37
The Physics of the cosmic microwave background Bonn, August 31, 2005 Ruth Durrer Départment de physique théorique, Université de Genève

Ruth Durrer Départment de physique théorique, Université de Genève

Embed Size (px)

DESCRIPTION

The Physics of the cosmic microwave background Bonn, August 31, 2005. Ruth Durrer Départment de physique théorique, Université de Genève. Contents. Introduction - PowerPoint PPT Presentation

Citation preview

Page 1: Ruth Durrer Départment de physique théorique, Université de Genève

The Physics of the cosmic microwave background

Bonn, August 31, 2005

Ruth Durrer Départment de physique théorique, Université de Genève

Page 2: Ruth Durrer Départment de physique théorique, Université de Genève

Contents

• Introduction• Linear perturbation theory

- perturbation varibles, gauge invariance- Einstein’s equations- conservation & matter equations- simple models, adiabatic perturbations- lightlike geodesics- polarisation

• Power spectrum• Observations• Parameter estimation

- parameter dependence of CMB anisotropies and LSS- reionisation- degeneracies

• Conlusions

Page 3: Ruth Durrer Départment de physique théorique, Université de Genève

The cosmic micro wave background, CMB

• After recombination (T ~ 3000K, t~3x105 years) the photons propagate freely, simply redshifted due to the expansion of the universe

• The spectrum of the CMB is a ‘perfect’ Planck spectrum:

< 10-4-4

y < 10-5

Page 4: Ruth Durrer Départment de physique théorique, Université de Genève

CMB anisotropies

WMAP (2003)

COBE (1992)

Page 5: Ruth Durrer Départment de physique théorique, Université de Genève

The CMB has small fluctuations, T/T » a few £ 10-5. As we shall see they reflect roughly the amplitude of the gravitational potential. => CMB anisotropies can be treated with linear perturbation theory. The basic idea is, that structure grew out of small initial fluctuations by gravitational instability. => At least the beginning of their evolution can be treated with

linear perturbation theory.

As we shall see, the gravitational potential does not grow within linear perturbation theory. Hence initial fluctuations with an amplitude of » a few £ 10-5 are needed.

During a phase of inflationary expansion of the universe such fluctuations emerge out of the quantum fluctuations of the inflation and the gravitational field.

Page 6: Ruth Durrer Départment de physique théorique, Université de Genève

• metric perturbations

•Decomposition into scalar, vector and tensor components

Linear cosmological perturbation theory

Page 7: Ruth Durrer Départment de physique théorique, Université de Genève

Perturbations of the energy momentum tensor

Density and velocity

stress tensor

Page 8: Ruth Durrer Départment de physique théorique, Université de Genève

Gauge invariance

Linear perturbations change under linearized coordinate transformations, but physical effects are independent of them. It is thus useful to express the equations in terms of gauge-invariant combinations. These usually also have a simple physical meaning.

is the analog of the Newtonian potential. In simple cases =.

In longitudinal gauge, the metric perturbations are given by

h(long) = -2 d2 -2ijdxi dxj

Gauge invariant metric fluctuations (the Bardeen potentials)

_

Page 9: Ruth Durrer Départment de physique théorique, Université de Genève

The Weyl tensor

The Weyl tensor of a Friedman universe vanishes. Its perturbation it therefore a gauge invariant quantity. For scalar perturbations, its ‘magnetic part’ vanishes and the electric part is given by

Eij = C

iju u = ½[i j( +) -1/3(+)]

Page 10: Ruth Durrer Départment de physique théorique, Université de Genève

Velocity and density perturbations

Gauge invariant variables for perturbations of the energy momentum tensor

The anisotropic stress potential

The entropy perturbation

w=p/c2

s=p’/’

Page 11: Ruth Durrer Départment de physique théorique, Université de Genève

•Einstein equations

constraints +

dynamical _

• Conservation equations

+

Page 12: Ruth Durrer Départment de physique théorique, Université de Genève

matter

• The D1-mode is singular, the D2-mode is the adiabatic mode

• In a mixed matter/radiation model there is a second regular mode, the isocurvature mode

• On super horizon scales, x<1, is constant• On sub horizon scales, Dg and V oscillate while

oscillates and decays like 1/x2 in a radiation universe.

Simple solutions and consequences

radiation

x=csk

Page 13: Ruth Durrer Départment de physique théorique, Université de Genève

radiation in a matter dominated background withPurely adiabatic fluctuations, Dgr = 4/3 Dm

Simple solutions and consequences (cont.)

Page 14: Ruth Durrer Départment de physique théorique, Université de Genève

+ +

RD ‘90

lightlike geodesics From the surface of last scattering into our antennas

the CMB photons travel along geodesics. By integrating the geodesic equation, we obtain the change of energy in a given direction n:

Ef/Ei = (n.u)f/(n.u)i = [Tf/Ti](1+ Tf /Tf -Ti /Ti) This corresponds to a temperature variation. In first

order perturbation theory one finds for scalar perturbations

acoustic oscillations

Doppler term

gravitat. potentiel (Sachs Wolfe)

integrated Sachs Wolfe ISW

Page 15: Ruth Durrer Départment de physique théorique, Université de Genève

Polarisation• Thomson scattering depends on polarisation: a

quadrupole anisotropy of the incoming wave generates linear polarisation of the outgoing wave.

Page 16: Ruth Durrer Départment de physique théorique, Université de Genève

Polarisation can be described by the Stokes parameters, but they depend on the choice of the coordinate system. The (complex) amplitude

iei of the 2-component electric field defines the spin 2 intensity Aij = i

*j which can be written in terms of Pauli matrices as

Q§ iU are the m = § 2 spin eigenstates, which are expanded in spin 2 spherical harmonics. Their realand imaginary parts are called the ‘electric’ and ‘magnetic’ polarisations

(Seljak & Zaldarriaga, 97, Kamionkowski et al. ’97, Hu & White ’97)

Page 17: Ruth Durrer Départment de physique théorique, Université de Genève

E is parity even while B is odd. E describes gradient fields on the sphere (generated by scalar as well as tensor modes), while B describes the rotational component of the polarisation field (generated only by tensor or vector modes).

E-polarisation(generated by scalar and tensor modes)

B-polarisation(generated only by the tensor mode)

Due to their parity, T and B are not correlated while T and E are

Page 18: Ruth Durrer Départment de physique théorique, Université de Genève

An additional effect on CMB fluctuations is Silk damping: on small scales, of the order of the size of the mean free path of CMB photons, fluctuations are damped due to free streaming: photons stream out of over-densities into under-densities.

To compute the effects of Silk damping and polarisation we have to solve the Boltzmann equation for the Stokes parameters of the CMB radiation. This is usually done with a standard, publicly available code like

CMBfast (Seljak & Zaldarriaga), CAMBcode (Bridle & Lewis) or CMBeasy (Doran).

Page 19: Ruth Durrer Départment de physique théorique, Université de Genève

Reionization

The absence of the so called Gunn-Peterson trough in quasarspectra tells us that the universe is reionised since, at least, z» 6.Reionisation leads to a certain degree of re-scattering of CMB photons. This induces additional damping of anisotropiesand additional polarisation on large scales (up to the horizonscale at reionisation). It enters the CMB spectrum mainlythrough one parameter, the optical depth to the lastscattering surface or the redshift of reionisation zre .

Page 20: Ruth Durrer Départment de physique théorique, Université de Genève

Gunn Peterson trough

normal emission

no emission

In quasars with z<6.1 the photons with wavelength shorter that Ly-a are not absorbed.

(from Becker et al. 2001)

Page 21: Ruth Durrer Départment de physique théorique, Université de Genève

The power spectrum of CMB anisotropies

T(n) is a function on the sphere, we can expand itin spherical harmonics

observed mean

cosmic variance (if the alm ’s are

Gaussian)

consequence ofstatistical isotropy

Page 22: Ruth Durrer Départment de physique théorique, Université de Genève

The physics of CMB fluctuations

< ’800 >

• Small scales : Damping of fluctuations due to the imperfect coupling of photons and electrons during recombination

(Silk damping).

’ < 1o

100<<800

• Intermediate scales : Acoustic oscillations of the baryon/photon fluid before recombination.

> 1o

<100

• Large scales : The gravitational potential on the surface of last scattering, time dependence of the gravitational potential ~ 10-5 .

Page 23: Ruth Durrer Départment de physique théorique, Université de Genève

Power spectra of scalar fluctuations

Page 24: Ruth Durrer Départment de physique théorique, Université de Genève

WMAP data

Temperature (TT = C) Polarisation (ET)

Spergel et al (2003)

Page 25: Ruth Durrer Départment de physique théorique, Université de Genève

Newer data I

From Readhead et al. 2004

CBI

Page 26: Ruth Durrer Départment de physique théorique, Université de Genève

Newer data II

(From T. Montroy et al. 2005)The present knowledge of the EE spectrum.

Page 27: Ruth Durrer Départment de physique théorique, Université de Genève

Observed spectrum of anisotropies

Tegm

ark

et

al. 0

3

Page 28: Ruth Durrer Départment de physique théorique, Université de Genève

Acoustic oscillationsDetermine the angular distance to the last scattering surface, z1

Page 29: Ruth Durrer Départment de physique théorique, Université de Genève

larger

Dependence on cosmological parameters

more baryons

Most cosmological parameters have complicated effects on the CMB spectrum

Page 30: Ruth Durrer Départment de physique théorique, Université de Genève

Geometrical degeneracydegeneracy

lines: Flat Universe (ligne of

constant curvature K=0 )

Degeneracy:

shift

Flat Universe:

= h2

Page 31: Ruth Durrer Départment de physique théorique, Université de Genève

Primordial parameters Scalar spectum: scalar spectral index nS and

amplitude A

nS = 1 : scale invariant spectrum (Harrison-Zel’dovich)

blue, nS > 1

red, nS < 1

Tensor spectum:(gravity waves)

nT > 0

nT > 0

The ‘smoking gun’ of inflation, has not yet been detected: B modes of the polarisation (QUEST, 2006).

Page 32: Ruth Durrer Départment de physique théorique, Université de Genève

Mesured cosmological parameters

Attention: FLATNESS imposed!!!

On the other hand: tot = 1.02 +/- 0.02 with the HST prior on h...

zreion ~ 17unexpectedly early reionisation

(With CMB + flatness or CMB + Hubble)

=0.73§0.11

a rigid constraint which is in slight tension with nucleosynthesis?bar = 0.02 + 0.002

Spergel et al. ‘03

Page 33: Ruth Durrer Départment de physique théorique, Université de Genève

Forecast1: WMAP 2 year data(Rocha et al. 2003)

b = bh2

m = mh2

= h2

ns spectral indexQ quad. amplit.R angular diam. optical depth

Page 34: Ruth Durrer Départment de physique théorique, Université de Genève

Forecast2: Planck 2 year data

Forecast2: Planck 2 year data(Rocha et al. 2003)

Page 35: Ruth Durrer Départment de physique théorique, Université de Genève

Forecast3: Cosmic variance limited data

(Rocha et al. 2003)

Page 36: Ruth Durrer Départment de physique théorique, Université de Genève

Evidence for a cosmological constant

Sn1a, Riess et al. 2004(green)CMB + Hubble(orange)Bi-spectrum Verde 2003(blue)

(from Verde, 2004)

Page 37: Ruth Durrer Départment de physique théorique, Université de Genève

• The CMB is a superb, physically simple observational tool to learn more about our Universe.

• We know the cosmological parameters with impressive precision which will still improve considerably during the next years.

• We don’t understand at all the bizarre ‘mix’ of cosmic components: bh2 ~ 0.02, mh2 ~ 0.16, ~ 0.7

• The simplest model of inflation (scale invariant spectrum of scalar perturbations, vanishing curvature) is a good fit to the data.

• What is dark matter?

• What is dark energy?

• What is the inflaton?

Conclusions

! We

have

not ru

n out o

f pro

blems i

n cosm

ology!