18
É É Rosion Rosion INterne INterne dans les dans les OuvragesHydrauliques OuvragesHydrauliques Internal Erosion in Hydraulic Works Internal Erosion in Hydraulic Works Essais Essais de de laboratoire laboratoire (CEMAGREF) Nadia Benahmed Nadia Benahmed PROJET ANR PGCU ERINOH

ÉRosion Rosion INterne INterne dans les OuvragesHydrauliques OuvragesHydrauliques · 2012. 1. 19. · hydraulic works (earth dams, dykes,…) @ Failure. ERINOH 2008 ¨ Four types

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • ÉÉRosionRosion INterneINterne dans les dans les OuvragesHydrauliquesOuvragesHydrauliques Internal Erosion in Hydraulic WorksInternal Erosion in Hydraulic Works

    EssaisEssais de de laboratoirelaboratoire (CEMAGREF)

    Nadia BenahmedNadia Benahmed

    PROJET ANR PGCU ERINOH

  • 1993 Camargue dikes, France

    12 breaches in December 1993 and 4 breaches in January 1994

    Saint-Gilles flood, 2003

    Breache of Fourques, Petit Rhône Rive Droite

    The Ouches Dam, 2001 (200 years old)

    - 3 total breaches- 3 partial breaches- 5 fatalities

    Sinkholes

    Rupture of Aramon dike, 2002

    Contexte

  • On sait depuis quelques années qu’il y a environ 8000 km de digues de protection contre les inondations en France :

    – 8700 km* au dernier recensement

    – … dont 2500 km* dans les régions Provence-Alpes-Côte d’Azur (1890 km : 1/22) et Languedoc-Roussillon (650 km : 4/22)

    … mais depuis peu de temps que :

    – 2700 km* de digues (existantes) de classes A et B doivent faire l’objet d’une étude de dangers d’ici le 31/12/2012

    – 3200 km* de classe C d’ici le 31/12/2014

    * Sources : logiciel BarDigues (R Tourment, M. Wolff – Cemagref)

    Rappel

  • Internal erosion : complex phenomenon which affect stability of hydraulic works (earth dams, dykes,…) Failure

    ERINOH 2008 Four types of internal erosion:

    • Regressive erosion • Contact erosion• Suffosion• Piping flow erosion

    Ouches dam, july

    2001

  • Brief

    review…Sherard et al. 1976:

    Pinhole Test Apparatus

    Lack: Qualitative test, no quantitative data!

  • Other references :

    Hole Erosion test (Christensen & Das, 1973)

    Leakage Erosion test (Hjeldnes & Lavania, 1980)

    Drill Erosion test (Lefebvre, 1986) (Canada)

    Crack Erosion test (Sanchez & al., 1983; Maranha das Neves, 1987)

    Surface and Internal Erosion test (Reddi, Lee & Bonala, 2000)

    Constat :

    Several experimental procedures

    Dispersion and different interpretations of experimental results

    Nonexistence of appropriate theoretical model to fit the

    experimental data !!!

    Brief

    review…

  • Pressure transducersTurbidity meter

    Flowmeter

    Hole

    Erosion Device

    (CEMAGREF)

    Turbidity meter

    Pressure outSample

    Pressure in

    Flow in

    Flow out

  • Experimental

    results

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    0:00:00 0:15:00 0:30:01 0:45:01 1:00:01 1:15:01 1:30:02 1:45:02 2:00:02

    Temps (h)

    Déb

    it Q

    (kg/

    h) ;

    Turb

    idité

    (NTU

    )

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Gra

    dien

    t de

    pres

    sion

    Del

    ta P

    (kPa

    )

    Turbidité (NTU)Débit massique (kg/h)Delta P (kPa)

    ( )sinon

    si

    0er b c b ckm

    τ τ τ τ⎧ − >⎪= ⎨⎪⎩

    &

    Loi d’érosion à seuil : Paramètres d’érosion :

    • Seuil d’érosion τc• Coefficient d’érosion kd

  • • Seuil d’érosion τc• Coefficient d’érosion kd

    0

    1

    2

    3

    4

    5

    6

    71 10 100 1000

    Eros

    ion

    rate

    inde

    x Ie

    Fell DataSample N°1

    Critical shear stress τc (Pa)

    Moderatly rapid

    Very rapid

    Moderatly slow

    Very slow

    Extremely slow

    Extremely rapid

    Wan and Fell guidelines

    Experimental

    results

    Wan and Fell (2002, 2004)

  • Experimental

    resultsSlot erosion test :

    Sample before erosion Sample during testing Sample after erosion

    Hole erosion test :

    Sample after erosionSample before erosion Sample after erosion

  • Sample before erosion Sample after erosion, upstream side

    Naturel soil : Silty sand (26% sand, 58% silts, 16% clay)

    Sample after erosion, down stream side

    Naturel soil : Sandy silt (72% sand, 23% silts, 4% clay)

    Collapse of the sample during filling of the testing cell

    Experimental

    results

  • Soil : KAOLINITE

    0.001 0.01 0.1 1 10 100Dimension des particules (mm)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Tam

    isat

    (%)

    KAOLIN

    pH 4 to 9

    Density : 2.6 g/cm3

    Dry density Opt. : 1.51 t/m3

    W Opt. : 23.5 %

    Wl = 49 Wp = 33 Ip = 16 Grain size distribution

    Experimental

    study

  • Effect of moisture content on τc and Ie (ρd = 1.4 t/m3 (95% OPN))

    0

    10

    20

    30

    40

    50

    60

    70

    16 20 24 28 32

    Moisture content W (%)

    Crit

    ical

    she

    ar s

    tress

    τc

    (Pa)

    0

    1

    2

    3

    4

    5

    6

    16 20 24 28 32

    Moisture content W (%)

    Eros

    ion

    rate

    inde

    x Ie

    Effect of dry density on τc and Ie (W = 23.5 %)

    20

    30

    40

    50

    60

    1,20 1,25 1,30 1,35 1,40 1,45 1,50

    Dry density ρd (t/m3)

    Crit

    ical

    she

    ar s

    tres

    s τc

    (Pa)

    0

    1

    2

    3

    4

    5

    1,20 1,25 1,30 1,35 1,40 1,45 1,50

    Dry density ρd (t/m3)

    Eros

    ion

    rate

    inde

    x Ie

    Experimental

    results

  • Effect of energy of compaction

    3,761,75E-041,00E-012,01E-0428,511517,2Sample N° 2(1/4 Proctor)

    3,951,18E-046,49E-021,36E-0465,291517,9Sample N° 1(Proctor)

    IeCe(s/m)kd

    (cm3/N.s)ker

    (s/m)τc

    (Pa)W(%)

    γd(kN/m3)

    3,761,75E-041,00E-012,01E-0428,511517,2Sample N° 2(1/4 Proctor)

    3,951,18E-046,49E-021,36E-0465,291517,9Sample N° 1(Proctor)

    IeCe(s/m)kd

    (cm3/N.s)ker

    (s/m)τc

    (Pa)W(%)

    γd(kN/m3)

    Fell guidelines0

    1

    2

    3

    4

    5

    6

    71 10 100 1000

    Eros

    ion

    rate

    inde

    x Ie

    Fell DataSample N°1Sample N°2

    Critical shear stress τc (Pa)

    Moderatly rapid

    Very rapid

    Moderatly slow

    Very slow

    Extremely slow

    Extremely rapid

    1/4 Proctor

    Proctor

  • Effect of clay content

    Sample N°1

    Sample N°2

    Sample N°3

    Sand > 50 μm (%) 44 41 33

    Silt > 2 μm (%) 30 39 41

    Clay < 2 μm (%) 26 20 26

    γd (kN/m3) 16,7 16,7 16,7

    W (%) 18 19 21

    τc (Pa) 103,25 31,49 110,75

    Ie 4,10 3,60 4,19

    kd (cm3/N.s) 4,68E-02 1,48E-02 3,82E-01

    Fell guidelines0

    1

    2

    3

    4

    5

    6

    71 10 100 1000

    Eros

    ion

    rate

    inde

    x Ie

    Fell DataSample N°1Sample N°2Sample N°3

    Critical shear stress τc (Pa)

    Moderatly rapid

    Very rapid

    Moderatly slow

    Very slow

    Extremely slow

    Extremely rapid

  • Ageing effect ?

    Wan et Fell guidelines0

    1

    2

    3

    4

    5

    6

    71 10 100 1000

    Eros

    ion

    rate

    inde

    x Ie

    Fell Data

    ReconstitutedsamplesUndisturbedsamples

    Critical shear stress tc (Pa)

    Moderatly rapid

    Very rapid

    Moderatly slow

    Very slow

    Extremely slow

    Extremely rapid

    HET tests on naturel soils

  • Merci de votre attention !

  • Failure of Teton Dam by piping

    Failure: On 3 hours only!

    Contexte

    Diapositive numéro 1Diapositive numéro 2Diapositive numéro 3Diapositive numéro 4Diapositive numéro 5Diapositive numéro 6Diapositive numéro 7Diapositive numéro 8Diapositive numéro 9Diapositive numéro 10Diapositive numéro 11Diapositive numéro 12Diapositive numéro 13Diapositive numéro 14Diapositive numéro 15Diapositive numéro 16Diapositive numéro 17Diapositive numéro 18