statistical Computation and Simulation, Vol. 39, pp. 37-46.

247

Page 266: Problèmes dléconométrie en macroéconomie et en finance

Shephard, N. G. (1991 ,b). “From characteristic function to distribution function. Asimple framework for the theory,” Economic Theoiy forthcoming.

Bibliography of Chapter 4Abdellchalek, T. and J.-M. Dufour. (1998). “Statistical inference for computable generalequilibrium models, with application to a model of the Moroccan economy,” Review ofEconomics and Statistics LXXX, 520.534.

Arrow. K. (1960). “Decision Theory and the Choice of a Level of Significance for the T-Test,” In Contributions to Probability and Statistics (01km et al., eds.) StanfordUniversity Press, Stanford, California.

Bahadur, R. and L. J. Savage. (1956). “The nonexistence of certain statistical proceduresin non-parametric problems,” Annals of Mathematical Statistics 27, 1115.22.

Bobmann, H. (1972). “From characteristic function to distribution function via fourieranalysis,” Nordisk Tidskr. Informationsbehandling (BIT) 12, 279.83.

Boldin, M. V., G. I. Simonova, and Y. N. Tyurin. (1997). “Sign-based methods in linearstatistical models,” Translations of Mathematical Monographs, American MathematicalSociety, Vol. 162.

Campbell, B. and J.-M. Dufour. (1995). “Exact nonparametric orthogonality and randomwalk tests,” Review ofEconomics and Statistics 77, 1.16.

Campbell, B. and J.-M. Dufour. (1997). “Exact nonparametric tests of orthogonality andrandom walk in the presence of a drifi parameter,” International Economic Review 38,151.173.

Christoffersen, P. F. and D. Pelletier. (2004). “Backtesting value-at-risk A durationbased approach,” Journal ofFinancial Econometrics pp. 84.108.

Christoffersen, P. F. (1998). “Evaluating interval forecasts,” International EconomicReview 39, 841.862.

Coudin, E. and J.-M. Dufour. (2005). “Finite sample distribution-free inference in linearmedian regressions under heteroskedasticity and nonlinear dependence of unknownform,” Technical Report, CREST and Universite de Montreal.

Davies, R. (1973). “Numerical inversion of a characteristic function,” Biometrika 60,415.417.

Davies, R. (1980). “The distribution of a linear combination of chi-squared randomvariable,” Applied Statistics 29, 323.333.

248

Page 267: Problèmes dléconométrie en macroéconomie et en finance

Dufour, J-M. (1997). “Some impossibility theorems in econometrics, with applications tostructural and dynamic models,” Econometrica 65, 1365.13 89.

Dufour, J-M. (2003). “Identification, weak instruments and statistical inference ineconometrics,” Canadian Journal ofEconomics 3 6(4), 767.808.

Dufour, J.-M. and J. Jasiak. (2001). “Finite sample limited information inference methodsfor structural equations and models with generated regressors,” International EconomicReview 42, 815.843.

Dufour, J-M. and M. L. King. (1991). “Optimal invariant tests for the autocorrelationcoefficient in linear regressions with stationary or nonstationary AR(1) enors,” Journal ofEconometrics 47, 115.143.

Dufour, J-M. and J. F. Kiviet. (1998). “Exact inference methods for first-orderautoregressive distributed lag models,” Econometrica 66, 79.104.

Dufour, J-M. and M. Taamouti. (2005). “Projection-Based Statistical Inference in LinearStructural Models with Possibly Weak Instruments,” Econometrica, 73(4), 1351—1365.

Dufour, J-M. and O. Tonès. (1998). “Union-intersection and sample-split methods ineconometrics with applications to SURE and MA models,” In D. E. A. Giles and A.Ullah, editors, .Handbook of Applied Economic Statistics., pp. 465.505. Marcel Dekker,New York.

Elliott, G., T. J. Rothenberg, and J. H. Stock. (1996). “Efficient tests for an autoregressiveunit root,” Econometrica 64(4), 813.836.

Friedman, B. M. and D. I. Laibson. (1989). “Economic implications of extarordinarymovements in stock prices (with comments and discussion),” Brookings Papers onEconomic Activity 20, 137.189.

Gil-Pelaez, J. (1951). “Note on the inversion theorem,” Biometrilca 38, 481.482.

Gorman, T. (2004). Applied Adaptive Statistical Methods,” Society for Industrial andApplied Mathematics.

Hotta, L. K. and R. S. Tsay. (1998). “Outliers in GARCH processes,” unpublishedmanuscript Graduate School of Business University of Chicago.

Imhof, J. P. (1961). “Computing the distribution of quadratic forms in normal variables,”Biometrika 48, 419.426.

Jansson, M. (2005). “Point optimal tests of the nuil hypothesis of cointegration,” JournalofEconometrics 124, 187.201.

249

Page 268: Problèmes dléconométrie en macroéconomie et en finance

King, M. L. (1988). “Towards a theory of point optimal testing (with comments),”Econometric Rcviews 6, 169.255.

Lehmann, E. L. and C. Stem. (1949). “On the theory of some non-parametrichypotheses,” Annals ofMathematical Statistics 20, 28.45.

Lehmann, E. L. (1958). “Significance level and power,” Annals of MathematicalStatistics 29, 1167. 1176.

Lehmann, E. L. (1959). “Testing Statistical Hypotheses,” New York. John Wiley.

Lehmann, E. L. and J. P. Romano. (2005). “Testing Statistical Hypothesis,” SpringerTexts in Statistics. Springer-Verlag, New York., third cd.

Minkiw, N. G. and M. Shapfro. (1986). “Do we reject too often? small sample propertiesof tests ofrational expectations models, “Economic Letters 20, 139.145

Pratt, J. and J. Gibbons. (1981). “Concepts of Nonparametric Theory,” New York.Springer Verlag.

Rousseeuw, P. J. (1983). “Regression Techniques with High Breakdown Point,” TheInstitute of Mathematical Statistics Bulletin, 12, 155.

Rousseeuw, P. J. and V. J. Yohai. (1984).”Robust Regression by Means of S-Estimators,”in Robust and Nonlinear Time Series Analysis, eU. by W. H. Franke, and D. Martin, pp.256—272. Springer-Verlag, New York.

Rousseeuw, P. J. and A. M. Leroy. (1987). “Robust Regression and Outiier Detection,”Wiley Series in Probability and Mathematical Statistics. Wiley, New York.

Sanathanan, L. (1974). “Critical power function and decision making,” Journal of theAmerican Statistical Association 69, 398.402.

Schwert, G. (1990). “Stock volatility and the crash of 87,” The Review of FinancialStudies 3(1), 77.102.

White, H. (1980). “A heteroskedasticity-consistent covariance matrix estimator and adirect test for heteroskedasticity, “Econometrica 48, 817.838.

Wright, J. H. (2000). “Alternative variance-ratio tests using ranlcs and signs, “ Journal ofBusiness and Economic Statistics 18(1), 1.9.

Yohai, V. J. and R. H. Zamar. (1988). “High Breakdown Point Estimates ofRegressionby Means ofthc Minimization of an Efficient Scale,” Journal ofthe American StatisticalAssociation, 83, 406—413.

250

Page 269: Problèmes dléconométrie en macroéconomie et en finance

ConcÏusioll gélléraleDans cette thèse, nons traitons des problèmes d’économétrie en macroéconomie et en

finance. D’abord, fl0115 développons (les mesures tic causalité à différent horizons avec

des applications macroéconorniciries et financières. Ensuite, nous dérivons tics mesures

de risque financier qui tiennent compte tics effets stylisés qu’on observe sur les marchés

financiers. Finalernellt, nous clérivo;is tics tests optimaux pour tester les valeurs des

paramètres dans les modèles de régression linéaires et non-linéaires.

Dans le premier essai nous développons des mesures tic causalité à tics horizons plus

grands que un. lesquelles généralisent les mesures de causalité habituelles ttui se limitent

à l’horizon mi. Ceci est motivé par le fait ciue, en présence d’un vecteur de variables

auxiliaires Z. il est possible que la variable Y ne cause pas la variable X à l’horizon

un. ruais tiu’elle cause celle-ci à im horizon plus grand que un [voir Dufour et Renault

(1998)]. Dans ce cas, on parle d’une causalité iirdirecte transmise par la variable anixili

aire Z. Nous proposons des mesures pararnétrittues et non paramétriques pour les effets

rétroactifs (feedback dfihts) et l’effet instantané à im horizon quelconque li. Les mesures

paralnétritlues sont définies en termes tic coefficients d’impulsion (impulse response co

efficients) tic la représentation VMA. Par analogie avec Geweke (1982), nous définissons

une mesure tic tiépendance à l’horizon 1, qui se décompose en somme des mesures tics

effets rétroactifs tic X vers ‘, de Y vers X et de l’effbt instantané à l’horizon h. Nous

montrons également coimuent ces mesures de causalité peuvent être reliées aux mesures

de prédictibilité développées par Diehold et Kilian (1998). Nous proposons une nou

velle approche ponmr évaluer ces mesures tic causalité en simulant un granti échantillon à

partir du i)I’ocessnis ti’intérût. Des intervalles de confiance non paramétriques. basés sur

la technique de bootstrap. sont également proposés. Finalement, nous présentons mie

application empirique où est analysée la causalité à différents 1iorizons cintre la monnaie.

le taux d’intérêt, les prix et le produit intérieur bruit arx États-Unis. Les résultats mon

trent que: la mommaie cause le taux d’intérêt seulement à l’horizoll un, l’effet du produit

intérieur bruit sur le taux tl’intérêt est significatif tiurant les quatre premiers mois, l’effet

2.51

Page 270: Problèmes dléconométrie en macroéconomie et en finance

du taux (l’intérêt sur les prix est significatif à l’horizon un et finalement le taux d’intérêt

cause le produit intérieur bruit jusqu’à un horizon de 16 mois.

Dans le deuxième essai nous quantifions et analysons la relation entre la volatilité et

les rendements thms les données à haut-fréquence. Dans le cadre d’un modèle vectoriel

liuéaire autorégressif de rendements et de la volatilité réalisée, nous quantifions l’effet de

levier et l’effet de la volatilité sur les rendements (ou l’effet rétroactif de la volatilité) en

se servant des mesures de causalité à court et à long ternie proposées dans l’essai 1. En

utilisant (les observations à chaque 5 minute sur l’indice boursier S&P oDO. nous mesurons

une faible présence (le l’effet de levier dynarnique pour les quatre premières heures clans

les données horaires et un important effet de levier dynamique pour les trois premiers

jours clans les données journalières. L’effet de la volatilité sur les rendements s’avère

iréghgeable et non significatif à tous les horizons. Nous utilisons également ces mesures

de causalité pour quantifier et tester l’iiïipact des bonnes et des mauvaises nouvelles sur

la volatilité. D’abord, nous évaluons par simulation la capacité de ces mesures à détecter

l’effet différentiel de bonnes et mauvaises nouvelles flans divers modèles paramétriques (le

volatilité. Ensuite, empiriquement, nous mesurons im important impact des mauvaises

nouvelles, ceci à plusieurs horizons. Statistiquement. l’impact des mauvaises nouvelles

est significatif durant les quatre premiers jours. tandis que l’impact de bonnes nouvelles

reste négligeable à tous les horizons.

Dans le troisième essai, nous modélisons les rendements des actifs sous forme d’un

processus à changements de régime markovien afin de capter les propriétés importantes

des marchés financiers, telles que les cjueues épaisses et la persistance clans la distribu

tion des rendements. De là, nons calculoiis la fonction de répartition du processus des

rendements à plusieurs horizons afin clapproximer la Valeur—à—Risque (VaR) condition

nelle et obtenir une forme explicite de la mesure (le risque «déficit prévu» d’un porte—

leuille linéaire à l)lusieul’s horizons. Finalement, nous caractérisons la frontière efficiente

moyenne—variance clynamicue d’un portefeuille linéaire. En utilisant des observations

journalières sur les indices boursiers SP 500 et TSE 300. d’abord nous constatons que

252

Page 271: Problèmes dléconométrie en macroéconomie et en finance

le risque conditionnel (variance ou VaR) des rendements d’un portefeuille optimal. quant!

est tracé connue fonction de l’horizon h, peut augmenter ou diminuer à des horizons

intermédiaires et converge vers une constante- le risque inconditiormel- à des horizons

suffisamment larges. Deuxièmement. les frontières efficientes à des horizons multiples

(les portefeuilles optimaux changent clans le temps. finalement, à court terme et dans

73.56% (le l’échantillon, le portefeuille optimal conditionnel a mie meilleure performance

que le portefeuille optimal inconditionnel.

Dans le cjuatriène essai. nous dérivons un simple test (le signe point optimal dans

le cadre des modèles de régression linéaires et non linéaires. Ce test est exact, robuste

contre une forme inconnue d’hétéroscedasticité, ne requiert pas d’hypothèses sur la forme

tic la distribution et il peut être inversé pour obtenir des régions tic confiance pour tin

vecteur dc paramètres inconnus. Nous proposons une approche aciaptative basée sur la

techl1iqrlc dc sribcÏivision ci’échaitillon pour choisir une alternative telle que la courbe de

puissance du test de signe point optimal soit plus proche de la courbe de l’enveloppe (le

puissance. Les simulations indiquent que quawl on utilise à iu près 10% tic l’échantillon

potir estimer l’alternative et le reste, à savoir’ 90%, pour calculer la statistique dti test,

la courbe de puissance de notre test est typiquement proche dc la courbe de Fenveloppe

de puissance. Nous avons également fait une étude de Monte Carlo pour évaluer la

performance du test dc signe “quasi” point optimal en comparant sa taille ainsi que

sa puissa;ce avec celles tic certains tests usuels, qui sont supposés être robustes contre

hétéroscédasticité, et les résultats montrent la supériorité tic notre test.

253