9
Rapport TP Routes | 1 Rapport TP Routes Soufiane OUAADIDY Ibtissam KOURDOU Brahim SAID Mohammed BENMESSAOUD 2GC3 Professeurs : Mme. Fouzia KASSOU M. Mehdi MELIANI

Tp Route Gc3

Embed Size (px)

Citation preview

Page 1: Tp Route Gc3

Rapport TP Routes | 1

Rapport TP Routes

Soufiane OUAADIDY

Ibtissam KOURDOU

Brahim SAID

Mohammed BENMESSAOUD

2GC3

Professeurs :

Mme. Fouzia KASSOU M. Mehdi MELIANI

Page 2: Tp Route Gc3

Rapport TP Routes | 2

Sommaire :

I. Introduction

� Le comportement du sol en fonction de la teneur en eau

� Phénomène du matelassage

� L’évolution de l’IPI en fonction de la teneur en eau

II. But et principe des essais

III. Resultats :

- Essai Proctor modifié

- Essai CBR

- Classifcation LPC

- Classification GTR

- Commentaires

Page 3: Tp Route Gc3

Rapport TP Routes | 3

Introduction :

Compacter un sol consiste à faire diminuer son volume par l'application d'un procédé

mécanique (force, vibration, combinaison des deux, chocs,…). Cette diminution de volume ne se

produit que par l'élimination des vides remplis d'air qui existent dans le sol à son état initial.

L'influence de la teneur en eau sur le résultat d'un compactage a été étudié dès 1933

par l'ingénieur américain Proctor, qui a mis au point l'essai de compactage qui porte son nom. Cet

essai a pour but de déterminer l’optimum proctor, qui correspond à la teneur en eau optimale qui

permet de compacter le sol au maximum avec un minimum d'efforts et de le rendre le moins

perméable possible. Et on a :

Si w(in situ) < wOPM => On arrose pour avoir un bon compactage

Si w(in situ) > wOPM => On élimie l’eau, traitement à la chaux ou soleil.

Plus le sol et à degré de saturation élevé plus on risque d’avoir des problèmes de

matelassage, qui se traduit par la formation de bourrelets lors du compactage d’un sol trop humide,

alors une certaine instabilite de l'engin et finalement une impossibilite de compactage.

Le sol doit résister au enfoncement lors du compactage, l’essai CBR permet de déterminer

l’IPI, qui est utilisé pour caractérisé l’état hydrique moyennement à très humide d’un sol sensible à

l’eau. L’IPI diminue avec l’augmentation de la teneur en eau ce qui est traduit une diminution

de la portance du sol.

Le but et le principe des essais :

• Essai Proctor

L’essai Proctor a pour but de déterminer les caractéristiques de compactage d’un sol : La teneur en eau optimum Proctor normal (Wopn en %) et la masse volumique maximale correspondante. La teneur en eau optimum Proctor modifié (Wopm en %) et la masse volumique maximale correspondante. L’essai Proctor comporte deux variantes : l’essai Proctor Normal et l’essai Proctor Modifié. Les deux variantes sont identiques dans le principe adopté. Seules les valeurs des paramètres qui définissent l’énergie de compactage diffèrent. Le principe consiste à humidifier un sol à

Page 4: Tp Route Gc3

Rapport TP Routes | 4

plusieurs teneurs en eau, et à le compacter selon un procédé standard. Pour chacune des teneurs en eau considérées, la masse volumique sèche

correspondante est déterminée. Les résultats permettent d’établir une courbe des variations de la masse volumique en fonction de la teneur en eau. Cette courbe est appelée courbe Proctor. La valeur maximale de cette courbe est obtenue pour une valeur particulière de la teneur en eau : c’est ce

point qui caractérise l’Optimum Proctor Normal ou Modifié.

• Calcul de l’indice CBR Immédiat :

Le principe général de cet essai consiste à mesurer les forces à appliquer sur un poinçon cylindrique de 19,35 cm2 de section pour le faire pénétrer à

la vitesse de 1,27 mm/min dans une éprouvette de sol. Les valeurs particulières des deux forces ayant provoqué les enfoncements de 2,5 et 5 mm sont alors rapportés aux valeurs de 13,35 et 20 kN, qui sont respectivement les forces observées sur un matériau de référence pour les mêmes enfoncements. L’indice recherché est alors conventionnellement défini comme la plus grande des deux valeurs calculées. Il est exprimé en %.

Page 5: Tp Route Gc3

Rapport TP Routes | 5

Resultats :Resultats :Resultats :Resultats :

l’essai Proctor Modifié :

On a adopté l’essai Proctor Modifié. 4 échantillons de masse humide 7kg ont été préparés, avec des valeurs de teneurs en eau

respectivement de 7,5 %, 10 %, 9 % et 13,5%.

ms mh m(eau,rajoutée)

G1 : W= 7,5% 6.51 Kg 7Kg 488.37 ml

G2 : W=10% 6.36 Kg 7Kg 636.36 ml

G3 : W=9% 6.42 Kg 7Kg 577.98 ml

G4 : W=13,5% 6.16 Kg 7Kg 832.59 ml

Avec :

ms = = = = ��

���

m(eau,rajoutée) = = = = �����

��

Après avoir préparé l’échantillon, le répartir en 5 parties égales, nous avons utilisé le moule

CBR pour compacter l’échantillon : 55 coups pour chaque partie.

Ensuite chaque groupe a calculé la masse volumique correspondante à chaque échantillon.

• Résultats :

Les résultats obtenus par notre groupe sont les suivants :

Teneur en eau (donnée par l’assistant) W 7,5% Masse totale humide 12,06 Kg Masse du moule 6,26 Kg Masse du sol humide (Mh) 5,8 Kg Masse du sol sec (Ms) 5,39 Kg Volume du moule (m³) 0,00276 Masse volumique humide (t/ m³) 2,102 Masse volumique sèche (t/ m³) 1,956

D’après les essais réalisés sur les différentes teneurs en eau, on trouve :

Groupe 1 2 3 4 teneur en eau 7,5 10 9 13,5

Page 6: Tp Route Gc3

Rapport TP Routes | 6

(%)

ᵧd 1.82 2,08 2,01 1,91

On obtient la courbe suivante : ᵧd= f(w)

Ainsi la meilleure densité correspond à une densité = 2.4 et une teneur en eau W= 9.5.

• Vérification de la teneur en eau :

N° de la tare 3 Masse totale humide 77g Masse totale sèche 74g Masse de la tare 27,5g Masse de l’eau 3g Teneur en eau finale 6,45% Moyenne 6.975%

1.8

1.85

1.9

1.95

2

2.05

2.1

0 5 10 15

Essai Proctor modifié

Essai Proctor modifié

Page 7: Tp Route Gc3

Rapport TP Routes | 7

l’essai CBR :

Cet essai consiste à déterminer les caractéristiques de portance d'un matériau (sol ou matériau

d'assises de chaussée) dans différentes conditions de compactage et de teneur en eau. Il est applicable

aux matériaux dont la proportion des diamètres supérieurs à 20 mm ne dépasse pas 25 %.

Le principe général de cet essai consiste à mesurer les forces à appliquer sur un poinçon

cylindrique de 19,35 cm2 de section pour le faire pénétrer à la vitesse de 1,27 mm/min dans une

éprouvette de sol. Les valeurs particulières des deux forces ayant provoqué les enfoncements de 2,5 et

5 mm sont alors rapportés aux valeurs de 13,35 et 20 kN, qui sont respectivement les forces observées

sur un matériau de référence pour les mêmes enfoncements. L’indice recherché est alors

conventionnellement défini comme la plus grande des deux valeurs calculées. Il est exprimé en %.

• Résultats :

Le sol avec lequel on travaille a pour maximum proctor égale à 12%, pour cela l’essai n’a

donné aucun résultat pour notre échantillon.

On trouve finalement :

Groupe 1 2 3 4 W(%) 7,5 10 9 13,5

IPI 474,74 45 40,4 0

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15

IPI

IPI

Page 8: Tp Route Gc3

Rapport TP Routes | 8

I. Classification LCP :

� Un sol grenu dont 50% des éléments (>80μm) est retenu au tamis de 2 mm

� Moins de 5% est inférieur à 80μm

Diamètre Refus Partiel pourcentage partiel Pourcentage passant

50 95 2,06% 99,99%

40 375 8,19% 97,92%

30 201 4,39% 89,73%

25 441 9,63% 85,34%

20 360 7,86% 75,71%

15 271 5,92% 67,85%

12.5 139 3,04% 61,93%

10 92 2,01% 58,89%

8 87 1,90% 56,88%

6.3 81 1,77% 54,98%

4 138 3,01% 53,21%

2 182 3,98% 50,20%

1 163 3,56% 46,22%

0,5 370 8,08% 42,66%

0,25 1224 26,74% 34,58%

0,125 329 7,19% 7,84%

0 30 0,66% 0,66%

� On a Cu� ��

�� = 9/0.135 = 66.7 > 4

Donc le sol et un grave propre mal gradué

II. Classer le sol selon la classification GTR :

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Granulometrie

Granulometrie

Page 9: Tp Route Gc3

Rapport TP Routes | 9

� VBS = 25 * (100/40) * 0.01 = 0.625

� WL = 5% Wp = 4% � Ip=1%

L’analyse granulométrique résulte :

� Dmax=50 mm.

� Passant à 50 mm = 99.9%

� Passant à 2 mm = 49.8%

� Passant à 80 μm < 12%

� Classe B4

� Wopt =10%

� IPI = 45

� Wn=

���� Classe B4m

III. Commentaires :

� Quels sont les caractères principaux de ce sol ?

La plasticité de leurs fines rend ces sols sensibles à l'eau. Ils sont plus graveleux que les sols B2 et leur fraction sableuse est plus faible. Pour cette raison, ils sont en général perméables. Ils réagissent assez rapidement aux variations de l'environnement hydrique et climatique (humidification - séchage). Lorsqu'ils sont extraits dans la nappe, il est assez peu probable, en climat océanique, que leur état hydrique puisse s'améliorer jusqu'à devenir "moyen". Leur emploi en couche de forme sans traitement avec des LH nécessite, par ailleurs, la mesure de leur résistance mécanique (Los Angelès, LA, et/ou Micro Deval en présence d'eau, MDE).