218
T T H H È È S S E E En vue de l'obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l’Université Toulouse III – Paul Sabatier Discipline ou spécialité : Génie Electrique JURY P. DEMONT Professeur à l’Université Toulouse III – Paul Sabatier Président du jury L. FLANDIN Professeur à l’Université de Savoie, Le Bourget-du-Lac Rapporteur P. NOTINGHER Professeur à l’Université Montpellier II Rapporteur N. ZOUZOU Maître de Conférences à l’Université de Poitiers Examinateur L. BOUDOU Maître de Conférences à l’Université Toulouse III – Paul Sabatier Directeur de thèse S. LE ROY Chargée de Recherche à l’Université Toulouse III – Paul Sabatier Co-directrice de thèse G. TEYSSEDRE Directeur de Recherche à l’Université Toulouse III – Paul Sabatier Invité Ecole doctorale : Génie Electrique, Electronique, Télécommunications Unité de recherche : Laboratoire Plasma et Conversion d’Energie - UMR 5213 Directeur(s) de Thèse : Laurent BOUDOU, Séverine LE ROY Rapporteurs : Lionel FLANDIN, Petru NOTINGHER Présentée et soutenue par HOANG Mai Quyen Le 10 décembre 2014 Titre : Implémentation de la polarisation dans un modèle de transport de charges appliqué au PEN sous contrainte électrique

TTHHÈÈSSEE - thesesups.ups-tlse.fr

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TTHHÈÈSSEE - thesesups.ups-tlse.fr

TTHHÈÈSSEE

En vue de l'obtention du

DDOOCCTTOORRAATT DDEE LL’’UUNNIIVVEERRSSIITTÉÉ DDEE TTOOUULLOOUUSSEE

Délivré par l’Université Toulouse III – Paul Sabatier

Discipline ou spécialité : Génie Electrique

JURY

P. DEMONT Professeur à l’Université Toulouse III – Paul Sabatier Président du jury

L. FLANDIN Professeur à l’Université de Savoie, Le Bourget-du-Lac Rapporteur

P. NOTINGHER Professeur à l’Université Montpellier II Rapporteur

N. ZOUZOU Maître de Conférences à l’Université de Poitiers Examinateur

L. BOUDOU Maître de Conférences à l’Université Toulouse III – Paul Sabatier Directeur de thèse

S. LE ROY Chargée de Recherche à l’Université Toulouse III – Paul Sabatier Co-directrice de thèse

G. TEYSSEDRE Directeur de Recherche à l’Université Toulouse III – Paul Sabatier Invité

Ecole doctorale : Génie Electrique, Electronique, Télécommunications

Unité de recherche : Laboratoire Plasma et Conversion d’Energie - UMR 5213

Directeur(s) de Thèse : Laurent BOUDOU, Séverine LE ROY Rapporteurs : Lionel FLANDIN, Petru NOTINGHER

Présentée et soutenue par HOANG Mai Quyen Le 10 décembre 2014

Titre :

Implémentation de la polarisation dans un modèle de transport de charges appliqué au PEN sous contrainte électrique

Page 2: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 3: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Remerciements

Le travail présenté dans ce mémoire fait partie du projet Agence Nationale de la

Recherche (ANR) « ModElec » et a été réalisé pendant trois années au Laboratoire Plasma et

Conversion d’Énergie (LAPLACE) UMR 5213 | Toulouse au sein de l’équipe « Diélectriques

Solides et Fiabilité » (DSF). Pendant cette période, j’ai eu la chance d’être accueilli et d’avoir

rencontré des personnes envers lesquelles je voudrais exprimer ma gratitude pour leur

soutien.

Mes premiers remerciements sont tout naturellement pour mes directeurs de thèse,

Séverine Le Roy et Laurent Boudou, pour m'avoir fait confiance, et puis pour m'avoir guidé,

encouragé, conseillé tout au long de mes trois années de thèse. Votre disponibilité et votre

générosité m’ont permis d’évoluer dans les meilleures conditions en me laissant une grande

liberté et en me faisant l'honneur de me déléguer plusieurs responsabilités. Merci infiniment.

Je remercie sincèrement Monsieur Philippe Demont, Professeur | l’Université Toulouse

III – Paul Sabatier, de m’avoir fait l’honneur de présider mon jury de thèse.

J’adresse également ma profonde reconnaissance | Monsieur Lionel Flandin, Professeur

| l’Université de Savoie, Le Bourget-du-Lac et à Monsieur Petru Notingher, Professeur à

l’Université Montpellier II, pour avoir accepté d’être les rapporteurs de mon travail. Je

souhaite aussi remercier Monsieur Noureddine Zouzou, Maître de Conférences | l’Université

de Poitiers, pour l’honneur que vous m’avez fait en acceptant de faire partie du jury. Vos

remarques et commentaires m’ont permis d’améliorer ce mémoire et je vous en suis très

reconnaissant.

Je remercie Monsieur Christian Laurent, Directeur du LAPLACE, ainsi que Monsieur

Gilbert Teyssèdre, Responsable de l’équipe DSF, pour m'avoir accueilli et pour les conseils

stimulants que j'ai eu l'honneur de recevoir de votre part.

Page 4: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Je tiens | remercier l’ensemble du personnel du laboratoire, | ceux qui m’ont beaucoup

aidé dans mon travail et à tous les autres qui ont contribué à la bonne ambiance du labo.

Un grand remerciement s’adresse | Madame Catherine Stasiulis, qui m’a aidé avec

enthousiasme pour les procédures administratives.

Je tiens aussi | remercier Monsieur Stéphane Clain, Professeur | l’Université do

Minho, Portugal pour m’avoir accueilli pendant un mois inoubliable | Braga, Portugal ainsi

que pour les discussions scientifiques que nous avons échangées.

Je remercie bien évidemment mes camarades de bureau, Abderrahmane et Lucie, pour

votre aide, votre soutien quotidien, vos cours français authentiques avec de l’humour et pour

les bons moments passés ensemble. Je pense aussi à mes collègues Laplaciens : Laurent R,

Siham, Xiaolin, Christina, Jonathan, Bo, Florian, Laurent M,…. Merci pour l’amitié que

vous m’avez témoignée.

Mes remerciements s'adressent aussi à tous mes amis vietnamiens, de Grenoble, de

Toulouse et d’ailleurs qui m’ont permis de sentir que la distance géographique France-

Vietnam est réduite en partageant des moments agréables ensemble.

Je ne pourrais pas finir cette page sans dire un grand merci à ma famille au Vietnam.

Leurs encouragements et leur assistance morale m’ont permis de passer les moments difficiles.

Tout naturellement, je pense | mon épouse Dung qui m’accompagne et qui me soutient

tout le temps par la force et l’énergie qui lui sont disponibles.

En fin, je dédie ce travail à ma fille chérie, Hà Anh Émilie, le soleil de ma vie …

Page 5: TTHHÈÈSSEE - thesesups.ups-tlse.fr

A mes parents, à ma famille

A Dung, à petite Émilie

Quyển luận văn tiến sĩ n|y con xin d|nh tặng bố mẹ v| gia đình

Công cha như núi Th{i Sơn

Nghĩa mẹ như nước trong nguồn chảy ra

Tặng vợ v| con g{i yêu quý

Page 6: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 7: TTHHÈÈSSEE - thesesups.ups-tlse.fr

I

Table des matières

Liste des abréviations et symboles ..................................................................................... V

Table des figures .............................................................................................................. VIII

Liste des tableaux ............................................................................................................. XV

INTRODUCTION GENERALE ....................................................................... 1

CHAPITRE I ETAT DE L’ART ................................................................ 5

I.1 Introduction .......................................................................................................... 7

I.1.1 Applications des polymères dans l’industrie électrique et électronique ................ 7

I.1.2 Problématique ......................................................................................................... 8

I.1.3 Objectifs ................................................................................................................. 9

I.2 Physique des polymères ..................................................................................... 10

I.2.1 Définitions ............................................................................................................ 10

I.2.2 Microstructure des polymères .............................................................................. 11

I.2.2.1 Structure moléculaire ....................................................................................... 11 I.2.2.2 Etat amorphe, état cristallin, morphologie cristalline ..................................... 13

I.2.3 Domaines d'état et zones de transition ................................................................. 14 I.2.3.1 Domaines d’état ............................................................................................... 14

I.2.3.2 Zones de transition ........................................................................................... 15 I.2.3.3 Diagrammes d’état des polymères ................................................................... 16 I.2.3.4 Etude des transitions ........................................................................................ 17

I.3 Charge d’espace et mécanismes de conduction ............................................... 17

I.3.1 Origine et effets de la charge d’espace sur le champ appliqué ............................ 17

I.3.2 Théorie des bandes ............................................................................................... 19

I.3.3 Mécanismes de conduction .................................................................................. 20

I.3.3.1 Conduction électronique .................................................................................. 20 I.3.3.2 Conduction ionique .......................................................................................... 27

I.4 Polarisation, mécanismes de relaxation diélectrique ...................................... 29

I.4.1 Polarisation diélectrique ....................................................................................... 29

Page 8: TTHHÈÈSSEE - thesesups.ups-tlse.fr

II

I.4.1.1 Définition de la polarisation diélectrique ........................................................ 29

I.4.1.2 Différentes contributions à la polarisation ...................................................... 30 I.4.1.3 Polarisation dans le domaine temporel ........................................................... 31 I.4.1.4 Relation temps-fréquence ................................................................................. 35

I.4.2 Courants transitoires ............................................................................................. 36 I.4.2.1 Généralités ....................................................................................................... 36 I.4.2.2 Expression du courant de déplacement ............................................................ 37 I.4.2.3 Caractéristiques des courants transitoires ...................................................... 37 I.4.2.4 Cas d’un courant de dépolarisation anormal .................................................. 38

I.4.3 Relaxation diélectrique sous tension sinusoïdale ................................................. 39 I.4.3.1 Comportement dynamique de la polarisation .................................................. 39 I.4.3.2 Dépendance en température des temps de relaxation ...................................... 46 I.4.3.3 Relaxations multiples dans les diélectriques .................................................... 47 I.4.3.4 Comportement global des caractéristiques diélectriques ................................ 49

I.5 Modélisation du comportement d’un diélectrique sous contraintes de champ

électrique et de température .............................................................................................. 51

I.5.1 Modélisation du transport de charges ................................................................... 51 I.5.1.1 Modèles semi-macroscopiques ......................................................................... 52 I.5.1.2 Modèle de base de notre étude ......................................................................... 54

I.5.2 Modélisation de la polarisation dans le domaine temporel .................................. 58 I.5.2.1 Modélisation du courant transitoire ................................................................ 58 I.5.2.2 Notre approche ................................................................................................. 58

CHAPITRE II APPROCHE EXPERIMENTALE ................................. 61

II.1 Matériau d’étude ................................................................................................ 63

II.1.1 Poly(éthylène naphtalène 2,6- dicarboxylate) - PEN ........................................... 63

II.1.2 Métallisation ......................................................................................................... 65

II.2 Analyse enthalpique différentielle (DSC) ......................................................... 65

II.2.1 Principe ................................................................................................................. 65

II.2.2 Dispositif expérimental ........................................................................................ 65

II.2.3 Analyse ................................................................................................................. 66

II.3 Mesure de charge d’espace ................................................................................ 67

II.3.1 Principe de la méthode PEA ................................................................................. 68

II.3.2 Dispositif expérimental ........................................................................................ 69

II.4 Mesures de courant ............................................................................................ 70

II.4.1 Courant de Dépolarisation Thermo-Stimulés (TSDC) ......................................... 70 II.4.1.1 Principe ............................................................................................................ 71

II.4.1.2 Dispositif expérimental .................................................................................... 72 II.4.1.3 Analyse des pics de relaxation ......................................................................... 73

II.4.2 Courant de polarisation alternée (APC) ............................................................... 74 II.4.2.1 Principe ............................................................................................................ 74 II.4.2.2 Dispositif expérimental .................................................................................... 76

Page 9: TTHHÈÈSSEE - thesesups.ups-tlse.fr

III

II.5 Mesure d’électroluminescence (EL) ................................................................. 77

II.5.1 Principe ................................................................................................................. 77

II.5.2 Dispositif expérimental ........................................................................................ 78

II.6 Mesure de la spectroscopie diélectrique ........................................................... 79

II.6.1 Principe ................................................................................................................. 79

II.6.2 Dispositif expérimental ........................................................................................ 81

II.7 Conclusion ........................................................................................................... 83

CHAPITRE III CARACTERISATION ELECTRIQUE ET

DIELECTRIQUE DU PEN .............................................................................. 85

III.1 Caractérisation du PEN polarisé à 130ºC par des mesures TSDC ................ 87

III.1.1 Evolution des pics de relaxation en fonction de la tension de polarisation .......... 88

III.1.2 Evolution des pics de relaxation en fonction de la vitesse de chauffage ............. 89

III.2 Caractérisation du PEN polarisé à 170ºC ........................................................ 91

III.2.1 Evolution des pics de relaxation en fonction de la tension de polarisation .......... 91

III.2.2 Analyse bibliographique de l’origine du pic ρ ..................................................... 92

III.2.3 Caractérisation non-électrique par DSC et lien avec le pic de relaxation ρ ......... 96

III.2.4 Mesures TSDC sur du PEN pour différents temps de polarisation à 170ºC ........ 97

III.2.5 Méthode de chauffage partiel ............................................................................... 98

III.2.6 « Driving voltage » pendant la dépolarisation ................................................... 100

III.3 Profils de charge d’espace ............................................................................... 103

III.3.1 Conditions expérimentales ................................................................................. 103

III.3.2 Profils de charge d’espace pendant le protocole classique de TSDC ................ 104

III.3.3 Profils de charge d’espace pendant le protocole de TSDC utilisant la méthode de

chauffage partiel ................................................................................................................. 109

III.4 Mesures par spectroscopie diélectrique ......................................................... 112

III.4.1 Protocole de mesure ........................................................................................... 112

III.4.2 Evolution des relaxations en fonction de la température ................................... 112

III.4.3 Evolution des relaxations en fonction de la fréquence ....................................... 114

III.5 Mesures du courant de polarisation à champ faible ..................................... 115

III.5.1 Conditions de mesure ......................................................................................... 115

III.5.2 Courants de polarisation à champ faible ............................................................ 117

III.6 Mesures de courants à champ fort et d’électroluminescence (EL) .............. 118

III.6.1 Protocole expérimental ....................................................................................... 118

III.6.2 Courants de polarisation à champ fort ................................................................ 118

III.6.3 Electroluminescence ........................................................................................... 122

III.7 Conclusion ......................................................................................................... 124

Page 10: TTHHÈÈSSEE - thesesups.ups-tlse.fr

IV

CHAPITRE IV MODELISATION DE LA POLARISATION ET DU

TRANSPORT DANS LE PEN ....................................................................... 127

IV.1 Modélisation de la polarisation ....................................................................... 130

IV.1.1 Analyse diélectrique dans le domaine fréquentiel .............................................. 130 IV.1.1.1 Modélisation du pic β ................................................................................. 131 IV.1.1.2 Modélisation du pic β

* ................................................................................ 136

IV.1.1.3 Modélisation du pic α et la conduction σ ................................................... 139

IV.1.2 Cohérence des résultats de spectroscopie diélectrique et du courant de

polarisation mesuré à champ faible .................................................................................... 141 IV.1.2.1 Méthode d’inversion utilisant la transformée de Fourier inverse ............. 141 IV.1.2.2 Courant de polarisation dans une large gamme de temps ......................... 144

IV.2 Modélisation du transport ............................................................................... 146

IV.2.1 Présentation du modèle de transport de charges en Matlab ............................... 146

IV.2.2 Implémentation de la polarisation dans le modèle de transport de charges ....... 147 IV.2.2.1 Evolution des équations dans le modèle de transport de charges ............. 147 IV.2.2.2 Validation isotherme à champ faible ......................................................... 150

IV.2.3 Modèle d’optimisation ....................................................................................... 151

IV.2.4 Validation du modèle à champ fort .................................................................... 153 IV.2.4.1 Extraction des paramètres de transport des mesures expérimentales ....... 153 IV.2.4.2 Validation du modèle de conduction pour du PEN .................................... 163

IV.3 Discussion .......................................................................................................... 167

IV.3.1 Stratégie adoptée ................................................................................................ 167

IV.3.2 Modélisation des spectres TSDC ....................................................................... 169

IV.3.3 Amélioration du modèle ..................................................................................... 171

CONCLUSION GENERALE ........................................................................ 175

REFERENCES BIBLIOGRAPHIES ............................................................ 179

Page 11: TTHHÈÈSSEE - thesesups.ups-tlse.fr

V

Liste des abréviations et symboles

ADN Acide désoxyribonucléique

APC Alternate polarization current

BTP Bâtiment et Travaux Publics

CFL Courant-Friedrichs-Lewy

DMA Dynamic mechanical analysis

DSC Differential scanning calorimetry

DTA Differential thermal analysis

EL Electroluminescence

EPDM Ethylène-propylène-diène monomère

EPR Ethylène-propylène rubber

EVA Ethylène-acétate de vinyle

FLIMM Focused Laser Induced Modulation Method

HDPE Polyéthylène haute densité

HN Havriliak-Negami

HVDC Courant continu haute tension

iFFT Transformée de Fourier inverse rapide

KWW Kohlrausch-Williams-Watts

LDPE Polyéthylène basse densité

LIMM Laser Induced Modulation Method

LIPP Laser Induced Pressure Pulse

LNCA Liquid Nitrogen Cooling Accessory

NDM Mobilité différentielle négative

PA Polyamide

PE Polyéthylène

PEA Electro-acoustique pulsée

PEN Poly(éthylène naphtalène 2,6- dicarboxylate)

PES Polyester sulfone

PET Polyéthylène téréphtalate

PI Polyimide

Page 12: TTHHÈÈSSEE - thesesups.ups-tlse.fr

VI

PMMA Polyméthyl-méthacrylate

PP Polypropylène

PS Polystyrène

PTFE Polytétrafluoroéthylène

PVC Polychlorure de vinyle

PVDF Polyvinylidene fluoride

PWP Pressure Wave Propagation

SCLC Courant limité par charge d’espace

SMT Surface Mount Technology

SSP Solid-State Polymerization

TFL Trap Filled Limit

TPM Thermal Pulse Method

TPT Thermal Pulse Tomography

TSDC Courants de Dépolarisation Thermo-Stimulés

TSM Thermal Step Method

TSPC Courants de Polarisation Thermo-Stimulés

VFT Vogel-Fulcher-Tammann

XLPE Polyéthylène réticulé

a

Distance inter-pièges (m)

A Constante de Richardson (1,2.106A.m

-2K

-2)

Bk Coefficient de piégeage de l’espèce k (s-1

)

d Epaisseur du diélectrique (m)

D Déplacement électrique (C.m-2

)

Dk Coefficient de dépiégeage de l’espèce k (s-1

)

E Champ électrique (V.m-1

)

h Constante de Plank (6,626.10-34

J.s)

I Courant (A)

J Densité de courant (A.m-2

)

kB Constante de Boltzmann (1,3806.10-23

J.K-1

=8,617.10-5

eV.K-1

)

m Masse de l’électron (9,109.10-31

kg)

nl Densité de charges injectées libres (m-3

)

np Densité de charges piégées (m-3

)

n0 Densité de porteurs intrinsèques (m-3

)

Page 13: TTHHÈÈSSEE - thesesups.ups-tlse.fr

VII

Nt Densité totale de pièges (m-3

)

P Polarisation (C.m-2

)

q Charge élémentaire (1,6.10-19

C)

S0 Coefficient de recombinaison des électrons piégés avec les trous piégés

(m3.C

-1.s

-1)

S1 Coefficient de recombinaison des électrons libres avec les trous piégés

(m3.C

-1.s

-1)

S2 Coefficient de recombinaison des électrons piégés avec les trous libres

(m3.C

-1.s

-1)

S3 Coefficient de recombinaison des électrons libres avec les trous libres

(m3.C

-1.s

-1)

t Temps (s)

T Température (K)

V Tension (V)

WC Bande de conduction (eV)

WF Niveau de Fermi (eV)

Wi Energie d’ionisation (eV)

WV Bande de valence (eV)

ε0 Permittivité du vide (8,85.10-12

F.m-1

)

εr Permittivité relative

θ Paramètre de piégeage

ϕ Travail de sortie (eV)

Φp Fonction impulsionnelle

η Temps de relaxation (s)

μ Mobilité de charges (m2V

-1s

-1)

ν Fréquence des sauts (s-1

)

χ Affinité électronique (eV)

Page 14: TTHHÈÈSSEE - thesesups.ups-tlse.fr

VIII

Table des figures

Figure I-1. Une macromolécule composée de n monomères ................................................... 10

Figure I-2. Représentation de la disposition spatiale d’une macromolécule de PE ................. 12

Figure I-3. Représentation schématique des différents types de macromolécules [EHR00]

........ 13

Figure I-4. Structures d’un polymère amorphe et d’un polymère semi-cristallin .................... 13

Figure I-5. Morphologie du PE montrant des sphérolites composés de rubans cristallins

– amorphes [JON05]

et une observation par microscope optique en lumière polarisée des

sphérolites du PE [DOU10]

........................................................................................................... 14

Figure I-6. Diagrammes d’état des polymères ......................................................................... 16

Figure I-7. Mécanismes de génération des charges électriques dans un isolant entre

électrodes [LAU99]

....................................................................................................................... 18

Figure I-8. Profil de la distribution des charges et du champ interne en fonction de

l’épaisseur de l’isolant avec différents champs appliqués [LAU99]

............................................. 18

Figure I-9. Diagramme des bandes d’énergie (a) d’un isolant parfait et (b) d’un isolant

réel ............................................................................................................................................ 20

Figure I-10. Diagramme de bande énergétique associé à une interface de type métal-

isolant ....................................................................................................................................... 21

Figure I-11. Attraction électrostatique d’un électron avec le métal ......................................... 21

Figure I-12. Caractéristique courant-tension du phénomène de courant limité par charge

d’espace .................................................................................................................................... 24

Figure I-13. Positions d’un ion dans une série de puits de potentiel (a) en l’absence de

champ électrique et (b) soumis à un champ électrique [SEG00]

. ................................................. 28

Figure I-14. Différentes contributions à la polarisation [DUB01]

................................................ 31

Figure I-15. Polarisation en fonction du temps quand un champ électrique est appliqué à

t0 [AMB07]

.................................................................................................................................... 32

Figure I-16. Polarisation en fonction du temps quand un champ électrique change de E1

à E2 ........................................................................................................................................... 33

Figure I-17. Allure classique des courants transitoires lors de l’application d’un échelon

de tension. ................................................................................................................................. 37

Figure I-18. Courants anormaux : (a) allure lors de l’application d’un échelon de

tension, (b) courants de dépolarisation pour de l’éthylène-acétate de vinyle (EVA) à

différents champs électriques à 25°C [KIT85]

............................................................................. 39

Figure I-19. Modèle de Debye : (a) évolution des parties réelle et imaginaire de la

permittivité, (b) diagramme Cole-Cole .................................................................................... 41

Figure I-20. Evolution des parties réelle et imaginaire de la permittivité et du

diagramme Cole-Cole en fonction des paramètres de forme du modèle de Havriliak-

Page 15: TTHHÈÈSSEE - thesesups.ups-tlse.fr

IX

Negami ( 1, 1, 1/ 2 ) : (a) type Cole-Cole (c=1), (b) type Cole-

Davidson(b=1) .......................................................................................................................... 43

Figure I-21. Paramètres de forme de la relaxation diélectrique α pour différentes

polymères (○) et systèmes de faible poids moléculaire (□) ..................................................... 46

Figure I-22. Relaxations dans un diélectrique en fonction de la température. ......................... 47

Figure I-23. Dépendance en température du temps de relaxation pour des relaxations

primaire (α) et secondaire (β). .................................................................................................. 49

Figure I-24. (a) Permittivité réelle et (b) conductivité réelle dans le domaine fréquentiel

en fonction de la température pour du poly(3n-decylpyrrole) [CAP98]

. ...................................... 49

Figure I-25. Modélisation de la permittivité réelle (a) et de la permittivité imaginaire (b)

dans le domaine fréquentiel en superposant toutes les contributions : relaxation γ de

type Cole-Cole, relaxation β de type Cole-Cole, relaxation α de type Havriliak-Negami,

conduction ζ ............................................................................................................................. 51

Figure I-26. Schématisation du mécanisme de conduction ...................................................... 55

Figure I-27. Comparaison entre le courant simulé par le modèle de transport de charges

et le courant expérimental pour du LDPE soumis à un champ appliqué de 40kV/mm [ROY04]

à 25°C ............................................................................................................................ 57

Figure II-1. Structure chimique du PET et du PEN ................................................................. 63

Figure II-2. Dispositif expérimental de la mesure DSC [GRE10]

................................................ 66

Figure II-3. Exemples de thermogramme représentant différentes transitions de structure

pour un échantillon de : (a) LDPE semi-cristallin [TAL11]

, (b) PEN amorphe et semi-

cristallin [CHA04]

......................................................................................................................... 67

Figure II-4. Principe de la méthode PEA [THO08]

...................................................................... 68

Figure II-5. Dispositif expérimental de la méthode PEA ......................................................... 70

Figure II-6. Principe de la TSDC ............................................................................................. 71

Figure II-7. Dispositif expérimental de la mesure TSDC ........................................................ 72

Figure II-8. Principe de la méthode APC ................................................................................. 75

Figure II-9. Dispositif expérimental de la mesure APC ........................................................... 76

Figure II-10. Montage expérimental de la mesure APC à température ambiante .................... 77

Figure II-11. Dispositif expérimental de la mesure de l’EL .................................................... 78

Figure II-12. Principe de mesure en spectroscopie diélectrique (a) et formes d’onde des

signaux (b) [NOV10]

..................................................................................................................... 79

Figure II-13. Schéma électrique équivalent du comportement diélectrique d’un isolant ........ 81

Figure II-14. Dispositif expérimental de mesure de spectroscopie diélectrique [NOV10,

NOV14] ......................................................................................................................................... 82

Figure III-1. Protocoles de tension et de température utilisés pour les mesures TSDC

classiques TP=130ºC ................................................................................................................. 88

Figure III-2. Spectres TSDC obtenus sur du PEN polarisé à 130°C pour différentes

tensions de polarisation ............................................................................................................ 89

Page 16: TTHHÈÈSSEE - thesesups.ups-tlse.fr

X

Figure III-3. Protocoles de tension et de température des mesures TSDC pour

différentes vitesses de chauffage pendant la dépolarisation ..................................................... 90

Figure III-4. Spectres TSDC obtenus sur du PEN polarisé à 130°C pour différentes

vitesses de chauffage : (a) Densité de courant, (b) Courant normalisé .................................... 90

Figure III-5. Protocoles de tension et de température utilisés pour les mesures TSDC

classiques TP=170ºC ................................................................................................................. 91

Figure III-6. Spectres TSDC obtenus sur du PEN polarisé à 170°C pour différentes

tensions de polarisation ............................................................................................................ 92

Figure III-7. Spectres de DMA à 10Hz pour des échantillons de PEN après avoir recuit à

différentes températures [CAÑ00]

................................................................................................ 93

Figure III-8. Thermogrammes DSC (vitesse de montée 10°C/min) obtenus pour des

échantillons de PEN recuits à différentes températures [CAÑ00]

................................................ 93

Figure III-9. Spectroscopie diélectrique pour du PEN initialement amorphe pendant : (a)

premier cycle à différentes fréquences ; (b) trois cycles à 1kHz [PSA06]

................................... 95

Figure III-10. Spectres TSDC du PEN pour différentes températures de recuit,

correspondant donc à différents taux de cristallinité (voir Tableau III-1) : (1) Ta =

160ºC ; (2) Ta = 166ºC ; (3) Ta = 172ºC ; (4) Ta = 175ºC ; (5) Ta = 177ºC ; (6) Ta =

178ºC ; (7) Ta = 179ºC. (TP =130ºC, VP = 1,5 kV, tP = 30 min) [CAÑ00]

................................... 95

Figure III-11. Protocole des mesures DSC............................................................................... 96

Figure III-12. Thermogrammes DSC obtenus sur du PEN semi-cristallin en fonction de

la température et du temps de recuit ......................................................................................... 97

Figure III-13. Spectres TSDC obtenus sur du PEN semi-cristallin polarisé à 170°C pour

deux temps de polarisation différents ....................................................................................... 98

Figure III-14. Protocoles de tension et de température de la mesure TSDC utilisant la

méthode de chauffage partiel ................................................................................................... 99

Figure III-15. Comparaison des résultats obtenus à partir de la TSDC classique et celle

utilisant la méthode de chauffage partiel .................................................................................. 99

Figure III-16. Protocoles de tension et de température de la mesure TSDC classique

(Test 1) et des mesures TSDC utilisant la méthode « driving voltage » pendant la

dépolarisation (Test 2 & 3) ..................................................................................................... 100

Figure III-17. Comparaison entre la TSDC classique et les TSDC utilisant la méthode

« driving voltage » pour du PEN ............................................................................................ 101

Figure III-18. Soustraction des spectres TSDC des tests 2 (+50V) & 3 (-50V) .................... 102

Figure III-19. Protocoles de tension et de température utilisés pour les mesures TSDC et

faisant apparaitre les temps auxquels l’échantillon est sorti de l’enceinte TSDC pour

réaliser les mesures PEA ........................................................................................................ 104

Figure III-20. Profils de charge d’espace obtenus par la méthode PEA en condition de

court-circuit à 25°C sur du PEN pré-polarisé à 130°C : (a) Avant la rampe de

température (PEA-1 sur la Figure III-19), (b) Après la rampe de température (PEA-2 sur

la Figure III-19) du protocole de TSDC ; C : Cathode, A : Anode pendant la polarisation .. 105

Figure III-21. Signal de calibration à t=0 du protocole dans la Figure III-19 en

appliquant une tension de 1kV pendant 10s (PEA-0) ............................................................ 107

Page 17: TTHHÈÈSSEE - thesesups.ups-tlse.fr

XI

Figure III-22. Profils de charge d’espace obtenus par la méthode PEA pendant le court-

circuit à 25°C sur du PEN pré-polarisé à 170°C : (a) Avant la rampe de température

(PEA-1 sur la Figure III-19), (b) Après la rampe de température (PEA-2 sur la Figure

III-19) du protocole de TSDC ; C : Cathode, A : Anode pendant la polarisation .................. 108

Figure III-23. Protocoles de tension et de température utilisés pour les mesures TSDC

avec chauffage partiel et faisant apparaitre les temps auxquels l’échantillon est sorti de

l’enceinte TSDC pour réaliser les mesures PEA .................................................................... 109

Figure III-24. Profils de charge d’espace obtenus par la méthode PEA en court-circuit à

25°C sur du PEN pré-polarisé à 170°C : les courbes noire, rouge et bleu sont

respectivement le profil de charge d’espace avant le chauffage (PEA-p1 dans la Figure

III-23), après le premier chauffage (PEA-p2 dans la Figure III-23) et après le deuxième

chauffage (PEA-p3 dans la Figure III-23) du protocole de TSDC avec chauffage

partiel ; C : Cathode, A : Anode pendant la polarisation ....................................................... 110

Figure III-25. Permittivité (a) réelle et (b) imaginaire du PEN entre -100 et 200°C pour

des fréquences de 0,1 Hz à 1MHz .......................................................................................... 113

Figure III-26. Permittivité (a) réelle et (b) imaginaire du PEN entre 0,1 Hz et 1MHz

pour des isothermes de -100 et 200°C .................................................................................... 115

Figure III-27. Comparaisons des courants normalisés mesurés dans deux enceintes de

mesure différentes et pour différentes températures .............................................................. 117

Figure III-28. Courants de polarisation normalisés en fonction du temps à champ faible

pour du PEN à différentes températures ................................................................................ 117

Figure III-29. Protocole de champ appliqué de mesure de l’électroluminescence pour du

PEN ........................................................................................................................................ 118

Figure III-30. Courants de polarisation à champ fort pour différents champs et

températures ........................................................................................................................... 119

Figure III-31. Effets de la charge d’espace sur les courants de polarisation à différentes

températures pour (a) du PET sous 24 kV/mm et (b) du PEN sous 72 kV/mm [SAI06]

........... 120

Figure III-32. Densité de courant en fonction du champ électrique appliqué pour

différentes températures ......................................................................................................... 121

Figure III-33. Transitoire de luminescence pour du PEN à 25ºC sous 210 kV/mm. Le

bruit de fond est représenté par une ligne horizontale à 2 cps ............................................... 122

Figure III-34. Transitoire de luminescence pour du PEN à 25ºC sous 240 kV/mm. Le

bruit de fond est représenté par une ligne horizontale à 2 cps ............................................... 123

Figure III-35. Electroluminescence en fonction du champ électrique appliqué à

différentes températures ......................................................................................................... 123

Figure III-36. Densité de courant et électroluminescence en fonction de la température

aux champs électriques allant de 240 à 300kV/mm pour du PEN ......................................... 124

Figure IV-1. Schéma du processus de modélisation de la polarisation et du transport

dans le PEN ............................................................................................................................ 129

Figure IV-2. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) dans la région de

température de la relaxation β dans le PEN. .......................................................................... 131

Figure IV-3. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) du PEN : les

mesures expérimentales et les résultats de fit à -80°C. .......................................................... 132

Page 18: TTHHÈÈSSEE - thesesups.ups-tlse.fr

XII

Figure IV-4. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) du PEN : les

mesures expérimentales et les résultats de fit à -50°C ........................................................... 133

Figure IV-5. Paramètres Cole-Cole obtenus pour la relaxation β : les symboles vides

correspondent aux paramètres d’ajustement, les symboles pleins correspondent aux

paramètres extrapolés ............................................................................................................. 135

Figure IV-6. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) dans la région de

température de la relaxation β* dans le PEN. ......................................................................... 136

Figure IV-7. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) du PEN : mesures

expérimentales et résultats de fit à 95°C ................................................................................ 137

Figure IV-8. Paramètres Cole-Cole obtenus par la procédure d’extrapolation de fit : les

symboles creux correspondent aux paramètres de fit, les symboles pleins correspondent

aux paramètres extrapolés ; relaxation β : triangles, relaxation β* : cercles ........................... 138

Figure IV-9. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) dans la région de

température de la relaxation α dans le PEN. .......................................................................... 139

Figure IV-10. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) du PEN : les

mesures expérimentales et les résultats de fit à 150°C........................................................... 140

Figure IV-11. Méthode de découpage du domaine de fréquence pendant la transformée

de Fourier inverse pour obtenir la réponse temporelle ........................................................... 144

Figure IV-12. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) du PEN : les

mesures expérimentales et les résultats de fit à 50°C............................................................. 144

Figure IV-13. Courants de polarisation normalisés de temps courts à temps longs. Entre

deux colonnes : gamme de temps commune aux deux méthodes (spectroscopie

diélectrique et APC, de 3 à 10s) ............................................................................................. 145

Figure IV-14. Algorithme du modèle de transport de charges ............................................... 147

Figure IV-15. Algorithme du modèle de transport de charges prenant en compte la

polarisation : les blocs pointillés sont ceux ajoutés au modèle de transport de charges

déjà développé. ....................................................................................................................... 149

Figure IV-16. Comparaison des courants mesurés et simulés par le modèle de transport

de charges à la polarisation a été implémentée ...................................................................... 151

Figure IV-17. Principe du modèle d’optimisation ................................................................. 152

Figure IV-18. Profils de charge d’espace obtenus par la méthode PEA à 25°C : (a)

Polarisation pendant 1 heure sous 75 kV/mm, (b) Dépolarisation pendant 1 heure ; C :

Cathode, A : Anode ................................................................................................................ 154

Figure IV-19. Caractéristique courant normalisé (J/E) - temps aux champs faibles et

champs forts à 25°C. .............................................................................................................. 155

Figure IV-20. Courant normalisé (J/E) en fonction du champ électrique à 25°C : les

valeurs sont déterminées à 1000s à partir des caractéristiques courant normalisé - temps. ... 156

Figure IV-21. Caractéristiques courant normalisé – temps pour un champ faible de

0,053 kV/mm et un champ fort de 240 kV/mm à différentes températures. .......................... 156

Figure IV-22. Extraction des courants de conduction à partir des courants aux champs

forts allant de 210 à 300 kV/mm à 25ºC ................................................................................ 158

Page 19: TTHHÈÈSSEE - thesesups.ups-tlse.fr

XIII

Figure IV-23. Comparaison des courants de conduction aux champs forts allant de 210 à

300 kV/mm à 25ºC ................................................................................................................. 158

Figure IV-24. Extraction des courants de conduction à partir des courants à champ fort

de 240 kV/mm aux températures allant de 25 à 90ºC ............................................................ 159

Figure IV-25. Comparaison des courants de conduction aux températures allant de 25 à

90°C à champ fort de 240 kV/mm ......................................................................................... 159

Figure IV-26. Densité de courant en fonction du champ électrique appliqué pour

différentes températures ......................................................................................................... 160

Figure IV-27. Variation de la mobilité effective en fonction de la température ajustée

par une fonction d’Arrhénius ................................................................................................. 161

Figure IV-28. Courants de polarisation à champ fort pour différents champs et

températures ........................................................................................................................... 163

Figure IV-29. Densité de courant de conduction de simulation à 25°C et 240 kV/mm

prenant compte l’injection Schottky et la mobilité « hopping » pour les électrons.

Comparaison avec la densité de courant de conduction extraite de la mesure ...................... 165

Figure IV-30. Densité de courant totale de simulation à 90°C et 30 kV/mm en utilisant

le modèle bipolaire prenant en compte la polarisation. Comparaison avec la densité de

courant totale expérimentale .................................................................................................. 166

Figure IV-31. Densité de charge issue de la simulation utilisant les paramètres optimisés

à 90°C et 30 kV/mm ............................................................................................................... 167

Figure IV-32. Densités de courant de polarisation (mesurée) et de conduction (simulée)

et la comparaison avec la densité de courant totale à 25°C et 40kV/mm dans le LDPE ....... 168

Figure IV-33. Courant TSDC (a) simulé et (b)mesuré pour TP = 50°C et EP = 25 kV/mm

dans le LDPE [HOA12]

.............................................................................................................. 171

Page 20: TTHHÈÈSSEE - thesesups.ups-tlse.fr

XIV

Page 21: TTHHÈÈSSEE - thesesups.ups-tlse.fr

XV

Liste des tableaux

Tableau I-1. Applications des polymères dans l’industrie électrique et électroniques [FUK88, OGA90, WAK90, TEY10]

. ............................................................................................................ 8

Tableau I-2. Principaux mécanismes régissant la réponse transitoire des courants et leur

dépendance en fonction de plusieurs paramètres caractéristiques [GUP76]

(E : champ

électrique ; T : température ; j : densité de courant ; V : tension ; d : épaisseur ; -- : non

renseigné). ................................................................................................................................ 38

Tableau I-3. Modèles utilisés pour décrire une relaxation diélectrique. .................................. 44

Tableau II-1. Comparaison des propriétés des films en PEN et en PET. ................................. 64

Tableau II-2. Effets des conditions de polarisation sur les pics de dipôles et de charge

d’espace pour des polymères amorphes [TUR71, TUR87]

............................................................... 74

Tableau III-1. Température de transition vitreuse (Tg), température des pics

exothermiques (Texo) ou des pics endothermiques (Tendo) et taux de cristallinité calculés

en fonction de la température de recuit (Ta) [CAÑ00]

.................................................................. 94

Tableau IV-1. Synthèse de modélisation des pics de relaxation obtenus par la

spectroscopie diélectrique sur du PEN. .................................................................................. 130

Tableau IV-2. Paramètres du pic de relaxation β à différentes températures. ....................... 134

Tableau IV-3. Paramètres du pic de relaxation β* à différentes températures. ...................... 137

Tableau IV-4. Paramètres optimisés du modèle global pour le courant mesuré à 90°C et

30 kV/mm ............................................................................................................................... 166

Page 22: TTHHÈÈSSEE - thesesups.ups-tlse.fr

XVI

Page 23: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Introduction Générale

1

Introduction Générale

Les polymères occupent une place très importante en tant qu’isolants électriques dans

l’industrie électrique et électronique grâce à leurs excellentes propriétés thermoélectriques et

mécaniques. Ils sont utilisés comme diélectriques dans une grande variété de composants et

de systèmes, tels que les câbles, les condensateurs, les machines électriques, les revêtements

thermiques dans les satellites, etc. Les isolants polymères sont alors soumis à des contraintes

thermoélectriques pouvant conduire à l’accumulation de charges électriques et à terme à la

rupture diélectrique de l’isolant. Au cours du temps, la conception des systèmes a évolué avec

une tendance à l’augmentation des champs électriques appliqués aux isolations ainsi qu’un

accroissement de leur température de fonctionnement. Cependant, les mécanismes de

génération, d’accumulation et de stockage des charges électriques à l'intérieur des matériaux

ne sont pas encore bien compris, ce qui rend difficile la prédiction de leur comportement

électrique et de leur durée de vie. Les modèles décrivant la génération et le transport de

charges dans les isolants polymères sont donc extrêmement utiles pour prédire les

comportements électriques des matériaux et pour répondre à des problématiques industrielles

telles que : le développement de nouveaux matériaux pour l’isolation électrique, plus

respectueux de l’environnement ; l’augmentation de la fiabilité des matériaux et systèmes

dans lesquels les matériaux isolants sont utilisés, par exemple, pour le transport d’énergie

Haute Tension Courant Continu (HVDC).

Dans ce contexte, l’équipe de recherche « Diélectriques Solides et Fiabilité » (DSF), du

Laboratoire Plasma et Conversion d’Energie (LAPLACE), a développé depuis une dizaine

d’années un modèle numérique tenant compte des mécanismes de génération (injection) et de

transport (piégeage, dépiégeage, recombinaison) de charges (électrons et trous) dans les

isolants polymères. Ce modèle permet de reproduire des résultats expérimentaux, notamment

des résultats de mesures de charge d’espace, d’électroluminescence et de courant de

conduction. Des résultats de modélisation de la conduction dans le polyéthylène basse densité

(LDPE), un polymère peu polaire, ont été obtenus pour différentes contraintes électriques. Ce

matériau présente l’avantage d’être l’un des plus simples à modéliser, puisqu’il existe

beaucoup de données expérimentales ou théoriques le concernant. De plus, le LDPE étant un

matériau peu polaire, les phénomènes de polarisation peuvent être négligés en première

Page 24: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Introduction Générale

2

approximation dans le modèle de transport de charges. Cependant le modèle dans ce cas ne

reproduit pas complètement les comportements mis en évidence par les mesures de courant

transitoire, notamment aux temps courts.

L’objectif de la thèse, qui s’inscrit dans le cadre du projet de recherche ‘ModElec’

financé par l’Agence Nationale de la Recherche (ANR), est de prendre en considération les

phénomènes de polarisation dans le modèle de transport de charges. Pour cela, un matériau

polaire, le poly(éthylène naphtalène 2,6-dicarboxylate) (PEN) a été étudié pour mettre en

évidence les phénomènes de polarisation.

Ce mémoire de thèse est structuré en quatre chapitres.

Le premier chapitre est consacré à une étude bibliographique. Nous positionnerons la

problématique de notre étude vis à vis des applications des polymères, nous introduirons la

physique de la conduction, de la polarisation et de la relaxation diélectrique dans les isolants

polymères et nous présenterons finalement les différentes approches de modélisation du

transport et de la polarisation développées par différents auteurs jusqu’à l’heure actuelle.

Dans le deuxième chapitre, nous présenterons tout d’abord le matériau d’étude dont la

structure chimique et les différentes propriétés physiques nous permettent de qualifier ce

matériau de bon isolant thermique et électrique. Ensuite, nous présenterons les différentes

techniques expérimentales permettant de caractériser les propriétés électriques, diélectriques

et physico-chimiques du matériau.

Le troisième chapitre est destiné à la présentation des résultats expérimentaux qui nous

ont permis d’étudier les phénomènes de polarisation et de transport dans le PEN, qui nous ont

ensuite servi de base pour la prise en considération de la polarisation dans le modèle de

transport de charges ainsi que pour la validation du modèle global ainsi réalisé. Plusieurs

protocoles expérimentaux de température et de champ électrique ont été adoptés. Nous

présenterons les mesures des courants de dépolarisation thermo-stimulés (TSDC) qui sont

utilisées afin de caractériser les pics de relaxation de dipôles et de charge d’espace. Une étude

des mécanismes responsables du pic ρ qui apparait après la transition vitreuse du matériau

sera ensuite présentée à l’aide de l’analyse enthalpique différentielle (DSC) et de la méthode

électro-ascoutique pulsée (PEA). Pour la prise en considération de la polarisation dans le

modèle de transport, les mesures de spectroscopie d’impédance et de courant de polarisation à

Page 25: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Introduction Générale

3

champ faible seront réalisées. Nous présenterons enfin les mesures de courant de polarisation

et d’électroluminescence à champs forts qui nous permettent de valider le modèle global.

Nous consacrerons le dernier chapitre à la présentation des résultats de modélisation. La

stratégie adoptée peut se décomposer en plusieurs étapes qui seront détaillées dans ce

chapitre. Le point de départ est la mesure de la permittivité dans le domaine fréquentiel, la

dernière étape dite de validation concerne les modélisations (de la polarisation et du transport)

et les mesures du courant de polarisation et d’électroluminescence dans le domaine temporel.

Des discussions sur les différents objectifs réalisés ainsi que sur les difficultés rencontrées

lors des étapes de modélisation seront présentées à la fin de ce chapitre.

Une conclusion générale ainsi que des perspectives de recherche clôtureront ce

mémoire.

Page 26: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 27: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I

Etat de l’art

Page 28: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 29: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

7

Ce premier chapitre basé sur la littérature nous permet d’introduire les phénomènes

physiques rencontrés dans les isolants électriques polymères soumis à des contraintes de

champ électrique et de température, et en particulier les phénomènes dipolaires.

Tout d’abord, une étude bibliographique rappellera les bases permettant d’avoir une

compréhension de la structure chimique des polymères : structure microscopique, domaines

d’état, zones de transition. Puis, nous présenterons la théorie des bandes d’énergie appliquée

aux isolants organiques, la charge d’espace ainsi que les mécanismes de conduction liés à la

présence de charges dans un polymère. Cette bibliographie se concentre ensuite sur les bases

physiques de la polarisation des matériaux diélectriques: nous parlerons des courants

transitoires sous polarisation statique et des mécanismes de relaxation diélectrique sous

polarisation sinusoïdale. Cette partie associe étroitement les domaines temporel et fréquentiel.

Enfin, nous présenterons une bibliographie de la modélisation du transport de charges, dans

laquelle notre travail de modélisation de la polarisation est positionné.

I.1 Introduction

I.1.1 Applications des polymères dans l’industrie électrique et

électronique

Il ne fait maintenant aucun doute que les matériaux polymères jouent un rôle important

dans la vie de l’Homme. Depuis la synthèse du premier polymère en 1833, la production

mondiale des polymères synthétiques ne cesse de s’accroitre et dépasse actuellement cent

millions de tonnes par an. Il est difficile de trouver un aspect de notre vie quotidienne en

général et de l’industrie en particulier qui ne soit pas affecté par les polymères. Ces derniers,

quelle que soit leur origine, occupent des secteurs de plus en plus variés dans l’industrie.

Nous citons ici les plus grands secteurs que les polymères couvrent [EHR00]

: l’industrie de

l’emballage (38%), le BTP (23%), l’industrie du textile (20%), le transport (13%), l’industrie

des loisirs (4%) et l’ameublement (4%).

L’industrie électrique et électronique, avec 8% de la consommation des polymères, fait

partir des plus importants consommateurs. Dans ce secteur, les polymères sont largement

utilisés comme des matériaux isolants électriques grâce à leurs excellentes propriétés

Page 30: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

8

thermoélectriques et mécaniques. En général, les polymères ont une très faible conductivité

électrique (~10-16

S.cm-1

pour le polyéthylène par rapport à 6,3.107 S.cm

-1 pour l'argent). Ils

peuvent être recyclables et les coûts de maintenance pour les systèmes dans lesquels ils sont

inclus (câbles HVDC par exemple) sont moindres comparativement aux isolants liquides.

Les applications importantes des matériaux polymères en tant qu’isolants électriques

dans l’industrie électrique et électronique sont résumées dans le Tableau I-1.

Tableau I-1. Applications des polymères dans l’industrie électrique et électroniques [FUK88, OGA90, WAK90, TEY10]

.

Applications Polymères

Câble de transport d’énergie

- Haute et très haute tension

- Basse tension

LDPE, HDPE, XLPE

PVC, EPR, EPDM, PTFE

Machine tournante & transformateur de puissance PVC, PES, PI, PA

Condensateur de puissance PP, PS

Condensateur électronique PET, PEN

Dispositif électronique et circuit imprimé PI, PET, époxy

Revêtements spatiaux PTFE, PI

I.1.2 Problématique

La pérennité de fonction des polymères est extrêmement importante puisqu’elle

conditionne la fiabilité des dispositifs et des systèmes dans lesquels ils sont intégrés. En effet,

lorsque des matériaux polymères sont soumis à des contraintes sévères et multi-physiques

telles qu'un champ électrique fort, une température élevée, des irradiations, ou des frottements

mécaniques importants, ils sont capables de stocker des charges qui peuvent affecter leurs

propriétés diélectriques. La présence de charges à l’intérieur du matériau peut conduire au

vieillissement à travers la relaxation d’énergie cinétique et potentielle. Le vieillissement

prématuré du matériau peut diminuer la durée de vie de l'isolant électrique par rupture

diélectrique. Un autre effet néfaste de l’accumulation de charges dans le matériau lorsqu’il est

soumis à un champ continu est la distorsion du champ électrique local. Ce champ perturbé

Page 31: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

9

peut atteindre une valeur critique et conduire aussi à la rupture diélectrique. Des études sont

donc nécessaires pour comprendre les phénomènes liés à ces effets néfastes afin d’améliorer

les propriétés du matériau polymère et de développer de nouveaux matériaux plus

performants. Plusieurs chercheurs ont mené des études expérimentales afin de comprendre les

phénomènes relatifs à la présence de charges dans les matériaux polymères [SAN93, AHM97,

MON05, ARA13].

D’autre part, des activités de modélisation [CHO74, ALI94, FUK94, KAN99, ROY04, BOU06, XIA11, LV13]

ont été aussi menées dans le but de comprendre et de prédire des phénomènes de génération et

de transport de charges dans les isolants polymères lorsqu’ils sont soumis à des contraintes

électriques. Les résultats publiés sont nombreux, notamment dans le cas du polyéthylène.

Cependant, il existe à l'heure actuelle très peu de modèles de transport de charges prenant en

compte les phénomènes de polarisation du matériau [BER12]

, alors que la plupart des matériaux

utilisés comme isolants électriques sont polaires. Or, lorsqu'un isolant est soumis à des

contraintes thermoélectriques, ces phénomènes de polarisation peuvent être dominants.

I.1.3 Objectifs

Depuis une dizaine d’année, un modèle de transport de charges a été développé par Le

Roy et al. [ROY04]

au sein de l’équipe Diélectriques Solides et Fiabilité -DSF- du laboratoire

LAPLACE. Ce modèle est bipolaire, et permet de décrire des phénomènes de génération et de

transport de charges dans les diélectriques solides organiques. Il donne déjà de bons résultats

concernant des mécanismes de conduction sur du polyéthylène basse densité pour différentes

contraintes électriques appliquées. Le but de ce travail est la prise en considération des

phénomènes de polarisation dans le modèle de transport de charges afin de rendre compte du

comportement d'un matériau diélectrique solide quelconque sous contrainte électrique.

Dans cette étude, un matériau polaire, le Poly(éthylène naphtalène 2,6- dicarboxylate)

(PEN), est choisi pour mettre en évidence les phénomènes de polarisation. Une étroite

association entre les démarches expérimentales et de modélisation permet de comprendre les

phénomènes de polarisation et de les prendre en considération dans le modèle de transport de

charges.

Pour les démarches expérimentales, des mesures physico-chimiques, diélectriques,

thermoélectriques et des mesures de charges d’espace sont réalisées afin de comprendre le

Page 32: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

10

comportement global du matériau PEN sous contrainte électrique, ainsi que les phénomènes

de polarisation dans ce matériau. Concernant ceux-ci, des mesures complémentaires dans le

domaine fréquentiel et temporel ont été utilisées afin de caractériser au mieux les mécanismes

dipolaires.

Un modèle de polarisation est ensuite développé sur la base des mesures

expérimentales. Celui-ci est ensuite inséré dans le modèle de transport de charges et ce

modèle global est validé grâce à des mesures de courant pour des champs faibles, où les

mécanismes de polarisation dominent. Des simulations ont aussi été effectuées à champ plus

fort, où polarisation et conduction jouent un rôle. Nous discutons enfin de la difficulté à

paramétrer le modèle de transport de charges.

Toutes les démarches expérimentales et de modélisation sont réalisées au sein du

laboratoire LAPLACE dans le cadre du projet ANR-ModElec. Le matériau PEN est fourni par

Dupont Teijin films.

I.2 Physique des polymères

I.2.1 Définitions

Un polymère est une molécule constituée d’unités fondamentales appelées monomères

(ou motifs monomères) reliées par des liaisons covalentes (Figure I-1). Le terme

macromolécule est souvent utilisé à la place de polymère.

M : motif monomère

n : degré de polymérisation

Figure I-1. Une macromolécule composée de n monomères

La polymérisation est la réaction qui, à partir des monomères, forme en les liant des

composés de masse moléculaire plus élevée : les polymères ou macromolécules. Les noyaux

des monomères sont le plus souvent constitués d’un atome de carbone (molécules organiques)

ou d’un atome de silicium (polymères siliconés).

Page 33: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

11

La chaîne principale d’un polymère (chaîne carbonée ou chaîne siliconée) est appelée

squelette du polymère.

Les polymères peuvent être d’origine naturelle (animale ou végétale) ou d’origine

synthétique. Les macromolécules naturelles sont les caoutchoucs, les polysaccharides, le

glycogène, l’acide désoxyribonucléique (ADN), les protéines… Les macromolécules

synthétiques sont préparées par polymérisation de molécules monomères, par exemple : le

polyéthylène (PE), le polypropylène (PP), le polystyrène (PS), le polychlorure de vinyle

(PVC), le polytétrafluoroéthylène (PTFE), les polyesters (PET, PEN)…

Les propriétés électriques, thermiques et mécaniques de ces macromolécules dépendent

de la nature chimique des unités constitutives de la chaîne, de sa conformation mais aussi des

conditions de mise en œuvre. Une des questions fondamentales concerne le lien qui existe

entre les propriétés électriques des isolants polymères et leur structure microscopique.

I.2.2 Microstructure des polymères

La structure chimique du motif monomère est naturellement la caractéristique la plus

importante pour un polymère. En effet, la structure chimique conditionne les interactions inter

et intramoléculaires, et par voie de conséquence les propriétés physicochimiques du matériau

(par exemple la résistance mécanique, la constante diélectrique, la résistance aux solvants et

aux rayonnements etc.) ainsi que les propriétés thermophysiques (par exemple, la température

de transition vitreuse, la température de fusion ou de dégradation...). En outre, la présence de

groupes latéraux encombrants joue un rôle important au niveau de la mobilité des segments de

macromolécules.

I.2.2.1 Structure moléculaire

La liaison covalente est à la base de la notion de polymère. Elle porte une énergie forte

de 100 à 450kJ/mol (348kJ/mol pour une liaison C-C). Une conséquence importante est qu’un

polymère possède intrinsèquement un module d’élasticité élevé dans la direction de la chaîne

macromoléculaire. Dans la liaison covalente, outre une distance de liaison entre atomes liés, il

existe un angle de liaison. Par exemple, pour une chaîne carbonée, la distance et l’angle de

liaison sont 0,154nm et 109°28’ respectivement (Figure I-2). L’angle de liaison est fixé, mais

il existe plusieurs possibilités de rotations autour des segments de liaison [GOU06]

.

Page 34: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

12

Figure I-2. Représentation de la disposition spatiale d’une macromolécule de PE

Les forces de cohésion, c’est-à-dire les forces de liaisons entre atomes ou groupes

d’atomes, sont déterminées par la structure du motif monomère. Il est important de distinguer

les liaisons fortes intramoléculaires et les liaisons faibles interchaînes [ETI12]

, étant donné

qu’une élévation de température ou l’application de contraintes mécaniques élevées pourra

entraîner la destruction des liaisons faibles tandis que les liaisons fortes seront conservées.

Selon que les enchaînements covalents se développent dans une, deux ou trois

directions de l’espace, on distingue les macromolécules mono- (1D), bi- (2D) et

tridimensionnelles (3D).

Les macromolécules monodimensionnelles comportent d’abord les macromolécules

linéaires, par exemple : les polymères polyvinyliques (PE, PP, PVC, PS), les polyamides

(PA6, 6-6, 11, 12), les polyesters (PET, PEN), les polycarbonates, etc. Une macromolécule

linéaire peut présenter des accidents de structure sous la forme de chaînes latérales ou

ramifications, de faible longueur par rapport à celle du squelette. On parle alors de polymère

ramifié, par exemple, le polyéthylène basse densité (LDPE). Polymère linéaires et polymères

ramifiés font partie de la famille des thermoplastiques.

La macromolécule bidimensionnelle ou lamellaire (par exemple le graphite) est formée

de plans d’atomes de carbone liés par des liaisons covalentes qui lui confèrent d’excellentes

propriétés lubrifiantes.

Les macromolécules tridimensionnelles ont une structure en réseau ou structure

réticulée. Deux grandes classes de polymères sont associées à une structure en réseau : les

élastomères (réseau lâche) et les thermodurcissables (réseau dense).

La Figure I-3 représente les différents types de macromolécules : macromolécules

linéaires, ramifiées (1D) et réticulées (2D&3D).

Page 35: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

13

Figure I-3. Représentation schématique des différents types de macromolécules [EHR00]

I.2.2.2 Etat amorphe, état cristallin, morphologie cristalline

Les polymères peuvent exister sous forme amorphe ou cristalline. L’état amorphe des

matériaux polymères est caractérisé par l’absence d’ordre à grande distance. L’état cristallin

au contraire, se caractérise par un arrangement très ordonné des macromolécules les unes par

rapport aux autres. Les polymères ne sont jamais totalement cristallins et doivent en fait être

considérés comme des mélanges de phase cristalline et de phase amorphe, d’où le nom de

polymères semi-cristallins qui leur est classiquement attribué. La Figure I-4 présente les

structures d’un polymère amorphe et d’un polymère semi-cristallin.

Figure I-4. Structures d’un polymère amorphe et d’un polymère semi-cristallin

L’arrangement spatial des chaines moléculaires est souvent décrit par un modèle à

chaines repliées. Il s’agit d’une structure composée de minces rubans de lamelles cristallines

de forme régulière, d’épaisseur de l’ordre de la dizaine de nanomètres et d’une longueur de la

dizaine de micromètres. Ces rubans, quant à eux, sont constitués de couches multiples. Il a été

Page 36: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

14

proposé [JON05]

que les chaînes moléculaires (cas de chaînes souples) de chaque ruban se

replient constamment sur elles-mêmes et que les plis se forment à la surface des lamelles

cristallines. Dans les polymères synthétiques, les lamelles cristallines, peuvent s’organiser en

structures de plus grande dimension (de quelques micromètres à plusieurs dizaines de

micromètres) appelées sphérolites. Par exemple, dans la morphologie cristalline du PE

(Figure I-5), les rubans lamellaires sont séparés par une zone amorphe où existent des

molécules de liaison ou molécules pont assurant un lien entre des lamelles adjacentes.

Figure I-5. Morphologie du PE montrant des sphérolites composés de rubans cristallins – amorphes [JON05]

et

une observation par microscope optique en lumière polarisée des sphérolites du PE [DOU10]

I.2.3 Domaines d'état et zones de transition

I.2.3.1 Domaines d’état

Le domaine d’état exprime le fait que les propriétés d’un matériau varient peu dans un

certain domaine de température.

I.2.3.1.a Etat vitreux

A l’état vitreux, les polymères sont durs et fragiles, et ont un comportement analogue à

celui des verres. Les seules libertés de mouvements moléculaires correspondent aux

oscillations des atomes autour de leur position moyenne d’équilibre. Certains segments de

chaînes seulement peuvent commencer à vibrer et à créer une certaine mobilité moléculaire

dans leur proche voisinage tandis que la température croît. Ces mouvements moléculaires se

produisent dans un certain domaine de température appelé zone de relaxation secondaire.

Page 37: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

15

I.2.3.1.b Etat caoutchouteux

L’état caoutchouteux est un comportement analogue à celui du caoutchouc. Ce domaine

est caractéristique des polymères amorphes. Les mouvements de rotation et de transition de

segments de chaînes et de chaînes latérales que l’on appelle les mouvements micro

browniens, sont possibles. La mobilité moléculaire dans ce domaine est 103 à 10

4 plus forte

que dans l’état vitreux.

I.2.3.1.c Etat visqueux

Lorsque la température est plus élevée, le polymère se trouve à l’état visqueux (ou état

fondu, d’écoulement). Quand une déformation est appliquée à un polymère à l’état visqueux,

ses segments moléculaires s’orientent dans la direction de la déformation. Les molécules

perdent donc leur forme initiale de pelote, connue pour être la forme la plus stable d’un point

de vue entropique.

I.2.3.2 Zones de transition

I.2.3.2.a Transition vitreuse

La transition vitreuse marque le passage de l’état vitreux à un état caoutchouteux. Elle

est parfois décrite comme étant une transition de phase du deuxième ordre [BUK07]

: elle ne

s’accompagne pas d’un changement d’état solide à l’état liquide (visqueux) du matériau.

Cette zone permet de définir une température caractéristique de la transition dite température

de transition vitreuse (Tg). La Tg est définie par convention comme la température à laquelle

le polymère, après refroidissement, retrouve son équilibre thermodynamique au bout de 1000s

[MAR86]. La valeur de Tg dépend de la vitesse de refroidissement du matériau lors du passage

de l’état liquide surfondu à l’état solide vitreux [PER92]

.

I.2.3.2.b Zone de fusion ou de fluidification

La fusion (Tf) est une transition du premier ordre : il y a effectivement un changement

d'état du matériau, qui passe de caoutchouteux à liquide (visqueux en pratique). Il n'y a fusion

que pour les polymères semi-cristallins (seule la partie cristalline est concernée).

La fluidification (Tfl) est une transition du second ordre qui se traduit par la

fluidification de la partie amorphe des polymères à une dimension.

Page 38: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

16

En raison de l’augmentation de la mobilité moléculaire, les enchevêtrements et les

ordres à courte distance peuvent être supprimés plus facilement et les molécules peuvent

glisser les unes par rapport aux autres.

I.2.3.2.c Zone de cristallisation

La cristallisation se produit lors du refroidissement à partir de l’état fondu et est

fortement influencée par la vitesse de refroidissement. Alors qu’un apport d’énergie

supplémentaire est nécessaire à la fusion des cristallites, une chaleur de cristallisation doit être

dissipée pendant le refroidissement. La zone de cristallisation (ou phase cristalline) se situe

toujours à des températures inférieures à celles de la fusion.

I.2.3.3 Diagrammes d’état des polymères

Si certains polymères, tels le polystyrène, les thermodurcissables ou les élastomères,

sont totalement amorphes à l’état solide, de nombreux autres, en revanche, ont la faculté de

cristalliser. Les polymères sont donc classés en quatre catégories : les polymères

thermoplastiques amorphes et semi-cristallins, thermodurcissables et élastomères. La Figure

I-6 présente les diagrammes d’état de ces quatre catégories.

état vitreux état caoutchouteux état visqueux

phase cristalline

+ phase vitreuse

état

visqueux

phase cristalline +

phase caoutchouteuse

Tg Tc Tf Td

état vitreux état caoutchouteux

état vitreux état caoutchouteux

Tg

Tg

Td

Td

Thermoplastique

amorphe

Thermoplastique

semi-cristallin

Thermodurcissable

Elastomère

Tg Tfl Td

Figure I-6. Diagrammes d’état des polymères

En effet, les thermodurcissables et les élastomères sont des réseaux 3D plus ou moins

réticulés et qui ne se fluidifient pas. Dans tous les cas, si l'on chauffe trop, on finit par détruire

le polymère (Td).

Page 39: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

17

I.2.3.4 Etude des transitions

Les différentes transitions peuvent être observées par différentes techniques d’analyse :

les techniques thermiques telles que l’analyse enthalpique différentielle (DSC) [GRE10]

et

l’analyse thermique différentielle (DTA) [MAC72]

; les techniques mécaniques telles que

l’analyse mécanique dynamique (DMA) [AKL83]

; les techniques électriques telles que les

courants de dépolarisation thermo-stimulés (TSDC) [TUR87]

et la spectroscopie d’impédance

(DEA) [MEN97]

.

Les polymères sont donc des matériaux complexes. Il est de plus nécessaire dans nos

domaines d’application d’en étudier et comprendre les propriétés électriques.

I.3 Charge d’espace et mécanismes de conduction

I.3.1 Origine et effets de la charge d’espace sur le champ appliqué

La charge d’espace correspond à une accumulation de porteurs de charge dans une

région localisée de l’isolant lorsqu’il est soumis à des contraintes électrique, thermique ou

mécanique. La charge d’espace joue un rôle important dans le comportement diélectrique des

isolants, puisqu’elle a un impact sur le facteur de dissipation diélectrique, le vieillissement du

diélectrique, la fiabilité à haute tension, par exemple.

La charge d’espace a pour origine :

Des charges intrinsèques : ions ou charges électroniques contenus initialement dans

l’isolant, ou générés soit par électrodissociation d’espèces neutres, soit par ionisation des

constituants du solide par interaction avec des rayonnements énergétiques ou des

particules énergétiques ;

Des charges extrinsèques : charges électroniques injectées à partir des électrodes, ou ions

qui diffusent des électrodes vers l’isolant. Elles peuvent aussi résulter du contact entre la

surface libre du diélectrique et un plasma gazeux ou un faisceau de particules chargées.

Une synthèse des mécanismes de la génération des charges dans un isolant entre

électrodes est représentée schématiquement sur la Figure I-7.

Page 40: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

18

Figure I-7. Mécanismes de génération des charges électriques dans un isolant entre électrodes [LAU99]

L’effet majeur de la présence de charge d’espace dans un diélectrique est la

modification de la distribution interne du champ électrique. La Figure I-8 décrit une situation

très simple où l’on considère un film isolant d’épaisseur d et ses électrodes en supposant le

problème unidimensionnel.

Figure I-8. Profil de la distribution des charges et du champ interne en fonction de l’épaisseur de l’isolant avec

différents champs appliqués [LAU99]

Page 41: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

19

D’une manière générale, la présence de charges intrinsèques génère des hétérocharges

lorsqu’un champ électrique est appliqué. Ici, l’hétérocharge signifie que la polarité de la

charge d’espace est opposée à celle de l’électrode voisine, et l’homocharge est la situation

inverse. La présence des hétérocharges conduit donc à une augmentation du champ interfacial

et à une diminution du champ volumique. Les charges injectées apparaissent, quant à elles,

suite à des contraintes électrique et thermique plus élevées.

I.3.2 Théorie des bandes

La théorie des bandes d’énergie a initialement été élaborée pour les matériaux semi-

conducteurs. Elle peut être aussi utilisée pour représenter la conductivité des isolants en

considérant le diélectrique comme un semi-conducteur de bande interdite supérieure à 5eV

[KIT07]. Les interactions entre orbitales moléculaires des atomes forment des états dégénérés,

qui conduisent à deux bandes d’énergies distinctes : la bande de valence (WV) où les trous

peuvent se mouvoir, et la bande de conduction (WC) où les électrons peuvent bouger

librement. Ces deux bandes sont séparées par une bande interdite, ou gap (Figure I-9a).

Les notions importantes liées à la théorie des bandes sont données ci-dessous:

Niveau du vide : correspond à l’énergie potentielle d'un électron à un point où la force

d'attraction entre les électrons et la surface du matériau est négligeable, autrement dit,

il correspond à l’énergie d’un électron entièrement sorti du matériau.

χ (affinité électronique) : énergie nécessaire pour amener un électron du bas de la

bande de conduction au niveau du vide.

WF (niveau de Fermi) : niveau de référence appelé également potentiel

électrochimique. Il se situe au milieu de la bande interdite pour les isolants à

température ambiante.

ϕ (travail de sortie) : énergie minimum pour amener un électron du niveau de Fermi

d’un matériau dans le vide.

Wi (énergie d’ionisation) : énergie nécessaire pour amener un électron de la bande de

valence au niveau du vide.

Pour les polymères, il faudra également tenir compte des défauts de structure dus à la

présence d’impuretés chimiques et physiques. Ces défauts de structure se traduisent par des

Page 42: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

20

états d’énergie intermédiaires dans la bande interdite (Figure I-9b), qui peuvent piéger des

charges dans le polymère.

bande de conduction

bande de valence

bande de conduction

bande de valence

(a) Isolant parfait (b) Isolant imparfait

pièges peu profonds

pièges peu profonds

pièges profonds

W i

ϕ

niveau du vide

WV

WF

WC

bande interdite

Figure I-9. Diagramme des bandes d’énergie (a) d’un isolant parfait et (b) d’un isolant réel

Selon l’origine des pièges, on peut les distinguer par deux types d’états localisés [BLA01]

:

les pièges peu profonds : dus aux impuretés physiques. Les électrons piégés et les trous

piégés se localisent respectivement dans des niveaux d’énergie proches des bandes de

conduction et de valence. Ces porteurs peuvent se dépiéger en acquérant une énergie

suffisante pour franchir la barrière de potentiel.

les pièges profonds : dus aux impuretés chimiques, et dans lesquels les charges peuvent se

piéger durablement. Ces porteurs doivent acquérir une énergie beaucoup plus élevée par

rapport aux charges piégées dans des pièges peu profonds pour se dépiéger.

I.3.3 Mécanismes de conduction

I.3.3.1 Conduction électronique

I.3.3.1.a Génération

La génération intrinsèque de charges électroniques dans les matériaux diélectriques

organiques est peu connue, car il est difficile d’accéder à des phénomènes se passant

ponctuellement à une échelle microscopique. Les mécanismes de génération de charges

extrinsèques sont plus connus. De nombreuses études théoriques [FOW28, LAM70, ODW73, DIS92]

ou

de modélisations [TOO80, LEW86, TAL13]

menées à ce sujet ont permis de comprendre en partie ces

processus contrôlés par les interfaces. Dans le cadre de ce travail, nous discuterons plus

particulièrement de la génération de charges aux interfaces de type métal-isolant.

Page 43: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

21

La Figure I-10 présente le diagramme de bande énergétique à l’interface métal-isolant.

Un électron situé au niveau de Fermi du métal a trois possibilités [GOO56, DUK69, ODW73, DIS92]

pour pénétrer dans le diélectrique :

Voie 1 : passage par-dessus la barrière. Elle est appelée effet thermoélectronique (ou

Schottky).

Voie 2: passage à travers la barrière à énergie constante.

Voie 3: passage à travers la barrière après un gain d’énergie (énergie thermique par

exemple).

Les voies 2 et 3 sont appelées effet Fowler-Nordheim et sont traitées comme l’effet

tunnel à travers une barrière d’énergie triangulaire.

Figure I-10. Diagramme de bande énergétique associé à une interface de type métal-isolant

Injection Schottky

L’effet Schottky tient compte de l’attraction électrostatique d’un électron avec le métal.

Lorsqu’un électron extrait d’un métal se trouve à une distance x de l’interface dans l’isolant, il

induit une charge image sur le métal (Figure I-11).

Figure I-11. Attraction électrostatique d’un électron avec le métal

Page 44: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

22

Lorsqu’un champ électrique est appliqué au système métal-isolant, une force de

Coulomb est exercée par le conducteur sur l’électron dans l’isolant et l’énergie potentielle

diminue sous l’effet combiné de la charge image et du champ électrique extérieur. La

diminution de l’énergie potentielle est alors exprimée par :

2

dim

0

( )16 r

qx qEx

x

Equation I-1

où q est la charge de l’électron (q=1,6.10-19

C), E est le champ électrique appliqué. La

première partie du terme de droite est due au champ électrique extérieur tandis que la seconde

est due à la charge image.

La distance pour laquelle la hauteur de la barrière de potentiel est minimale ( dim min( )x )

est donné par :

016m

r

qx

E Equation I-2

En xm, la hauteur de barrière est diminuée :

31/2

04S

r

q EE

Equation I-3

où S est la constante de Schottky.

La hauteur de barrière d’injection devient donc :

w Equation I-4

La densité de courant d’injection Schottky tenant compte de la diminution de barrière de

potentiel est donnée par [ODW73, DIS92]

:

2

0

exp exp4

Schottky

B B r

q q qEj AT

k T k T

Equation I-5

où A est la constante de Richardson, 2

6 2 2

3

41,2.10 . .Bqmk

A A m Kh

.

h : constante de Plank, h=6,626.10-34

J.s,

m : masse de l’électron, m=9,109.10-31

kg.

Page 45: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

23

L’injection de Schottky se produit donc sous contraintes thermique et électrique. Quand

le champ appliqué est nul, la densité de courant n’est pas nulle, mais provient simplement de

l’effet thermique.

Injection Fowler-Nordheim

L’effet Fowler-Nordheim (ou effet tunnel) traduit l’injection de charges dans l’isolant

directement à travers la barrière de potentiel à l’interface. Cet effet ne devient significatif que

pour des champs élevés (109 V.m

-1). Dans ce cas, l’épaisseur de la barrière de potentiel (dm

sur la Figure I-10) est très fine.

La densité de courant s’exprime uniquement en fonction du champ électrique appliqué

et de la hauteur de barrière [DUK69]

:

2 21 expFN

Kj K E

E

Equation I-6

Avec :

3

18

qK

h Equation I-7

1/2 3/2

2

8 (2 )

3

mK

hq

Equation I-8

L’Equation I-8 montre que l’injection Fowler-Nordheim est indépendante de la

température. Cependant, des études ont montré que l’effet tunnel était aussi fonction de la

température. Ainsi, lors de l’augmentation de température, des électrons se trouvant dans un

état excité dans le métal ont une probabilité plus grande de passer dans la bande de

conduction de l’isolant par effet tunnel [GOO56]

.

I.3.3.1.b Mécanismes de transport

Courant limité par charge d’espace (SCLC)

Le régime de conduction SCLC décrit l’évolution de la densité de courant lorsque les

charges injectées sont plus importantes que les charges intrinsèques. La Figure I-12 présente

la caractéristique courant-tension dans un diagramme logarithmique avec les différentes

régions associées :

Page 46: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

24

Figure I-12. Caractéristique courant-tension du phénomène de courant limité par charge d’espace

Région A : lorsque la tension V est inférieure à une tension de transition VtrP (V<VtrP), la

densité de charges injectées est négligeable devant la densité de porteurs intrinsèques n0,

le comportement est ohmique :

0 0

Vj qn E qn

d Equation I-9

où : d : épaisseur du diélectrique,

μ : mobilité de charges.

Ici, la pente de la caractéristique logarithmique courant-tension est p=1.

Région B : lorsque V>VtrP, ce sont les porteurs injectés, dont une partie est piégée, qui

constituent l’espèce dominante. Le transport est contrôlé par la loi de Mott-Gurney, pour

laquelle le courant est proportionnel au carré de la tension, et qui s’écrit :

2

0 3

9

8r

Vj

d Equation I-10

où l

p

n

n est la fraction de charges injectées libres par rapport aux charges piégées.

Donc, est la mobilité effective.

Région C : lorsque tous les pièges sont remplis par les charges, la conduction augmente

brusquement et les charges libres peuvent se mouvoir, comme si le diélectrique était

exempt de pièges. La tension appliquée vaut alors VTFL (Trap Filled Limit).

Page 47: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

25

Région D : lorsque V>VTFL, la caractéristique rejoint celle d’un diélectrique sans pièges

( 1 ) exprimée par :

2

0 3

9

8r

Vj

d Equation I-11

Les valeurs de VtrP, VTFL, VtrS (Figure I-12) sont déterminées à partir des Equations

I-9,10 et 11 :

2

0

0

8

9trS

r

dV qn

Equation I-12

2

0

0

8

9trP

r

dV qn

Equation I-13

2

0

TFL t

r

dV qN

Equation I-14

où Nt est la densité totale de pièges.

L’Equation I-10 suppose que la tension appliquée au diélectrique permet de remplir des

pièges situés à un niveau d’énergie bien défini, situé dans la bande interdite de l’isolant. La

réalité est souvent plus complexe. Le régime d’injection va dépendre fortement de la

répartition énergétique des pièges (profonds ou pas), de leur densité dans la bande interdite,

de l’influence de la diffusion des porteurs de charge, etc [BAR83]

. L’influence générale de ces

effets apparaît souvent vers VtrP et tendra à masquer la transition VTFL. Dans ce cas, le calcul

analytique précédent n’est plus valable et les lois de comportement sont déterminées par un

calcul numérique. Le comportement général cependant reste du type :

1

0 2 1

9

8

k

r k

Vj

d

Equation I-15

où k est un nombre variant entre 0 et 3 et dont la valeur dépend de la distribution des

pièges en énergie.

Mécanisme de Poole-Frenkel

Le mécanisme de Poole-Frenkel dans le volume est l’analogue de l’injection de

Schottky à l’interface métal-isolant. Ce mécanisme de conduction volumique décrit

généralement, dans les isolants, le déplacement des porteurs qui se trouvent dans la bande de

conduction et qui peuvent se piéger à la profondeur ϕ mais peuvent se dépiéger en acquérant

Page 48: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

26

une énergie thermique kBT suffisante leur permettant de franchir la barrière de potentiel w.

L’effet du champ électrique facilite ce dépiégeage grâce à l’abaissement de la hauteur de

barrière, dont l’expression est :

1/2.PFw E Equation I-16

où PF est la constante de Pool-Frenkel. 3

0

2PF S

r

q

.

L’expression de la densité de courant résultant de ce phénomène peut être écrite selon

[ODW73] :

0

0

exp exp4

PF

B B r

q q qEj j

k T k T

Equation I-17

où j0 est la densité de courant à T = 0 K.

Conduction par « hopping »

Une description réaliste d’un isolant consiste à considérer qu’il existe une distribution

de pièges allant du niveau de Fermi jusqu’aux bandes de valence et de conduction, donnant

lieu respectivement à des pièges à trous et à électrons. Les porteurs de charge injectés dans le

diélectrique sont attirés et restent dans les pièges positifs ou négatifs profonds. Lorsqu’une

charge a acquis une énergie suffisante pour sortir d’un piège occupé et franchir la barrière de

potentiel, elle se repiège immédiatement dans un piège vide voisin. Ce mécanisme de

transport s’appelle conduction par saut ou hopping. Cette énergie de dépiégeage vient

généralement de l’excitation thermique du matériau. L’expression de la densité de courant

pour le hopping doit alors tenir compte de la distance entre les deux pièges et des valeurs des

barrières de potentiel à franchir. L’expression du courant pour une conduction par saut est de

la forme [MOT48]

:

2 .exp sinh2

hop

B B

q qEaj a n

k T k T

Equation I-18

où : a : distance inter-pièges (m),

: fréquence des sauts (Hz),

n : densité de charges (C.m-3

).

Page 49: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

27

En pratique, la mobilité obtenue pour une conduction par hopping est plus faible par

rapport à celle obtenue pour un courant limité par charge d’espace car les charges restent la

plupart du temps piégées et participent donc moins au transport.

I.3.3.2 Conduction ionique

I.3.3.2.a Génération

Des ions, en plus ou moins grandes quantités, existent dans tous les matériaux

diélectriques. Ils proviennent d’impuretés, dépendant des procédés de fabrication, des

processus d’ionisation, par exemple : le soufre présent dans certains anti-oxydants, des ions

organiques (oxalate…) issus de l’oxydation du polymère [GIL89]

, des molécules d’eau

contenues dans l’isolant intervenant dans l’ionisation des impuretés [AID97]

.

D’autre part, des ions peuvent être créés par dissociation de paire cation-anion :

N A B

I.3.3.2.b Mécanisme de transport ionique

Le transport des ions se différencie de celui des électrons ou trous par deux facteurs

principaux [SEG00]

:

la taille des espèces transportées est incomparablement plus importante et les simples

effets stériques peuvent, à eux seuls, expliquer que les mobilités ioniques sont inférieures,

de plusieurs ordres de grandeurs, aux mobilités électroniques ;

le transport d’ions résulte en un transport de matière

Il est difficile de connaître exactement la nature des ions participant à la conduction,

surtout lorsque le matériau d’étude est complexe. Ces ions peuvent se piéger dans des puits de

potentiel créés par la conformation de la chaîne de polymère. Le mécanisme de transport est

une série de sauts au-dessus des barrières de potentiel, qui permet aux ions de se mouvoir

d’un site à un autre. Ces barrières de potentiel sont modifiées par le champ électrique

appliqué. La Figure I-13 décrit cette situation. Si ϕ est la profondeur du puits de potentiel que

voit un ion situé en A en l’absence de champ appliqué (Figure I-13a), la hauteur de barrière

qu’il aura à franchir lorsqu’on applique un champ E est ϕd dans le sens direct ou ϕi dans le

sens inverse (Figure I-13b). La relation entre eux est donc : ϕd < ϕ < ϕi.

Page 50: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

28

(a)

(b)

Figure I-13. Positions d’un ion dans une série de puits de potentiel (a) en l’absence de champ électrique et (b)

soumis à un champ électrique [SEG00]

.

La densité de courant résultant de la conduction ionique est exprimée par [DIS92]

:

02 exp sinh2

ion ion

B B

G qEaj n a

k T k T

Equation I-19

Où : nion : densité d’ions

a : distance inter-pièges (m)

ν0 : fréquence d’activation (Hz)

q : charge élémentaire, q=1,6. 10-19

C

kB : constante de Boltzmann, kB = 1,3806.10-23

J.K-1

ΔG : énergie libre de Gibbs (J).

Nous venons de lister les mécanismes de conduction électronique et ionique qui sont

liés à la charge d’espace, aux pièges et aux ions à l’interface métal/isolant et à l’intérieur du

matériau diélectrique. Cependant, dans les études particulières portant sur les matériaux

polaires, il est en plus nécessaire de comprendre les propriétés électriques liées à la

polarisation et à la relaxation diélectrique.

Page 51: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

29

I.4 Polarisation, mécanismes de relaxation diélectrique

I.4.1 Polarisation diélectrique

I.4.1.1 Définition de la polarisation diélectrique

Il suffit de réaliser une expérience simple sur un condensateur constitué d’un matériau

diélectrique placé entre deux armatures métalliques pour mettre en évidence le phénomène de

polarisation. Lorsqu’on applique un champ électrique E sur des charges libres entre deux

armatures dans le vide, en utilisant la loi de Gauss, le déplacement électrique D induit s’écrit

[COE93, FOU00] :

0D E

Equation I-20

où 12 1

0 8,854.10 .F m est la permittivité du vide.

Maintenant, si un matériau diélectrique est placé entre deux armatures, il faut prendre en

compte l’aptitude que possède le matériau à pouvoir se polariser sous l’action du champ. Le

déplacement électrique induit devient alors :

0D E P

Equation I-21

La plupart des diélectriques ou isolants utilisés en électrotechnique sont homogènes,

linéaires et isotropes. Dans ce cas, la polarisation diélectrique P est proportionnelle au champ

électrique E :

0 0gP N E E

Equation I-22

où : N0 : densité de dipôles intrinsèques,

g : polarisabilité globale,

: susceptibilité diélectrique.

On en déduit, en tenant compte de l’Equation I-22 :

0 1D E

Equation I-23

En posant :

1r Equation I-24

Page 52: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

30

où r est permittivité relative. On note que le vide ( 1r et 0 ) n’est pas

polarisable.

On obtient le déplacement diélectrique sous la forme :

0 rD E

Equation I-25

D’après les Equations I-22 et 24, la polarisation s’écrit également :

0 1rP E

Equation I-26

I.4.1.2 Différentes contributions à la polarisation

La polarisation est la résultante de tous les moments dipolaires microscopiques

permanents ou induits [KRE02]

. Elle peut être séparée en quatre types de contributions :

électronique, atomique, d’orientation et interfaciale [DUB98, DUB01]

. La Figure I-14 présente

schématiquement ces contributions de la polarisation diélectrique, qui sont:

La polarisation électronique (Pe): due à la déformation du nuage électronique entourant

chaque noyau d'un atome. Cette polarisation est habituellement établie à temps très court

(~10-15

s).

La polarisation atomique (ou ionique – Pa) : si on soumet une molécule à un champ

électrique, le déplacement des atomes les uns par rapport aux autres au sein de cette

molécule laisse apparaître un moment dipolaire atomique µa conduisant à la polarisation

atomique. Cette dernière a aussi un temps d’établissement très court (~10-13

à 10-12

s).

La polarisation d’orientation (ou dipolaire – Por

) : si les molécules soumises au champ

électrique possèdent un moment dipolaire permanent, elles ont tendance à s’orienter

suivant le sens de ce champ. Le temps d’orientation des dipôles est beaucoup plus

important que dans les deux cas précédents (~10-9

à 105 s) en raison de la grande diversité

des dipôles impliqués et de leur environnement moléculaire. La polarisation d’orientation

est fortement dépendante de la température.

La polarisation interfaciale (ou de charge d’espace- Pi) : Cette polarisation apparaît dans

les matériaux hétérogènes. Elle provient de l’accumulation des charges électriques aux

interfaces entre les différentes phases constituant le matériau lorsque celles-ci possèdent

Page 53: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

31

des permittivités et des conductivités différentes. Ce mécanisme induit un moment

dipolaire macroscopique dont le temps d’établissement est long (>103s).

Figure I-14. Différentes contributions à la polarisation [DUB01]

I.4.1.3 Polarisation dans le domaine temporel

L’expression de la polarisation en fonction du temps quand un champ électrique

constant E est appliqué s’appuie généralement sur l’évolution dans le temps de la permittivité.

Elle peut alors s’écrire :

0( ) ( ) 1P t t E Equation I-27

Pour une gamme d’étude en temps comprise entre quelques millisecondes et quelques

milliers de secondes, le temps d’établissement (<10-12

s) des contributions rapides de

polarisation (polarisation électronique et atomique) est négligé et ces contributions sont

souvent regroupées dans un seul terme appelé polarisation instantanée P0 (t→0) :

0 0 1e aP P P E Equation I-28

où est la permittivité infinie à t=0 ou f= .

Dans ces conditions seule la polarisation d’orientation évolue en fonction du temps. Elle

est extraite de la polarisation totale :

Page 54: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

32

0 0( ) ( ) P ( )orP t P t t E Equation I-29

Le diélectrique contient un nombre fini de dipôles susceptibles de s’orienter, donc aux

temps très longs (t→ ), la polarisation doit avoir une valeur finie Ps (état statique).

0 1s sP E Equation I-30

où s est la permittivité statique à t= ou f=0.

La valeur d’équilibre de la polarisation d’orientation est :

0 0

or

eq sP E E Equation I-31

où s est la dispersion diélectrique.

La Figure I-15 présente l’évolution de la polarisation en fonction du temps quand un

échelon de champ électrique E0 est appliqué à t=t0.

Figure I-15. Polarisation en fonction du temps quand un champ électrique est appliqué à t0 [AMB07]

Pour les calculs de la polarisation, nous allons considérer la théorie phénoménologique

générale du comportement des diélectriques linéaires et isotropes soumis à un champ

électrique dépendant du temps. Dans cette théorie, le principe de superposition est valide pour

un diélectrique linéaire. Ainsi la polarisation à un temps t0 due à un champ électrique

décomposable en une somme E(t)+E’(t), est donnée par les polarisations P(t0) et P’(t0) dues

aux champs E(t) et E’(t) pris séparément [BÖT78]

. La plupart des diélectriques sont linéaires

quand les champs électriques appliqués ne sont pas très élevés. Le principe de superposition

permet de décrire la polarisation induite par un champ électrique dépendant du temps. Ceci est

Page 55: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

33

possible avec l’aide de fonctions de réponses. Pour l’introduction de ces fonctions, il est utile

de considérer un changement instantané du champ appliqué d’une valeur E1 à une valeur E2 à

un moment t’ :

1 2 1( ) ( ')E t E E E S t t Equation I-32

où S est une fonction échelon unité :

0 0( )

1 0

si tS t

si t

Equation I-33

L’Equation I-32 peut être aussi écrite comme la superposition d’un champ statique E2

avec le champ E’ défini par l’Equation I-34.

1 2'( ) 1 ( ')E t E E S t t Equation I-34

Ainsi la polarisation induite par E(t) pour les temps t ≥ t’ est donnée par la polarisation

d’équilibre 0 2E et la réponse à la variation du champ E1-E2. Pour un matériau linéaire la

réponse sera proportionnelle à E1-E2, la polarisation d’orientation est donc :

0 2 0 1 2( ) ( ')orP t E E E t t Equation I-35

où α(t) est appelée fonction de réponse à un échelon ou fonction de relaxation de la

polarisation. Les conditions aux limites de cette fonction sont : α(0)=1 et α(∞)=0.

La Figure I-16 présente l’évolution de la polarisation en fonction du temps quand un

champ électrique change de E1 à E2 à t=t’.

Figure I-16. Polarisation en fonction du temps quand un champ électrique change de E1 à E2

Page 56: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

34

Pour décrire la polarisation d’un matériau soumis à un champ dépendant arbitrairement

du temps, il est nécessaire de faire le même raisonnement mais avec des fonctions de Block.

Considérons une fonction créneau telle que le champ est égal à Ek pour tk-∆t < t < tk et

est nul pour t ≤ tk-∆t et t > tk. Cette fonction peut être considérée grâce au principe de

superposition comme une somme de deux champs échelon :

( ) ( ) ( )k k k kE t E S t t t E S t t Equation I-36

Il en est de même pour la polarisation d’orientation :

0( ) ( ) ( )or

k k kP t E t t t t t Equation I-37

Un champ E ayant une dépendance temporelle arbitraire peut être discrétisé en champ

Ek pour tk-dt < t ≤ tk. Les effets d’un de ces champs sur la polarisation sont donnés par

Equation I-37. D’après le principe de superposition en considérant que dt est suffisamment

petit, il est possible d’écrire la polarisation sous forme intégrale :

0

0

( ')( ) ( ') '

( ') ( ') '

t

or

t

p

t tP t E t dt

t

E t t t dt

Equation I-38

où ( )

( )p

tt

t

est la fonction réponse impulsionnelle.

La polarisation d’orientation s’exprime alors naturellement comme le produit de

convolution entre la réponse impulsionnelle ( )p t et le signal d’entrée E(t) :

0( ) (t)* ( )or

pP t E t Equation I-39

En ajoutant la polarisation instantanée nous obtenons la polarisation totale :

0 0( ) 1 ( ) ( )* ( )pP t E t E t t Equation I-40

Selon l’Equation I-21, le déplacement électrique s’écrit alors :

0 0( ) ( ) ( )* ( )pD t E t E t t Equation I-41

Page 57: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

35

I.4.1.4 Relation temps-fréquence

En appliquant la transformée de Laplace à l’Equation I-41, nous obtenons la réponse en

fréquence :

0 0( ) ( ) ( ) ( ) ( )pD TL D t E E Equation I-42

où ( )p représente la transformée de Fourier de ( )p t :

0

( ) ( ) (t)e '( ) j "( )j t

p p p p pTF t dt

Equation I-43

'( )p , "( )p sont les fonctions de réponse impulsionnelle réelle et imaginaire qui

peuvent être exprimées par :

0

0

'( ) (t) cos( )

"( ) (t)sin( )

p p

p p

t dt

t dt

Equation I-44

Le déplacement électrique peut s’écrire :

0 0( ) ( ) ( ) *( ) ( )pD E E Equation I-45

Ici, on a posé : *( ) ( ) '( ) j "( )p

où *( ), '( ), "( ) sont les permittivités complexe, réelle et imaginaire.

En séparant les parties réelle et imaginaire, on peut écrire :

0

0

'( ) (t) cos( )

"( ) (t)sin( )

p

p

t dt

t dt

Equation I-46

Ces deux parties de la permittivité sont liées par les relations de Kramers-Kronig [DAN67]

qui correspondent mathématiquement à la transformation intégrale d’Hilbert [ERD54]

:

2 2

0

2 2

0

2 "( )'( )

'( )2"( )

u udu

u

udu

u

Equation I-47

Page 58: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

36

Les relations de Kramers-Kronig sont une conséquence directe du principe de causalité

du système et pré-supposent sa linéarité et sa stabilité dans le temps. L’évaluation de ces

relations est généralement fastidieuse analytiquement. Cependant, l’estimation de la

dispersion diélectrique devient plus simple en la mettant sous la forme :

0

2'(0) "( ) (ln )d

Equation I-48

I.4.2 Courants transitoires

Dans ce paragraphe, nous présentons la réponse en courant dans le domaine temporel

sous polarisation statique. Ce rappel théorique nous permet de définir le contexte d’analyse de

nos résultats expérimentaux en ce qui concerne l’étude des caractéristiques courant-temps en

fonction du champ appliqué et de la température.

I.4.2.1 Généralités

Lorsqu’un matériau diélectrique est soumis à un échelon de tension, le courant qui le

traverse évolue dans le temps et est appelé courant transitoire, on distingue deux phases :

La phase de polarisation (en appliquant une tension constante V) : il apparaît d’abord un

courant d’absorption IA (ou courant de déplacement - Id) qui peut être initialement intense,

mais qui s’amortit en première approximation de manière exponentielle, avec une

constante de temps plus ou moins rapide. Dans un diélectrique idéal, cette constante de

temps est le produit de la capacité de l’échantillon par la résistance du circuit, incluant

éventuellement celle de l’échantillon [FOU00]

. Après ce temps, le courant atteint une valeur

stationnaire (le courant de conduction – IC). Le courant total durant cette phase, qui se

compose de IA et IC, s’appelle le courant de polarisation IP :

P A CI I I Equation I-49

La phase de dépolarisation (en supprimant la tension appliquée) : le courant de conduction

devient nul (IC = 0) mais il apparaît un courant de résorption IR qui doit suivre les mêmes

lois que IA pour un isolant linéaire. Le courant durant cette phase s’appelle le courant de

dépolarisation IDép :

Dép R AI I I Equation I-50

Page 59: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

37

Les courants transitoires lors de l’application d’un échelon de tension aux bornes d’un

matériau diélectrique sont représentés sur la Figure I-17.

Figure I-17. Allure classique des courants transitoires lors de l’application d’un échelon de tension.

I.4.2.2 Expression du courant de déplacement

Le courant de conduction est détaillé au paragraphe I.3.3. Nous allons exprimer dans ce

paragraphe le courant de déplacement ou le courant d’absorption.

En dérivant l’Equation I-41, la densité de courant de déplacement s’écrit :

0 ( ) ( ) ( )d p

DJ t t E t

t

Equation I-51

où δ(t) est la fonction de Dirac. Le premier terme correspond à la densité de courant

instantanée due à la composante capacitive, et le second correspond au courant issu de la

polarisation du matériau, donné par la fonction de réponse impulsionnelle ( )p t .

I.4.2.3 Caractéristiques des courants transitoires

Le courant de déplacement et de conduction résultent de différents phénomènes

physiques. Ces derniers et leur dépendance en fonction de plusieurs paramètres

caractéristiques sont énumérés sur le Tableau I-2.

Page 60: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

38

Tableau I-2. Principaux mécanismes régissant la réponse transitoire des courants et leur dépendance en

fonction de plusieurs paramètres caractéristiques [GUP76]

(E : champ électrique ; T : température ; j : densité de

courant ; V : tension ; d : épaisseur ; -- : non renseigné).

Mécanisme Dépendance avec E Dépendance

avec T

Dépendance

avec d à E=cte

Influence de

la nature des

électrodes

Réversibilité

entre IA et IR

Polarisation

d’électrodes j E Activée

thermiquement

-- Fortement

dépendante

(électrode

bloquante)

Incertaine

Orientation

dipolaire j E Activée

thermiquement

Indépendante Indépendante Oui

Injection de

charges avec

piégeage

Reliée aux

mécanismes

d’injection

Reliée aux

mécanismes

d’injection

Indépendante Reliée aux

mécanismes

d’injection

Non

Courant

limités par

charge

d’espace

1

2 1, 0 3

k

k

Vj k

d

Activée

thermiquement

kj d

Reliés au

caractère

bloquant des

électrodes

Non

Mécanisme

Poole-Frenkel j E Activée

thermiquement

Indépendante Indépendante --

Conduction

« hopping » j E Activée

thermiquement

Indépendante Indépendante --

Il sera cependant difficile à partir de cette seule caractéristique d’identifier clairement

l’origine du mécanisme responsable du courant transitoire dans les résultats expérimentaux.

I.4.2.4 Cas d’un courant de dépolarisation anormal

Contrairement au cas des courants réversibles, dans la pratique, on observe des courants

de résorption dont le comportement n'est pas symétrique aux courants d’absorption. Dans ce

cas, on appelle le courant d’absorption irréversible et le courant de dépolarisation anormal.

Ces courants sont représentés schématiquement sur la Figure I-18a où la valeur du courant de

dépolarisation change de signe (de négatif à positif) au cours du temps.

Le courant de dépolarisation anormal a été observé en premier par Stetter [STE65]

en

1965. Il apparaît lorsque le matériau diélectrique est soumis à des champs électriques plus

élevés qu’une valeur définie, qu’on appelle champ de seuil et qui dépend de la température

[AMR93]. Par exemple pour un spectre de courant de dépolarisation dans l’éthylène-acétate de

vinyle (EVA) à 25°C [KIT85]

(Figure I-18b), les courants de dépolarisation anormaux ne sont

Page 61: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

39

observés qu'à partir de 1,5.108 V/m. Pour un champ électrique plus faible (10

8 V/m), on a un

courant de dépolarisation normal.

(a) (b)

Figure I-18. Courants anormaux : (a) allure lors de l’application d’un échelon de tension, (b) courants de

dépolarisation pour de l’éthylène-acétate de vinyle (EVA) à différents champs électriques à 25°C [KIT85]

Plusieurs études ont été réalisées dans le but d’expliquer le mécanisme responsable du

courant de dépolarisation anormal. Amroun et al. [AMR93]

ont conclu qu'il est causé par des

charges injectées depuis les électrodes conduisant à l'existence d'une charge d'espace dans le

diélectrique. Dans d'autres études sur le polyéthylène, Mizutani et al. [MIZ79, MIZ81, MIZ82]

arrivaient à la même conclusion. Les auteurs ont de plus proposé que le courant de

dépolarisation anormal est aussi causé par le blocage total ou partiel des charges au contact

métal-isolant. Kitani et al. [KIT83, KIT84, KIT85]

en utilisant une analyse numérique, ont montré

que le courant de dépolarisation anormal peut aussi être obtenu avec une injection bipolaire

(électrons et trous), et avec une interface non bloquante.

I.4.3 Relaxation diélectrique sous tension sinusoïdale

Ce paragraphe se focalise sur la réponse de la relaxation diélectrique dans le domaine

fréquentiel sous tension sinusoïdale. Ce rappel théorique nous permet d’analyser les résultats

expérimentaux dans le domaine fréquentiel qui seront ensuite convertis en une réponse en

courant dans le domaine temporel.

I.4.3.1 Comportement dynamique de la polarisation

Au début du XXème

siècle, lors d’étude des molécules polaires dans les diélectriques

liquides sous l’effet d’un champ électrique appliqué, Debye a utilisé un modèle analytique

pour analyser les relaxations diélectriques qui sont dues à des dipôles présents dans le

Page 62: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

40

diélectrique. De nombreux travaux ultérieurs basés sur ce modèle de Debye ont apporté des

modèles empiriques qui nous permettent d’obtenir une bonne approximation des données

expérimentales dépendant du type de relaxation et de matériau. Dans ce paragraphe, nous

focaliserons sur le modèle d'Havriliak-Negami ainsi que ses cas particuliers qui s'adaptent

largement aux relaxations diélectriques dans le domaine fréquentiel obtenues sous

polarisation sinusoïdale.

I.4.3.1.a Modèle de Debye

Debye considéra des dipôles, en excluant leurs possibles interactions, dans un milieu

visqueux [DEB29]

. Il supposa, dans le cas exposé, que la polarisation augmente de manière

exponentielle avec un unique temps de relaxation . La fonction réponse à un échelon est

alors de la forme :

( ) expt

t

Equation I-52

La fonction impulsionnelle s’écrit :

1( ) expp

tt

Equation I-53

Après utilisation de la transformée de Fourier de la réponse impulsionnelle, la

permittivité complexe en fonction de la pulsation s’écrit alors :

*( )1 j

Equation I-54

En séparant la partie réelle et la partie imaginaire de la permittivité complexe, on

obtient :

2

'( )1

Equation I-55

2

"( )1

Equation I-56

La Figure I-19 présente l’évolution des parties réelle et imaginaire de la permittivité

complexe en fonction de la fréquence et le diagramme Cole-Cole ( " en fonction de ' ) du

modèle de Debye.

Page 63: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

41

log(f)

p=1/

WD

" '

s

/2

'

/2

=1

"

s

(a) (b)

Figure I-19. Modèle de Debye : (a) évolution des parties réelle et imaginaire de la permittivité, (b) diagramme

Cole-Cole

La relaxation diélectrique de type Debye se caractérise par la largeur à mi-hauteur du

pic de la permittivité imaginaire WD et la position du maximum des pertes diélectriques p ou

2p p .

Avec :

WD = 1,144 décades en échelle logarithmique.

1p

Equation I-57

La représentation dans un diagramme Cole-Cole est un demi-cercle de rayon

/ 2s dont le centre est situé à / 2s .

I.4.3.1.b Distribution des temps de relaxation

Les résultats expérimentaux obtenus dans des diélectriques solides montrent très

rarement des relaxations de type Debye. Les relaxations observées sont généralement plus

larges et dissymétriques comparées à celle de type Debye. Cette observation traduit le fait que

la taille des dipôles est distribuée dans le matériau. Par conséquent, le temps de relaxation

dipolaire n’est plus unique et devient défini par une fonction de distribution de temps de

relaxation, ( ) ou (ln ) .

La réponse impulsionnelle devient donc :

0

( ) ( )exp (ln )exp lnp

t tt d d

Equation I-58

Page 64: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

42

La permittivité diélectrique dans le domaine fréquentiel s’écrit alors :

0

( ) (ln )*( ) ln

1 1d d

j j

Equation I-59

où ( ) , (ln ) satisfont les relations :

0

( ) 1d

et (ln ) ln 1d

Equation I-60

Plusieurs méthodes ont été proposées afin de trouver la fonction de distribution de

temps de relaxation [ROU53, FER80, TSC89, IMA88]

mais le problème n’est pas bien résolu

aujourd’hui encore. Pour cette raison, des modèles empiriques ont été développés, dont la

forme générale peut être présentée par le modèle de Havriliak-Negami.

I.4.3.1.c Modèle de Havriliak-Negami

L’équation de Havriliak-Negami (HN) est donnée par [HAV66, HAV67]

:

*( )

1c

bj

Equation I-61

où b est le paramètre donnant la largeur de la distribution de temps de relaxation

symétrique et c est le paramètre de dissymétrie de la distribution de temps de relaxation.

et b, c satisfont 0 < b, c 1.

Selon les différentes valeurs particulières de ces paramètres de forme, on obtient les

différentes formes de relaxation diélectrique qui correspondent aux cas particuliers du modèle

de Havriliak-Negami :

b=c=1 : type Debye,

c=1 : type Cole-Cole [COL41]

,

b=1 : type Cole-Davidson [DAV51]

.

La Figure I-20 montre des exemples d’évolution des courbes de '(f) , "(f) en échelle

semi-logarithmique et du diagramme Cole-Cole pour un modèle de type Cole-Cole (Figure

I-20a) et un modèle de type Cole-Davidson (Figure I-20b). Pour le modèle de type Cole-Cole,

Page 65: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

43

la largeur de la relaxation augmente avec une valeur décroissante de b. Pour le modèle de type

Cole-Davidson, la dissymétrie de la relaxation augmente avec une valeur décroissante de c.

-4 -2 0 2 41

1.2

1.4

1.6

1.8

2

log(f)

'

b=1

b=0.8

b=0.6

b=0.4

b=0.2

-4 -2 0 2 41

1.2

1.4

1.6

1.8

2

log(f)

'

c=1

c=0.8

c=0.6

c=0.4

c=0.2

-4 -2 0 2 40

0.1

0.2

0.3

0.4

0.5

log(f)

"

-4 -2 0 2 40

0.1

0.2

0.3

0.4

0.5

log(f)

"

1 1.2 1.4 1.6 1.8 20

0.1

0.2

0.3

0.4

0.5

'

"

1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

'

"

(a) (b)

Figure I-20. Evolution des parties réelle et imaginaire de la permittivité et du diagramme Cole-Cole en fonction

des paramètres de forme du modèle de Havriliak-Negami ( 1, 1, 1/ 2 ) : (a) type Cole-Cole

(c=1), (b) type Cole-Davidson(b=1)

Page 66: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

44

La position du maximum des pertes diélectriques suivant le modèle de Havriliak-

Negami suit la relation [SCH03]

:

1/ 1/1

sin sin2 2 2 2

b b

p

b bc

c c

Equation I-62

I.4.3.1.d Autres modèles dans le domaine fréquentiel

D’autre modèles empiriques dans le domaine fréquentiel, décrivant les relaxations

diélectriques peuvent être rencontrés dans la littérature [FUO41, WIL70, JON75, HIL78, DIS79]

. Le

Tableau I-3 représente la synthèse de ces différents modèles.

Tableau I-3. Modèles utilisés pour décrire une relaxation diélectrique.

Modèle ( )p , *( ) , *( )

1 paramètre de forme

Debye [DEB29]

1

( ) 1p j

Cole-Cole [COL41]

1

( ) 1p j

Cole-Davidson [DAV51]

( ) 1p j

Fuoss-Kirwood [FUO41]

"( ) ".sech m.lnm

p

Williams-Watts [WIL70]

1

( ) exp( j / 2)( )

( 1)!

s

p

s

s

s

2 paramètres de forme

Havriliak-Negami [HAV66, HAV67]

( ) 1

cb

p j

Jonscher [JON75]

11

1 2

"( )

m n

p p

Hill [HIL78]

( 1 )/2

2 2"( )

m

m n ss s

p

Dissado-Hill [DIS79]

1

2 11( ) . (1 n,1 m;2 n; )

n

p p

n

pp

Fjj

Page 67: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

45

avec :

*( )p

Equation I-63

où α, β, m, n, Δ, b, c sont des paramètres de forme tous positifs.

I.4.3.1.e Modèle de Kohlrausch-Williams-Watts dans le domaine temporel

Dans la littérature, nous trouvons souvent le modèle empirique de Kohlrausch-

Williams-Watts (KWW) [KOH54, WIL70]

dans le domaine temporel pour décrire ( )p t .

L’expression de ce modèle est donnée par :

( ) 1 expKWW

p

tt

Equation I-64

où βKWW est un paramètre d’asymétrie de la distribution des temps de relaxation.

Patterson et Lindsay [LIN80]

ont développé une relation entre les modèles de Cole-

Davidson et de KWW car les deux modèles ont un paramètre de forme asymétrique. Cette

étude est complétée par celles d’Alvarez et al. [ALV91, ALV93]

qui relient le modèle de Havriliak-

Negami (HN) et celui de KWW par l’approximation suivante.

1,23

KWW bc Equation I-65

Pour les limites de cette relation, il est important de noter que le modèle de HN a deux

paramètres de forme tandis que le celui de KWW a un seul paramètre de forme. Par

conséquent, pendant la transformation du domaine fréquentiel au domaine temporel, des

informations ont été perdues [ALV91]

. Cette remarque a été aussi discutée dans une étude de

Snyder et Mopsik [SNY99]

. La figure Figure I-21 présente la relation entre les paramètres de

forme, b et (bc), de la relaxation diélectrique α d’un nombre représentatif de matériaux

polymères et de faible poids moléculaire [RUN97]

.

La Figure I-21 prouve qu’il n’existe pas de corrélation entre les paramètres de forme. Il

doit donc être conclu que deux paramètres de forme sont nécessaires, en général, pour décrire

un processus de relaxation diélectrique.

Page 68: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

46

Figure I-21. Paramètres de forme de la relaxation diélectrique α pour différentes polymères (○) et systèmes de

faible poids moléculaire (□)

I.4.3.2 Dépendance en température des temps de relaxation

Dans les diélectriques, les relaxations sont accélérées lors d’une augmentation de la

température. On observe en général deux types de comportement.

I.4.3.2.a Comportement suivant la loi d’Arrhénius

La loi d’Arrhénius est une loi empirique. Elle a pris par la suite une grande importance

théorique car elle est compatible avec la théorie des collisions et celle du complexe activé

d’Eyring [EYR35]

.

Le comportement suivant la loi d’Arrhénius présente une dépendance linéaire du temps

de relaxation dans une échelle semi-logarithmique, en fonction de l’inverse de la température

(diagramme d’Arrhénius) :

0( ) exp a

B

ET

k T

Equation I-66

où : 0 : facteur pré-exponentiel

Ea : énergie d’activation.

Ce comportement est caractéristique de l’état vitreux (T < Tg) où seules les entités

relaxantes localisées peuvent être sollicitées.

Page 69: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

47

I.4.3.2.b Comportement suivant la loi de Vogel-Fulcher-Tammann

Au voisinage et au-delà de la température de transition vitreuse, la dépendance en

température des temps de relaxation n’obéit plus à la loi d’Arrhénius. La loi de Vogel-

Fulcher-Tammann (VFT) permet de décrire le comportement en température du temps de

relaxation dans cette région de température :

0

0

( ) expB

TT T

Equation I-67

où B est une constante, T0 est une température au-dessous de la température de

transition vitreuse où la mobilité est figée. La valeur de T0 peut être estimée par [WIL55]

:

0 51,6gT T C Equation I-68

L’Equation I-67 présente donc un comportement non-linéaire du temps de relaxation

dans le diagramme d’Arrhénius.

I.4.3.3 Relaxations multiples dans les diélectriques

Dans un diélectrique, des phénomènes de relaxation multiples se produisent,

correspondant à des mouvements moléculaires à des échelles variables, nommés α, β, γ, δ …

par ordre de fréquence d’apparition croissante (à température fixe) ou par ordre de

température décroissante (à fréquence fixe) [TEY10]

(Figure I-22). Les différents processus de

relaxation par lesquels les différents types de dipôles sont orientés peuvent être classés en

deux catégories.

Figure I-22. Relaxations dans un diélectrique en fonction de la température.

Page 70: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

48

I.4.3.3.a Relaxation primaire

La relaxation primaire, nommée α, a pour origine les mouvements micro browniens des

longs segments de chaînes qui sont liés à la transition vitreuse du matériau. Dans les phases

amorphes, la coexistence dans les longues chaînes enchevêtrées de liaisons intramoléculaires

fortes et de liaisons intermoléculaires plus faibles, implique la possibilité d’existence d’un très

grand nombre de degrés de liberté. L’amplitude de la relaxation α dans un polymère amorphe

ou dans les phases amorphes d’un polymère semi-cristallin est donc généralement plus grande

que celle dans les phases cristallines.

En comparaison avec la relaxation de type Debye, la largeur du pic de relaxation α est

plus large mais elle reste encore assez faible par rapport à la largeur des pics de relaxations

secondaires. D’autre part, la dépendance en température du temps de relaxation pour la

relaxation primaire est en général non-linéaire dans le diagramme d’Arrhénius et suit la loi de

VFT [COB86]

.

I.4.3.3.b Relaxation secondaire

Les processus de relaxation secondaire nommés β, γ, δ … sont observés dans l’état

vitreux du matériau. Ces relaxations sont dues aux groupements latéraux de la chaîne de

polymères tandis que des libérations de mouvements d’unités moléculaires sont de plus en

plus petites avec une décroissance de la température.

Une relaxation secondaire d’un diélectrique est étudiée, par exemple, par la

spectrométrie diélectrique dans le domaine fréquentiel. La caractéristique obtenue montre

souvent un pic de relaxation de faible amplitude, symétrique et très large. Dans le domaine

fréquentiel, la largeur à mi-hauteur du pic de relaxation secondaire des pertes diélectriques est

de 3 à 6 décades [RUN97]

. D’autre part, la dépendance en température du temps de relaxation

dans le diagramme d’Arrhénius est linéaire et suit la loi d’Arrhénius [MEN99]

, dont l’énergie

d’activation est relativement faible [KAU48]

.

La Figure I-23 illustre les comportements d’une relaxation primaire α et d’une

relaxation secondaire β d’un matériau diélectrique dans un diagramme d’Arrhénius. Au-delà

de la température de transition vitreuse (Tg), les deux processus ont tendance à converger afin

de constituer un processus complexe αβ. De façon générale, le processus α ou β peut

s’éteindre avant la convergence.

Page 71: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

49

Figure I-23. Dépendance en température du temps de relaxation pour des relaxations primaire (α) et

secondaire (β).

I.4.3.4 Comportement global des caractéristiques diélectriques

D’un point de vue expérimental, les réponses diélectriques des matériaux solides

mettent en jeu des phénomènes de relaxations multiples. En se basant sur le modèle

d’Havriliak-Negami, le comportement des caractéristiques diélectriques d’un matériau est

donc représenté pour un nombre n de relaxations sous la forme :

1

*( )

1i

i

ni

cb

iij

Equation I-69

A basse fréquence et pour des températures supérieures à celles de l’ambiante, il est

souvent nécessaire de prendre en compte l’influence de la conductivité électrique du matériau

(Figure I-24a). On observe que lorsque la température augmente, l’amplitude de la

conductivité augmente également et s’étend vers les plus hautes fréquences (Figure I-24b).

Figure I-24. (a) Permittivité réelle et (b) conductivité réelle dans le domaine fréquentiel en fonction de la

température pour du poly(3n-decylpyrrole) [CAP98]

.

Page 72: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

50

Cela est expliqué par l’effet d’activation thermique des porteurs de charge localisés

dans la bande de conduction. Ces porteurs sont excités et peuvent se déplacer plus facilement,

le temps d’établissement du régime permanent devient alors plus court, le phénomène de

conduction s’observe par conséquence à plus haute fréquence.

Le comportement global de la permittivité complexe d’un matériau diélectrique s’écrit

alors [RAÏ05, GAB10]

:

1 0

*( )

1i

i

ni

c sb

ii

jj

Equation I-70

où est le terme de conduction dépendant de la fréquence de perturbation par une

loi de puissance s . Ici, et s satisfont les relations : 0 ; 0 1s .

En pratique, afin d’éviter ce problème complexe, on réalise successivement des

ajustements partiels pour la partie imaginaire et la partie réelle lors de l’approximation de la

permittivité par le modèle de Havriliak-Negami. Les expressions de ces parties déduites à

partir de l’Equation I-70 s’écrivent alors :

/2

1 02

.cos(c )'( ) cos

211 2 sin

2

i

i i

ni i i

c si b bi

i i

s

b

Equation I-71

/2

1 02

.sin(c )"( ) sin

211 2 sin

2

i

i i

ni i i

c si b bi

i i

s

b

Equation I-72

Avec :

1cos

2arctan1

1 sin2

i

i

b i

i

ib i

i

b

b

Equation I-73

Par exemple, la Figure I-25 montre les résultats de modélisation utilisant les Equations

I-71 et 72 pour le comportement global d’un matériau diélectrique qui se compose de quatre

contributions séparées : deux relaxations secondaires (γ, β) de type Cole-Cole, une relaxation

primaire (α) de type Havriliak-Negami et une conduction (ζ).

Page 73: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

51

0 5 10 152.3

2.35

2.4

2.45

log(f)

'

+'+'

+'

+'+'

+'

+'+'

+'

+'

0 5 10 15

0

0.005

0.01

0.015

0.02

log(f)

"

"

(a) (b)

Figure I-25. Modélisation de la permittivité réelle (a) et de la permittivité imaginaire (b) dans le domaine

fréquentiel en superposant toutes les contributions : relaxation γ de type Cole-Cole, relaxation β de type Cole-

Cole, relaxation α de type Havriliak-Negami, conduction σ

Il faut noter que ces résultats modélisés s’étendent sur une très large gamme allant des

très basses fréquences aux très hautes fréquences, tandis que les spectrométries d’impédance,

en réalité, n’ont la capacité de faire des mesures que sur une gamme de fréquences réduite (de

10-2

à 107 Hz). Des difficultés expérimentales peuvent donc être rencontrées pour étudier le

comportement global des caractéristiques diélectriques du matériau.

I.5 Modélisation du comportement d’un diélectrique

sous contraintes de champ électrique et de

température

I.5.1 Modélisation du transport de charges

La description physique du transport de charges dans les matériaux isolants polymères

est difficile à réaliser. Pour modéliser la conduction, il faut avoir accès à un certain nombre de

paramètres intrinsèques du matériau, tels que la densité totale de pièges, leur distribution dans

la bande interdite, mais aussi à des paramètres relatifs aux charges : la mobilité, le taux de

recombinaison, etc.

De nombreuses simulations du transport de charges dans les diélectriques solides sont

réalisées suivant différentes approches. Certaines se basent sur des approches microscopiques

Page 74: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

52

afin de trouver les paramètres nécessaires à la modélisation du transport de charges [MEU01,

ANT02, HUZ13]. Mais ces approches n’ont pas pour but de modéliser la conduction à proprement

parler. Contrairement à une approche microscopique, les modèles de type macroscopique

traitent dans la globalité les phénomènes physiques mis en jeu lors du transport de charges

dans les diélectriques solides en les simplifiant fortement. Les paramètres sont des grandeurs

macroscopiques mesurables, telles que la permittivité, la conductivité … les approches

macroscopiques sont capables de rendre compte de systèmes complexes utilisant plusieurs

matériaux, mais ne peuvent pas décrire des phénomènes tels que la charge d’espace. Les

approches semi-macroscopiques prennent quant à elles en compte les paramètres

microscopiques calculés dans les modèles et traitent dans la globalité les phénomènes

physiques. Le but de ces approches est avant tout de pouvoir comparer des résultats simulés à

des expériences, telles que la mesure de charge d’espace ou la mesure de courant qui sont des

mesures dépendantes du temps. Ce type de modélisation s’est développé fortement ces deux

dernières décennies. Nous allons donc focaliser notre étude sur ce type de modèles

intermédiaires.

I.5.1.1 Modèles semi-macroscopiques

La modélisation du comportement des charges dans un matériau isolant combine deux

phases principales qui sont la génération de charges et le transport de charges. Le but du

développement de ces approches théoriques à long terme est la prédiction du comportement

du matériau sous une contrainte électrique quelconque, mais aussi la prédiction de la

dégradation ou du vieillissement du matériau isolant menant à la rupture diélectrique.

Cependant, la difficulté commune à toutes les approches est de prendre en considération

l’ensemble des phénomènes physiques qui jouent un rôle dans le comportement du matériau.

Différents modèles bipolaires prennent en compte la possibilité d’avoir des pièges pour

les électrons et pour les trous dans le volume du diélectrique. Nous citerons en premier les

approches de Garton [GAR74]

et Chowdry [CHO74]

. Chowdry et al. considèrent un modèle

bipolaire (électron et trou) basé sur la théorie de Garton avec des pièges et s’appuyant sur des

expériences en électrification de contact sur des polymères tels que le polycarbonate, le nylon

66 et le polyimide. Ce modèle tient compte de deux niveaux d’énergie de piégeage, d’une

barrière d’injection pour chaque type de charge mais ne prend pas en compte la

recombinaison des charges.

Page 75: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

53

Alison et Hill [ALI94]

ont développé un modèle bipolaire de transport de charges dans le

polyéthylène réticulé (XLPE). La phase de génération de charges se fait uniquement par

injection constante aux électrodes. Il n’y a pas de phénomène de dissociation dans le volume,

ni de diffusion. Le transport de charges est modélisé par une mobilité effective indépendante

du champ, tenant compte du possible piégeage et dépiégeage des charges dans des pièges peu

profonds. Les impuretés de type chimique, créant des états localisés profonds dans le gap,

sont représentées par un niveau unique de piégeage pour chaque espèce de porteurs de

charges. Le temps de résidence dans ce niveau de piège profond est considéré comme infini.

La recombinaison via des coefficients de recombinaison pour chaque niveau d’énergie et

chaque espèce, est prise en compte.

D’autres modèles de transport ont été proposés par la suite, prenant en compte d’autres

hypothèses pour l’injection et le transport [FUK94, KAN99]

. Pour ces deux derniers, la génération

de charges se fait par injection de type Schottky, à l’anode et à la cathode pour les trous et les

électrons respectivement, le transport est décrit par « hopping ». Ces modèles ont également

pris en compte la recombinaison des charges. Le modèle de Fukuma utilise une barrière

d’extraction pour les porteurs de charges et tient compte d’un seul niveau de piégeage dans

des pièges profonds. Un paramètre de température est ajouté afin de tenir compte de

l’augmentation de la température par effet Joule avec l’augmentation du champ local et de la

conduction. Le modèle de Kaneko n’utilise pas de barrière d’extraction mais tient compte de

deux niveaux de piégeage.

En 2004, Le Roy et al. [ROY04]

présentent un modèle bipolaire s'appuyant sur le modèle

d’Alison et Hill avec une injection de type Schottky et une barrière de dépiégeage pour les

pièges profonds qui est activé thermiquement. L’échantillon simulé est le LDPE. Une densité

initiale de charges est ajoutée afin de reproduire les expériences. Les résultats obtenus sont

comparés à des mesures expérimentales de charge d’espace, de luminescence et de courants.

Un second modèle bipolaire est aussi développé par Boufayed [BOU06]

en parallèle à celui

décrit dans [ROY04]

, dans la même équipe de recherche, pour du XLPE, en considérant une

distribution exponentielle pour le piégeage et un niveau maximal de profondeur de pièges

(électrons, trous) qui remplace le niveau unique de piégeage profond du modèle [ROY04]

. Ce

modèle ne tient pas compte de la recombinaison des charges, et les seules expériences

auxquelles les résultats peuvent être comparés sont les profils de charges et les courants

externes.

Page 76: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

54

Dans les années suivantes, divers modèles bipolaires s'appuyant sur le modèle de Alison

et Hill et de Le Roy ont été développés. Chacun d’entre eux a pris en considération des

hypothèses particulières, soit pour la génération soit pour le transport de charges, afin

d’adapter leurs modèles à l’application visée. Xia et al. [XIA11]

ont considéré une zone

d’interface à une électrode, dans laquelle des charges injectées depuis le métal par injection

Schottky pouvaient se piéger si le champ électrique était inférieur à un champ seuil. Ils ont

aussi considéré une mobilité différentielle négative (NDM) qui permet de simuler des paquets

de charges. Un modèle de Min et al. [MIN12]

s’appuyant sur celui de [ROY04]

considère que les

électrons, déposés par décharge couronne, sont piégés à la surface air/diélectrique, puis sont

« injectés » dans le volume par effet Poole-Frenkel, alors que les trous sont injectés depuis le

métal par injection Schottky. Ils ont simulé le potentiel de surface pour différents matériaux :

tissu de verre époxy FR4 et polytétrafluoroéthylène (PTFE). Lv et al. [LV13]

ont proposé sur la

base du modèle de [ROY04]

d’associer la densité maximale de pièges à la quantité de

nanoparticules introduites dans une matrice LDPE. Ils tiennent également compte d’un

coefficient d’extraction des charges ainsi que de la diffusion.

Dans notre travail, le modèle de base adopté est celui de Le Roy et al. [ROY04]

.

I.5.1.2 Modèle de base de notre étude

Depuis une dizaine d’années, une activité de modélisation du transport de charges dans

les isolants sous contraintes électriques [ROY06, ROY10]

a été initiée par Le Roy et ses

collaborateurs dans l’équipe Diélectriques Solides et Fiabilité (DSF) du Laboratoire

LAPLACE. Un modèle numérique bipolaire et unidimensionnel, fonction de l’épaisseur du

diélectrique, décrit l’injection et le transport des charges électroniques (électrons et trous)

dans un diélectrique solide organique. La Figure I-26 présente le schéma des mécanismes pris

en considération dans ce modèle. Chaque type de charges peut être mobile ou piégé. Un

électron mobile ou un trou mobile a une mobilité constante. Dans ce modèle de transport de

charges, on considère un seul niveau de piégeage profond et une densité maximale de charges

piégées pour chaque type de charges. La recombinaison peut se produire entre des porteurs de

signe opposé sans créer de nouvelle espèce dans l’isolant polymère. Après recombinaison, le

piège est libéré et le piégeage redevient donc possible.

Page 77: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

55

Figure I-26. Schématisation du mécanisme de conduction

Le modèle s’appuie sur un système couplé d’équations :

L’équation de Poisson : 0

( , ) ( , )

r

E x t x t

x

Equation I-74

L’équation de transport : ( , ) ( , ) ( , )a a aj x t n x t E x t Equation I-75

L’équation de continuité : ( , ) ( , )

( , )a aa

q n x t j x ts x t

t x

Equation I-76

où x est la coordonnée dans l’espace, a représentant les électrons et les trous, ja est la

densité de courant, na est la densité de charges et µa représente la mobilité de l’espèce

considérée. Le terme sa représente les termes sources, qui traduisent l’apparition et la

disparition de charges non liées au transport. Cette variation est due dans le cas de ce modèle

au piégeage, au dépiégeage et à la recombinaison.

Les mobilités des charges mobiles peuvent être soit constantes, soit fonction du champ et

de la température. Elles suivent pour ce dernier cas l’équation de type « hopping » :

,

,

2 ( , )( , ) exp sinh

(x, t) ( ) 2 ( )

e h

e h

B B

qwa qE x t ax t

E k T t k T t

Equation I-77

où ew et hw sont les barrières de « hopping » respectivement pour les électrons et les

trous ; a est la distance inter-pièges par « hopping ».

Les coefficients de dépiégeage sont donnés par :

,

, ( ) exp( )

tre h

e h

B

qwD t

k T t

Equation I-78

où trew et trhw sont les barrières de dépiégeage respectivement pour les électrons et les

trous.

Page 78: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

56

La recombinaison entre charges est considérée comme étant de type Langevin [LAN45]

:

0 0S Equation I-79

1

0

e

r

qS

Equation I-80

2

0

h

r

qS

Equation I-81

3

0

e h

r

qS

Equation I-82

où 0S ,

1S , 2S , et

3S sont les coefficients de recombinaison respectivement entre

électron piégé – trou piégé, électron libre – trou piégé, électron piégé – trou libre et électron

libre – trou libre.

L’injection de charges aux électrodes est prise en considération au travers d’un terme

d’injection de type Schottky modifiée, qui s’écrit à la cathode (x=0) et à l’anode (x=d),

pour les électrons et les trous, respectivement :

2

0

(0, )(0, ) exp exp 1

4

einje

B B r

qw q qE tj t AT

k T k T

Equation I-83

2

0

( , )( , ) exp exp 1

4

hinjh

B B r

qw q qE d tj d t AT

k T k T

Equation I-84

où ew et hw sont les barrières d’injection respectivement pour les électrons et les trous.

Cette équation de Schottky modifiée tient compte du courant qui va du diélectrique vers

le métal, et qui n'est pas nul.

Il n’y a pas de barrières d’extraction pour les porteurs de charges. Les électrons et les

trous ont une densité de courant d’extraction suivant l’Equation I-75, à l’anode et à la

cathode, respectivement :

( , ) ( , ) ( , )e e ej d t n d t E d t Equation I-85

(0, ) (0, ) (0, )h h hj t n t E t

Equation I-86

Le courant total est calculé par l’équation de Maxwell-Ampère :

Page 79: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

57

( , )( , ) ( , )T c

D x tJ x t j x t

t

Equation I-87

où la première partie du terme de droite représente le courant de conduction alors que la

seconde est celui de déplacement.

Jusqu'à présent, la permittivité relative ɛr a été considérée comme une constante quel

que soit le temps. L’expression du courant total s’écrit alors :

0

( , )( , ) ( , )T c r

E x tJ x t j x t

t

Equation I-88

Ce modèle a été appliqué au LDPE, un isolant polymère peu polaire et très populaire

dans l'industrie puisqu'il sert de résine de base aux isolants de câbles électriques haute tension

alternative (AC) et continue (DC). Ce modèle donne de bons résultats, puisqu'il existe une

bonne adéquation entre les mesures et la simulation pour de nombreux protocoles

d'applications de la tension[ROY04, ROY06, ROY10]

. Cependant, les mesures de courant à temps

courts (<300s) montrent des transitoires que le modèle n'est pas capable de reproduire (Figure

I-27), et qui semblent liés à des phénomènes de polarisation, qui sont négligés dans le modèle.

Figure I-27. Comparaison entre le courant simulé par le modèle de transport de charges et le courant

expérimental pour du LDPE soumis à un champ appliqué de 40kV/mm [ROY04]

à 25°C

Donc, l’évolution de ce modèle dans le domaine temporel prenant en compte les

mécanismes dipolaires semble nécessaire.

Page 80: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

58

I.5.2 Modélisation de la polarisation dans le domaine temporel

I.5.2.1 Modélisation du courant transitoire

En 2004, un modèle unipolaire couplant transport de charges et polarisation a été initié

par l’équipe de recherche de Saidi-Amroun [SAI04]

. En 2012, les mêmes auteurs ont proposé

une amélioration importante du modèle qui concerne la prise en considération d’une injection

bipolaire [BER12]

, qui permet de mieux décrire les phénomènes liés à la présence des charges

d’espace dans le matériau.

La génération de charges se fait par injection de type Schottky, à l’anode et à la cathode,

le transport est modélisé par une mobilité effective constante en tenant compte d’un niveau de

piégeage. La diffusion est prise en compte mais ce modèle ne tient par contre pas compte la

recombinaison.

Les paramètres de ce modèle ont été adapté pour du PET [SAI07, BER11, BER12]

afin de

pouvoir comparer les résultats du modèle à des mesures de courants. Dans ces simulations, la

contribution due à la polarisation est approchée par la loi empirique de Curie-Von

Schweidler : ( ) nI t At , où A est une constante à une température donnée et n représente la

pente de la décroissance du courant en fonction du temps. La permittivité est indépendante du

temps et de la température.

I.5.2.2 Notre approche

Dans ce travail, nous avons choisi le modèle de transport développé par [ROY04]

pour la

partie concernant les mécanismes d’injection et de conduction. La polarisation (P) et le

déplacement (D) en fonction du champ électrique (E) et du temps (t) sont exprimés

respectivement par les Equations I-40 et 41. Pour déterminer E, P ou D, il faut en premier lieu

connaître la fonction impulsionnelle ( )p t .

Les résultats expérimentaux dans le domaine fréquentiel seront approximés grâce à un

modèle de type Havriliak-Negami pour obtenir ( )p , puis cette fonction sera obtenue dans

le domaine temporel à l’aide d’une transformée de Fourier inverse. Le déplacement électrique

D pourra ainsi être calculé.

Page 81: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre I Etat de l’art

59

La polarisation sera ensuite introduite dans le modèle de transport de charges développé

par Le Roy et al. et le modèle ainsi amélioré sera appliqué à un matériau polaire, le PEN

(poly(éthylène naphtalène 2,6- dicarboxylate)). Enfin, dans l’étape de validation du modèle

global (transport et polarisation), et pour simplifier le problème, nous partirons du cas où

seule la polarisation joue un rôle dans les mesures, c'est à dire quand l’échantillon est soumis

à un champ électrique faible. Par conséquence, l'injection, le piégeage, le dépiégeage et la

recombinaison seront négligés dans cette étape. Des essais de simulation à champ fort, où

polarisation et conduction sont présentes, seront ensuite discutés.

Page 82: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 83: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II

Approche

expérimentale

Page 84: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 85: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

63

Dans ce chapitre, nous présentons d’abord le matériau utilisé dans cette étude : le

Poly(éthylène naphtalène 2,6- dicarboxylate) (PEN). Ensuite, nous présentons les différentes

techniques expérimentales permettant de caractériser les propriétés électriques, diélectriques

et physico-chimiques du matériau. Le principe et le banc de mesure seront décrits pour chaque

technique expérimentale utilisée.

II.1 Matériau d’étude

II.1.1 Poly(éthylène naphtalène 2,6- dicarboxylate) - PEN

Dans le but de comprendre les phénomènes de polarisation et de les prendre en

considération dans le modèle de transport de charges, un matériau polaire, le Poly(éthylène

naphtalène 2,6-dicarboxylate) (PEN) est choisi.

Le PEN appartient à la famille des polyesters aromatiques saturés, tout comme le

Polyéthylène téréphtalate, ou PET. Les structures chimiques de ces deux matériaux sont

présentées à la Figure II-1. La seule différence entre le PEN et le PET est le cycle aromatique

unique dans le squelette carboné du PET qui est remplacé par un double cycle dans le PEN.

Cette différence de structure confère au PEN des propriétés thermiques et mécaniques accrues

par rapport au PET.

C

O

OCH2 O

CH2

C

O n

C

O

C

O

OCH2 O

CH2

n

PET PEN

Figure II-1. Structure chimique du PET et du PEN

La synthèse du PEN se fait soit par transestérification du méthyl ester avec l'éthylène

glycol [BUC89]

, soit par polycondensation d'un acide naphtalène 2,6-dicarboxylate avec

l'éthylène glycol [VES63]

. La polymérisation à l’état solide (Solid-State Polymerization –SSP)

des granules de résine fondus est le procédé privilégié permettant d’augmenter la masse

moléculaire moyenne du PEN [DUH95, STE13]

.

Page 86: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

64

Le PEN, grâce à ses bonnes propriétés thermiques et mécaniques, a de nombreuses

applications dans l’industrie. Dans le domaine du génie électrique, il est utilisé, par exemple,

comme isolant de classe F (opérationnel jusqu’à 155°C) permettant l’enrubannage des

conducteurs dans les moteurs électriques. Il est particulièrement bien adapté pour la

fabrication de condensateurs [GUA99]

dans le domaine de l’électronique. Le PEN est aussi

utilisé dans le domaine de la microélectronique. En effet, la technologie SMT (Surface Mount

Technology) pour le montage d'éléments miniaturés en surface, impliquant la résistance du

matériau à une impulsion de soudage de 10 secondes à 260°C, était irréalisable avec les autres

polyesters [YEN93]

. Le PEN est également utilisé pour afficher les propriétés de scintillation

suprême et devrait remplacer les scintillateurs plastiques classiques [NAK11]

.

Dans le cadre de notre étude, les films de PEN de type Teonex® Q51 de 12 à 250µm

sont fournis par DuPont Teijin Films Co [TEI02]

. Ces films sont orientés biaxialement, flexibles

et légèrement grisés. Une comparaison entre les propriétés des films PEN TEONEX Q51 et

d'un film PET provenant du même fournisseur est donnée au Tableau II-1. Le PEN Teonex®

Q51 a été spécialement conçu pour l’isolation et la fermeture des encoches ainsi que

l’isolation d’entre phases dans les moteurs électriques soumis à de fortes contraintes.

Tableau II-1. Comparaison des propriétés des films en PEN et en PET.

Propriétés Unité PEN

(Teonex®

Q51)

PET

(biaxial)

Structure Densité g/cm3

1,36 1,40

Mécanique Résistance à la traction MPa 280 230

Allongement à la rupture % 90 120

Absorption d’eau % 0,3 0,4

Thermique Température d’utilisation prolongée

(mécanique/électrique)

°C 160/180 105

Température de transition vitreuse °C 121 110

Température de fusion °C 269 258

Electrique Champ de claquage kV/mm 300 280

Constante diélectrique (AC 60Hz, 25°C) 3 3,2

Dissipation diélectrique (AC 60Hz, 25°C) 0,003 0,002

Résistivité superficielle 1017Ω 2 6

Résistivité volumique 1017Ωcm 10 7

Page 87: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

65

II.1.2 Métallisation

Dans notre étude, pour toutes les mesures exceptée l’analyse enthalpique différentielle

(DSC), les échantillons se présentent sous forme de films métallisés par pulvérisation

cathodique d’or sur les deux faces. L’épaisseur des couches d’or est de 300 o

A , le diamètre

des électrodes dépend du type de mesure. Ce procédé, encore appelée sputtering, permet de

réaliser des dépôts avec une augmentation modérée de la température du substrat,

contrairement aux autres moyens de métallisation tels que l’évaporation sous vide.

Ce procédé de métallisation par pulvérisation catholique est donc adapté aux matériaux

polymères dans la mesure où celui-ci ne modifie pas la morphologie du matériau par effet de

recuit thermique.

II.2 Analyse enthalpique différentielle (DSC)

II.2.1 Principe

Le principe de l’analyse enthalpique différentielle ou Differential Scanning Calorimetry

(DSC) [GRE10]

, repose sur la mesure du flux d’énergie thermique à fournir à l’échantillon et à

un corps de référence, de façon à maintenir leurs températures identiques lors d’un protocole

de température imposé. La DSC est largement utilisée afin d’étudier les transitions des

polymères. Cette technique permet de détecter les effets thermiques qui se produisent lors

d’un changement d’état physique ou d’une transition d’une phase cristalline en une autre

phase cristalline du matériau. Parmi les applications classiques de la DSC [TEY97]

, on peut

citer : la détermination de la température de transition vitreuse et de fusion, les mesures de

taux de cristallinité, l’étude de la ségrégation de phase.

II.2.2 Dispositif expérimental

L’appareil de mesure DSC utilisé est le calorimètre DSC 2010 [TAI98]

(Figure II-2) de

TA Instruments associé au système de refroidissement par azote liquide LNCA (Liquid

Nitrogen Cooling Accessory) permettant d’assurer le refroidissement programmable de 725 à

-150°C lorsqu’il est utilisé avec le DSC Heat Exchanger installé sur la cellule DSC. Le

calorimètre est constitué d’un four unique, régulé en température et contenant deux plots. Sur

Page 88: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

66

l’un repose la capsule dans laquelle se trouve l’échantillon et sur l’autre la capsule de

référence, vide. L’enregistrement de la différence de température entre les deux plots pendant

le protocole de température constitue un thermogramme d’analyse thermique différentielle.

Cette différence de température est transformée en évolution du flux de chaleur ∆W en

fonction de la température.

Figure II-2. Dispositif expérimental de la mesure DSC [GRE10]

II.2.3 Analyse

Les transitions d’un polymère se traduisent par des pics ou des sauts dans le spectre de

DSC. Nous illustrons ici les analyses des spectres DSC du LDPE et du PEN. La Figure II-3a

présente un thermogramme DSC obtenu à partir d’un échantillon de LDPE qui a une structure

semi-cristalline. Un pic endothermique correspondant à la température de fusion (109°C) est

observé lors du chauffage et un pic exothermique correspondant à la cristallisation (92,64°C)

lors du refroidissement à partir de l’état fondu. La Figure II-3b présente un thermogramme

obtenu à partir des échantillons de PEN amorphe (courbe 1) et des PEN semi-cristallins

(courbes 2 et 3). Un pic endothermique correspondant à la température de fusion (270°C) est

observé pour tous les échantillons. Un pic correspondant à la cristallisation « froide » et un

saut de chaleur correspondant à la température de transition vitreuse (130°C) ne sont observés

que pour l’échantillon amorphe. Pour les échantillons SC1 et SC2, un pic de pré-fusion est

détecté.

Page 89: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

67

(a)

(b)

Figure II-3. Exemples de thermogramme représentant différentes transitions de structure pour un échantillon

de : (a) LDPE semi-cristallin [TAL11]

, (b) PEN amorphe et semi-cristallin [CHA04]

Le taux de cristallinité du matériau est calculé à l’aide de la relation suivante [CHA04,

GRE10].

0(%) .100

f c

f

H H

H

Equation II-1

où : fH : enthalpie de fusion spécifique mesurée,

0

fH : enthalpie de fusion du polymère 100% cristallin,

cH : enthalpie de cristallisation « froide ».

Dans certains cas particuliers, l’échantillon ne cristallise plus lors du chauffage, cH =

0 (par exemple LDPE - Figure II-3a).

II.3 Mesure de charge d’espace

Deux catégories majeures de méthodes de mesure de la charge d’espace sont décrites

dans la littérature [LAU99]

: les méthodes avec et sans résolution spatiale. Parmi les techniques

sans résolution spatiale, on peut citer les courants de dépolarisation thermo-stimulés (TSDC)

[BUC64] et la méthode miroir

[GRE91]. Ces mesures donnent une information sur la présence de

charge d’espace dans le matériau mais il n’est pas possible de mesurer une distribution en

volume. Pour obtenir cette information, on utilise des techniques de mesure avec résolution

spatiale telles que l’impulsion thermique (TPM [COL75]

, TPT [MEL05]

) , la modulation thermique

Page 90: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

68

(LIMM [LAN81]

, FLIMM [FRA97]

), l’échelon thermique (TSM) [TOU87]

, l’impulsion de pression

(LIPP) [SES82]

, l’échelon de pression (PWP) [EIS82]

et la méthode électro-acoustique pulsée

(PEA) [MAE85]

. Toutes ces méthodes utilisent le même principe physique qui consiste à

perturber l’équilibre entre les forces électrostatiques et les forces élastiques, cependant les

perturbations utilisées sont différentes. Elles peuvent être classées en deux sous-catégories :

les méthodes thermiques (TPM, TPT, LIMM, FLIMM, TSM) et acoustiques (LIPP, PWP,

PEA). Nous ne présentons par la suite que la méthode PEA qui a été choisie dans notre étude

car elle est plus adaptée à des mesures sous contrainte sur des matériaux dont l’épaisseur varie

de 100µm à 200µm.

II.3.1 Principe de la méthode PEA

La méthode PEA a été mise au point en 1985 par Maeno et al. [MAE85]

. La Figure II-4

présente le principe de la méthode PEA. Son principe est lié à la génération d’ondes

acoustiques par la charge d’espace lorsque cette dernière est soumise à un champ électrique.

Lorsqu’une impulsion électrique est appliquée sur une charge, celle-ci est soumise à une force

de type Coulombien, qui induit un déplacement élémentaire transitoire de cette charge autour

de sa position d’équilibre. L’interaction coulombienne entre l’impulsion et la charge nette

d’espace engendre donc deux ondes de pression de même amplitude et proportionnelles à la

densité de charge. L’une des deux composantes se propage en direction du capteur

piézoélectrique qui convertit le signal acoustique en signal électrique. Le signal électrique est

amplifié avant d’être enregistré au moyen d’un oscilloscope. Un traitement numérique

adéquat du signal permet de reconstruire le profil de charge d’espace [VIS14]

.

Figure II-4. Principe de la méthode PEA [THO08]

Page 91: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

69

L’avantage majeur de la méthode PEA est l’utilisation d’un capteur piézoélectrique très

fin (dizaine de micromètres) ayant une large gamme de fréquences de l’ordre du kilohertz et

une impulsion de tension très courte (la largeur à mi-hauteur est de quelques nanosecondes)

permettant d’éviter une déconvolution mathématique délicate, souvent utilisée pour les

méthodes thermiques. Les signaux obtenus sont directement l’image de la distribution de

charge. Cependant, la résolution de la méthode dépend de l’épaisseur du capteur

piézoélectrique et limite la PEA à l’étude des films épais de l’ordre de la centaine de

micromètres à quelques millimètres.

II.3.2 Dispositif expérimental

Le dispositif expérimental de la mesure PEA utilisé pour ce travail est représenté sur la

Figure II-5. La cellule PEA (TechImp®) est placée dans une enceinte thermique pour des

mesures en température sur une gamme allant de 0°C à 70°C maximum. Une alimentation

haute tension continue ±35kV est utilisée afin de mettre l’échantillon sous contrainte

électrique. Un générateur d’impulsion d’amplitude et de fréquence de répétition réglables

dont les valeurs maximales sont respectivement de 2kV et 50kHz, qui génère les impulsions

au moyen de transistors à effet de champ (FET), délivre les stimuli nécessaires à la mesure et

permet la synchronisation du signal PEA sur l’oscilloscope (trigger). La largeur des

impulsions à mi-hauteur est de l’ordre de 5ns. L’électrode supérieure est un semi-conducteur

(polyéthylène chargé de noir de carbone), de diamètre 10mm, ayant des propriétés

acoustiques proches de celles du matériau étudié et ce afin de minimiser les réflexions d’onde

au niveau de l’interface échantillon/électrode. L’électrode inférieure en aluminium est

connectée à la masse. Du point de vue acoustique l’aluminium se comporte comme une ligne

de retard. Le capteur piézoélectrique, généralement en polyvinylidene fluoride (PVDF), est

placé sous l’aluminium et convertit l’onde acoustique en signal électrique. Enfin, sous le

PVDF est placé un absorbeur en polyméthyl-méthacrylate (PMMA) destiné à atténuer au

maximum l’onde sortant du PVDF ce qui empêche toute réflexion de revenir vers le capteur.

Un oscilloscope numérique Lecroy LT374L (vitesse d’échantillonnage de 4GS/s, bande

passante de 500MHz, profondeur de mémoire de 16Mb) enregistre et moyenne le signal issu

du capteur piézoélectrique.

La cellule PEA utilisée a une résolution spatiale de l’ordre de 10µm et une sensibilité de

0,1 C.m-3

.

Page 92: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

70

capteur piézoélectrique Absorbeur (PMMA)

électrode supérieure

isolant

semi-conducteur

échantillon

SignalTrig.

oscilloscope numérique

ampli

AlimentationH. T.

Générateur d’impulsions

électrode inférieure

Enceinte thermique

Acquisitionnumérique

GPIB IEEE 488

Figure II-5. Dispositif expérimental de la méthode PEA

II.4 Mesures de courant

II.4.1 Courant de Dépolarisation Thermo-Stimulés (TSDC)

La mesure des courants de dépolarisation thermo-stimulés, ou Thermo-Stimulated

Depolarization Currents (TSDC), couplant à la fois une contrainte électrique et thermique, est

utilisée pour la caractérisation de nos matériaux diélectriques.

Historiquement, la mesure TSDC a été mise au point par Frei et Groetzinger en 1936

[FRE36]. Les auteurs ont mesuré le courant de dépolarisation d’un électret en fonction de la

température. La première base théorique pour le courant thermo-stimulé a été établie par

Bucci et Fieschi en 1964 sur la base de leur étude des dipôles de défaut dans les cristaux

ioniques [BUC64]

. Depuis le milieu des années 1970, cette technique est devenue une méthode

populaire afin d’étudier tous les mécanismes fondamentaux de stockage et de libération de

charges ainsi que le lien entre structure et charges dans les semi-conducteurs et les isolants

[MIL73, ADA75, ZIE77, TEB08].

Page 93: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

71

II.4.1.1 Principe

Le principe d’obtention d’un courant de dépolarisation thermo-stimulé est représenté

sur la Figure II-6. L’échantillon est d’abord polarisé par un champ électrique continu EP à une

température constante TP durant un temps fixe tP. Cette phase est généralement effectuée à

une température plus élevée que la température ambiante. L’élévation de température a pour

effet de réduire, d’une part, le temps de relaxation des dipôles, et d’autre part, l’intensité et la

durée du champ appliqué, pour que l’ensemble des dipôles présents dans le solide puisse

s’orienter plus facilement suivant la direction du champ. Cette orientation est visualisée par

une décroissance rapide du courant transitoire. L’échantillon est ensuite refroidi sous champ à

une température T1, ce qui fige les dipôles dans l’orientation acquise. Une fois la température

basse T1 atteinte, le champ électrique est supprimé et l’échantillon court-circuité pendant un

temps tCC afin d’évacuer les charges libres de surface et permettre aux dipôles ayant une

cinétique de relaxation élevée à T1 de pouvoir relaxer et revenir à leur état d’équilibre. Enfin,

l’échantillon est réchauffé grâce à une rampe de température linéaire de T1 à T2 à une vitesse

constante ν. Le courant de dépolarisation est enregistré durant cette rampe de montée en

température. Les fluctuations thermiques croissantes dans le diélectrique vont induire le retour

à l’équilibre séquentiel des différentes familles de dipôles précédemment orientés. En

fonction de la température, chaque famille de dipôles est relaxée, ou les charges accumulées

sont libérées, induisant des pics de relaxation sur le courant externe.

Champ appliqué

(V.m-1)

Température (oC)

EP

0

TP

T1

T2

Temps (s)

tP

Courant de

dépolarisation (A)

relaxations

Pro

toco

le d

e m

esu

reR

ésu

lta

t

Temps (s)

Température (oC)

dΤν=

dτTamb

tCC

Figure II-6. Principe de la TSDC

Page 94: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

72

II.4.1.2 Dispositif expérimental

Le montage expérimental pour les mesures TSDC est illustré sur la Figure II-7.

L’échantillon est placé entre deux électrodes circulaires. Le système échantillon/électrodes est

mis dans une enceinte. L’enceinte est mise sous vide primaire avant d’être remplie d’hélium

(à la pression atmosphérique), un gaz inerte et conducteur thermique. Le banc de mesure

TSDC se compose d'une partie électrique et d'une partie thermique, qui sont pilotées

simultanément par ordinateur.

Figure II-7. Dispositif expérimental de la mesure TSDC

Une alimentation haute tension (HT) continue réversible (entre 0kV et 6,5kV) est

connectée à l'anode (électrode supérieure) afin d’appliquer le champ électrique continu aux

bornes de l’échantillon. Un ampèremètre Keithley 617 d’une précision de 5.10-15

A relié à la

cathode (électrode inférieure) et à la masse permet de mesurer le courant qui traverse

l'échantillon.

Page 95: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

73

Une sonde de température platine reliée à un Eurotherm mesure la température au

niveau de l’échantillon. Une source de puissance alimente des résistances chauffantes reliées à

l’alimentation de puissance qui assurent la régulation thermique entre -150°C et 300°C. Le

refroidissement de l’échantillon est réalisé à l’aide d’une circulation d’azote liquide. Ce

dispositif permet de contrôler la température de l’échantillon à 0,1°C près et d’appliquer de

manière contrôlée une rampe de température avec une vitesse constante (de 1 à 9°C/min).

II.4.1.3 Analyse des pics de relaxation

La TSDC donne des informations relatives au réarrangement des dipôles électriques et à

la libération des charges piégées. Cette technique permet de solliciter les matériaux à une

fréquence équivalente très faible de l’ordre de 10-3

Hz [SUH92]

. Elle est donc complémentaire de

la spectroscopie diélectrique pour l’analyse des relaxations de structure. Cependant, dans la

pratique, les spectres de TSDC sont souvent complexes et il est difficile de dissocier les

mécanismes de relaxation et le dépiégeage de charges. Certains pics de relaxation sont liés

aux transitions du matériau (α, β, γ, …), et il est donc facile de relier l’origine de ces pics à

des mécanises dipolaire. Au-dessus de la température de transition vitreuse, un pic

supplémentaire peut être obtenu pour certains matériaux, et est en général appelé ρ. Ce pic est

souvent attribué à des effets liés à la présence de charge d’espace [BHA84]

ou à des mouvements

délocalisés tout le long de la chaîne principale [LAV93]

.

Les résultats obtenus grâce à la TSDC sont largement dépendants du protocole

expérimental appliqué (champ électrique appliqué EP, température de polarisation TP, vitesse

de rampe ν, etc). Le Tableau II-2 liste les effets des différentes conditions de polarisation sur

les pics de dipôles et de charge d’espace pour des polymères amorphes.

La similitude trompeuse entre pics de dipôles et de charge d’espace rend difficile la

distinction entre les deux. Nous devons souvent recourir à d’autres méthodes ou techniques

pour obtenir des informations supplémentaires.

Un premier élément important concerne la nature du matériau. Les relaxations de

dipôles et de charge d’espace peuvent se produire dans les matériaux polaires, mais dans les

matériaux non polaires, qui ne contiennent donc pas de dipôles permanents, seule la

relaxation de charge d’espace peut être activée. De plus, la polarisabilité d'un matériau peut

être facilement mesurée de manière diélectrique. Une comparaison des données de TSDC

avec des mesures de spectroscopie diélectrique, en particulier aux basses fréquences, peut

Page 96: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

74

donc être utile pour identifier l'origine d'un pic. En effet, les pertes diélectriques ne se

manifestent généralement pas dans le pic ρ, celui-ci est donc facile à reconnaître [TUR71]

. De

même, la TSDC peut être associée à des mesures mécaniques [MON77, OSH76]

. Nous trouvons

également dans la littérature plusieurs techniques associées à la mesure TSDC permettant de

dissocier le processus de charge d’espace des processus dipolaires, par exemple les techniques

de fluage thermiquement stimulé [MON77]

, de courant piézo-stimulé [AI75]

, de conductivité

thermo-stimulée et courant de polarisation thermo-stimulé (TSPC) [MCK75]

, des polarisations

fractionnées [VAN77]

, etc.

Tableau II-2. Effets des conditions de polarisation sur les pics de dipôles et de charge d’espace pour des

polymères amorphes [TUR71, TUR87]

Paramètre de polarisation Effet sur le pic de dipôle Effet sur le pic de charge

d’espace

TP Pic se décale quand TP<Tg ; ne

se décale pas quand TP>Tg

Pic se développe pleinement

quand TP>Tg ; sa position est

indépendante de TP mais sa

hauteur passe par un maximum

tP Indépendance de tP quand

TP>Tg

Pic passe par un maximum

EP Dépendance linéaire avec EP Non linéaire

Electrodes Pas d’effet Electrodes affectent la position

et la hauteur du pic

Epaisseur de l’échantillon Pas d’effet Pic plus grand et apparaît à des

températures plus basses pour

des échantillons plus minces

Préparation de l’échantillon Pas d’effet Hydratation, gonflement et

dopage ont des effets prononcés

Radiations nucléaires Pas d’effet Pic plus petit

Reproductibilité Bonne Modérée

II.4.2 Courant de polarisation alternée (APC)

II.4.2.1 Principe

La méthode APC (Alternate Polarization Current) dérive de la méthode des ondes

rectangulaires alternatives (ou créneaux alternés de tension) utilisée pour la mesure de la

conductivité des liquides très isolants [HIL88, TOB94]

et est exploitée depuis 1992 par l'entreprise

Page 97: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

75

Irlab [IRL00]

. Cette méthode a été étendue aux isolants solides afin de mesurer leur résistivité,

mais aussi de caractériser les différents mécanismes responsables de la conduction [TOB98,

ESC01, FIL04].

Le principe de la méthode APC est représenté sur la Figure II-8. L’échantillon est

soumis à un champ électrique en créneaux alternés, positifs et négatifs, de faible amplitude E0

et de période réglable selon le domaine de temps que l’on souhaite analyser. On mesure

pendant toute la durée de chacune des demi-périodes (T/2) la valeur absolue du courant

traversant l’échantillon : la valeur moyenne, sur un nombre suffisant de périodes, permet

d’obtenir une loi de décroissance du courant en fonction du temps (courant de polarisation)

parfaitement reproductible et caractéristique du matériau.

La méthode APC remédie ainsi aux inconvénients de la méthode classique qui mesure

les courants de polarisation/dépolarisation pendant une seule période dont les résultats

dépendent souvent des applications antérieures du champ électrique sur le matériau. En effet,

la méthode classique est généralement utilisée avec des champs électriques plus élevés qui

rendent plus difficile l’élimination des charges responsables de l’effet « mémoire »

observé[ADA81]

. La reproductibilité des résultats obtenus avec la méthode APC tient à la nature

périodique de la tension appliquée qui place l’échantillon dans un état de pseudo-équilibre.

Cette nature périodique joue également un rôle fondamental au niveau de la mesure,

permettant de réaliser un appareil de haute sensibilité compatible avec les mesures sous faible

champ.

Figure II-8. Principe de la méthode APC

Page 98: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

76

II.4.2.2 Dispositif expérimental

Les mesures de courant de polarisation APC ont été réalisées à l’aide du dispositif

fourni par l'entreprise Irlab. Les Figures II-9 et 10 présentent le schéma de principe

d’acquisition du courant de polarisation ainsi que les appareils utilisés pour les mesures. Pour

des mesures dans une gamme de températures de 0 à 100°C, la cellule Irlab CS-1 est utilisée.

Celle-ci est placée dans une enceinte thermique. Pour des températures plus élevées, on utilise

l’enceinte de mesure TSDC. Dans les deux cas, la cellule de mesure est connectée à un coffret

électronique (Irlab APC-1) par des câbles BNC. L’appareil APC-1 est constitué d’un

générateur de créneaux de tension alternée de haute stabilité de durée et d’amplitude réglable

de 0,1V à 10V et d’un analyseur de courant de grande résolution. Pour des mesures sous

champ faible (tension inférieure ou égale à 10V), le générateur interne de l'APC-1 est utilisé

(commutateurs K1 et K2 sont mis en position « Int » sur la Figure II-9). Lorsque les mesures

sont effectuées pour un champ plus élevé (tension égale à 100V), un générateur externe (Gen

Ext) est mis en série avec le coffret électronique APC-1 et la cellule de mesure (K1 et K2 sont

mis en position « Ext »). Une fois les paramètres de mesure établis et la tension appliquée, la

courbe courant-temps s’affiche en coordonnées logarithmiques sur une acquisition numérique.

Figure II-9. Dispositif expérimental de la mesure APC

Page 99: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

77

Figure II-10. Montage expérimental de la mesure APC à température ambiante

Un dernier type de mesure de courant sera présenté dans le paragraphe II.5. Cette

mesure de courant est réalisée simultanément avec les mesures d’électroluminescence à des

champs forts.

II.5 Mesure d’électroluminescence (EL)

II.5.1 Principe

La luminescence est une émission de lumière d’un matériau. Elle a différentes origines,

selon la nature de l’excitation [AUB08]

. La photoluminescence est la résultante d’une excitation

par absorption de photons, la chimiluminescence est la résultante d’une excitation produite

par une réaction chimique. L’électroluminescence est de plus en plus employée pour désigner

la propriété que possèdent certaines substances solides de s’illuminer sous l’action d’un

champ électrique. Pour expliquer l’électroluminescence, Bernanose [BER55]

avait pensé

initialement à une activation directe des molécules par le champ électrique. Cependant, la

structure des polymères isolants est complexe, et les processus d’excitation sont nombreux. Il

existe donc plusieurs mécanismes d’excitation dans les milieux organiques. Les signaux

lumineux peuvent être générés par [PIP55]

:

Ionisation par impact : les porteurs de charges mobiles sont accélérés par un champ

électrique et acquièrent une énergie cinétique. Ils peuvent provoquer des collisions

inélastiques avec des molécules de la matrice ou des impuretés. Selon l’énergie cinétique

des porteurs mobiles, les molécules peuvent être ionisées si l’énergie cinétique est

Page 100: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

78

supérieure à l’énergie d’ionisation de la molécule, ou seulement excitées dans le cas

contraire. Les molécules peuvent retourner à l’état fondamental en libérant leur excès

d’énergie sous forme de rayonnement radiatif.

Recombinaison de charges positives et négatives : crée des états électroniques excités, qui

se désexcitent par relaxation radiative ou non radiative.

L’électroluminescence peut être due à la combinaison de ces deux mécanismes

d’excitation : ionisation par impact et recombinaison [ZAN91]

. D’autre part, la mesure de

l’électroluminescence est étroitement liée au comportement de la charge d’espace.

L’électroluminescence est liée à l’injection de porteurs de charge à la cathode et l’anode, la

migration et la recombinaison [AUG00a]

. La détection d’électroluminescence signifie que l’on se

trouve dans un régime de contrainte où des phénomènes de dégradation de l’isolant peuvent

se produire [AUG00b]

.

II.5.2 Dispositif expérimental

Le dispositif expérimental permet de mesurer simultanément l’électroluminescence et le

courant. Les résultats présentés dans le cadre de ce travail ont été obtenus sous tension

continue. La Figure II-11 présente schématiquement le dispositif expérimental de la mesure.

acquisitionnumérique

photomultiplicateur

isolant

échantillon

pompage admission(azote)

ém

issi

on

optiquede collection

alimentation H.T.(DC ou AC)

mesure du courant (DC)

Figure II-11. Dispositif expérimental de la mesure de l’EL

Page 101: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

79

L’enceinte permet le contrôle de l’atmosphère gazeuse et assure l’étanchéité à la

lumière extérieure. Elle est couplée à une pompe primaire et secondaire permettant d’atteindre

un vide de l’ordre de 10-9 bars. La température à l’intérieur de cette enceinte peut être réglée

de -20 à 90°C à l’aide d’une alimentation de puissance et d’une circulation d’eau. Le banc de

mesure est muni d’un photomultiplicateur, qui collecte les photons émis par le matériau

durant l’application de la tension, d’une alimentation haute tension continue ou alternative,

qui délivre une tension continue maximale de 65kV, et d’un ampèremètre de type Keithley

617 d’une précision de 5.10-15

A pour la mesure du courant.

L’échantillon est placé dans l'enceinte entre deux électrodes en laiton, dont la forme est

adaptée à l’émission des photons. L’électrode supérieure a une forme annulaire, pour laisser

passer uniquement les photons provenant de la partie centrale de l’échantillon.

II.6 Mesure de la spectroscopie diélectrique

La spectroscopie diélectrique permet d’obtenir la permittivité diélectrique complexe (ε*)

qui est une grandeur intrinsèque du matériau. La partie réelle de la permittivité (ε’) permet de

quantifier la polarisabilité du matériau, alors que la partie imaginaire (ε’’) est reliée à

l’énergie dissipée.

II.6.1 Principe

Le principe de la spectroscopie diélectrique repose sur l’application d’une tension

sinusoïdale aux bornes de l’échantillon et sur la mesure de l’amplitude du courant traversant

l’échantillon et de son déphasage par rapport à la tension [MEN97]

. La Figure II-12 présente le

principe de mesure de la spectroscopie diélectrique ainsi que les formes d’onde des signaux

de tension et de courant enregistrés.

(a)

(b)

Figure II-12. Principe de mesure en spectroscopie diélectrique (a) et formes d’onde des signaux (b) [NOV10]

Page 102: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

80

Le rapport entre l’amplitude de la tension et celle du courant définit le module de

l’impédance complexe : |Z*| = U0/I0. Le déphasage θ entre la tension u(t) et le courant i(t)

donne accès aux parties réelle et imaginaire de l’impédance complexe. Alors, l’impédance

complexe s’exprime :

0

0

*( ) '( ) "( ) cos ( ) sin ( )U

Z Z jZ jI

Equation II-2

La capacité géométrique sans la contribution du diélectrique solide s’écrit :

00

SC

d

Equation II-3

où : ε0 : permittivité du vide (F.m-1

), ε0 = 8,85.10-12

F.m-1

,

d : épaisseur d’isolant (m),

S : surface des électrodes (m2).

La permittivité diélectrique complexe et le facteur de pertes diélectriques sont donnés

par :

0 0

*( )*( ) '( ) "( )

*( )

j jdYj

Z C S

Equation II-4

"( ) "( )

tan ( )'( ) '( )

Z

Z

Equation II-5

où : δ=π/2-θ définit l’angle de pertes diélectriques (rad),

Y* : admittance complexe (S).

En spectroscopie diélectrique, les grandeurs ε’ et ε’’ sont connues indirectement par

l’Equation II-4. Pour déterminer ces grandeurs, on utilise généralement un schéma électrique

équivalent simple qui peut être assimilé à un condensateur imparfait. Le comportement

diélectrique d’un isolant peut se représenter par un schéma électrique équivalent constitué de

composants passifs R et C [WIL98]

. Le schéma le plus simple, correspondant à une relaxation de

Debye, est un circuit constitué d’une résistance et d’une capacité en série ou en parallèle. Ici,

le schéma d’une résistance et d’une capacité en parallèle (RP//CP) a été choisi comme le

schéma électrique équivalent de l'isolant (Figure II-13).

Page 103: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

81

Figure II-13. Schéma électrique équivalent du comportement diélectrique d’un isolant

L’expression de l’admittance complexe Y* qui représente ce schéma électrique

équivalent s’écrit alors :

1 1*( ) ( )

Z*( ) ( )P

P

Y j CR

Equation II-6

En incluant l’Equation II-6 dans l’Equation II-4, les valeurs respectives des

permittivités réelle et imaginaire et du facteur de pertes diélectriques sont déduites :

0

' PC d

S

Equation II-7

0

"P

d

R S

Equation II-8

1tan

P PR C

Equation II-9

Ces grandeurs servent ensuite à l’analyse des mécanismes de polarisation dans le

matériau.

II.6.2 Dispositif expérimental

Les mesures de spectroscopie diélectrique ont été réalisées à l’aide d’un spectromètre

diélectrique large bande Novocontrol Alpha-A sous une atmosphère d’azote (Figure II-14) qui

permet de caractériser les échantillons sur une gamme de fréquences allant de 10-1

à 106Hz et

sur une gamme de températures allant de -150°C à 400°C, sous une tension sinusoïdale de

valeur efficace comprise entre 5mV et 3V. La régulation en température et la résolution du

Page 104: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

82

facteur de pertes diélectriques sont données avec, respectivement, des précisions de ±0,1°C et

5.10-5

.

Lors de la mesure, l'échantillon est placé entre deux pastilles métalliques de 2cm de

diamètre, le tout étant posé sur un système à ressort afin d’assurer le contact entre les

électrodes métallisées et les pastilles.

Figure II-14. Dispositif expérimental de mesure de spectroscopie diélectrique [NOV10, NOV14]

Pour l’obtention de résultats optimaux de mesure, la géométrie de l'échantillon doit être

choisie selon les règles suivantes [NOV10]

:

La meilleure performance sera atteinte avec des capacités d'échantillon de 50pF à 200pF

(optimum autour de 100pF) dans la gamme de fréquences de 100kHz à 10MHz. Pour les

basses fréquences, des capacités supérieures jusqu'à 2nF donneront aussi de bons résultats. Il

faut noter que pour la plupart des interfaces de test, l'Alpha-A sera capable de mesurer

également des capacités dans une large gamme de 10-3

pF à 1F en fonction de la fréquence,

mais la précision diminue en dehors de la gamme de capacités indiquée ci-dessus.

Si la constante diélectrique εr de l’échantillon est connue, la capacité de l’échantillon

peut être obtenue à partir de la relation suivante :

Page 105: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre II Approche expérimentale

83

2

0 0

4

r rS DC

d d

Equation II-10

où D est le diamètre des électrodes (m).

II.7 Conclusion

Dans ce chapitre, nous avons présenté les différentes techniques expérimentales

permettant la caractérisation de nos matériaux. La mesure DSC permet de caractériser les

propriétés physico-chimiques du matériau telles que les différentes transitions et le taux de

cristallinité. Les mesures PEA, TSDC, APC et EL sont utilisées pour la caractérisation

électrique du matériau, notamment les phénomènes de polarisation et de conduction. Les

protocoles de mesures peuvent varier (champ électrique et température de polarisation) pour

obtenir des comportements pour lesquels les mécanismes de polarisation et de conduction

sont dissociés.

Dans notre étude, la mesure APC est utilisée pour mesurer le courant de polarisation à

champ faible (≤ 1,33kV.mm-1

) sur du PEN dans le but d’obtenir un comportement pour lequel

les mécanismes de polarisation sont dominants. Au contraire, les mesures d’EL sont réalisées

sous des champs élevés (de quelques dizaines de kV.mm-1

jusqu’à une valeur proche du

champ de rupture du matériau) pour trouver des comportements pour lesquels les mécanismes

de conduction sont dominants. Par la suite, nous emploierons le terme de mesure à champ

faible pour les mesures d’APC, et mesure à champ fort pour les mesures de courants réalisées

simultanément avec les mesures d’EL.

Enfin, la mesure de la spectroscopie diélectrique permet d’obtenir la permittivité du

diélectrique dans le domaine fréquentiel qui résulte des relaxations diélectriques. Ces

dernières sont liées aux mécanismes de polarisation et permettent de reproduire le courant dû

à la polarisation dans le domaine temporel par une transformée de Fourier inverse.

Page 106: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 107: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III

Caractérisation

électrique et

diélectrique du PEN

Page 108: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 109: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

87

Ce chapitre se focalise sur la compréhension du comportement global du matériau

d’étude. Les différentes caractérisations sont réalisées sur du PEN semi-cristallin par

différentes techniques expérimentales : la caractérisation électrique par les mesures TSDC,

APC, EL et PEA, la caractérisation diélectrique par la mesure de spectroscopie d’impédance

et la caractérisation physico-chimique par la mesure DSC.

Dans une première partie, la mesure TSDC sera utilisée afin de caractériser des pics de

relaxation de dipôles et de charge d’espace dans le PEN. Ces pics dépendent de différentes

manières du protocole de mesure (température et tension de polarisation, vitesse de montée en

température …). Ensuite, des mesures DSC et PEA seront réalisées, sur des échantillons ayant

subi le protocole expérimental appliqué lors des mesures TSDC, pour mettre en évidence

l’origine ainsi que les mécanismes responsables du pic qui apparait après la transition vitreuse

du matériau.

Nous présentons ensuite les mesures de spectroscopie d’impédance et de courant de

polarisation à champ faible par la méthode APC, qui permettent d’obtenir les réponses

dipolaires du PEN dans le domaine fréquentiel et temporel respectivement. Nous présentons

enfin des mesures de courant et d’EL à champs forts, qui permettent d’observer en même

temps les phénomènes de polarisation et de conduction, et qui viennent compléter les

caractérisations électriques du PEN.

Nous allons dans un premier temps nous intéresser aux études des pics de relaxation mis

en évidence par des mesures TSDC qui ont été réalisées pour deux températures de

polarisation, TP = 130 et 170°C. Ces températures ont été choisies en s’inspirant de la

littérature [CAÑ99]

où les auteurs ont étudié les relaxations du PEN amorphe. En effet, ces

valeurs de températures correspondent respectivement à la température de transition vitreuse

Tg du matériau et à une température supérieure à celle-ci.

III.1 Caractérisation du PEN polarisé à 130ºC par des

mesures TSDC

Il existe plusieurs manières de réaliser des mesures TSDC, et les résultats

expérimentaux sont largement fonction du champ électrique appliqué EP, de la température de

polarisation TP, de la rampe de température et de la vitesse de celle-ci, etc. Dans tous les cas,

Page 110: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

88

les spectres de courant de dépolarisation obtenus se caractérisent par une succession de pics

de relaxation, dont l’origine est dipolaire ou liée à la présence de charges d’espace.

Pour les mesures TSDC, les échantillons utilisés ont une épaisseur de 100 ou 188µm, et

une électrode conductrice circulaire (diamètre 2 cm) est déposée par sputtering d’or sur

chaque face de l’échantillon. Il est important de noter qu’un nouvel échantillon a été utilisé

pour chaque expérience afin d'éviter d'éventuels changements du taux de cristallinité initial.

III.1.1 Evolution des pics de relaxation en fonction de la tension de

polarisation

Le protocole expérimental utilisé pour effectuer les mesures TSDC est représenté sur la

Figure III-1. Pour cette étude, des échantillons de PEN 188µm d’épaisseur ont été polarisés à

une température TP = 130ºC pendant un temps fixe tP = 15 minutes. Les valeurs de VP sont de

1, 1,5 et 2kV. La vitesse de chauffage pendant la rampe de température est de ν = 3°C/min.

0 2000 4000 60000

50

100

150

200

250

300

350

Te

mp

éra

ture

(°C

)

Température de consigne

Température mesurée

TP

VP

=dT/dt

Te

nsio

n (

kV

)

Temps (s)

-5

-4

-3

-2

-1

0

1

2

Figure III-1. Protocoles de tension et de température utilisés pour les mesures TSDC classiques TP=130ºC

La Figure III-2 présente les spectres TSDC obtenus à TP = 130°C pour différentes

tensions de polarisation. Deux pics de relaxation sont observés. Le premier pic, dont le

maximum est situé à 60°C, est appelé β* et est lié au mouvement des deux cycles benzéniques

et leurs groupes carbonyles voisins qui peuvent tourner autour du squelette du PEN [EZQ93,

DÖR97]. Le second pic, appelé α, dont le maximum est situé à 140°C, est lié à la transition

vitreuse du matériau et a pour origine les mouvements micro browniens des longs segments

de chaînes [BEL93]

.

Page 111: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

89

20 60 100 140 180 220-6x10

-8

-5x10-8

-4x10-8

-3x10-8

-2x10-8

-1x10-8

0

1 kV

1.5 kV

2 kV

Densité d

e c

oura

nt

(A.m

-2)

Température (°C)

Figure III-2. Spectres TSDC obtenus sur du PEN polarisé à 130°C pour différentes tensions de polarisation

Pour cette température de polarisation, un accroissement de la tension de polarisation

implique une réponse quasi-linéaire du pic β*. De même, l’amplitude du pic α augmente

linéairement avec la tension de polarisation. Par exemple, le maximum du pic α est de

2,73.10-8

A.m-2

pour VP = 1kV et de 5,35.10-8

A.m-2

pour VP = 2kV. La réponse des pics β* et

α est linéaire avec le champ électrique, ils sont donc vraisemblablement liés à des processus

de polarisation d’orientation.

III.1.2 Evolution des pics de relaxation en fonction de la vitesse de

chauffage

Pour cette étude, des échantillons de 100µm d’épaisseur ont été polarisés sous VP =

1kV, à TP = 130°C et pendant un temps fixe tP = 15 minutes. La vitesse de chauffage pendant

la rampe de température est de 3, 6 et 9°C/min (Figure III-3).

Les spectres TSDC obtenus pour différentes vitesses de chauffage sont représentés sur

la Figure III-4a pour TP = 130°C. L’amplitude des pics β* et α augmente avec la vitesse de

chauffage mais cette relation n’est pas linéaire. Pour mieux voir l’évolution de la position du

pic α en fonction de la vitesse de chauffage, le courant de dépolarisation est normalisé entre 0

et -1 pour chaque vitesse de chauffage. La Figure III-4b présente les courants normalisés à

différentes vitesses de chauffage. Le maximum du pic α se décale vers des températures plus

élevées avec une vitesse de chauffage croissante de 3 à 6°C/min. Il semble que la position du

maximum du pic est stable avec les vitesses de 6 et 9°C/min.

Page 112: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

90

Figure III-3. Protocoles de tension et de température des mesures TSDC pour différentes vitesses de chauffage

pendant la dépolarisation

20 60 100 140 180

-1.5x10-7

-1.2x10-7

-9.0x10-8

-6.0x10-8

-3.0x10-8

0.0

Densité d

e c

oura

nt (A

.m-2)

Température (°C)

3°C/min

6°C/min

9°C/min

*

(a)

20 60 100 140 180

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

3°C/min

6°C/min

9°C/minCo

ura

nt

no

rma

lisé

I/|I m

ax|

Température (°C)

(b)

Figure III-4. Spectres TSDC obtenus sur du PEN polarisé à 130°C pour différentes vitesses de chauffage : (a)

Densité de courant, (b) Courant normalisé

Page 113: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

91

Ces observations expérimentales sont en accord avec les études expérimentales et de

modélisation pour divers matériaux [MOU02, HEN99, HEN06]

. Le maximum des pics se décale avec

la vitesse de chauffage suivant la relation [MOU02]

:

1ln .a

m

EC

R T

Equation III-1

où Tm est la température du maximum du pic TSDC. Ea est l’énergie d’activation. R est

la constante des gaz parfaits (R=8,314 J.mol-1

.K-1

) et C est une constante.

L’Equation III-1 montre une relation croissante exponentielle entre le maximum du pic

et la vitesse de chauffage. La position du maximum du pic en fonction de la température est

donc de plus en plus stable lorsque la vitesse de chauffage augmente. L’étude du décalage du

pic de relaxation en fonction de la vitesse de montée en température permet donc d’extraire

l’énergie d’activation de la relaxation étudiée. Dans notre cas les mesures ont été réalisées

pour 3 vitesses différentes, ce qui reste insuffisant pour calculer de manière fiable l’énergie

d’activation par cette méthode.

III.2 Caractérisation du PEN polarisé à 170ºC

III.2.1 Evolution des pics de relaxation en fonction de la tension de

polarisation

Pour la température de polarisation TP = 170ºC, les conditions de mesure sont

identiques à celles utilisées pour les mesures à TP = 130ºC. Le protocole expérimental et la

température mesurée au niveau de l’échantillon sont représentés sur la Figure III-5.

0 2000 4000 6000 80000

50

100

150

200

250

300

350

Te

nsio

n (

kV

)

Te

mp

éra

ture

(°C

)

Temps (s)

Température de consigne

Température mesurée

-5

-4

-3

-2

-1

0

1

2

=dT/dt

TP

VP

Figure III-5. Protocoles de tension et de température utilisés pour les mesures TSDC classiques TP=170ºC

Page 114: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

92

La Figure III-6 présente les spectres de TSDC obtenus pour TP = 170°C à différentes

tensions de polarisation. Comme dans le cas TP = 130°C, deux pics de relaxations, β* et α,

sont observés à 60 et 140°C respectivement. De plus, un troisième pic, appelé ρ, est détecté

avec un maximum situé à 180°C. La réponse des pics β* et α est linéaire avec la tension de

polarisation, comme pour les spectres TSDC de la Figure III-2. Par contre, la réponse du pic ρ

n’est pas linéaire avec la tension de polarisation.

20 60 100 140 180 220-1x10

-7

-8x10-8

-6x10-8

-4x10-8

-2x10-8

0

Densité d

e c

oura

nt

(A.m

-2)

Température (°C)

1 kV

1.5 kV

2 kV

*

Figure III-6. Spectres TSDC obtenus sur du PEN polarisé à 170°C pour différentes tensions de polarisation

On peut donc là aussi conclure à un processus de polarisation d’orientation pour les pics

β* et α, en cohérence avec le résultat obtenu pour TP = 130°C. Il n’en est pas de même pour le

pic ρ, qui ne présente pas un comportement linéaire avec le champ électrique. L’origine de ce

pic ρ est attribué dans la littérature soit à des mécanismes de recristallisation [MAR01]

, soit à des

mouvements de charges dans le matériau [CAÑ99]

. Des mesures non-électriques et des mesures

de charge d’espace seront nécessaires afin d’étudier plus précisément l’origine de ce pic ρ.

III.2.2 Analyse bibliographique de l’origine du pic ρ

Dans la littérature, des mesures non-électriques sur du PEN amorphe par analyse

mécanique dynamique (DMA) [CAÑ00, HAR01]

ont montré l’existence d’un épaulement à 165°C

(Figure III-7) pour des échantillons recuits à une température inférieure à 175°C, c’est-à-dire

pour des échantillons n’ayant pas atteint une cristallisation totale dans le cas de ces deux

études. Cet épaulement, qui n’apparaît pas pour les échantillons recuits à des températures

plus élevées, est attribué à un changement de la fraction cristalline du polymère par les

différents auteurs.

Page 115: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

93

Figure III-7. Spectres de DMA à 10Hz pour des échantillons de PEN après avoir recuit à différentes

températures [CAÑ00]

La DSC, qui explore les changements structurels dans le matériau, présente également

un pic exothermique à 170°C lorsque la valeur initiale du taux de cristallinité de l’échantillon

est faible, obtenu soit par une variation de la température de recuit [CAÑ00]

(Figure III-8 et

Tableau III-1), soit par une variation du temps de recuit [MAR01]

. Ce pic est attribué à une

cristallisation « froide » par tous les auteurs.

Figure III-8. Thermogrammes DSC (vitesse de montée 10°C/min) obtenus pour des échantillons de PEN recuits à

différentes températures [CAÑ00]

Page 116: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

94

Tableau III-1. Température de transition vitreuse (Tg), température des pics exothermiques (Texo) ou des pics

endothermiques (Tendo) et taux de cristallinité calculés en fonction de la température de recuit (Ta) [CAÑ00]

Courbe Ta (°C) Tg (°C) Texo (°C) Tendo (°C) χc (%)

1 158 119,8 200,5 - 5,4

2 160 119,8 194,6 - 9

3 163 120,9 191,1 - 11,5

4 166 121,4 183,9 - 29

5 172 124,6 - 179,1 ≈48

6 175 124,8 - 180,2 ≈48

7 177 128,7 - 183,7 ≈48

8 178 128,4 - 184,8 ≈48

9 180 130,7 - 186,0 ≈48

10 190 132,0 - 195,3 ≈48

Lorsque l’échantillon est recuit à une température supérieure à 172°C ou pendant un

temps plus long que 45 minutes à 160°C, la cristallisation totale du PEN est atteinte. Les

thermogrammes de DSC montrent un pic endothermique situé à environ 170°C, qui est

attribué à une réorganisation cristalline au niveau des interphases amorphe-cristal [CAÑ00,

MAR01]. Ce phénomène est aussi rencontré pour d’autres polymères (par exemple LDPE

[JON05])

sous le terme d’épaississement lamellaire. Ce pic endothermique se décale légèrement vers les

températures élevées lorsque le temps de recuit augmente.

L’analyse par spectroscopie diélectrique (DEA) sur du PEN est aussi rapportée dans la

littérature [CAÑ00, HAR01, MAR01, PSA06]

. Pour une faible cristallinité du PEN, et pour des

fréquences relativement basses (1 – 1000 Hz) [HAR01, MAR01, PSA06]

, un pic de relaxation est

observé à environ 170°C (mode α+ sur la Figure III-9a et premier cycle sur la Figure III-9b).

Ce pic n’est pas observé lorsque la cristallisation totale est atteinte (deuxième et troisième

cycle sur la Figure III-9b). Comme une tension est appliquée lors des mesures de DEA, ce pic

est lié aux dipôles ou charges piégées, et associé à un changement structurel dans le matériau.

Pour les hautes fréquences [CAÑ00]

, si l’échantillon est amorphe ou semi-cristallin, ce pic n’est

pas observé. Il est à noter que le pic α+ [PSA06]

et ρ [CAÑ00]

ont probablement la même origine,

seul le nom attribué par chaque auteur diffère.

Page 117: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

95

(a)

(b)

Figure III-9. Spectroscopie diélectrique pour du PEN initialement amorphe pendant : (a) premier cycle à

différentes fréquences ; (b) trois cycles à 1kHz [PSA06]

Les mesures TSDC sur du PEN avec différents taux de cristallinité ont été réalisées par

Cañadas et al. [CAÑ00]

, en considérant un matériau initialement amorphe et en variant la

température de recuit (Tf) de 160 à 179°C pendant un temps de recuit fixe (Figure III-10).

Figure III-10. Spectres TSDC du PEN pour différentes températures de recuit, correspondant donc à différents

taux de cristallinité (voir Tableau III-1) : (1) Ta = 160ºC ; (2) Ta = 166ºC ; (3) Ta = 172ºC ; (4) Ta = 175ºC ; (5)

Ta = 177ºC ; (6) Ta = 178ºC ; (7) Ta = 179ºC. (TP =130ºC, VP = 1,5 kV, tP = 30 min) [CAÑ00]

Dans les spectres TSDC, le pic ρ est observé autour de 145°C. L’intensité du pic

augmente avec le taux de cristallinité lorsque l’échantillon passe de l’état amorphe à

complètement cristallisé (Tf = 172ºC – Figure III-8). Cependant, lorsque la température de

recuit continue à être augmentée alors que l’échantillon a atteint son taux de cristallinité

Page 118: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

96

maximum, l’intensité du pic ρ diminue. Comme un pic endothermique a été observé par les

mesures DSC pour des températures de recuit élevées, les auteurs ont conclu que le pic ρ est

directement lié au réarrangement des interphases amorphe-cristal. Plus précisément, on peut

penser que la zone d’interphase amorphe-cristal est le lieu de pièges pour les charges, et que

le réarrangement de cette interphase suite à un recuit peut modifier la densité et la profondeur

des pièges.

Nous avons voulu vérifier dans quelle situation se trouvait notre PEN (amorphe,

totalement cristallisé) et si nous pourrions aller plus loin dans la ségrégation entre phénomène

de réarrangement des interphases amorphe-cristal uniquement, ou lien entre ce phénomène de

structure et la charge d’espace.

III.2.3 Caractérisation non-électrique par DSC et lien avec le pic de

relaxation ρ

Dans notre étude, les mesures DSC ont été réalisées sur les échantillons PEN suivant le

protocole en température décrit à la Figure III-11, qui est celui des mesures TSDC.

Figure III-11. Protocole des mesures DSC

Les thermogrammes DSC obtenus, pour TP = 130°C, tP = 15 minutes et pour TP =170°C

en variant tP de 15 à 60 minutes, sont représentés sur la Figure III-12. Lorsque l’échantillon

est recuit à 130 ou 170°C, deux pics endothermiques sont révélés au cours de la rampe de

température. Le maximum du premier pic est détecté à 140 et 180°C pour les échantillons

recuits à 130 ou 170°C, respectivement. Le maximum du deuxième pic est détecté à 270°C

quelle que soit la température de recuit. Cette température est celle de fusion du matériau

(269°C dans les données du fournisseur [TEI02]

).

Page 119: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

97

Pour TP = 170°C, l’amplitude du pic endothermique situé à 180°C augmente avec le

temps de recuit. Ce pic se décale légèrement vers les températures élevées lorsque le temps de

recuit augmente. Nous n’observons pas de pic exothermique sur notre PEN du fait que le

matériau reçu est déjà semi-cristallin.

0 50 100 150 200 250 300-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Flu

x d

e c

hale

ur

(W/g

)

Température (°C)

TP=130°C - t

P=15 min

TP=170°C - t

P=15 min

TP=170°C - t

P=30 min

TP=170°C - t

P=60 min

125 150 175 200-0.325

-0.300

-0.275

-0.250

Flu

x d

e c

hale

ur

(W/g

)Température (°C)

Figure III-12. Thermogrammes DSC obtenus sur du PEN semi-cristallin en fonction de la température et du

temps de recuit

Les questions qui se posent alors concernent l’existence ou non d’un lien entre les

résultats TSDC et DSC, ainsi que l’origine de la réponse électrique du pic ρ observé par

TSDC. Nous allons maintenant nous intéresser aux mesures TSDC sur du PEN pour différents

temps de polarisation, correspondant donc à des échantillons ayant subi un recuit de 15 et 30

minutes, présentant un taux de cristallinité comparable, mais un arrangement semi-cristallin

différent.

III.2.4 Mesures TSDC sur du PEN pour différents temps de polarisation à

170ºC

Les spectres TSDC ont été enregistrés pour différents temps de recuit (15 et 30 min)

pour une température de polarisation TP = 170°C (Figure III-13). En accord avec les travaux

Page 120: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

98

de [CAÑ00]

, l'intensité du pic ρ diminue avec l’augmentation du temps de recuit. Cependant, la

question de l’origine du pic ρ demeure : est-il d’origine uniquement dipolaire ou des charges

électriques dépiégées contribuent-elle au courant de dépolarisation mesuré en TSDC ? Il faut

noter ici que, parmi les scénarii possibles pour la formation du pic ρ, la polarisation

interfaciale, qui peut apparaître sous la forme de macro-dipôles associés à des régions

cristallines, par exemple, devrait se manifester comme un processus de relaxation dipolaire

dans les profils TSDC et de charge d'espace. La seule caractéristique qui pourrait permettre de

la distinguer d'un véritable processus dipolaire est la dépendance en champ non-linéaire de la

réponse dans une gamme de champs appropriée.

20 60 100 140 180 220-1x10

-7

-8x10-8

-6x10-8

-4x10-8

-2x10-8

0

Densité d

e c

oura

nt

(A.m

-2)

Température (°C)

tP=15 min

tP=30 min

Figure III-13. Spectres TSDC obtenus sur du PEN semi-cristallin polarisé à 170°C pour deux temps de

polarisation différents

III.2.5 Méthode de chauffage partiel

Dans le contexte de l’étude des mécanismes responsables des relaxations dans le PEN,

la méthode de chauffage partiel [ISH11]

est utilisée afin de séparer les différentes relaxations

liées aux processus de polarisation d’orientation et la relaxation se produisant après Tg. Cette

méthode est utilisée pour une température TP = 170°C, car le but est de comprendre l’origine

du pic ρ, uniquement observable pour cette température de polarisation.

Pour toutes les mesures TSDC présentées précédemment, nous n’avons effectué qu’une

seule rampe de température. Le protocole expérimental est alors qualifié de classique. Pour

cette étude, nous avons réalisé une mesure TSDC avec deux rampes de températures

successives pendant le court-circuit (chauffage partiel). Le protocole de mesure est représenté

sur la Figure III-14. Après une période de polarisation de 15 minutes sous VP = 1kV et à TP =

Page 121: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

99

170°C et un refroidissement rapide (9°C/min), l’échantillon de 188µm d’épaisseur est chauffé

pendant une première rampe de la température ambiante jusqu’à 150°C avec une vitesse de

3°C/min. Cette température a été choisie selon la Figure III-6 et correspond à la température

de transition entre les pics α et ρ. L’échantillon est ensuite refroidi à la température ambiante

avec une vitesse de 9°C/min et réchauffé suivant une deuxième rampe jusqu’à 220°C avec la

même vitesse de chauffage. Les courants sont enregistrés au cours de ces deux rampes de

température.

0 2000 4000 6000 8000 10000 120000

50

100

150

200

250

300

350

Deu

xièm

e ch

auffa

ge

Température de consigne

Température de mesure

Tem

ratu

re (

°C)

Temps (s)

Ten

sio

n (

kV

)

VP

TP

Pre

mie

r ch

auffa

ge

-5

-4

-3

-2

-1

0

1

2

Figure III-14. Protocoles de tension et de température de la mesure TSDC utilisant la méthode de chauffage

partiel

La Figure III-15 présente la comparaison entre les courants enregistrés au cours des

rampes de température (chauffage partiel) avec le courant de référence présenté à la Figure

III-6 pour les mêmes conditions de polarisation (VP = 2kV et à TP = 170°C).

20 60 100 140 180 220-1x10

-7

-8x10-8

-6x10-8

-4x10-8

-2x10-8

0

Référence

Premier chauffage

Deuxième chauffageDe

nsité

de c

ou

rant (A

.m-2)

Température (°C)

*

Figure III-15. Comparaison des résultats obtenus à partir de la TSDC classique et celle utilisant la méthode de

chauffage partiel

Page 122: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

100

Le spectre TSDC enregistré au cours du premier chauffage partiel est conforme à celui

de référence. Les pics β* et α sont observés à 60 et 140°C, respectivement. Au cours du

deuxième chauffage, les pics β* et α ne sont plus détectés et seul le pic ρ est observé à 180°C

avec une amplitude plus faible que celle du pic ρ du spectre de référence. Le premier

chauffage partiel a donc du relaxer les groupes polaires responsables des pics β* et α, ce qui

implique la disparition de ceux-ci lors du deuxième chauffage. L’amplitude du pic ρ, plus

faible dans le deuxième chauffage, peut être expliquée soit par la relaxation d’une partie des

charges, soit par une participation du pic α dans l’amplitude du pic ρ, qui n’existe plus ou

beaucoup moins pour le second chauffage, la majorité des dipôles ayant été relaxés lors du

premier chauffage.

III.2.6 « Driving voltage » pendant la dépolarisation

Pour cette étude, des échantillons de 188µm d’épaisseur ont été polarisés sous VP = 2kV

et à TP = 170°C. Après le refroidissement jusqu’à 25°C sous tension appliquée, l’échantillon

est réchauffé grâce à une rampe de température utilisant une vitesse constante de 3°C/min.

L’originalité ici est d’appliquer une petite tension (« driving voltage »), positive ou négative,

pendant la rampe de température. Pour cela, trois tests différents ont été effectués suivant les

protocoles de tension décrits sur la Figure III-16.

Figure III-16. Protocoles de tension et de température de la mesure TSDC classique (Test 1) et des mesures

TSDC utilisant la méthode « driving voltage » pendant la dépolarisation (Test 2 & 3)

Page 123: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

101

Le test 1 correspond au protocole de la TSDC classique où l’échantillon est mis sous

conditions de court-circuit pendant la rampe de température (référence dans le paragraphe

précédent). Dans le test 2, une tension positive de 50V est appliquée pendant la rampe, alors

que dans le test 3, une tension négative de -50V est appliquée. Ces tensions de ±50V

correspondent à un champ électrique de 0,25 kV/mm, ce qui reste un champ très faible

comparativement aux 10 kV/mm appliqués lors de la polarisation.

La Figure III-17 présente les spectres TSDC obtenus pour ces trois tests. Un « driving

voltage » positif conduit à diminuer l’amplitude de tous les pics de relaxation, β*, α et ρ et à

un courant de conduction positif pour des températures élevées supérieures à la température

du maximum du pic ρ. Le courant change donc de signe, en passant d’un signe négatif lié à un

courant de dépolarisation dit « normal », à un signe positif lié à un courant de conduction sous

tension positive. Dans le sens inverse, un « driving voltage » négatif conduit à augmenter

l’amplitude de tous les pics de relaxation et à un courant de conduction négatif. Cependant,

dans ce cas, il semble que le courant de conduction négatif est détecté avant le maximum

(négatif) du pic ρ, ce qui a pour conséquence de masquer le pic ρ.

20 60 100 140 180 220

-2x10-6

-1x10-6

0

1x10-6

2x10-6

De

nsité

de

co

ura

nt

(A.m

-2)

Température (°C)

Test 1 : Court-circuit

Test 2 : + 50V

Test 3 : - 50V

20 60 100 140 180-1,0x10

-7

-8,0x10-8

-6,0x10-8

-4,0x10-8

-2,0x10-8

0,0

Den

sité d

e c

ou

ran

t (A

.m-2)

Température (°C)

*

Figure III-17. Comparaison entre la TSDC classique et les TSDC utilisant la méthode « driving voltage » pour

du PEN

Page 124: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

102

Les spectres TSDC montrent que la variation d’amplitude des pics β* et α est quasi

identique (au signe près) que la tension appliquée soit positive ou négative. De plus, la

position en température des pics β* et α n’est pas affectée. Cela peut s’expliquer par l’origine

dipolaire de ces deux pics.

La variation d’amplitude du pic ρ lorsque de l’on passe du test 1 au test 3 est plus

conséquente. De plus, le maximum du pic se décale vers les hautes températures lorsque l’on

passe de V=-50 à V=+50V en passant par V=0. Il est donc probable que le pic ρ soit lié à la

charge d’espace.

Les résultats peuvent être interprétés et expliqués par un processus de dépiégeage de

charges dans le diélectrique, où l’application d’une « driving voltage » positive et négative a

respectivement affaibli et renforcé le champ électrique interne et donc modifié le transport et

l’extraction des charges vers les électrodes. Pour ces deux cas, les courants de conduction des

porteurs de charge sont clairement de signes opposés lorsque les échantillons sont soumis à

des champs électriques inverses. De plus, par soustraction des spectres TSDC des tests 2 et 3,

on observe qu’il n’y a pas de différence entre les deux spectres tant que la conduction n’est

pas dominante (au-delà de 150°C sur la Figure III-18).

20 60 100 140 180 220

0

1x10-6

2x10-6

3x10-6

4x10-6

De

nsité

de

co

ura

nt (A

.m-2)

Température (°C)

Figure III-18. Soustraction des spectres TSDC des tests 2 (+50V) & 3 (-50V)

Page 125: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

103

III.3 Profils de charge d’espace

Des mesures de charge d'espace ont été réalisées à l'aide de la méthode électro-

acoustique pulsée (PEA) afin de sonder la nature et la position de la charge stockée dans le

PEN lors des mesures de TSDC.

Le but de cette étude est de vérifier si le pic ρ, mesuré par la technique TSDC, peut être

attribué à la charge dépiégée et/ou au processus dipolaire, associé à un changement structurel

qui est dû à un phénomène de recuit.

III.3.1 Conditions expérimentales

Le montage PEA utilisé ne permet pas d'effectuer des mesures de charge d'espace à des

températures supérieures à 70°C, alors qu’il est nécessaire de polariser et de chauffer

l’échantillon de PEN à des températures beaucoup plus élevées (≥ 130°C). Notre stratégie a

donc été de figer à la température ambiante l’état de polarisation du matériau pour différentes

températures de polarisation. Tous les échantillons ont été pré-conditionnés dans la cellule

TSDC, dans des conditions identiques à celles utilisées pour les mesures TSDC. L'échantillon

a ensuite été refroidi à 25°C puis transféré dans la cellule PEA et les mesures de charge

d’espace ont été effectuées en condition de court-circuit en utilisant des impulsions de tension

de 20ns de largeur, de 300V d’amplitude et de 8kHz de fréquence répétition. Les mesures

PEA ont été effectuées pendant 15 minutes à température ambiante afin de vérifier la stabilité

du profil de charge. La méthode PEA nécessite une calibration de l'instrument en utilisant un

échantillon vierge, c’est-à-dire un échantillon non-chargé. Avec la procédure adoptée ici, la

calibration ne peut pas être faite avant chaque mesure PEA, car l'échantillon n'est plus « non-

chargé » suite à sa polarisation à une température TP sous une tension VP conformément au

protocole utilisé pour les mesures TSDC. Par conséquent, pour chaque échantillon, le signal

de calibration est pris avant l’application du protocole de polarisation (PEA-0 sur la Figure

III-19), en appliquant une tension de calibration de 1kV pendant 10s. Le même signal de

calibration a été utilisé pour toutes les mesures PEA sur le même échantillon. La calibration

du signal est obtenue avec une procédure standard décrite dans la littérature [GAL05]

. Les

charges d'influence (charges capacitives et charges images de charges internes) sont détectées

par la méthode. Nous analyserons les réponses suivant ces différentes contributions.

Page 126: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

104

III.3.2 Profils de charge d’espace pendant le protocole classique de TSDC

La Figure III-19 présente les protocoles de tension et de température classique de TSDC

ainsi que les temps auxquels l’échantillon est sorti de la cellule TSDC afin d’effectuer les

mesures PEA. Ces dernières ont été réalisées pour chaque température de polarisation (130 et

170°C) pour une tension de polarisation de 2 kV. Les profils de densité de charge d'espace ont

été enregistrés avant (PEA-1 sur la Figure III-19) et après (PEA-2 sur la Figure III-19)

l'enregistrement de la TSDC (rampe de température).

0 2000 4000 6000 8000 10000 120000

50

100

150

200

250

300

350

400

Température de consigne

Température de mesure

PEA-1 PEA-2

Tem

péra

ture

(°C

)

Temps (s)T

ensio

n (

kV

)

PEA-0 -5

-4

-3

-2

-1

0

1

2

TP

VP

Figure III-19. Protocoles de tension et de température utilisés pour les mesures TSDC et faisant apparaitre les

temps auxquels l’échantillon est sorti de l’enceinte TSDC pour réaliser les mesures PEA

La Figure III-20a montre les profils de charge d'espace enregistrés sur un échantillon de

PEN, polarisé à une température TP = 130°C, avant la rampe de température (PEA-1 sur la

Figure III-19). Aucune charge n'est détectée dans le volume de l'échantillon, même après 15

minutes en condition de court-circuit. Par contre, des charges de polarité opposée sont

détectées à chaque électrode, et elles ne se déplacent pas avec le temps. D'une manière

générale, ces charges d'influence peuvent avoir différentes origines, étant :

des charges capacitives dues à la tension appliquée,

des charges images dues aux charges stockées dans le volume du diélectrique,

des charges d’influence dues à l’orientation dipolaire figée à la température ambiante.

Comme les mesures sont effectuées en condition de court-circuit, la première hypothèse

peut être rejetée. De plus, il n'existe pas de charges dans le volume de l'isolant et donc

Page 127: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

105

l'hypothèse de charges images dues aux charges d'espace dans le volume doit aussi être

écartée.

-40 0 40 80 120 160 200

-2

0

2

4

6

8

0 min

15 minD

ensité d

e c

harg

e (

C.m

-3)

C A

Distance (m)

(a)

-40 0 40 80 120 160 200

-2

0

2

4

6

8

0 min

5 min

C

De

nsité d

e c

harg

e (

C.m

-3)

A

Distance (m)

(b)

Figure III-20. Profils de charge d’espace obtenus par la méthode PEA en condition de court-circuit à 25°C sur

du PEN pré-polarisé à 130°C : (a) Avant la rampe de température (PEA-1 sur la Figure III-19), (b) Après la

rampe de température (PEA-2 sur la Figure III-19) du protocole de TSDC ; C : Cathode, A : Anode pendant la

polarisation

Par conséquent, seuls les processus dipolaires pourraient expliquer les charges

d'influence. Les charges mesurées correspondent à la polarisation, figée lors du

refroidissement à température ambiante, après avoir appliqué le champ électrique. Dans ce

cas, les charges sur les deux électrodes doivent être de même densité, mais avec des signes

opposés, si l’on considère que les dipôles sont répartis de manière homogène dans tout le

volume du matériau. On peut cependant observer que la densité de charge sur l'électrode qui

était anode au cours de la polarisation est plus élevée que celle de la cathode. Cela est

Page 128: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

106

probablement dû à un problème d’adaptation acoustique entre le PEN et l'électrode supérieure

semi-conductrice utilisée pour les mesures PEA. En considérant la réponse obtenue par TSDC

et PEA dans les mêmes conditions de polarisation, le processus dipolaire dominant à 25°C et

associé à ces charges d'influence est la relaxation α. L'intégration de l'aire sous le spectre

TSDC de la Figure III-2 pour une tension de polarisation de 2 kV et une vitesse de chauffage

de 3°C/min permet de calculer une densité surfacique de charge de 3,5.10-5

C.m-2

. Si l'on

considère l’aire sous le pic de charge à la cathode (Figure III-20a), proche du capteur

piézoélectrique ou l'erreur de mesure est la plus faible, la valeur obtenue de la densité

surfacique de charge est de 2,1.10-5

C.m-2

. Ce résultat est relativement cohérent avec la valeur

obtenue à partir des mesures TSDC, ce qui permet de valider l'hypothèse de processus

dipolaires à l'origine des charges d'influence détectées dans les mesures de charge d'espace.

Les profils de charge d’espace obtenus après la fin du protocole de TSDC (Figure

III-20b) ne présentent plus de charges d’influence sur la cathode ou dans le volume. Par

conséquent, tous les processus dipolaires ont été libérés après la rampe de température.

Il faut noter ici qu’une charge résiduelle persistante est apparemment détectée sur

l'anode (Figure III-20b) et que ce processus pourrait contribuer à la différence d’amplitude de

charge d'influence à l'anode et la cathode observée à la Figure III-20a. Tout d'abord, nous

avons considéré les données de calibration (Figure III-21) correspondant à la Figure III-20

pour évaluer les effets de désadaptation d'impédance. Sur ce signal de calibration, nous avons

mesuré une amplification du signal à l’anode par rapport à celle de la cathode de 1,35. La

désadaptation d'impédance acoustique conduit en effet à une augmentation de l'amplitude du

pic de charge d'influence en raison de la réflexion partielle des ondes acoustiques à l’interface

électrode semi-conductrice/échantillon. Dans le cas de la PEA sans contact par exemple, ou

l’on a une interface vide/échantillon du côté de l’anode, il y a une parfaite réflexion des ondes

acoustiques et la charge d'influence mesurée est deux fois plus grande que prévu [PER08]

. Par la

suite, nous avons comparé le signal acoustique brut obtenu en court-circuit avant les mesures

de la Figure III-20a à celui de la Figure III-20b : nous observons que le signal de l’anode est

augmenté pour les données brutes correspondant à la Figure III-20b. Ceci, combiné au fait

que le facteur d’amplification à l'anode est d'environ 2 sur la Figure III-20a par rapport à 1,35

de la calibration montre qu’une charge permanente est présente à l’anode, mais son origine

reste peu claire. Si elle était due à des charges stockées dans une région de l'échantillon

adjacente à l'électrode, elle ne devrait pas être révélée, car la charge d'influence devrait

Page 129: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

107

compenser la charge interne. De plus, l'amplitude de cette charge varie entre deux

expériences, et pourrait être liée à l'huile utilisée pour améliorer l'adaptation d'impédance de

l'électrode supérieure de la cellule de PEA. Ainsi, cette charge semble être une contribution

incontrôlée à la charge de l'électrode supérieure. Elle ne représente cependant qu’une petite

contribution aux variations qui sont discutées dans la suite. Nous en tiendrons cependant

compte dans la suite de ce paragraphe en corrigeant nos données (calculs uniquement) de ce

facteur 1,35, calculé sur le signal de calibration.

0 40 80 120 160 200

-6

-3

0

3

6

9

De

nsité d

e c

harg

e (

C.m

-3)

C A

Distance m)

Figure III-21. Signal de calibration à t=0 du protocole dans la Figure III-19 en appliquant une tension de 1kV

pendant 10s (PEA-0)

La Figure III-22a montre les profils de charge d'espace mesurés sur l’échantillon de

PEN, polarisé à une température TP = 170°C avant la rampe de température (PEA-1 sur la

Figure III-19). Des charges négatives sont détectées dans tout le volume de l’isolant, tandis

que des charges positives d'influence sont détectées sur chaque électrode.

Bien que les charges stockées dans le volume ne se déplacent pas après 15 min en

condition de court-circuit, la densité de charge d’influence augmente légèrement du côté de

l'anode. Les charges d'influence sont de l'ordre de 5.105 C.m

-2 à la cathode (capteur) et 13.10

-5

C.m-2

à l'anode (après correction d’un facteur de 1,35), valeurs éloignées de celles qui

devraient être mesurées si seulement des charges images étaient présentes. Une estimation de

la charge image due aux charges négatives dans le volume a été réalisée, compte tenu de la

densité apparente de la charge = -0,67 C/m³ sur la première moitié de l'échantillon et = -

1,33 C/m³ sur la seconde moitié (les charges négatives sont en effet réparties de manière non-

homogène). Cela conduit à des charges d’influence de 7,8.10-5

C/m2 et 11.10

-5 C/m

2 à gauche

Page 130: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

108

et à droite, respectivement. De toute évidence, les charges totales d’influence aux électrodes

sont dues à une combinaison de charges images (positives) dues aux charges négatives

piégées dans le volume, et de charges d’influence (positives à l'anode et négatives à la

cathode) dues au processus dipolaires.

0 40 80 120 160 200

-2

0

2

4

6

8

Densité d

e c

harg

e (

C.m

-3)

C 0 min

15 min

A

Distance m)

(a)

0 40 80 120 160 200

-2

0

2

4

6

8

De

nsité d

e c

harg

e (

C.m

-3)

0 min

5 min

AC

Distance m)

(b)

Figure III-22. Profils de charge d’espace obtenus par la méthode PEA pendant le court-circuit à 25°C sur du

PEN pré-polarisé à 170°C : (a) Avant la rampe de température (PEA-1 sur la Figure III-19), (b) Après la rampe

de température (PEA-2 sur la Figure III-19) du protocole de TSDC ; C : Cathode, A : Anode pendant la

polarisation

Comme dans le cas de la mesure pour une température de polarisation inférieure (TP =

130°C), à la fin de la mesure TSDC (PEA-2 sur la Figure III-19), les charges d'influence aux

électrodes et les charges dans le volume ne sont plus observées (Figure III-22b). Cela signifie

que toutes les charges et tous les processus dipolaires ont été libérés au cours de la mesure

TSDC.

Page 131: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

109

Pour conclure sur cette partie des mesures, les processus dipolaires et les charges

d'espace négatives dans le volume sont figés lorsque l’on refroidi à l’ambiante le PEN après

une polarisation à 170°C. Les processus dipolaires ne semblent être impliqués que dans les

modes de relaxation * et enregistrées par TSDC. La présence de charges négatives dans les

profils de PEA-1 à 170°C, non observée pour des profils de PEA-1 à 130°C, semble expliquer

les différences observées pour les mesures TSDC à ces deux températures. Plus précisément,

le pic ρ semble être lié principalement à la présence de charges d’espace négatives dans le

volume du diélectrique. Cependant, la contribution des processus dipolaires aussi n'est pas

complètement écartée au vu des données de la littérature. Pour une analyse plus approfondie,

une mesure de TSDC avec chauffage partiel a été mise en place.

III.3.3 Profils de charge d’espace pendant le protocole de TSDC utilisant la

méthode de chauffage partiel

La Figure III-23 présente les protocoles de tension et de température de la mesure

TSDC utilisant la méthode de chauffage partiel ainsi que les temps auxquels l’échantillon est

sorti de l’enceinte TSDC, permettant d’effectuer ensuite les mesures PEA. Cette mesure

TSDC avec chauffage partiel a été réalisée pour une température de polarisation de 170°C et

une tension de polarisation de 2kV. Les profils de densité de charge d'espace ont été

enregistrés avant le premier chauffage partiel (PEA-p1), après le premier chauffage partiel

(PEA-p2) et après le deuxième chauffage (PEA-p3) de TSDC. Il est à noter que la calibration

a été effectuée à PEA-p0.

0 4000 8000 12000 160000

50

100

150

200

250

300

350

400

Température de consigne

Température de mesure

Tem

péra

ture

(°C

)

Temps (s)

Tensio

n (

kV

)

VP

TP

PEA-p1 PEA-p2 PEA-p3

Pre

mie

r ch

auffag

e

Deu

xièm

e ch

auffag

e

PEA-p0 -5

-4

-3

-2

-1

0

1

2

Figure III-23. Protocoles de tension et de température utilisés pour les mesures TSDC avec chauffage partiel et

faisant apparaitre les temps auxquels l’échantillon est sorti de l’enceinte TSDC pour réaliser les mesures PEA

Page 132: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

110

La Figure III-24 présente les profils de charges d’espace pendant le protocole de TSDC

utilisant la méthode de chauffage partiel. Le profil de charge d'espace enregistré avant le

premier chauffage partiel (PEA-p1 sur la Figure III-23) présente des charges négatives dans le

volume du diélectrique. La charge nette au voisinage de la cathode semble être nulle. Ce

profil est également compatible avec celui mesuré précédemment (Figure III-22a).

Comme observés dans les spectres de TSDC de la Figure III-15, au cours du deuxième

chauffage, les pics β* et α ne sont plus détectés, et seulement le pic ρ est observé. Une

hypothèse proposée est donc que le premier chauffage partiel aurait libéré les groupes polaires

responsables des pics β* et α. Le profil de charge d’espace obtenu après le premier chauffage

partiel (PEA-p2 sur la Figure III-23) confirme cette hypothèse, puisque la quantité des

charges négatives à l'intérieur du diélectrique ne change pas entre PEA-p1 et PEA-p2, mais la

quantité de charges d'influence change, en raison de la disparition des processus dipolaires. A

l'anode, où la charge due aux groupes polaires est positive, la charge d'influence diminue entre

PEA-p1 et PEA-p2, tandis qu'à la cathode, où la charge due aux groupes polaires est négative,

la charge d’influence augmente. Par la suite, les charges négatives encore présentes à

l'intérieur du diélectrique sont libérées à une température supérieure à 150°C au cours du

second chauffage partiel. A la fin du deuxième chauffage partiel (PEA-p3 sur la Figure

III-23), aucune charge d’influence ou dans le volume n’est détectée dans l'échantillon PEN.

0 40 80 120 160 200

-2

0

2

4

6

8

10 avant chauffage (PEA-p1)

après premier chauffage (PEA-p2)

après deuxième chauffage (PEA-p3)

De

nsité d

e c

harg

e (

C.m

-3)

C A

Distance (m)

Figure III-24. Profils de charge d’espace obtenus par la méthode PEA en court-circuit à 25°C sur du PEN pré-

polarisé à 170°C : les courbes noire, rouge et bleu sont respectivement le profil de charge d’espace avant le

chauffage (PEA-p1 dans la Figure III-23), après le premier chauffage (PEA-p2 dans la Figure III-23) et après

le deuxième chauffage (PEA-p3 dans la Figure III-23) du protocole de TSDC avec chauffage partiel ; C :

Cathode, A : Anode pendant la polarisation

Dans ce cas, il est plus difficile de discuter sur la comparaison entre l’aire du profil de

charge aux électrodes et celle dans le volume pour identifier s'il y a encore une certaine

Page 133: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

111

contribution de la polarisation à la charge d'influence. Après le premier chauffage partiel, on

pourrait s’attendre à un renforcement plus important de la charge image à la cathode. La

relaxation des dipôles devrait en effet se traduire par une relaxation symétrique en valeur

absolue de la charge image aux électrodes, ce qui n’est vraisemblablement pas le cas. D’autre

part, la charge image mesurée pour TP = 130°C à PEA-1, où seule la polarisation est observée,

a une amplitude de 1 C.m-3

. Or, le renforcement à la cathode dans la Figure III-24 peut être

évalué à 0,5 C.m-3

. Cette différence peut avoir plusieurs origines :

Une petite partie des charges internes à l’origine du pic ρ est dépiégée lors du chauffage

partiel à 150°C,

Une petite partie des dipôles à l’origine du pic α n’a pas relaxé lors du chauffage partiel à

150°C.

Ceci est cohérent avec le profil TSDC enregistré après chauffage partiel (Figure III-15)

où le pic ρ est asymétrique et présente un faible épaulement à 150°C.

En considérant une densité de charge de = 2 C.m-3

sur la moitié de l'échantillon, on

peut calculer une densité surfacique de charge d'influence s = d/8 sur la cathode et à 3d/8

sur l'anode, soit 5.10-5

et 15.10-5

C.m-2

, respectivement, ce qui semble être en accord avec le

profil mesuré après le premier chauffage.

Nous pouvons donc conclure que dans les conditions où le pic ρ est mesuré par TSDC,

des charges d'espace négatives sont piégées dans le volume de l'échantillon. Quant à savoir si

l'aire sous la courbe TSDC peut être quantitativement comparée à la charge mesurée sous le

profil de charge d'espace, ceci est une autre question. En effet, en cas de charge d'espace dans

le volume, le courant de TSDC devrait dépendre de la répartition des charges et de la

distribution du champ induit : les charges peuvent s’évacuer au travers de chacune des

électrodes donnant lieu à un courant de signe opposé, et donc à un pic de courant en TSDC

dont l’intégrale est inférieure à celle qui serait obtenue dans le cas où les charges

s’évacueraient par une seule électrode.

Dans le cas présent, il semble que seules les charges négatives sont détectées, étant

injectées à partir de la cathode et diffusant à l’intérieur de l'échantillon. La prédominance des

charges négatives injectées a déjà été signalée pour du PEN par Fukuma et al. [FUK04]

dans des

conditions très différentes : le champ appliqué était beaucoup plus élevé qu'ici (200 kV/mm)

Page 134: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

112

et toutes les mesures avaient été réalisées à la température ambiante. Une autre caractéristique

notable de nos résultats est que même si le champ appliqué est plutôt faible (10 kV/mm), une

densité relativement importante de charge peut être stockée. Avec des profils de charge

typiques de la Figure III-22 ou la Figure III-24, nous pouvons déduire que, pendant

l’application du champ, le champ à la cathode est proche de 0, les charges ne sont donc plus

injectées lors du chargement à 170°C. Cette caractéristique marque un fort intérêt dans la

réalisation de mesure de charge d'espace sous une contrainte thermoélectrique comme

proposée par Miura et al. [MIU14]

.

Grâce à ces études des profils de charge d’espace mesurés pendant les protocoles de

TSDC, nous pouvons conclure que le pic ρ est en grande partie lié aux charges négatives

piégées dans le volume du diélectrique.

III.4 Mesures par spectroscopie diélectrique

III.4.1 Protocole de mesure

Des mesures par spectroscopie diélectrique ont été réalisées sous tension alternative de

1V, sur une gamme de fréquences allant de 0,1Hz à 1MHz et sur une gamme de températures

allant de -100 à 200°C, avec un intervalle de 5°C. Pour ces mesures, des électrodes circulaires

(ϕ=16mm) en or sont déposées par sputtering sur chaque face de l’échantillon de PEN semi-

cristallin de 188µm d’épaisseur. Les réponses diélectriques enregistrées sont les parties réelle

ε’ (constante diélectrique) et imaginaire ε’’ (pertes diélectriques) de la permittivité

diélectrique complexe.

III.4.2 Evolution des relaxations en fonction de la température

La Figure III-25 présente l’évolution des parties réelle ε’ et imaginaire ε’’ de la

permittivité diélectrique complexe du PEN en fonction de la température pour différentes

fréquences. Nous pouvons remarquer la présence de trois mécanismes de relaxation dans cette

gamme de températures qui se traduisent par l’apparition de trois pics de pertes diélectriques

notés respectivement β, β* et α dans le sens des températures croissantes. L’observation de la

présence de ces trois pics par spectroscopie diélectrique a déjà été reportée dans la littérature

pour des films de PEN semi-cristallins [CAÑ99]

et amorphes [NOG00]

. Il faut rappeler cependant

Page 135: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

113

que le pic α+ (ou ρ), qui n’est pas observé dans nos mesures, est observé à environ 170°C dans

la littérature [HAR01, MAR01, PSA06]

(par exemple dans la Figure III-9). Les pics β* et α sont les

pics de relaxation observés sur les spectres TSDC. Le premier pic, β, non observé en TSDC,

est attribué aux fluctuations locales de groupes ester (-O-C=O), similaire au processus de

relaxation β dans le PET [COB86, SCH95]

. L’origine des relaxations β* et α a déjà été discutée

dans les paragraphes précédents du 0. Le pic β* est lié au mouvement des deux cycles benzène

et leurs groupes carbonyles voisins, alors que le pic α a pour origine les mouvements micro

browniens des longs segments de chaînes. Ajoutons de plus que la relaxation α est la

conséquence d’un réarrangement des chaînes dans les régions amorphes du matériau. Le pic α

se décale vers des températures plus élevées et son amplitude diminue à la suite de la

cristallisation [BEL96]

. Ce phénomène est aussi observé par Nogales et al. [NOG00]

lorsque les

auteurs comparent les réponses diélectriques des films PEN amorphe et semi-cristallin.

-100 -50 0 50 100 150 2003.8

4.0

4.2

4.4

4.6

4.8

5.0

'

10-1 Hz

100 Hz

101 Hz

102 Hz

103 Hz

104 Hz

105 Hz

106 Hz

T (°C)

(a)

-100 -50 0 50 100 150 200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

"

T (°C)

(b)

Figure III-25. Permittivité (a) réelle et (b) imaginaire du PEN entre -100 et 200°C pour des fréquences de 0,1

Hz à 1MHz

Page 136: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

114

Sur la Figure III-25a, ε’ diminue avec la fréquence dans toute la gamme de températures

explorée. Sur la Figure III-25b, nous pouvons constater que les pics, β, β* et α, se décalent

vers des températures élevées avec une fréquence croissante. Parmi ces pics, les pics β et α

deviennent de plus en plus large lorsque la fréquence augmente. L’amplitude de ces deux pics

diminue lorsque la fréquence passe de 0,1 à 100Hz et puis augmente aux fréquences plus

élevées. Pour le mode de relaxation β*, il est très difficile d’apprécier les changements

apportés à sa largeur et à son amplitude, essentiellement à cause de la proximité du mode de

relaxation principal α.

La conduction, notée ζ, est détectée aux basses fréquences (de 0.1 à 100 Hz) et hautes

température (à partir de 150°C).

III.4.3 Evolution des relaxations en fonction de la fréquence

La Figure III-26 présente l’évolution des parties réelle ε’ et imaginaire ε’’ de la

permittivité diélectrique complexe du PEN en fonction de la fréquence pour différentes

températures en échelle semi-logarithmique.

Sur la Figure III-26a, la fonction ε’(f) est décroissante dans le sens croissant de

fréquence. Cela peut s’expliquer facilement en considérant que le spectre diélectrique obtenu

est une superposition des relaxations β, β* et α, or la fonction ε’(f) de chacune diminue de εs à

ε∞ lorsque la fréquence augmente. Nous pouvons remarquer que la constante diélectrique ε’

augmente, en général, avec la température. Cependant, nous pouvons noter une exception

concernant la fonction ε’(f) enregistrée à 100°C qui est inférieure à celle enregistrée à 50°C

aux fréquences basses. La permittivité dans la gamme de fréquences étudiée à ces deux

températures est due aux deux relaxations β et β*.

Sur la Figure III-26b, trois pics de relaxation, β, β* et α, sont observés dans les spectres

des pertes diélectriques. Ces pics se décalent vers des fréquences plus élevées avec une

température croissante. Ces observations sont en accord avec la loi d’Arrhénius ou de Vogel-

Fulcher-Tammann qui décrivent un temps de relaxation (ou une fréquence) diminuant (ou

augmentant) lorsque la température est croissante. Cependant, l’intégralité des pics n’apparaît

pas dans la fenêtre de fréquences explorée (10-1

à 106 Hz) pour une température d’étude fixe.

Par exemple, à -50°C, seul le pic β est enregistré. A 0°C ou à 50°C, les pics β et β* sont

présents et enfin à 150°C, nous enregistrons le pic α et la conduction ζ. Il est donc nécessaire,

Page 137: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

115

pour modéliser la réponse diélectrique de manière globale, de travailler sur des plages de

températures différentes pour chaque relaxation. Pour finir, les valeurs de ε’ et ε’’ sont

fortement augmentées à 150°C de par la contribution du pic α et l’apparition de la conduction

ζ.

-1 0 1 2 3 4 5 63.8

4.0

4.2

4.4

4.6 -100°C

-50°C

0

50°C

100°C

150°C

'

log(f/Hz) (a)

-1 0 1 2 3 4 5 6

0.01

0.02

0.03

0.04

0.05

"

log(f/Hz)

(b)

Figure III-26. Permittivité (a) réelle et (b) imaginaire du PEN entre 0,1 Hz et 1MHz pour des isothermes de -

100 et 200°C

III.5 Mesures du courant de polarisation à champ faible

III.5.1 Conditions de mesure

Afin d’obtenir des comportements pour lesquels les mécanismes de polarisation sont

dominants, les mesures APC ont été réalisées à champ faible sur du PEN et pour une gamme

de températures allant de -80°C jusqu’à l’apparition de la conduction (150°C). Pour ces

Page 138: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

116

mesures, des échantillons de 188µm ou 75µm d’épaisseur ont été métallisés à l’or (électrodes

circulaires de 6cm de diamètre).

Pour les mesures dans une gamme de températures allant de la température ambiante à

100°C, la cellule Irlab CS-1 précédemment décrite est utilisée. Celle-ci est disposée dans une

enceinte thermique. Les mesures isothermes sont réalisées tous les 20°C environ.

L’échantillon utilisé dans ce cas est de 188µm d’épaisseur. Il a été polarisé sous une tension

de 10V, correspondant à un champ électrique de 0,053kV/mm. Le signal est moyenné sur 5

demi-périodes, chacune de durée 1000s.

De plus, la cellule Irlab CS-1, de par sa conception, est limitée à une température

d’utilisation variant de la température ambiante à 100°C. Pour les mesures hors de cette

gamme de températures, nous utilisons l’enceinte de mesure TSDC associée à l’analyseur de

courant Irlab. Aux très basses et hautes températures (-80, -50, 130, 150°C), un champ

électrique plus élevé a été choisi dans le but de diminuer le bruit sur le courant mesuré. Un

échantillon de 75µm d’épaisseur a été polarisé sous une tension de 100V, c’est-à-dire un

champ électrique de 1,333kV/mm pendant 2 demi-périodes, chacune de durée 1000s.

Il faut remarquer ici que les deux valeurs du champ électrique appliqué sont

relativement faibles. Lors des mesures de charge d’espace (paragraphe III.3), nous n’avons

pas observé de charge d’espace pour des champs de 10 kV/mm et une température TP =

130°C. On peut donc penser que pour les mesures APC sous un champ 10 fois plus petit et

une température inférieure à 130°C, seuls les processus liés à la polarisation sont mesurés.

Les mesures ayant été réalisées dans deux enceintes climatiques différentes, une

vérification de la reproductibilité des mesures a été effectuée. La Figure III-27 présente les

courants normalisés (J/E) mesurés par la méthode APC utilisant la cellule Irlab CS-1 et dans

la cellule TSDC à quelques températures dans la gamme mesurable pour la cellule Irlab CS-1.

Bien que les conditions de mesure (épaisseur des échantillons, champ appliqué et nombre de

demi-périodes mesurées) soient différentes, les mesures sont comparables et ce pour toutes les

températures testées. Ceci confirme donc que nous pouvons utiliser la cellule TSDC pour les

mesures APC dans la gamme de températures où la cellule Irlab CS-1 n’est pas utilisable,

c’est-à-dire aux très basses et hautes températures.

Page 139: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

117

1 10 100 1000

10-16

10-15

10-14

10-13

10-12

J/E

(S

.m-1)

Temps (s)

cellule Irlab CS-1_30°C

cellule TSDC_30°C

1 10 100 1000

10-16

10-15

10-14

10-13

10-12

J/E

(S

.m-1)

cellule Irlab CS-1_50°C

enceinte TSDC_50°C

cellule Irlab CS-1_90°C

enceinte TSDC_90°C

Temps (s)

Figure III-27. Comparaisons des courants normalisés mesurés dans deux enceintes de mesure différentes et pour

différentes températures

III.5.2 Courants de polarisation à champ faible

La Figure III-28 montre les courants de polarisation normalisés (J/E) obtenus pour le

PEN en fonction du temps pour différentes températures allant de -80 à 150°C. Les courants

de polarisation mesurés correspondent aux contributions des relaxations β, β* et α, qui

apparaissent successivement lorsque la température augmente.

10 100 100010

-17

10-16

10-15

10-14

10-13

*

*

-80°C

-50°C

30°C

50°C

70°C

90°C

130°C

150°C

*

Temps (s)

J/E

(S

.m-1)

Figure III-28. Courants de polarisation normalisés en fonction du temps à champ faible pour du PEN à

différentes températures

Selon le nombre de processus de relaxation mis en jeu, les courants de polarisation

peuvent être séparés en quatre régions de température : -80°C (région 1), de 30 à 70°C (région

2), de 90 à 130°C (région 3), et aux températures plus élevées (région 4). Les courants dans

les régions 1, 2 et 3 correspondent aux contributions des relaxations, β, β+β* et β+β

*+α,

respectivement. La courbe de courant obtenu à 150°C dans la région 4 est différente de celles

Page 140: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

118

mesurées aux autres températures. La conduction devient dominante à des températures

élevées et les mesures APC ne reflètent plus les processus de polarisation seulement.

III.6 Mesures de courants à champ fort et

d’électroluminescence (EL)

III.6.1 Protocole expérimental

Pour les mesures d’EL, des échantillons de PEN de 25µm d’épaisseur sont utilisés. Des

électrodes d’or de 5cm de diamètre sont déposées sur chaque face de l’échantillon. Le

protocole de mesure de l’électroluminescence pour du PEN à une température fixe est

représenté sur la Figure III-29. Le champ électrique est augmenté de 30 à 300 kV/mm (valeur

proche de celle de claquage), par pas de 30 kV/mm. Pour chaque valeur du champ électrique

appliqué, l’échantillon est polarisé pendant une heure et puis dépolarisé pendant une heure,

avant l’application d’un champ électrique supérieur. Les mesures de courant et d’EL sont

effectuées simultanément, toutes les deux secondes. Les mesures ont été réalisées pour

différentes températures allant de 25 à 90ºC.

Figure III-29. Protocole de champ appliqué de mesure de l’électroluminescence pour du PEN

III.6.2 Courants de polarisation à champ fort

La Figure III-30 montre les caractéristiques courant-temps de polarisation pour

différents champs électriques et à différentes températures. Pour chaque champ électrique et

chaque température, le courant mesuré diminue dans le temps, mais l’état stationnaire n’est

pas atteint à temps long (1000s) même pour des champs et températures élevés.

Page 141: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

119

10 100 100010

-14

10-12

10-10

10-8

10-6

Coura

nt

(A)

25°C

Temps (s)

30 kV/mm

60 kV/mm

90 kV/mm

120 kV/mm

150 kV/mm

180 kV/mm

210 kV/mm

240 kV/mm

270 kV/mm

300 kV/mm

10 100 100010

-14

10-12

10-10

10-8

10-6

40°C

30 kV/mm

60 kV/mm

90 kV/mm

120 kV/mm

150 kV/mm

180 kV/mm

210 kV/mm

240 kV/mm

270 kV/mm

300 kV/mm

Coura

nt

(A)

Temps (s)

10 100 100010

-14

10-12

10-10

10-8

10-6

50°C

30 kV/mm

60 kV/mm

90 kV/mm

120 kV/mm

150 kV/mm

180 kV/mm

210 kV/mm

240 kV/mm

270 kV/mm

300 kV/mm

Co

ura

nt

(A)

Temps (s)

10 100 100010

-14

10-12

10-10

10-8

10-6

Co

ura

nt

(A)

60°C

30 kV/mm

60 kV/mm

90 kV/mm

120 kV/mm

150 kV/mm

180 kV/mm

210 kV/mm

240 kV/mm

270 kV/mm

300 kV/mm

Temps (s)

10 100 100010

-14

10-12

10-10

10-8

10-6

Coura

nt

(A)

70°C

30 kV/mm

60 kV/mm

90 kV/mm

120 kV/mm

150 kV/mm

180 kV/mm

210 kV/mm

240 kV/mm

270 kV/mm

300 kV/mm

Temps (s)

10 100 100010

-14

10-12

10-10

10-8

10-6

Co

ura

nt

(A)

80°C

30 kV/mm

60 kV/mm

90 kV/mm

120 kV/mm

150 kV/mm

180 kV/mm

210 kV/mm

240 kV/mm

270 kV/mm

300 kV/mm

Temps (s)

10 100 100010

-14

10-12

10-10

10-8

10-6

Co

ura

nt

(A)

90°C

30 kV/mm

60 kV/mm

90 kV/mm

120 kV/mm

150 kV/mm

180 kV/mm

210 kV/mm

240 kV/mm

270 kV/mm

300 kV/mm

Temps (s)

Figure III-30. Courants de polarisation à champ fort

pour différents champs et températures

Page 142: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

120

Aux faibles températures (25, 40 et 50ºC), lorsque les échantillons sont soumis à des

champs électriques faibles, les courants varient linéairement avec le temps en échelle

logarithmique, et peuvent donc être dus à de la polarisation d’orientation. Les courants à plus

hautes températures ou sous forts champs électriques révèlent un changement de pente, qui

peut indiquer un changement de processus à l’origine du courant. Il semble que la première

pente soit due à de la polarisation d’orientation dans le diélectrique, dominante aux temps

courts, la seconde partie de la courbe correspond quant à elle à des mécanismes de

conduction. Pour finir, lorsque les échantillons sont soumis aux champs les plus élevés, les

courants correspondent une dominance des mécanismes de conduction par rapport à la

polarisation d’orientation.

Pour des températures de 70, 80 et 90ºC et un champ électrique de 300 kV/mm, un pic

de courant est observé. Ce phénomène a été aussi observé par plusieurs auteurs pour plusieurs

matériaux, tels que le LDPE [PEL88]

, le HDPE [MIZ79]

, le PET [GUP76, SAI06]

ou le PEN [SAI06]

. Une

même conclusion a été proposée par tous les auteurs : l’apparition du pic de courant est liée à

la charge d’espace. Ce pic peut s’expliquer par l’augmentation du courant limité par charge

d’espace qui se superpose à la décroissance du courant dipolaire [SAI06]

. La Figure III-31

présente des exemples d’observation électrique de l’apparition d’un pic de courant lors des

phases de polarisation du PET sous 24 kV/mm et du PEN sous 72 kV/mm à différentes

températures [SAI06]

.

(a) PET (b) PEN

Figure III-31. Effets de la charge d’espace sur les courants de polarisation à différentes températures pour (a)

du PET sous 24 kV/mm et (b) du PEN sous 72 kV/mm [SAI06]

Page 143: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

121

Les courants dans le PEN (Figure III-31b) ne montrent pas de pic de courant à 80ºC

mais à partir de 100ºC, tandis que dans notre étude, l’apparition d’un pic de courant est

enregistrée sous 300 kV/mm, même aux températures inférieures à 100ºC. Le pic de courant

est donc observé sous polarisation lorsque les contraintes électriques et/ou thermiques sont

fortes.

La variation de la densité de courant en fonction du champ électrique appliqué pour

différentes températures est représentée sur la Figure III-32. Chaque point de la Figure III-32

est une valeur moyenne des valeurs de courant mesuré pendant la dernière minute pour

chaque transitoire de courant de la Figure III-30. D’une manière générale, la densité de

courant augmente avec la température, sauf pour quelques points à basse température. La

caractéristique courant-champ s’apparente à une caractéristique de courant limité par charge

d’espace (SCLC). Trois différents régimes caractéristiques d’une conduction limitée par

charge d’espace sont observés pour toutes les températures de 25 à 90ºC. Un régime ohmique

(région A sur la Figure III-32) est observé aux champs faibles, le courant est alors

proportionnel au champ électrique (la pente p≈1). Puis, le courant augmente plus vite et n’est

plus proportionnel au champ électrique, c’est un régime de forte injection (SCLC) (région B -

p≈2). A la fin de la caractéristique courant-champ, un régime pour lequel les pièges sont

presque tous remplis (TFL) (région C) est observé. La pente de la région C ne semble

pourtant pas verticale comme en théorique (p→∞) (Figure I-12) mais elle est cependant très

grande (p≈13 à 25°C). Cependant, le cas d’une pente ∞ correspond au cas théorique simple où

un seul niveau de pièges est considéré. Si l’on suppose une distribution exponentielle de

pièges, la pente varie alors en Vp avec p grand.

20 100 400

10-9

10-8

10-7

10-6

10-5

Densité

de

cou

rant (A

.m-2)

25°C

40°C

50°C

60°C

70°C

80°C

90°C

Champ électrique (kV.mm-1)

A

B

CA

B

C

Figure III-32. Densité de courant en fonction du champ électrique appliqué pour différentes températures

Page 144: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

122

III.6.3 Electroluminescence

Les mesures d’EL réalisées sur les échantillons de PEN pour le protocole décrit à la

Figure III-29 n’ont permis de présenter des transitoires de luminescence que pour des phases

de polarisation à partir d’une valeur supérieure à un champ seuil, pour toutes les températures.

En effet, pour des champs moins élevés, le signal est inférieur au bruit de mesure.

Nous avons choisi de montrer des caractéristiques d’EL en fonction du temps obtenues

à 25ºC pour deux valeurs du champ électrique, 210 et 240 kV/mm, pour lesquelles le signal

significatif de luminescence n’est pas et est observé.

La Figure III-33 montre l’EL mesurée pour le PEN soumis à un champ électrique de

210 kV/mm à 25ºC. Un transitoire de luminescence est observé dans les premières secondes

suivant l’application de la tension, mais le signal décroît rapidement (200s) jusqu’à être

inférieur au bruit de mesure (ici, de l’ordre de 2 coups par secondes -cps).

0 50 100 150 2000 2500 3000

100

101

102

103

210 kV/mm

Ele

ctr

olu

min

esce

nce

(cp

s)

Temps (s)

Figure III-33. Transitoire de luminescence pour du PEN à 25ºC sous 210 kV/mm. Le bruit de fond est

représenté par une ligne horizontale à 2 cps

Pour un champ de 240 kV/mm, un signal significatif de luminescence est mesuré même

à temps long (Figure III-34). Après une décroissance rapide (t<300s), le signal de

luminescence tend vers une valeur stable largement au-dessus du bruit de fond. L’EL

observée a été interprétée comme provenant de la recombinaison de charges de signe opposé.

Elle n’est pas détectée avant le champ seuil, car il n’existe pas de zone où les deux espèces de

charges positives et négatives cohabitent [TEY01]

.

Page 145: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

123

0 1000 2000 3000

100

101

102

103

240 kV/mm

Ele

ctr

olu

min

esce

nce

(cp

s)

Temps (s)

Figure III-34. Transitoire de luminescence pour du PEN à 25ºC sous 240 kV/mm. Le bruit de fond est

représenté par une ligne horizontale à 2 cps

Pour une meilleure visualisation, les variables de l’EL en fonction du champ électrique

pour différentes valeurs de température sont présentées à la Figure III-35. Chaque point de la

Figure III-35 est une valeur moyenne des valeurs de l’EL mesurée pendant la dernière minute

pour chaque transitoire de l’EL. Le niveau de bruit est représenté par une ligne horizontale à 2

cps. Des signaux significatifs ont été expérimentalement observés à partir de champs seuils,

environ de 210 kV/mm pour toutes les températures. Cette valeur de champ seuil est

supérieure à celle obtenue par Augé et al. [AUG00a]

qui indiquent un champ seuil de 150 kV/mm

pour la recombinaison des charges positives et négatives dans le PEN.

0 60 120 180 240 300

100

101

102

103

Ele

ctr

olu

min

escence

(cps)

Champ électrique (kV.mm-1)

25°C

40°C

50°C

60°C

70°C

80°C

90°C

niveau de bruit

Figure III-35. Electroluminescence en fonction du champ électrique appliqué à différentes températures

Les évolutions en température de la densité de courant et de l’EL enregistrées pour les

champs électriques allant de 240 à 300 kV/mm sont tracées sur la Figure III-36. Ces

Page 146: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

124

évolutions suivent la même tendance : une diminution du courant et de l’EL de 25 à 50ºC et

une augmentation au-delà de 50ºC. Ceci peut être expliqué par l’injection de charge d’espace

dans le volume du diélectrique. Plus il y a de charges injectées, plus le courant augmente et

plus les processus de recombinaison de charges augmentent. Sous fortes contraintes

électriques et thermiques, les charges injectées sont nombreuses, tous les pièges sont remplis,

la recombinaison de charges (ou l’EL) et la densité de courant ont tendance à être stables (au-

delà de 80 ºC sur la Figure III-36).

20 30 40 50 60 70 80 90 100

10-9

10-8

10-7

10-6

Ele

ctr

olu

min

esce

nce

(cp

s)

De

nsité

de

co

ura

nt (A

.m-2)

Température (°C)

100

101

102

103

104

105

106

240 kV/mm

270 kV/mm

300 kV/mm

Figure III-36. Densité de courant et électroluminescence en fonction de la température aux champs électriques

allant de 240 à 300kV/mm pour du PEN

III.7 Conclusion

Les relaxations diélectriques dans le PEN ont été étudiées par plusieurs techniques

expérimentales : la TSDC, la spectroscopie diélectrique, la DSC et la méthode PEA. Quatre

pics de relaxations, β, β*, α et ρ, ont été observés dans l’ordre croissant de la température. Le

premier pic, β, qui n’est observé que par la spectroscopie diélectrique, est attribué aux

fluctuations locales de groupes ester (-O-C=O) de la structure chimique du matériau. Le

seconde pic, β*, est lié au mouvement des deux cycles benzéniques et leurs groupes

carbonyles voisins. Le troisième pic, α, est lié à la transition vitreuse du matériau et a pour

origine les mouvements micro browniens des longs segments de chaînes. Ce pic est

naturellement un réarrangement collectif de conformations des chaînes dans les régions

amorphes du matériau. Les trois premiers pics, β, β* et α sont liées à des processus de

Page 147: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre III Caractérisation électrique et diélectrique du PEN

125

polarisation d’orientation. Après la transition vitreuse Tg, le dernier pic, ρ, a été observé par

TSDC.

Les mesures de charge d’espace par PEA ont montré qu’il n’existait pas de charges

piégées dans le volume du matériau pour une température TP de 130ºC alors que des charges

d’espace négatives sont présentes pour TP = 170ºC. Cela montre que le pic ρ, uniquement

observable lorsque l’échantillon a été polarisé à TP = 170ºC, est lié au dépiégeage de ces

charges. En effet, les mesures DSC et la littérature tendent à prouver que ces charges sont

piégées à l’interphase amorphe-cristal, et que le réarrangement de ces interphases à une

température supérieure à 165ºC libérerait les charges piégées. Nous avons aussi montré que la

polarisation des dipôles était mesurable par la méthode PEA, par la présence de charges

d’influence aux électrodes liées à la présence de ces dipôles.

Pour finir, dans ce chapitre, nous avons également réalisé des caractérisations

électriques supplémentaires du PEN en utilisant : des mesures de courants de polarisation à

champ faible (par APC) où les phénomènes de polarisation sont dominants, et des mesures du

courant de conduction et de l’EL à champ fort où les phénomènes de polarisation et de

conduction coexistent. Les courants obtenus par APC correspondent aux contributions de

polarisation, β, β+β*, β+β

*+α, respectivement, dans l’ordre croissant de la température jusqu’à

90ºC. Les mécanismes de polarisation dans les courants mesurés à champs forts sont encore

dominants aux champs moins élevés pour les basses températures (de 25 à 50ºC). Pour les

mesures d’EL à champs forts, des signaux significatifs ont été observés à partir d’un champ

seuil de 210 kV/mm environ.

La dernière partie du travail consiste donc à proposer un modèle permettant de tenir

compte des phénomènes physiques mis en évidence de manière expérimentale dans ce

chapitre. Pour cela, deux cas distincts peuvent être considérés :

A champ faible : le modèle ne tiendra compte que de la polarisation d’orientation.

A champ fort : le modèle devra tenir compte de la polarisation et de la contribution de la

conduction. Nous pourrons nous servir des paramètres calculés dans ce chapitre pour

alimenter le modèle en paramètres de base tels que la mobilité effective.

Page 148: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 149: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV

Modélisation de la

polarisation et du

transport dans le PEN

Page 150: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 151: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

129

Ce chapitre présente les deux grandes parties de modélisation : la modélisation de la

polarisation et celle du transport dans le PEN. La stratégie adoptée, présentée sur la Figure

IV-1, peut se décomposer en plusieurs étapes qui seront détaillées dans ce chapitre.

Dans le modèle de transport de charges développé dans notre équipe de recherche

[ROY04] , qui permet de décrire les mécanismes de conduction dans les diélectriques, la

permittivité ε est considérée comme une constante. Le principe de modélisation de la

polarisation dans le PEN s’appuie sur la prise en considération de la variation de la

permittivité ε en fonction de la fréquence de la sollicitation électrique. A partir de la mesure

de spectroscopie diélectrique fournissant la permittivité ε dans le domaine fréquentiel,

l’objectif est d’obtenir la variation de la permittivité ε dans le domaine temporel à l’aide d’une

transformée de Fourier inverse (iFFT) du domaine fréquentiel au domaine temporel.

Cependant, l’iFFT a besoin d’une permittivité ε échantillonnable en fréquence tandis que celle

qui est obtenue par la mesure de spectroscopie diélectrique est discrétisée. Il faut donc au

préalable modéliser la permittivité ε mesurée par des fonctions empiriques, pour avoir une

permittivité ε continue et re-échantillonnable en fréquence. Dans ce chapitre, les processus

permettant l’extrapolation par des fonctions Cole-Cole des relaxations β, β* et α observées

dans la réponse diélectrique seront successivement présentés.

Spectroscopie

diélectrique

ε

ε

échantillonnable

Courant de polarisation

champ faible

(Ipol(t))

iFFT Modèle de

transport de

charges

ε

Validation

FIT

Domaine fréquentiel Domaine temporel

Méthode

inverse

Courant de polarisation

champ fort

(Ipol(t) + Icond(t))

Figure IV-1. Schéma du processus de modélisation de la polarisation et du transport dans le PEN

Après avoir pris en compte la polarisation dans le modèle de transport de charges, la

validation isotherme sera réalisée en comparant les courants de polarisation simulés par le

modèle développé à ceux mesurés à champ faible, où la réponse est essentiellement dipolaire.

D’autre part, le modèle de transport de charges ainsi que le modèle d’optimisation seront

présentés. Des estimations de paramètres de transport seront calculées grâce à un traitement

des données expérimentales et nous montrerons les avancées sur la validation du modèle à

champs forts, où la conduction est dominante.

Page 152: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

130

Des discussions sur les différents objectifs réalisés ainsi que sur les difficultés

rencontrées lors des étapes de modélisation clôtureront ce chapitre.

IV.1 Modélisation de la polarisation

IV.1.1 Analyse diélectrique dans le domaine fréquentiel

Dans ce paragraphe, nous présentons l’approximation numérique de la réponse

diélectrique du PEN (résultats du paragraphe III.4) par le modèle empirique global décrit dans

le paragraphe I.4.3.4. Notons que, dans la fenêtre de fréquences mesurées (10-1

à 106 Hz), le

spectre de spectroscopie diélectrique ne fait pas apparaitre l’ensemble des pics de relaxation

(β, β* et α) pour une température d’étude fixe. Pour cette raison, une procédure

d’extrapolation allant des basses aux hautes températures a été réalisée afin d’obtenir les

paramètres d’approximation pour les relaxations présentes dans la fenêtre de mesure. Cette

procédure est similaire à celle de Coburn et Boyd [COB86]

appliquée au PET en considérant la

relaxation β* pour le PEN. En utilisant la procédure d’extrapolation, nous pouvons diminuer

le nombre de paramètres à ajuster, c’est-à-dire la complexité du problème de fit pour toutes

les températures.

Par ailleurs, les relaxations ou les contributions d’une relaxation dans le PEN sont

relativement symétriques. Afin de diminuer la sensibilité du problème de fit dans cette étude,

nous avons utilisé des fonctions Cole-Cole pour ajuster la permittivité diélectrique mesurée.

Ces aspects ont aussi été évoqués dans la littérature par [NOG00, BRA03, HAK05]

.

La synthèse de la procédure d’extrapolation réalisée est présentée dans le Tableau IV-1,

sur la base des mesures présentées au paragraphe III.4.

Tableau IV-1. Synthèse de modélisation des pics de relaxation obtenus par la spectroscopie diélectrique sur du

PEN.

Pic β β*

α et σ

β1 et β2 β

Gamme de températures de fit -80 à -50°C -50 à -20°C 85 à 110°C 150°C

Nombre de fonctions Cole-Cole 2 1 2 3 et ζ

Page 153: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

131

IV.1.1.1 Modélisation du pic β

Dans la gamme de températures où le pic de relaxation β apparaît seul (de -80 à -20°C),

les courbes des pertes diélectriques ε’’ et de la constante diélectrique ε’ ont été tracées en

fonction de la fréquence avec une échelle semi-logarithmique (Figure IV-2). Le maximum du

pic β se décale vers des fréquences plus élevées quand la température augmente (Figure

IV-2a). La constante diélectrique ε’ augmente avec la température (Figure IV-2b).

-1 0 1 2 3 4 5 6

0.01

0.02

0.03

0.04

0.05 -80°C

-70°C

-60°C

-50°C

-40°C

-30°C

-20°C

"

log(f/Hz)

région

-1 0 1 2 3 4 5 6

3.9

4.0

4.1

'

log(f/Hz) (a) (b)

Figure IV-2. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) dans la région de température de la

relaxation β dans le PEN.

Les fits des données expérimentales présentées dans la Figure IV-3 ont été réalisés à

l’aide de l’algorithme d’optimisation local de Levenberg-Marquardt [MAR63, SEB03]

. Le principe

de cet algorithme consiste à minimiser la somme des carrés des écarts entre les données

expérimentales et le modèle de fit. L’algorithme Levenberg-Marquardt sera présenté plus en

détail dans la suite de ce chapitre.

Le fit du pic β consiste à considérer deux processus symétriques qui se chevauchent. Ce

phénomène est déjà mentionné dans la littérature. Dans l'étude du PEN, PET et leurs

copolymères, Bravard et al. [BRA03]

ont indiqué que le processus asymétrique β serait mieux

représenté par la superposition de deux processus symétriques, β1 et β2. Puis, dans des études

par spectroscopie diélectrique et mécanique de l’influence du taux d’étirement (rapport

déformation/contrainte appliquée) et de l’humidité sur des échantillons de PEN amorphe,

Hakme et al. [HAK05]

ont montré que l'amplitude du processus β2 dépend fortement de

l’humidité contenue dans les échantillons; l'amplitude du processus β1 dépend du taux et de la

température d’étirement. Le pic β* lié au mouvement des deux cycles benzéniques et leurs

groupes carbonyles voisins n’est pas observé dans le cas de PET. Cependant, Illers et al. [ILL63]

Page 154: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

132

dans l’étude de la relaxation diélectrique secondaire β du PET sur la base de mesures de

module de torsion et d’amortissement ont suggéré la présence de trois pics β1, β2 et β3. Ceci a

également été remarqué dans [BRA03]

. Le troisième pic (β3), probablement équivalent au

processus β* du PEN, est vraisemblablement dû aux cycles phényles. Les mécanismes

associés à ce processus de relaxation sont complexes et dépendent de la fréquence de mesure

[MAR01].

La Figure IV-3a montre le fit de la permittivité imaginaire ε’’ à -80°C par une somme

de deux fonctions Cole-Cole (l’Equation I-72 avec i=2, ci = 1 et κ=0).

1 2"( ) "( ) "( ) Equation IV-1

où β1 est la composante haute fréquence et β2 est la composante basse fréquence de la

permittivité.

Pour rappel : une fonction Cole-Cole s’exprime :

*( ) '( ) . "( )

1b

jj

Equation IV-2

L’identification des paramètres des fonctions Cole-Cole pour ε’’ a donné les valeurs

suivantes, pour une température de -80°C :

1 1 1

2 2 2

50,15607; 0,21997; 3,64090.10 ;

0,15872; 0,39560; 0,28495 ;

b s

b s

-3 -2 -1 0 1 2 3 4 5 6 7 8

0.00

0.01

0.02

0.03

mesure à -80°C

fit Cole-Cole

"

log(f/Hz)

-3 -2 -1 0 1 2 3 4 5 6 7 83.8

3.9

4.0

4.1

'

'

'

log(f/Hz)

'

(a) (b)

Figure IV-3. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) du PEN : les mesures expérimentales et

les résultats de fit à -80°C.

Page 155: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

133

Ensuite, la permittivité réelle ε’ a été fittée par l’Equation I-71 avec i=2 et κ=0 en

utilisant les paramètres identifiés par le fit de la permittivité imaginaire ε’’.

1 2'( ) '( ) '( ) Equation IV-3

Nous ne devons identifier que la permittivité infinie ε∞ dans cette équation. Le résultat

de fit de la permittivité réelle ε’ est présenté dans la Figure IV-3b et la valeur d’identification

de ε∞ obtenue est la suivante :

3,82980.

Cependant, de bons fits ne peuvent être obtenus qu’à très basses températures, où les

maximums des pics β1 et β2, sont bien définis dans la fenêtre de fréquences mesurées. Au-

dessus de -50°C (Figure IV-2), le processus β1 participe très faiblement aux pertes

diélectriques. Ainsi, à partir de -50°C, les pertes diélectriques ont été fittées par une fonction

Cole-Cole unique. Le fit du pic de relaxation β à -50°C, présenté dans la Figure IV-4a, a été

effectué dans une plage de fréquence où l'influence des processus β* et β1 a été négligée (entre

deux lignes verticales pointillées dans la figure). Cela signifie que l’on a fitté la permittivité

imaginaire ε’’ autour du maximum du pic β où les contributions des autres pics de relaxation

de part et d’autre de ce pic (plus basse fréquence - β* et plus haute fréquence - β1) sont faibles.

En pratique, la plage de fréquences autour du maximum du pic β est ajustée de manière à

atteindre une tolérance inférieure à 5% entre le modèle de fit et les mesures expérimentales.

-1 0 1 2 3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

log(f/Hz)

"

mesure à -50°C

fit Cole-Cole

(a)

-1 0 1 2 3 4 5 6 7 8 9 10

3.6

3.8

4.0

4.2

4.4

4.6

'

log(f/Hz)

(b)

Figure IV-4. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) du PEN : les mesures expérimentales et

les résultats de fit à -50°C

En appliquant les paramètres obtenus pour le fit de la permittivité imaginaire ε’’ à -

50°C, le résultat de fit de la permittivité réelle ε’ est représenté à la Figure IV-4b. De la même

Page 156: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

134

manière, des fits ont été réalisés pour les autres températures (de -45 à -20°C) dans la région

de température du pic β.

Les paramètres extraits de ces fits du pic β par une fonction Cole-Cole sont listés dans

le Tableau IV-2. Pour chaque paramètre, nous obtenons une série de valeurs qui sont fonction

de la température.

Tableau IV-2. Paramètres du pic de relaxation β à différentes températures.

T(°C) Δε b τ ε∞

-50 0.276408 0.265605 0.001850 3.876503

-45 0.279438 0.261672 0.000939 3.871987

-40 0.276179 0.263748 0.000398 3.867344

-35 0.250626 0.293171 0.000204 3.876567

-30 0.263384 0.280685 0.000128 3.870340

-25 0.242176 0.307184 0.000070 3.877726

-20 0.252671 0.297359 0.000035 3.867637

Ces paramètres d’ajustement Δεβ(T), bβ(T) et ηβ(T) sont présentés en fonction de la

température sur la Figure IV-5 (triangles vides). Δεβ et bβ varient linéairement avec la

température tandis que ln(ηβ) augmente linéairement avec l’inverse de la température (1/T),

suivant la loi d’Arrhénius. Ces dépendances en température peuvent être décrites par les

Equations IV-4, 5 et 6 qui sont obtenues après avoir ajusté les paramètres du pic β par des

fonctions linéaires de la température.

100,263 7,796.10 T Equation IV-4

30,065 1,452.10b T

Equation IV-5

0,634ln 39,307

Bk T Equation IV-6

où : T : la température en Kelvins, K,

kB : la constante de Boltzmann, kB = 8,617.10-5

eV.K-1

.

Ces fonctions linéaires sont représentées par les courbes rouges sur la Figure IV-5. A

partir de ces courbes, on peut extrapoler les valeurs des paramètres du pic β à plus hautes

températures (triangles pleins sur la Figure IV-5 par exemple).

Page 157: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

135

-50 0 50 100 150

0.1

0.2

0.3

0.4

0.5

0.6

b

T (°C)

0.2

0.3

0.4

0.5

0.6

0.7

2.5 3.0 3.5 4.0 4.5-24

-20

-16

-12

-8

-4

ln(

/s)

1000/T(K-1)

Figure IV-5. Paramètres Cole-Cole obtenus pour la relaxation β : les symboles vides correspondent aux

paramètres d’ajustement, les symboles pleins correspondent aux paramètres extrapolés

A partir de l’Equation IV-6, nous obtenons la valeur de l’énergie d’activation de la

relaxation β du PEN : Ea(β) = 0,634eV = 61 kJ/mol. Cette valeur se situe entre 51 et 69

kJ/mol, valeurs obtenues par spectroscopie diélectrique sur des échantillons orientés de PEN

amorphes et semi-cristallins (obtenus par recuit des échantillons amorphes) dans l’étude de

Hardy et al. [HAR03]

.

Page 158: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

136

IV.1.1.2 Modélisation du pic β*

Dans la région de température du pic de relaxation β* (de 85 à 110°C), les pertes

diélectriques ε’’ et la constante diélectrique ε’ sont tracées en fonction de la fréquence avec

une échelle semi-logarithmique dans la Figure IV-6. Le maximum du pic β* se décale vers des

fréquences plus élevées quand la température augmente. Son amplitude diminue fortement

lorsque la température augmente de 85 à 100°C et augmente au-delà de 100°C (Figure IV-6a).

Sur la Figure IV-6b, il est difficile de voir l’influence de la température sur l’évolution de la

constante diélectrique ε’ avec la température.

-1 0 1 2 3 4 5 6

0.02

0.03

0.04

région

"

85°C

90°C

95°C

100°C

105°C

110°C

log(f/Hz)

-1 0 1 2 3 4 5 6

4.0

4.1

4.2

'

log(f/Hz) (a) (b)

Figure IV-6. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) dans la région de température de la

relaxation β* dans le PEN.

Pour obtenir un ensemble fiable de paramètres Cole-Cole correspondant à la relaxation

β*, l’influence de la relaxation β à hautes fréquences est prise en compte. Pour ce faire,

l’extrapolation de la contribution du pic β dans la région de température du pic β*

a été

ajoutée à la contribution du pic β* (triangles pleins sur la Figure IV-5), en utilisant les

Equations IV-4, 5 et 6. Les valeurs expérimentales de la permittivité imaginaire et réelle dans

cette région ont été fittées en utilisant les équations suivantes :

*"( ) "( ) "( ) Equation IV-7

*'( ) '( ) '( ) Equation IV-8

Les ajustements ont été réalisés à toutes les températures comprises entre 85 et 110°C

pour le pic β*. La Figure IV-7a montre les résultats de fit du pic β

* à 95°C obtenus dans la

gamme de fréquences de 1Hz à 1MHz où l’influence de la contribution du processus α peut

être négligée. Les paramètres Cole-Cole pour le pic β, Δεβ, bβ et ηβ, ont été extrapolés à 95°C

Page 159: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

137

et les paramètres correspondant au pic β* ont été obtenus par le fit de la permittivité

imaginaire ε’’. Puis, le fit de la permittivité réelle ε’ a été effectué en utilisant les paramètres

extrapolés et obtenus précédemment (Figure IV-7b). Le résultat de fit a donné la valeur de ε∞

à 95°C.

-1 0 1 2 3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

mesure à 95°C

fit Cole-Cole

log(f/Hz)

"

(a)

-1 0 1 2 3 4 5 6 7 8 9 10

3.6

3.8

4.0

4.2

4.4

4.6

'

log(f/Hz)

(b)

Figure IV-7. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) du PEN : mesures expérimentales et

résultats de fit à 95°C

Les paramètres extraits des fits du pic β* à des températures comprises entre 85 et

110°C sont listés dans le Tableau IV-3. Pour chaque paramètre, on obtient une série de

valeurs fonction de la température.

Tableau IV-3. Paramètres du pic de relaxation β* à différentes températures.

T(°C) Δε b τ ε∞

85 0.301133 0.233498 0.004440 3.726776

90 0.302021 0.217434 0.002616 3.713096

95 0.286655 0.215013 0.000886 3.702545

100 0.292976 0.204002 0.000417 3.690399

105 0.289116 0.203789 0.000147 3.682776

110 0.292379 0.204366 0.000059 3.675632

Ces paramètres de fit Δεβ*, bβ* et ηβ* sont représentés par les cercles creux dans la Figure

IV-8 en fonction de la température. Comme pour le cas du pic β, les paramètres Δεβ* et bβ* ont

été fittés par des fonctions linéaires avec la température, et ηβ* par l’équation d’Arrhénius.

Page 160: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

138

4

* 0,456 4,352.10 T Equation IV-9

3

* 0,631 1,129.10b T

Equation IV-10

*

2,090ln 72,958

Bk T Equation IV-11

-50 0 50 100 150

0.1

0.2

0.3

0.4

0.5

0.6

b

T (°C)

0.2

0.3

0.4

0.5

0.6

0.7

2.5 3.0 3.5 4.0 4.5-24

-20

-16

-12

-8

-4

ln(

/s)

1000/T(K-1)

Figure IV-8. Paramètres Cole-Cole obtenus par la procédure d’extrapolation de fit : les symboles creux

correspondent aux paramètres de fit, les symboles pleins correspondent aux paramètres extrapolés ; relaxation

β : triangles, relaxation β* : cercles

Page 161: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

139

Ces fonctions linéaires sont représentées par les courbes bleues sur la Figure IV-8. A

partir de ces courbes, on peut extrapoler les valeurs des paramètres du pic β* à plus hautes

températures (par exemple, le cercle plein sur la Figure IV-8). A partir de l’Equation IV-11,

on obtient la valeur de l’énergie d’activation de la relaxation β* du PEN : Ea(β

*) = 2,090 eV =

201,7 kJ/mol. Cette valeur est supérieure à la valeur maximale (111 kJ/mol) obtenue par la

mesure de spectroscopie diélectrique mais se situe dans la gamme de 119 à 247 kJ/mol

d’énergie d’activation obtenue par l’analyse mécanique dynamique (DMA) pour les

échantillons orientés de PEN amorphes et semi-cristallins (obtenus par recuit des échantillons

amorphes) dans l’étude de Hardy et al. [HAR03]

.

IV.1.1.3 Modélisation du pic α et la conduction σ

La permittivité imaginaire ε’’ dans la région de température du pic α est représentée sur

la Figure IV-9a. Il est difficile de voir la totalité du pic α dans la fenêtre de fréquences de

mesure pour les températures étudiées. De 130 à 140°C, nous pouvons voir le flanc droit du

pic aux basses fréquences et le maximum du pic n’est pas atteint dans la fenêtre de mesure. A

partir de 145°C, le pic α se décale rapidement vers des fréquences plus élevées lorsque la

température augmente. On ne peut voir la totalité du pic α que dans une gamme de

températures étroite, entre 145°C et 150°C. Il n’y a donc pas suffisamment de points pour

déterminer la dépendance des paramètres de fit du pic α vis-à-vis de la température.

La variation de la permittivité réelle ε’ en fonction de la fréquence pour cette gamme de

températures est montrée sur la Figure IV-9b. La permittivité ε’ augmente lorsque la

température augmente.

-1 0 1 2 3 4 5 6

0.03

0.04

0.05

0.06

0.07

0.08

0.09 130°C

135°C

140°C

145°C

150°C

155°C

160°C

"

log(f/Hz)

région

-1 0 1 2 3 4 5 64.0

4.1

4.2

4.3

4.4

4.5

'

log(f/Hz) (a) (b)

Figure IV-9. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) dans la région de température de la

relaxation α dans le PEN.

Page 162: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

140

Dans notre étude, les fits pour le pic α et pour la conduction ζ à 150°C ont été effectués

de la même manière que pour le pic β* en ajoutant aux contributions du pic α et de la

conduction ζ l’extrapolation des contributions du pic β par les Equations IV-4, 5 et 6

(triangles pleins sur la Figure IV-5) et du pic β* par les Equations IV-9, 10 et 11 (cercle plein

sur la Figure IV-8). Les valeurs expérimentales de la permittivité imaginaire et réelle ont été

fittées à 150°C en utilisant les équations :

*"( ) "( ) "( ) "( ) " Equation IV-12

*'( ) '( ) '( ) '( ) ' Equation IV-13

Ces équations sont les Equations I-72 et 71 avec i=3.

La Figure IV-10 montre les résultats du fit de la relaxation α et la conduction ζ à 150°C

effectués pour toute la gamme de fréquences de 0,1Hz à 1MHz.

-1 0 1 2 3 4 5 6 7 8 9 10

0.00

0.02

0.04

0.06

0.08

0.10

mesure à 150°C

fit Cole-Cole

"

log(f/Hz)

(a)

-1 0 1 2 3 4 5 6 7 8 9 10

3.6

3.8

4.0

4.2

4.4

4.6

'

log(f/Hz)

(b)

Figure IV-10. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) du PEN : les mesures expérimentales et

les résultats de fit à 150°C

Les paramètres de fit obtenus sont :

13

0,678548; 0,132041; 0,000261 ; 3,501028

1,076.10 ; 0,874099.

b s

s

Les mesures de spectroscopie diélectrique nous ont permis d’identifier les processus de

polarisation (β, β* et α) dans le PEN, ainsi que la présence de la conduction aux basses

fréquences et hautes températures. L’obtention des paramètres des fonctions Cole-Cole pour

chaque relaxation permet d’obtenir une réponse de ε échantillonnable.

Page 163: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

141

IV.1.2 Cohérence des résultats de spectroscopie diélectrique et du courant

de polarisation mesuré à champ faible

IV.1.2.1 Méthode d’inversion utilisant la transformée de Fourier inverse

L’inversion fréquence-temps concernant les résultats de spectroscopie diélectrique

consiste à obtenir le courant en fonction du temps dans une gamme de temps allant de 10-6

à

10s. Cette fenêtre temporelle est complémentaire des mesures de courant couvrant une gamme

allant de 1 à 1000s. Ici, nous ne nous intéressons qu’aux contributions de polarisation, c’est-à-

dire à des températures où la contribution de la conduction est négligeable.

La densité de courant de déplacement pour les relaxations multiples se réécrit à partir de

l’Equation I-51 :

0

1

( ) ( ) ( )nRelax

d i pi

i

J t t E t

Equation IV-14

Où nRelax est le nombre de relaxations présentes à une température donnée.

Nous déterminons tout d’abord le terme correspondant aux réponses impulsionnelles

1

( )nRelax

i pi

i

t

, à l’aide d’une transformée de Fourier inverse du domaine fréquentiel au

domaine temporel.

En effet, pour une relaxation, la fonction de réponse impulsionnelle est obtenue par :

1( ) ( )pi pit TF Equation IV-15

Pour toutes les relaxations :

1

1 1

( ) . ( )nRelax nRelax

i pi i pi

i i

t TF

Equation IV-16

En utilisant cette équation, nous devons appliquer nRelax fois la transformée de Fourier

inverse pour obtenir 1

( )nRelax

i pi

i

t

. Grâce à la linéarité de la transformée de Fourier, nous

pouvons réduire le temps de calcul en appliquant directement :

1

1 1

( ) . ( )nRelax nRelax

i pi i pi

i i

t TF

Equation IV-17

Page 164: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

142

La transformée de Fourier inverse peut être appliquée soit à la partie réelle soit à la

partie imaginaire de la fonction Φpi(ω). En fonction de ce que l’on veut mettre en œuvre, on

peut donc utiliser soit la fonction cosinusoïdale soit la fonction sinusoïdale. Ici, nous avons

utilisé la transformée cosinusoïdale pour la fonction Φpi’(ω) :

1 10

2( ) '( ) cos( )

nRelax nRelax

i pi i pi

i i

t t d

Equation IV-18

On pose : 1

( ) ( )nRelax

i pi

i

t t

et 1

( ) '( )nRelax

i pi

i

g

.

En introduisant les fonctions de Cole-Cole à Φpi’(ω), l’expression de g(ω) est donnée

par (voir l’Equation I-71) :

1/2

1 2

cos( )( )

11 2 sin

2

i i

nRelaxi i

i b bi

i i

gb

Equation IV-19

Où Δεi, bi et ηi sont les paramètres de Cole-Cole, θi est donné par l’Equation I-73.

En changeant la variable de l’intégrale dans l’Equation IV-18 de ω à f, on a la relation :

0

( ) 4 (2 )cos(2 )t g f ft df

Equation IV-20

Pour calculer cette intégrale, nous avons utilisé une méthode numérique. Ainsi nous

définissons un domaine de calcul fréquentiel borné par 0 et une fréquence maximale fmax, [0,

fmax]. Nous utilisons N=2n points pour échantillonner la fonction dans l’intégrale, avec un pas

Δf=fmax/(N-1). Nous construisons ensuite la fonction symétrique de g que nous concaténons à

g de manière à obtenir le spectre déplié. Nous avons donc 2N points pour le calcul de la

transformée de Fourier. La transformée de Fourier discrète formelle s’écrit alors (partie réelle

de la fonction iFFT de Matlab) :

2

max

1

2( ) (2 )cos 1 1

2 1

n

k

fG j g k f j k

N N

Equation IV-21

La relation entre l’indice j et le temps est la suivante :

1

2T f

N Equation IV-22

Page 165: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

143

D’où : max

1 1

2 2T

N f f

Equation IV-23

La discrétisation correspondante dans le domaine temporel s’écrit :

jt j T Equation IV-24

Donc, le terme de réponse impulsionnelle satisfait la relation :

max

1

2( ) 4 (2 )cos 1 1

2 1

n

j

k

ft g k f j k

N N

Equation IV-25

La densité de courant de déplacement est calculée par :

0( ) ( ) ( ) ( )d j j j jJ t t t E t Equation IV-26

Le but est d’obtenir le courant aux temps très courts (10-6

à 10s) correspondant à la

gamme de fréquences de mesure (10-1

à 106 Hz). Dans les prochaines études, nous aurons

également besoin d’extrapoler les résultats des mesures diélectriques pour obtenir les

réponses qui portent sur des contributions de polarisation à temps long (1000s). Cela se fait à

l’aide d’une transformée de Fourier inverse sur la gamme des basses fréquences, par exemple

entre [0, 10-1

] Hz. Le calcul doit donc être réalisé sur une large gamme de fréquences, variant

sur plusieurs décades. Par conséquent, le calcul, qui nécessite ici un découpage en intervalles

à pas constant sur la fréquence, demande un très grand nombre de points si l’on veut obtenir

une bonne précision, même aux basses fréquences. Pour résoudre le problème de temps de

calcul, nous avons découpé le domaine de fréquence en plusieurs fenêtres dont chacune

possède une résolution fréquentielle propre.

La Figure IV-11 présente un exemple de la fonction ΔΘ(t) obtenue pour du PEN à -

80°C, pour une large gamme de temps allant des très courts (10-6

s) aux temps relativement

longs (104s). Au résultat du fit de la réponse diélectrique présenté dans la Figure IV-3, a été

appliquée la transformée de Fourier inverse en découpant le domaine de fréquence en 5

fenêtres, comportant pour chacune 220

points, définies par : fmax=107, 10

5, 10

3, 10

1 et 10

-1 Hz.

Nous avons ensuite sélectionné pour chaque fenêtrage fréquentiel la gamme de temps pour

laquelle celui-ci présente la meilleure résolution (Δlog(T)=2 pour cet exemple). Enfin, nous

avons concaténé l’ensemble des résultats. Le temps total de calcul pour la méthode utilisant la

fonction iFFT de Matlab est de 1/3s. A titre de comparaison, un autre essai effectué sur la

même machine de calcul sur une seule fenêtre de fréquence [0, 107] Hz comportant 2

24 points,

Page 166: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

144

a conduit au même comportement de la fonction ΔΘ(t) avec un temps de calcul de 294s. Au-

delà de 225

points, le calcul devient excessivement lourd si bien qu’il est très difficile

d’obtenir une plus large gamme de temps.

-6 -4 -2 0 2 4-8

-6

-4

-2

0

2

4

log(

log(t/s)

-80°C

0-107Hz 0-105Hz 0-10

3Hz 0-10

1Hz 0-10

-1Hz

Figure IV-11. Méthode de découpage du domaine de fréquence pendant la transformée de Fourier inverse pour

obtenir la réponse temporelle

IV.1.2.2 Courant de polarisation dans une large gamme de temps

Dans cette partie de l’étude, nous souhaitons démontrer la cohérence entre la

spectroscopie diélectrique et le courant de polarisation APC pour deux températures, -80 et

50°C, où les contributions des relaxations β et β* sont dominantes aux très basses fréquences,

c’est-à-dire à temps longs. A partir des résultats des fits présentés à la Figure IV-3 pour les

parties réelles et imaginaires de la permittivité à -80°C, l’application de la transformée de

Fourier inverse a permis de calculer le courant de polarisation dans le domaine des temps

courts. Cette démarche a été réitérée pour les données expérimentales de spectroscopie

diélectrique à 50°C, dont les fits sont présentés dans la Figure IV-12.

-3 -2 -1 0 1 2 3 4 5 6 7 8

0.00

0.01

0.02

0.03

0.04

0.05

"

log(f/Hz)

mesure à 50°C

fit Cole-Cole

-3 -2 -1 0 1 2 3 4 5 6 7 83.8

3.9

4.0

4.1

4.2

4.3

'

log(f/Hz) (a) (b)

Figure IV-12. Permittivité (a) imaginaire et (b) réelle vs log(fréquence) du PEN : les mesures expérimentales et

les résultats de fit à 50°C

Page 167: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

145

Sur la Figure IV-13 sont présentés les courants de polarisation obtenus pour une large

gamme de temps [10-6

, 103 s]. Chacun se compose d’une partie aux temps courts [10

-6, 10

1 s]

calculée à partir de la réponse diélectrique mesurée dans le domaine fréquentiel, et d’une

partie à temps longs [3, 103 s] mesurée à champ faible par la méthode APC. Nous obtenons

une bonne adéquation entre les deux parties. Les valeurs dans la gamme de temps commune

aux deux méthodes (spectroscopie diélectrique et APC, de 3 à 10s) sont quasiment identiques

pour une température donnée. Elles sont cependant bien distinctes pour -80 et 50°C.

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

10-17

10-15

10-13

10-11

10-9

10-7

10-5

Temps (s)

mesure à -80°C

TF-1 à -80°C

mesure à 50°C

TF-1 à 50°C

J/E

(S

.m-1)

Figure IV-13. Courants de polarisation normalisés de temps courts à temps longs. Entre deux colonnes : gamme

de temps commune aux deux méthodes (spectroscopie diélectrique et APC, de 3 à 10s)

Cette étude donne ici des informations concernant l’évolution de courant dans le

domaine temporel non mesurable par technique classique. On observe sur la Figure IV-13

qu’à temps court le courant à -80°C est plus grand que celui à 50°C, contrairement à ce qu’on

obtient pour le temps long. La largeur à mi-hauteur du pic β2 dans la Figure IV-3 (3,5

décades) est moins importante que celle du pic β* dans la Figure IV-12 (5 décades), ce qui

peut conduire à une plus grande évolution du courant obtenu à -80°C par rapport à celui à

50°C. De plus, on observe que les processus de relaxation β et β* sont bien séparés. Ceci

conduit à une rupture de pente à 10-3

s à 50°C alors que le courant à -80°C ne présente

visiblement pas de rupture à cause de la superposition des processus β1 et β2.

Une bonne adéquation entre les données des mesures dans le domaine fréquentiel et

dans le domaine temporel a été obtenue. La prochaine étape consiste à implémenter les

contributions de la polarisation dans le modèle de transport de charges, afin d’obtenir un

modèle capable de décrire simultanément les phénomènes de polarisation et de conduction.

Page 168: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

146

IV.2 Modélisation du transport

IV.2.1 Présentation du modèle de transport de charges en Matlab

Dans ce travail, nous avons développé un modèle de transport de charges sous Matlab,

décrivant les phénomènes de génération et de transport de charges mentionnés dans le

paragraphe I.5.1.2.

La Figure IV-14 présente l’algorithme général et ses explications du modèle développé.

Le module appelé « Tension appliquée » permet de choisir le type de contrainte (continue ou

alternative) et le protocole appliqué au modèle. La densité nette de charges est ensuite

calculée par addition des densités des différentes espèces de charges. Pour la résolution du

modèle, la distance inter-électrodes, d, est discrétisée de manière non-uniforme par les

éléments Δx qui sont de plus en plus petits lorsqu'on se rapproche des électrodes afin

d’optimiser le calcul numérique. Le champ et le potentiel électrique sont calculés par

l’équation de Poisson en tout point du diélectrique, en particulier sur les électrodes, à l’aide

des densités des différentes espèces présentes. Connaissant le champ électrique, les

paramètres de transport, la mobilité et la vitesse de dérive, sont ensuite calculés en tout point

du diélectrique. Le pas de temps Δt dans le calcul doit satisfaire la relation Courant-

Friedrichs-Lewy (CFL), montrant que le déplacement de la charge pendant un intervalle de

temps Δt est inférieur à la taille Δx et est calculé automatiquement pour être inférieur au

phénomène le plus rapide se produisant dans l’isolant, y compris le piégeage, dépiégeage et

recombinaison. Le « Module de transport » est de loin le plus volumineux et le plus important

dans le calcul de la partie concernant le transport. Il permet d’obtenir, en plusieurs étapes, la

densité de chaque espèce de charges (mobiles ou piégées) pour le pas dans le temps suivant,

en tenant compte de la recombinaison, et du piégeage. Le courant de conduction est calculé à

partir de la densité nette de charges et du champ électrique.

Nous pouvons lister ici des résultats importants obtenus par le modèle de transport de

charges développé :

Densité nette de charges, fonction du temps et de l’épaisseur du diélectrique,

Courant extérieur en fonction du temps,

Taux de recombinaison total en fonction de l’épaisseur du diélectrique,

Page 169: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

147

Densité de chaque espèce de charges (électrons/trous-mobiles/piégés), chaque type de

recombinaison (S0, S1, S2 et S3), champ électrique.

Initialisation des paramètres

Tension appliquée

Calcul de la charge nette

Calcul du champ électrique

Paramètres de transport

Calcul du pas dans le temps (Δt)

Module de transport

Calcul du courant extérieur

Algorithme Détails

constantes, variables d’espace, densités

initiales, coefficients de piégeage et de

recombinaison

résolution de l’équation de Poisson

par la BEM

mobilité, vitesse de dérive

condition Courant-Friedrichs-Lewy

- résolution de l’équation de transport par

QUICKEST+ULTIMATE

- résolution de l’équation de continuité par

splitting

sortie des résultats : densités de chaque type

de charges, courants, champ électrique, taux

de recombinaison

courant de conduction

+Δt

Figure IV-14. Algorithme du modèle de transport de charges

Le travail suivant est de prendre en compte la polarisation dans le modèle de transport

de charges développé sous Matlab.

IV.2.2 Implémentation de la polarisation dans le modèle de transport de

charges

IV.2.2.1 Evolution des équations dans le modèle de transport de charges

Jusqu'à présent, le modèle de transport de charges développé prend en considération une

permittivité constante, et ce, quelles que soient les conditions de température et de champ

utilisées pour simuler les phénomènes de génération, d’accumulation et de transport des

Page 170: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

148

charges dans l’isolant électrique polymère. Maintenant, dans le but d’implémenter la

polarisation dans ce modèle, la dépendance en fonction du temps et de la température de la

permittivité, et plus précisément, le terme des réponses impulsionnelles ΔΘ, est pris en

compte. L'implémentation de la polarisation dans le modèle de transport va jouer

essentiellement sur l'équation de Maxwell-Gauss (Equation IV-27) remplaçant l’équation de

Poisson (Equation I-74) qui n’est plus valide en raison de la dépendance temporelle de la

permittivité.

( , )( , )

D x tx t

x

Equation IV-27

où D(x,t) est donné par l’Equation I-41. En l’écrivant avec le terme des réponses

impulsionnelles ΔΘ, le déplacement électrique D(x,t) est donné par :

0 0( , ) ( , ) ( , )* ( )D x t E x t E x t t Equation IV-28

Dans cette équation, le produit de convolution peut s’écrire par une intégrale. On obtient

donc :

0 0( , ) ( , ) ( , ')* ( ') 't

D x t E x t E x t t t dt

Equation IV-29

Ici, le champ électrique est calculé à partir des potentiels d’après la relation suivante :

( , )( , )

V x tE x t

x

Equation IV-30

La polarisation a aussi un impact sur l'équation du courant externe. Le courant total est

calculé par l’équation de Maxwell-Ampère :

( , )( , ) ( , )T c

D x tJ x t j x t

t

Equation IV-31

Le courant total se compose donc maintenant du courant de conduction et d’un courant

de polarisation (ou de déplacement) tenant compte de la variation de la constante diélectrique

dans le temps. Jusqu’à présent, le modèle considérait le courant de déplacement comme

uniquement fonction de la variation du champ électrique dans le temps

(( , )

( , )dép

dE x tJ x t

dt ).

La Figure IV-15 présente l’algorithme général du modèle de transport de charges auquel

ont été ajoutés les blocs présentés en pointillés rouges qui concernent l’implémentation de la

Page 171: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

149

Initialisation des paramètres

Tension appliquée

Calcul de la charge nette

Calcul du champ électrique

Paramètres de transport

Calcul du pas dans le temps (Δt)

Module de transport

Calcul du courant extérieur

Calcul ΔΘ(t)

Paramètres de Havriliak-Negami

Calcul ΔΘ t t’ dt

Calcul du déplacement électrique

Algorithme Détails

constantes, variables d’espace, densités

initiales, coefficients de piégeage et de

recombinaison

résolution de l’équation de Maxwell

(au lieu de Poisson) par la BEM

mobilité, vitesse de dérive

condition Courant-Friedrichs-Lewy

- résolution de l’équation de transport par

QUICKEST+ULTIMATE

- résolution de l’équation de continuité par

splitting

sortie des résultats : densités de chaque type

de charges, courants, champ électrique, taux

de recombinaison

courant de polarisation+conduction

+Δt

utilisation d’une transformée de Fourier

inverse

Figure IV-15. Algorithme du modèle de transport de charges prenant en compte la polarisation : les blocs

pointillés sont ceux ajoutés au modèle de transport de charges déjà développé.

Page 172: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

150

polarisation. Les explications ou évolutions sont présentées en rouge dans la colonne « détail

du modèle ». Les paramètres de Cole-Cole obtenus après avoir fitté les données de

spectroscopie diélectrique à différentes températures sont introduits à l’aide d’une

transformée de Fourier inverse permettant de calculer le terme des réponses impulsionnelles

ΔΘ(t). Pour calculer le champ et le potentiel électrique, l’équation de Poisson est maintenant

remplacée par l’équation de Maxwell-Gauss. Pour ce faire, on doit calculer l’intégrale de ΔΘ

(Equation IV-29), dont la variable t’ va de 0 à t (temps dans la simulation). Le courant de

conduction est calculé à partir de la densité nette de charges et du champ électrique. Le

courant de déplacement est obtenu grâce aux valeurs du déplacement électrique, qui est

recalculé à partir des valeurs du champ et de ΔΘ. Le courant total est donc la superposition de

ces deux contributions.

IV.2.2.2 Validation isotherme à champ faible

Les simulations ont été réalisées pour des champs électriques correspondant au

protocole utilisé pour les mesures APC et pour des températures allant de -80 à 50°C. Dans

une première tentative de validation de notre modèle, les contributions d'injection et de

transport n'ont pas été prises en compte. En effet, cette hypothèse peut être valable dans la

mesure où à champs faibles et à températures relativement basses, la contribution de la

conduction reste faible par rapport aux mécanismes de polarisation dans le PEN. Par

conséquent, dans l’expression du courant externe (Equation IV-31) seul le terme de droite,

correspondant à la variation du déplacement électrique en fonction du temps, est pris en

compte.

La Figure IV-16 montre la comparaison entre les résultats expérimentaux et les résultats

de simulation (courant normalisé J/E) dans le domaine temporel pour deux températures, -

80°C et 50°C. Pour ces deux températures, à très basses fréquences, les maximums des pics

de relaxation β et β* sont situés dans la fenêtre de fréquence étudiée. Nous pouvons voir que

les résultats de simulation sont en accord non seulement qualitativement mais aussi

quantitativement avec les mesures expérimentales dans le domaine temporel pour deux

températures différentes.

La polarisation a donc été implémentée avec succès dans le modèle de transport de

charges et le détail du schéma du processus a été présenté. Les résultats issus du modèle sont

cohérents avec les résultats des mesures de courant de polarisation à champ faible.

Page 173: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

151

10 100 100010

-17

10-16

10-15

10-14

10-13

simulation à -80°C

mesure à -80°C

simulation à 50°C

mesure à 50°C

Temps (s)

J/E

(S

.m-1)

Figure IV-16. Comparaison des courants mesurés et simulés par le modèle de transport de charges à la

polarisation a été implémentée

IV.2.3 Modèle d’optimisation

Le modèle de transport de charges présenté précédemment a besoin d’un certain nombre

de paramètres (mobilité, coefficient de piégeage, coefficient de dépiégeage, injection…et ce

pour chaque type de charge). La plupart de ces paramètres ne peuvent pas être déterminés par

des expériences indépendantes et c'est une tâche lourde d’estimer les valeurs de paramètres

qui sont utilisés dans le modèle de transport de charges afin d’ajuster les résultats de

simulation aux résultats expérimentaux.

Il existe peu de travaux de modélisation sur le transport de charges dans le PEN dans la

littérature qui pourraient nous aider à obtenir ces paramètres de transport. Afin de pallier ce

problème, nous avons tenté d’utiliser un modèle inverse (où modèle d’optimisation) qui a été

développé récemment dans l’équipe [LAU09]

sur la base de l'algorithme de Levenberg-

Marquardt [MAR63]

. Ces modèles inverses permettent, sur la base de données expérimentales,

d’obtenir des paramètres optimisés en minimisant l’écart quadratique entre données

expérimentales et de simulation. La Figure IV-17 illustre l'algorithme de Levenberg-

Marquardt qui est une combinaison de l'algorithme de Gauss-Newton et la méthode de

descente de gradient. Comme d'autres algorithmes de minimisation numérique, l'algorithme

de Levenberg-Marquardt est une procédure itérative utilisée notamment pour des problèmes

non linéaires.

A l’entrée du modèle d’optimisation, on initialise les paramètres du modèle de transport

(vecteur θ). Ces paramètres sont utilisés dans le modèle de transport, et le modèle

Page 174: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

152

d’optimisation calcule la fonction à minimiser entre les données expérimentales et les

simulations. Cette fonction s’écrit :

2

0

( ) ( ) ( , )T

t

C f t f t

Equation IV-32

Et

11

1 1

( )ii i

i i

C

H I

Equation IV-33

où : C(θ) : fonction d’erreur,

θ : vecteur de paramètres,

f : valeurs données expérimentales,

f

: données prédites par modèle,

H : matrice hessienne,

I : matrice identité,

λ : facteur d'amortissement.

Modèle de transport

de charges

Mesures

Paramètres estimés

Algorithme de

minimisationEntrée

C

Figure IV-17. Principe du modèle d’optimisation

Les données f (expérimentales et simulations) peuvent être des courants fonction du

temps, des données de charges d’espace, fonction du champ et/ou de la température, etc. Si

cette fonction C(θ) est minimisée, les paramètres sont optimisés. Dans le cas contraire,

l’algorithme de Levenberg-Marquardt estime de nouveaux paramètres et la fonction C(θ) est

recalculée lors d’une nouvelle itération.

Page 175: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

153

D’un point de vue physique, les paramètres doivent être bornés par des valeurs

minimales θmin et maximales θmax avant réalisation de la méthode inverse. Les valeurs

initialisées des paramètres sont donc incluses entre [θmin, θmax]. Par exemple, les paramètres

d’injection (barrières) ne vont pas de [0 ; +∞], mais sont bornés entre 1 et 2 eV. Les

paramètres liés à la mobilité (barrières de « hopping ») sont bornés pour avoir une mobilité

« réaliste » pour des matériaux isolants.

Le point positif de cet algorithme est qu’il « converge » en quelques itérations : un

minimum est souvent atteint après moins d’une dizaine d’itérations. Il est plus stable que celui

de Gauss-Newton, il trouve une solution même s'il est démarré très loin d'un minimum. Par

contre, en initialisant différemment (différent vecteur θ0), il n’est pas sûr que l’on obtienne les

mêmes paramètres optimisés. Le minimum est dit local et non global. De plus, cet algorithme,

utilisant la dérivée de la fonction f

, demande un temps de calcul très long. Ceci est d’autant

plus vrai lorsque :

il y a plusieurs variables à comparer (exemple courant et densité de charges)

les données à comparer sont fonction du temps. En effet, pour chaque itération du modèle

d’optimisation, le modèle de transport de charges est appelé.

Ce modèle d’optimisation est donc couteux en temps de calcul.

IV.2.4 Validation du modèle à champ fort

IV.2.4.1 Extraction des paramètres de transport des mesures expérimentales

Dans cette étude, nous essayons d’analyser les données des mesures à champ fort et/ou

à des températures élevées afin de trouver les contributions de conduction et extraire des

paramètres de transport qui nous serviront dans le modèle de transport. Il faut donc

auparavant obtenir les résultats expérimentaux qui permettent de caractériser les phénomènes

de conduction dans le PEN.

IV.2.4.1.a Présence de charges dans le PEN

Les résultats de mesures PEA sur la base d’un protocole TSDC montrent qu’il n’y pas

de charges accumulées dans le diélectrique à une température de polarisation de 130ºC et un

champ de 10 kV/mm (Figure III-20). Par contre des charges négatives sont mesurées pour le

Page 176: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

154

même champ de polarisation à 170 ºC. Des mesures de charges à basse température (25 et

50ºC) ont aussi été réalisées pour différent champs (10 à 75 kV/mm pendant une heure) afin

de vérifier la présence ou non de charges et leur dynamique. La Figure IV-18 illustre des

profils de charge d’espace obtenus à 25ºC lorsque l’échantillon a été polarisé sous 75 kV/mm

pendant une heure (Figure IV-18a) et a été dépolarisé pendant une heure (Figure IV-18b). Ces

profils ne montrent pas de charge injectée dans le volume des échantillons, donc pas

d’accumulation de charges dans ces conditions expérimentales. Il en est de même pour

l’ensemble des mesures réalisées par PEA pour des champs électriques inférieurs à 75 kV/mm

et pour 25 et 50°C. Ces mesures de charges nous permettre de connaitre dans une certaine

mesure la nature des charges injectées (dominance négative), et leur densité, mais la

dynamique de charge (injection, temps de transit…) ne peut être déduite de ces mesures

seules.

0 100 200 300-60

-30

0

30

60

De

nsité d

e c

harg

e (

C.m

-3)

C 0 min

60 min A

Distance m)

(a) Polarisation

0 100 200 300-60

-30

0

30

60C

0 min

60 min A

De

nsité d

e c

harg

e (

C.m

-3)

Distance m)

(b) Dépolarisation

Figure IV-18. Profils de charge d’espace obtenus par la méthode PEA à 25°C : (a) Polarisation pendant 1 heure

sous 75 kV/mm, (b) Dépolarisation pendant 1 heure ; C : Cathode, A : Anode

Page 177: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

155

IV.2.4.1.b Comparaison des courants à champ faible et à champ fort

Courants à champ faible et à champ fort en fonction du champ électrique

Comme nous l’avons montré dans le paragraphe III.6.2, le courant à champ fort ne varie

pas linéairement avec le champ électrique appliqué, notamment sous des champs très élevés

(Figure III-32). Dans ce paragraphe, nous avons choisi de comparer les courants normalisés

(J/E) obtenus à partir des mesures de courant à champ faible et à champ fort, pour différents

champs à 25°C (Figure IV-19). Les courbes de courant normalisé montrent deux

comportements différents. Pour des champs inférieurs à 180 kV/mm, les courbes sont

quasiment confondues, et elles coïncident au courant normalisé à champ faible. Pour des

champs supérieurs à 210 kV/mm, en revanche, les courants normalisés sont beaucoup plus

élevés.

Le courant mesuré à 25°C et à champ faible par la méthode APC est dû aux processus

de polarisation. Les mesures de conduction à champs faibles mettant en évidence une

variation temporelle du courant normalisé comparable à celle obtenue par la méthode APC,

nous pouvons donc penser que les courants mesurés sous des champs inférieurs à 180 kV/mm

à 25°C sont essentiellement dû aux processus de polarisation. Ceci reste valable même pour

un temps de mesure qui s’étend jusqu’à une heure. Pour les courants mesurés sous des

champs plus élevés, ils sont probablement dus aux processus de polarisation et de conduction,

dans lesquels la contribution de la conduction peut être extraite à partir du courant total

auquel on soustrait le courant mesuré à champ très faible (mesure APC) considérant qu’il

représente la contribution de la polarisation au courant total.

10 100 100010

-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

30 kV/mm

60 kV/mm

90 kV/mm

120 kV/mm

150 kV/mm

180 kV/mm

210 kV/mm

240 kV/mm

270 kV/mm

300 kV/mm

APC-0,053 kV/mm

J/E

(S

.m-1)

Temps (s)

Figure IV-19. Caractéristique courant normalisé (J/E) - temps aux champs faibles et champs forts à 25°C.

Page 178: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

156

Lorsque l’on trace la variation du courant normalisé (déterminé à 1000s à partir des

caractéristiques conductivité-temps dans la Figure IV-19) en fonction du champ électrique

appliqué (Figure IV-20), un seuil en champ est également observé à 180 kV/mm.

0.04 0.06 60 120 180 240 300

10-16

10-15

10-14

J/E

(S

.m-1)

Champ électrique (kV.mm-1)

APC

Figure IV-20. Courant normalisé (J/E) en fonction du champ électrique à 25°C : les valeurs sont déterminées à

1000s à partir des caractéristiques courant normalisé - temps.

Courant à champ faible et à champ fort en fonction de la température

La Figure IV-21 montre les caractéristiques courant normalisé – temps pour un champ

faible de 0,053 kV/mm (mesure APC) (Figure IV-21a) et un champ fort de 240 kV/mm

(Figure IV-21b) à différentes températures.

10 100 1000

10-16

10-15

10-14

10-13

Temps (s)

J/E

(S

.m-1)

30°C

50°C

70°C

90°C

10 100 1000

10-16

10-15

10-14

10-13 25°C

50°C

70°C

90°C

Temps (s)

J/E

(S

.m-1)

(a) 0,053 kV/mm (b) 240 kV/mm

Figure IV-21. Caractéristiques courant normalisé – temps pour un champ faible de 0,053 kV/mm et un champ fort

de 240 kV/mm à différentes températures.

Tous les courants normalisés à champ faible sont essentiellement dus aux processus de

polarisation quelle que soit la température. Les courants normalisés obtenus à champ fort ont

le même ordre de grandeur que ceux à champ faible lorsque l’on considère les temps courts,

Page 179: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

157

pour les temps longs la contribution de la conduction est nettement visible et semble

apparaître d’autant plus tôt que la température est élevée (Figure IV-21b). Les courbes à

champ fort (240 kV/mm) correspondent donc à la superposition des contributions de

polarisation et de conduction, quelle que soit la température.

IV.2.4.1.c Extraction de la contribution de la conduction dans les mesures de courant à

champ fort

Le courant obtenu à champ faible est maintenant utilisé pour extraire la contribution de

la conduction du courant total mesuré à champ fort, en considérant que la contribution de la

polarisation au courant à champ fort est proportionnelle au courant mesuré à champ faible.

L’extraction de la contribution de la conduction est exprimée par l’équation suivante :

( , ) ( , ) ( ).c T APCj E t J E t t E Equation IV-34

où jc(E,t) et JT(E,t) sont respectivement la densité de courant de conduction et la densité

de courant total à champ fort E. γAPC(t) est le courant normalisé à champ faible mesuré par

APC.

La Figure IV-22 présente le processus d’extraction de la contribution de la conduction à

partir d’une densité de courant à champ fort à 25ºC. Dans cette étude, les champs électriques

appliqués varient de 210 à 300 kV/mm. Avant la soustraction, les courbes ont été lissées pour

minimiser l’effet du bruit de mesure, visible pour les temps longs. On peut observer que pour

des temps supérieurs à 150, 30, 8 et 3s, la conduction devient dominante lorsque l’échantillon

est soumis à des champs de 210, 240, 270 et 300 kV/mm, respectivement. Ces valeurs de

temps diminuent lorsque le champ appliqué augmente, mais la variation n’est pas linéaire. La

Figure IV-23 reprend les densités de courant de conduction calculées (courbes roses) pour des

champs allant de 210 à 300 kV/mm à 25°C. Pour chaque valeur du champ, il existe un

maximum dans la caractéristique de densité de courant de conduction. Les temps

caractéristiques sont de 30, 25, 10 et 8s pour les champs de 210, 240, 270 et 300 kV/mm,

respectivement. Cette diminution du temps pour lequel la densité de courant est maximale

n’est pas non plus linéaire avec l’augmentation du champ électrique. Ce temps caractéristique

où la densité de courant est maximale semble être dû aux charges, injectées à une électrode, et

qui atteignent l’électrode de signe opposé (temps de transit) [ROY04]

. Il est donc logique

d’observer une diminution de ce temps de transit avec l’augmentation du champ électrique,

puisque :

transit

dt

E Equation IV-35

Page 180: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

158

10 100 100010

-8

10-7

10-6

10-5

10-4

10-3

25°C - 210 kV/mmDe

nsité

de c

ou

rant (A

.m-2)

J polarisation (signal brut)

J polarisation (signal lissé)

J totale (signal brut)

J totale (signal lissé)

J conduction extraite

Temps (s)

10 100 100010

-8

10-7

10-6

10-5

10-4

10-3

25°C - 240 kV/mm

De

nsité

de c

ou

rant (A

.m-2)

Temps (s)

J polarisation (signal brut)

J polarisation (signal lissé)

J totale (signal brut)

J totale (signal lissé)

J conduction extraite

10 100 100010

-8

10-7

10-6

10-5

10-4

10-3

25°C - 270 kV/mm

J polarisation (signal brut)

J polarisation (signal lissé)

J totale (signal brut)

J totale (signal lissé)

J conduction extraite

De

nsité

de c

ou

rant (A

.m-2)

Temps (s)

10 100 100010

-8

10-7

10-6

10-5

10-4

10-3

25°C - 300 kV/mm

J polarisation (signal brut)

J polarisation (signal lissé)

J totale (signal brut)

J totale (signal lissé)

J conduction extraite

Temps (s)

De

nsité

de c

ou

rant (A

.m-2)

Figure IV-22. Extraction des courants de conduction à partir des courants aux champs forts allant de 210 à 300

kV/mm à 25ºC

10 100 1000

10-7

10-6

10-5

210 kV/mm

240 kV/mm

270 kV/mm

300 kV/mmDe

nsité

de c

ou

rant (A

.m-2)

Temps (s)

Figure IV-23. Comparaison des courants de conduction aux champs forts allant de 210 à 300 kV/mm à 25ºC

Nous avons également étudié l’évolution des courants de conduction, déduits des

mesures de courant à champ fort, en fonction de la température pour un champ fixe. Pour cela,

la conduction a été extraite des densités de courant mesurées à 240 kV/mm pour des

Page 181: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

159

températures allant de 25 à 90ºC (Figure IV-24). La conduction devient dominante à partir de

30s pour 25°C. Ce temps augmente à 50°C (150s), puis diminue à 70°C (25s) et 90°C (10s).

10 100 100010

-8

10-7

10-6

10-5

10-4

10-3

25°C - 240 kV/mm

De

nsité

de c

ou

rant (A

.m-2)

Temps (s)

J polarisation (signal brut)

J polarisation (signal lissé)

J totale (signal brut)

J totale (signal lissé)

J conduction extraite

10 100 100010

-8

10-7

10-6

10-5

10-4

10-3

50°C - 240 kV/mm

De

nsité

de c

ou

rant (A

.m-2)

J polarisation (signal brut)

J polarisation (signal lissé)

J totale (signal brut)

J totale (signal lissé)

J conduction extraite

Temps (s)

10 100 100010

-8

10-7

10-6

10-5

10-4

10-3

70°C - 240 kV/mm

De

nsité

de c

ou

rant (A

.m-2)

J polarisation (signal brut)

J polarisation (signal lissé)

J totale (signal brut)

J totale (signal lissé)

J conduction extraite

Temps (s)

10 100 100010

-8

10-7

10-6

10-5

10-4

10-3

J polarisation (signal brut)

J polarisation (signal lissé)

J totale (signal brut)

J totale (signal lissé)

J conduction extraite

Temps (s)

De

nsité

de c

ou

rant (A

.m-2)

90°C - 240 kV/mm

Figure IV-24. Extraction des courants de conduction à partir des courants à champ fort de 240 kV/mm aux

températures allant de 25 à 90ºC

10 100 1000

10-7

10-6

10-5

25°C

50°C

70°C

90°C

Densité d

e c

oura

nt (A

.m-2)

Temps (s) Figure IV-25. Comparaison des courants de conduction aux températures allant de 25 à 90°C à champ fort de

240 kV/mm

Page 182: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

160

La même tendance a été également observée pour le temps où la densité de courant de

conduction passe par un maximum (Figure IV-25). Ses valeurs sont de 30, 40, 10 et 3s pour

des températures de 25, 50, 70 et 90°C, respectivement.

IV.2.4.1.d Estimation de la mobilité

Estimation de la mobilité effective

A partir des caractéristiques J(E) à champs forts (Figures III-32 et IV-26), nous pouvons

également déterminer les valeurs des champs électriques seuils EtrP et ETFL (ou des tensions

VtrP et VTFL) à partir desquels le courant change de pente. A 25°C, les champs électriques

seuils calculés sont :

EtrP = 103 kV/mm et ETFL = 194 kV/mm.

20 100 400

10-9

10-8

10-7

10-6

10-5

ETFL

EtrP

Den

sité

de

co

ura

nt (A

.m-2)

25°C

40°C

50°C

60°C

70°C

80°C

90°C

Champ électrique (kV.mm-1)

A

B

CA

B

C

Figure IV-26. Densité de courant en fonction du champ électrique appliqué pour différentes températures

En considérant l’épaisseur de l’échantillon d = 25µm, nous obtenons les valeurs des

tensions seuils entre les différents régimes SCLC :

VtrP = d.EtrP = 2575 V

VTFL = d.ETFL = 4850 V

Au vu des profils de charge d’espace dans le paragraphe III.3, nous considérons des

charges injectées unipolaires (électrons) dans le diélectrique. Par la suite, à partir des

Equations I-13 et 14, le rapport entre la densité de porteurs intrinsèques et le coefficient de

piégeage (n0/θ), ainsi que la densité totale de pièges (Nt) sont déduits :

Page 183: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

161

20 30 0

2

97,435.10 ( )

8

r trPn Vm

qd

Equation IV-36

21 30

21,245.10 ( )r TFL

t

VN m

qd

Equation IV-37

De plus, la mobilité effective à 25°C pour la région B, déduite à partir de l’Equation

I-10 est donnée par :

319 2 1 1

2

0

82,439.10 ( )

9 r

d jm V s

V

Equation IV-38

Une fois que le coefficient de piégeage, qui correspond à la fraction de charges injectées

libres par rapport aux charges piégées est connu, nous pouvons estimer la valeur de la

mobilité des porteurs de charge dans le diélectrique.

Des calculs de la mobilité effective ont été également effectués pour les autres

températures. Les résultats sont représentés par les carrés noirs sur la Figure IV-27.

Dans ce cas, nous avons choisi une fonction d’Arrhénius pour fitter ces données :

0ln( ) ln ( ) a

B

E

k T Equation IV-39

Le résultat de fit Arrhénius, représenté sur la Figure IV-27 par la courbe rouge, permet

de calculer les valeurs des paramètres de fit suivants :

(θμ)0 = 1,62.10-10

m2V

-1s

-1, Ea = 0,52 eV.

2.8 3.0 3.2 3.4

-43

-42

-41

-40

-39

ln(

)

1000/T (K-1)

Données

Fit Arrhénius

Figure IV-27. Variation de la mobilité effective en fonction de la température ajustée par une fonction

d’Arrhénius

Page 184: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

162

Ce résultat de fit nous permet d’estimer la valeur du produit θμ quelle que soit la

température d’étude. Cependant ne connaissant pas le coefficient de piégeage θ, une autre

méthode d’estimation de la mobilité est nécessaire.

Estimation de la mobilité à partir des pics de courant de polarisation

Dans ce paragraphe, nous présentons l’estimation de la mobilité en utilisant les résultats

d’un modèle mathématique proposé par Many et al. [MAN62]

. Ce modèle décrit le

comportement transitoire du courant SCLC en considérant la présence de pièges dans

l’isolant. Cependant, les auteurs ont introduit un certain nombre d’hypothèses de

simplification, telles que de négliger la diffusion, considérer un seul niveau d’énergie pour les

pièges et considérer que la densité des porteurs piégés restait plus petite que celle des niveaux

inoccupés à l’équilibre thermique. Ces hypothèses leur ont permis d’établir principalement les

deux expressions analytiques (Equations IV-40 et 41) caractérisant le régime transitoire du

courant modifié par la charge d’espace :

11

( ) 1 , 02 2

M

tJ t t t

Equation IV-40

22 1

2( ) 1 1 ln ,2

MM

M

te tJ t e t t

t t

Equation IV-41

où tM est le temps pour lequel le courant SCLC passe par un maximum. tM est

caractéristique du temps mis par les premiers porteurs de charge intrinsèques pour atteindre

l’électrode opposée et s’y piéger

Le temps tM permet d’avoir accès à la mobilité µ des porteurs de la charge d’espace

selon la relation [MAN62, MIZ79]

:

0,787M

dt

E Equation IV-42

où d est l’épaisseur du diélectrique et E est le champ électrique appliqué.

Dans notre étude, cette méthode d’estimation de la mobilité a été appliquée au courant

de polarisation mesuré à champ fort (300 kV/mm) et à température élevée (90°C) dans la

Figure IV-28 pour lequel un pic de courant lié à un effet de charge d’espace apparaît. La

valeur du temps tM est déterminée à 100s.

Page 185: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

163

10 100 100010

-14

10-12

10-10

10-8

10-6

Coura

nt

(A)

90°C

30 kV/mm

60 kV/mm

90 kV/mm

120 kV/mm

150 kV/mm

180 kV/mm

210 kV/mm

240 kV/mm

270 kV/mm

300 kV/mm

Temps (s)

tM

Figure IV-28. Courants de polarisation à champ fort pour différents champs et températures

La valeur de la mobilité à 90°C et 300 kV/mm est donc :

16 2 1 10,787 6,56.10 ( )M

dm V s

t E Equation IV-43

Connaissant la valeur de la mobilité à une température et à un champ électrique, on peut

estimer la valeur de la barrière de « hopping » en utilisant l’Equation I-77 dont l’expression

est rappelée ci-dessous :

2

, exp sinh2

hop hope

e

B B

d qEdqwE T

E k T k T

Equation IV-44

La valeur de la barrière de « hopping » obtenue : wµe = 0,9074 eV.

Grâce à ce paramètre connu, on peut donc estimer les valeurs de la mobilité quels que

soient la température et le champ électrique en utilisant l’Equation IV-44.

IV.2.4.2 Validation du modèle de conduction pour du PEN

IV.2.4.2.a Simulation du transport et pas de temps

Afin de valider les paramètres de transport pour du PEN, les simulations doivent être

réalisées pour des températures et/ou des champs élevés, où la conduction est soit dominante

sur tout le domaine temporel, soit au minimum observée sur une large gamme de temps. Or,

pour les simulations du transport, le pas de temps Δt calculé doit satisfaire le critère de

stabilité de Courant-Friedrichs-Lewy qui s’écrit :

Page 186: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

164

CFL CFL

x xt C C

v µE

Equation IV-45

où ν = μE est la vitesse de déplacement de la charge pendant un Δt et CCFL est le

coefficient CFL (CCFL <1).

Par exemple, pour une simulation à 90°C et 300 kV/mm dans l’échantillon de PEN de

25µm, en utilisant un maillage uniforme de 100 cellules et CCFL = 0,5, le pas de temps est de

Δt = 1,7.10-6

s. Cette valeur très faible du pas de temps amène à un temps de calcul très élevé,

voire même infini (si on veut modéliser sur un protocole expérimental d’une heure par

exemple). Il en est de même lorsqu’on veut utiliser le modèle d’optimisation, qui pour chaque

itération doit faire appel au modèle de transport. Le temps de simulation devient irréaliste.

De fait, nous avons effectué les comparaisons entre modèle et expérience pour des

champs plus faibles et/ou des températures plus basses.

IV.2.4.2.b Validation du modèle de transport de charges avec les paramètres extraits des

mesures

En tenant compte des résultats de mesures de charge d’espace par PEA (Figure III-22),

nous considérons dans un premier temps uniquement des charges négatives, qui ont pour

mobilité celle qui a été calculée à 25°C et 240 kV/mm (Equation IV-44). Nous considérons

aussi que ces charges ne peuvent pas se piéger et que le seul paramètre à « optimiser » est la

barrière d’injection de Schottky. La Figure IV-29 présente le résultat de simulation de la

densité de courant de conduction comparée à la densité de courant de conduction extraite des

mesures (paragraphe IV.2.4.1.c) à 25°C et 240 kV/mm, pour une barrière d’injection winj =

1,2 eV. Ici, la polarisation n’a pas été ajoutée afin d’observer uniquement les phénomènes de

conduction. Il est difficile de comparer le courant mesuré et le courant simulé, tant les

résultats simulés sont loin des résultats expérimentaux lorsque les simulations ne tiennent

compte que de l’injection unipolaire et du transport. En effet, le courant de simulation passe

un maximum plus tôt et diminue très vite par rapport à celui mesuré. Cette décroissance

rapide peut être liée à la valeur faible de la mobilité dans la simulation qui peut conduire à une

accumulation de charges aux électrodes. La valeur absolue du champ électrique aux

électrodes diminue, l'injection de charges, qui est fonction du champ électrique, diminue

aussi.

Page 187: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

165

10 100 1000

10-8

10-7

10-6

De

nsité

de

co

ura

nt (A

.m-2)

Temps (s)

Extraite de la mesure

Simulée

Figure IV-29. Densité de courant de conduction de simulation à 25°C et 240 kV/mm prenant compte l’injection

Schottky et la mobilité « hopping » pour les électrons. Comparaison avec la densité de courant de conduction

extraite de la mesure

Nous avons cependant voulu montrer ici la difficulté d’obtenir des paramètres

« efficaces » pour la modélisation, qui permettent de rendre compte d’une mesure de courant

en fonction du temps. La tâche est donc d’autant plus difficile lorsque la modélisation doit

être réalisée à plusieurs champs et plusieurs températures, et ce pour des mesures de courant,

de charge d’espace, etc.

IV.2.4.2.c Comparaison des résultats du modèle global à la mesure de courant

Le modèle de transport de charges prenant en compte la polarisation (modèle global) a

été utilisé afin de simuler les résultats expérimentaux de courants en fonction du temps. Nous

avons choisi les mesures à 90°C et 30 kV/mm, qui nous permettent d’observer

expérimentalement la polarisation et la conduction, et qui permettent d’avoir un pas dans le

temps relativement grand dans la simulation afin de faire les simulations sur un temps

relativement faible (34 heures). Le modèle de transport tient compte de tous les mécanismes

décrits dans le chapitre I (bipolaire, piégeage, dépiégeage, recombinaison). Les paramètres

optimisés pour cette mesure (90°C, 30 kV/mm) sont donnés dans le Tableau IV-4. Pour ces

simulations, le modèle d’optimisation n’a pas été utilisé, celui-ci étant trop lent. Nous

rediscuterons de ce problème à la fin de ce chapitre.

La comparaison des courants simulés et mesurés est présentée à la Figure IV-30. Il y a

une bonne adéquation, tant qualitativement que quantitativement, entre le courant simulé et le

courant mesuré. Le temps où la contribution de conduction devient dominante semble être

cohérent avec les données expérimentales.

Page 188: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

166

Tableau IV-4. Paramètres optimisés du modèle global pour le courant mesuré à 90°C et 30 kV/mm

Coefficients Valeur Unité

Coefficients de piégeage

Be électrons

Bh trous

7

7.10-3

s-1

s-1

Densité maximale de pièges

à électrons

à trous

500

100

C.m-3

C.m-3

Coefficients de dépiégeage

De électrons

Dh trous

1,1

1,5

eV

eV

Hauteur de barrière pour la mobilité « hopping »

Electrons

Trous

0,8

1,2

eV

eV

Hauteur de barrière pour l’injection de Schottky

Electrons

Trous

1,3

1,5

eV

eV

1 10 100 1000

10-8

10-7

10-6

Densité

de

cou

rant (A

.m-2)

Temps (s)

Mesure

Simulation

Figure IV-30. Densité de courant totale de simulation à 90°C et 30 kV/mm en utilisant le modèle bipolaire

prenant en compte la polarisation. Comparaison avec la densité de courant totale expérimentale

La densité nette de charge peut être également enregistrée lors de la simulation. La

Figure IV-31 présente l’évolution de la densité de charge en fonction du temps et de la

distance inter-électrodes pendant une heure d’application du champ électrique. Ici, nous

n’avons pas ajouté les charges images aux électrodes, afin de voir la dynamique de la charge

simulée. L’injection de charges négatives a été observée proche de la cathode. Ces charges

négatives sont injectées et transportées de plus en plus loin dans le volume du diélectrique au

Page 189: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

167

cours du temps. A l’anode, des charges positives ont été injectées en quantité beaucoup plus

faible et négligeable par rapport à la quantité de charges négatives injectées à la cathode.

0 600 1200 1800 2400 3000 36000

5

10

15

20

25

Temps (s)

Densité de charge (C/m3)

Dis

tan

ce

m)

-600

-400

-200

0

200

400

600

Cathode

Anode

Figure IV-31. Densité de charge issue de la simulation utilisant les paramètres optimisés à 90°C et 30 kV/mm

Ces résultats sont prometteurs mais restent cependant une première tentative de

validation entre modèle et expérience. Cette validation n’a malheureusement pas pu être

effectuée pour différentes températures et différents champs électriques, faute de temps.

IV.3 Discussion

IV.3.1 Stratégie adoptée

L’objectif principal de la thèse était de prendre en considération les phénomènes de

polarisation dans le modèle de transport de charges. Pour cela deux stratégies pouvaient être

adoptées :

travailler sur le modèle existant développé et optimisé pour le LDPE [ROY04]

et qui donne

de bons résultats, en y ajoutant l’influence de la polarisation, certes très faible pour un

matériau en principe apolaire, mais qui peut être mesurée moyennant certaines précautions

[LOG13].

travailler sur un matériau polaire, le PEN, pour lequel les mesures de polarisation ne

posent pas de problème particulier mais pour lequel le modèle de transport n’est pas

optimisé.

Page 190: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

168

Nous avons opté pour la deuxième stratégie, tout en ne négligeant pas la première,

puisque des mesures ont été réalisées sur le LDPE et ont donné lieu à la publication d’un

article de conférence [HOA12]

.

Concernant la première stratégie, les mesures de spectroscopie d’impédance ont été

réalisées sur une gamme de fréquences [10-1

, 106] Hz dans le but obtenir la réponse

diélectrique du LDPE pur ou avec antioxydant. Malheureusement, les résultats de ces mesures

ne sont pas exploitables, si bien que la relaxation diélectrique qui devrait être due à la

polarisation dipolaire n’a pu être observée. Cependant dans le but de prendre en considération

les phénomènes de polarisation dipolaire dans le LDPE, notamment aux temps courts et aux

basses températures, nous avons réalisé une mesure APC pour du LDPE à 25°C et sous un

champ faible de 0,064 kV/mm. La densité de courant due à la polarisation à 40 kV/mm,

présentée par des triangles pleins verts sur la Figure IV-32, a donc été calculée à partir du

courant mesuré par APC. Le courant de conduction (triangles bleus) a été simulé par le

modèle de transport de charge utilisant les paramètres optimisés pour le LDPE [ROY04]

. La

somme de la densité de courant de polarisation et de conduction, représentée par des cercles

creux rouges sur la Figure IV-32, est tout à fait cohérente avec la densité de courant totale

mesurée, surtout aux temps courts.

10 100 100010

-9

10-8

10-7

10-6

J totale mesurée (Jtot_mesure

)

J polarisation mesurée (Jpol

)

J conduction de simulation (Jcond

)

Jtot

= Jpol

+ Jcond

De

nsité

de

co

ura

nt (A

.m-2)

Temps (s)

Figure IV-32. Densités de courant de polarisation (mesurée) et de conduction (simulée) et la comparaison avec

la densité de courant totale à 25°C et 40kV/mm dans le LDPE

Ces résultats nous indiquent que même si le LDPE est considéré comme un matériau

apolaire, les mesures expérimentales mettent en évidence l’existence d’une contribution de

polarisation au courant total. L’implémentation de la polarisation dans le modèle de transport

optimisé pour le LDPE doit donc être réalisée de la même façon que pour le PEN, c’est à dire

Page 191: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

169

en considérant une dépendance temporelle de la permittivité dans le modèle de transport. Des

mesures de spectroscopie d’impédance haute résolution sont donc nécessaires et pourraient

permettre d’obtenir la réponse diélectrique du LDPE, point de départ de notre processus de

modélisation de la polarisation et du transport (Figure IV-1).

Concernant la deuxième stratégie, nos travaux sur le PEN nous ont permis

d’implémenter la polarisation dans le modèle de transport de charges, sur la base des résultats

expérimentaux obtenus dans le domaine fréquentiel. Malgré les différentes conditions

expérimentales, nous obtenons une bonne adéquation entre les courants aux temps très courts

(10-6

à 10s) qui sont traduits de la réponse de spectroscopie diélectrique, et les courants aux

temps plus longs mesurés par APC, quelle que soit la température. La difficulté principale

réside dans la modélisation du transport et du temps de calcul. En effet la plupart des

paramètres du modèle de transport appliqué au PEN ne sont pas connus et ne peuvent pas être

facilement extraits de nos résultats expérimentaux ou de la littérature. De plus les valeurs

fortes de la mobilité aux champs forts et hautes températures conduisent à un très petit pas de

temps, avec par conséquence un temps de calcul extrêmement long.

IV.3.2 Modélisation des spectres TSDC

La modélisation en condition non-isotherme, correspondant au cas des mesures TSDC,

nécessite tout d’abord d’obtenir des termes correspondants aux réponses impulsionnelles ΔΘ

et au déplacement électrique D (qui est un produit de convolution du champ électrique et de

ΔΘ) qui soient fonction de la température. De plus, pour chaque température, nous devons

fitter la réponse diélectrique par une fonction de type Cole-Cole (4 paramètres : Δε, η, b, ε∞)

pour une relaxation aux basses fréquences. Nous prenons en compte l’influence des

différentes relaxations aux hautes fréquences dont les paramètres de fit sont calculés par des

fonctions linéaires de la température. A la fin de la procédure de fit, nous obtenons

théoriquement un modèle semi-empirique composé de 3 fonctions de Cole-Cole, associées à

10 fonctions linéaires avec la température (Δεi(T), ηi(T), bi(T), ε∞(T) où i=β, β*, α), conduisant

donc à 20 paramètres nécessaires pour modéliser la réponse diélectrique en fonction de la

température. Le modèle est en général valable, mais dans certaines conditions particulières, il

peut ne pas l’être. En effet et de manière pratique, les fonctions linéaires permettent d’extraire

des valeurs extrapolées de paramètres Cole-Cole. Cependant plus l’écart de température entre

la zone où sont mesurés les paramètres et la zone où on les extrapole est grand, plus l’erreur

Page 192: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

170

commise peut être grande. De plus rien ne garantit que la variation des paramètres du modèle

Cole-Cole reste linéaire dans toute la gamme de températures étudiée, ou qu’un changement

de pente du comportement linéaire ne puisse pas se produire à partir d’une certaine

température de la gamme extrapolée. En particulier, pour notre matériau d’étude (PEN), le

maximum du pic de relaxation α n’apparaît clairement que dans une fenêtre de mesure en

fréquence à une température élevée (Figure IV-9a), cela ne permet donc pas d’établir des

fonctions en température des paramètres de fit de ce pic. Le modèle développé ne permet

donc pas, dans sa forme actuelle, de reproduire les contributions dues aux processus de

polarisation mis en évidence par les résultats des mesures TSDC présentés dans le chapitre III

(validation non-isotherme), concernant notamment la contribution de la relaxation α.

Le modèle développé peut déjà reproduire un spectre TSDC où les pics seraient

essentiellement liés à un dépiégeage de charges. C’est ce que nous avons par exemple montré

dans le cas du LDPE lors d’une étude préliminaire. Une simulation utilisant le modèle de

transport de charges (avec les paramètres de piégéage, dépiégeage, recombinaison, mobilité) a

été réalisée suivant les protocoles expérimentaux de champ électrique et de température de la

mesure TSDC utilisée pour le LDPE. Le courant simulé obtenu montre un pic à 65°C (Figure

IV-33a) qui est lié à la charge d’espace [HOA12]

, et qui est en accord avec les résultats

expérimentaux (pic α1 sur la Figure IV-33b).

Le pic α2, mis en évidence par les mesures TSDC et appelé pic « anormal » de

dépolarisation du fait de son signe positif, n’est pas à l’heure actuelle reproduit par la

simulation. La reproduction du spectre complet (pic α1 négatif et pic α2 positif) du spectre

TSDC du PE demande un travail d’optimisation des paramètres du modèle qui dépasse le

cadre de notre travail de thèse. Le pic « anormal » α2 est en effet observé expérimentalement

uniquement dans le cas d’une température de polarisation supérieure à une température seuil

évaluée à 50°C, et dans le cas du LDPE pourvu d’un antioxydant [TEB08, HOA12]

.

Page 193: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

171

0 20 40 60 80 100-3x10

-8

-2x10-8

-1x10-8

0

De

nsité d

e c

oura

nt (A

.m-2)

Température (°C)

(a)

0 20 40 60 80 100-1x10

-8

3x10-8

7x10-8

1x10-7

Température (°C)

Densité d

e c

oura

nt (A

.m-2)

0 20 40-1x10

-8

-8x10-9

-6x10-9

-4x10-9

-2x10-9

0

(b)

Figure IV-33. Courant TSDC (a) simulé et (b)mesuré pour TP = 50°C et EP = 25 kV/mm dans le LDPE [HOA12]

IV.3.3 Amélioration du modèle

Exploration expérimentale plus large

Nous avons en effet besoin de plus d’informations sur les relaxations diélectriques, à

partir de données expérimentales réalisées sur une gamme de fréquences de mesure plus large,

notamment dans le cas du PEN. En effet l’absence d’équations de variation des paramètres

Cole-Cole pour le pic α pose problème, notamment concernant la validation non-isotherme du

modèle global. Malheureusement il est à l’heure actuelle difficile d’améliorer le modèle en

suivant ces pistes en raison de la gamme de fréquences de mesures limitée en spectroscopie

Page 194: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

172

d’impédance. De plus le chevauchement des contributions (relaxations et conduction) dans la

réponse diélectrique rend le problème relativement complexe.

Evolution vers un modèle bipolaire

Les paramètres optimisés (Tableau IV-4) méritent d’être affinés. En effet, seuls les

paramètres relatifs aux électrons ont réellement été ajustés par rapport à l’expérience. Les

paramètres liés aux trous n’ont pas été affinés. Dans un premier temps, les paramètres doivent

être validés en champ et en température, avec des mesures de courant. On pourra notamment

voir si le changement de pente observé expérimentalement, et qui correspond à un

changement de mécanisme dominant (polarisation/conduction) correspond en simulation à ce

qui est mesuré, et ce quel que soit le champ et la température. Il faudra ensuite vérifier si la

densité nette de charges simulée correspond aux mesures PEA effectuées à 25 et 50°C pour

différents champs. D’autre part, même si les mesures PEA réalisées sur le PEN n’ont pas mis

en évidence le piégeage de trou dans le volume du matériau, les mesures d’EL montrent que

des phénomènes de recombinaison de charges peuvent exister pour des champs supérieurs à

un champ seuil évalué dans notre étude à 210 kV/mm. Il convient donc dans le modèle de

prendre en compte des paramètres correspondants aux trous qui devront être considérés

comme non négligeables à hauts champs. Cependant, pour toutes ces simulations, le problème

de temps de calcul sera présent et il faudra y remédier.

Evolution du modèle bipolaire

Afin de pallier ce problème de temps de calcul, il est possible de modifier le modèle

bipolaire. En effet, le modèle développé résout l’équation de continuité (Equation I-76) de

manière explicite : les variables à t+dt sont calculées uniquement en fonction des variables

obtenues à un temps t. Ces modèles explicites sont plus simples à mettre en œuvre et

permettent d’obtenir de bons résultats, mais ils requièrent cependant des temps de calcul petits

afin d’être stables numériquement (condition CFL notamment). Dans ces cas où le pas de

temps devient trop petit, il est possible d’utiliser des modèles implicites, plus compliqués à

développer, mais qui donnent des résultats aussi précis que les modèles explicites avec des

pas de temps beaucoup plus grands. Cette évolution du modèle n’a pas été envisagée dans le

cadre de ce travail, mais elle pourrait être mise en œuvre car le problème de temps de calcul

se posera de plus en plus, quel que soit le matériau utilisé.

Page 195: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Chapitre IV Modélisation de la polarisation et du transport dans le PEN

173

Utilisation d’un algorithme d’optimisation

Le modèle de transport de charges prenant en compte la polarisation doit être couplé à

un algorithme d’optimisation de Levenberg-Marquart permettant d’extraire les paramètres de

transport des mesures de courants à champs forts et/ou aux hautes températures, où la

conduction est dominante. Cependant, les valeurs fortes de la mobilité aux champs forts et

hautes températures conduisent un très petit pas de temps, la méthode inverse avec plusieurs

paramètres d’optimisation devient alors très lourde. Dans un premier temps, nous avons

réalisé des simulations en utilisant le modèle de transport de charges sans prendre en compte

la polarisation, afin d’avoir des pistes sur l’utilisation du modèle d’optimisation. Les valeurs

des paramètres de transport extraites des premières simulations (voir paragraphe IV.2.4.2)

nous permettent de borner les valeurs des paramètres qui seront utilisés dans l’algorithme

d’optimisation, par exemple, la barrière de « hopping » doit être supérieure à 0,9074

(simulation dans le paragraphe IV.2.4.2.b) et inférieure à une valeur d’environ 0,8 (simulation

dans le paragraphe IV.2.4.2.c). Cela peut en effet être utile et permettre de réduire le temps de

calcul des modèles inverses utilisés. Des simulations seront ensuite nécessaires pour obtenir

des plages fiables de variation des paramètres.

Ces modèles d’optimisation sont nécessaires, afin de ne pas effectuer l’optimisation des

paramètres manuellement, ce qui requiert un temps énorme. Cependant, l’algorithme de

Levenberg-Marquardt, qui utilise la dérivée de la fonction à affiner, est un algorithme certes

stable et qui converge rapidement, mais qui requiert lui aussi un temps de calcul non

négligeable. Pour cela, d’autres méthodes pourront être utilisées, et l’équipe DSF s’est

associée récemment à une autre équipe du LAPLACE afin de développer ce type de modèles

inverses.

Page 196: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 197: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Conclusion générale

175

Conclusion générale

Le travail présenté dans ce mémoire s’inscrit dans le cadre général des études

expérimentales et de modélisation des propriétés des matériaux organiques solides utilisés

dans l’industrie électrique et électronique. Un intérêt particulier a été porté au PEN, un

polymère polaire, qui est largement utilisé dans les condensateurs miniaturisés et comme

isolant dans les moteurs électriques.

Cette étude a principalement été fondée sur la caractérisation des propriétés physiques

du PEN, ainsi que sur l’implémentation de la polarisation dans le modèle de transport de

charges afin de reproduire le comportement électrique de ce matériau.

Pour cela et d’un point de vue expérimental, différentes techniques de caractérisation

ont été utilisées de manière à pouvoir mesurer les propriétés électriques (par TSDC, PEA,

APC, EL), diélectriques (par spectroscopie diélectrique) et physico-chimiques (par DSC) du

matériau d’étude en fonction de la température, afin de caractériser les phénomènes liés à la

polarisation d’orientation et à la conduction.

Quatre pics de relaxations, β, β*, α et ρ, ont été observés dans l’ordre croissant de la

température. Les trois premiers pics, β (uniquement observé par spectroscopie diélectrique),

β* et α sont liés à des processus de polarisation d’orientation. Après la transition vitreuse Tg,

le dernier pic, ρ, n’a été observé que par TSDC.

La tension de polarisation et en particulier la température de polarisation jouent un rôle

important sur les propriétés électriques du PEN. Une température de polarisation de 130°C

n’entraine pas d'accumulation de charges dans le volume, comme le montrent les profils de

densité de charge d'espace par PEA alors que des charges négatives sont présentes pour une

température de polarisation de 170°C. Le pic ρ, uniquement observable lorsque l’échantillon a

été polarisé à une température de 170°C, est en grande partie lié aux charges négatives

piégées dans le volume du diélectrique. En effet, les résultats des mesures DSC et issus de la

littérature tendent à prouver que ces charges sont piégées à l’interphase amorphe-cristal, et

que le réarrangement de ces interphases à une température supérieure à 165ºC libérerait les

Page 198: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Conclusion générale

176

charges piégées. La complémentarité des méthodes TSDC avec chauffage partiel et PEA a

enfin permis de dissocier les processus de charge d’espace et de polarisation d’orientation.

Pour obtenir les courants où les phénomènes de polarisation sont dominants, l’APC fait

parties des meilleures méthodes de mesure, notamment grâce à sa capacité à réaliser des

mesures de courant à champs très faibles (0,05 kV/mm) en moyennant le signal sur plusieurs

créneaux de polarisation positive et négative. Les courants mesurés par APC correspondent

aux contributions de polarisation, β, β+β*, β+β

*+α, respectivement, dans l’ordre croissant de

la température. Pour les mesures de courant et d’EL à champs forts, des seuils de courant et

d’émission lumineuse ont été observés pour chaque température. Des signaux significatifs

d’EL ont été observés à partir d’un champ seuil de 210 kV/mm environ. Il faut noter que les

notions de champ faible et champ fort sont utilisées ici par référence aux mesures APC et aux

mesures simultanées de courant de conduction + EL, respectivement. En effet, les

contributions de conduction sont dominantes à des températures supérieures à 130ºC pour les

mesures APC alors que les mécanismes de polarisation dans les courants mesurés à « champ

fort » sont encore dominants aux champs moins élevés (30 kV/mm par exemple) pour les

basses températures (de 25 à 50ºC).

La modélisation numérique a été réalisée en lien étroit avec les résultats expérimentaux.

Elle se décompose en deux grandes parties qui concernent la modélisation de la polarisation et

la modélisation du transport de charges.

Dans un premier temps, les processus de polarisation ont été pris en compte dans un

modèle de transport de charge sur la base des résultats expérimentaux fournis par la

spectroscopie diélectrique réalisée dans le domaine fréquentiel. Ces données expérimentales

ont été fittées en utilisant des fonctions de Cole-Cole, et une transformée de Fourier inverse a

ensuite permis d’obtenir la variation de la permittivité dans le domaine temporel. La

validation du modèle de transport de charge tenant compte des mécanismes de polarisation a

été effectuée en comparant les courants externes simulés à champ faible et les courants

obtenus à partir de la mesure APC dans le domaine temporel, où la réponse est

essentiellement dipolaire. Ces résultats permettent de valider le traitement de données

permettant de passer du domaine fréquentiel au domaine temporel, et de valider le modèle

pour des champs électriques appliqués faibles, c’est à dire lorsque les phénomènes de

transport peuvent être négligés.

Page 199: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Conclusion générale

177

Dans un second temps, le modèle de transport de charge tenant compte de la

polarisation (modèle global) a été développé et utilisé pour tenter de reproduire les courants

mesurés aux temps courts et pour des champs électriques élevés et/ou à des températures

élevées. Les premières simulations réalisées pour ces fortes contraintes électriques et

thermiques ont donné des résultats encourageants concernant les densités totales de courant

simulées et mesurées, qui sont comparables. Toutefois un travail important d’optimisation des

paramètres du transport reste à réaliser. Ces simulations préliminaires permettent d’obtenir

des informations sur les plages de variation des paramètres de transport, avant l’utilisation de

méthodes plus lourdes telles que les méthodes inverses.

En conclusion, cette étude constitue une avancée importante pour la prise en

considération de la polarisation dans le modèle de transport de charges appliqué à des isolants

polymères. Les perspectives ouvertes par notre travail, qui associe mesures expérimentales et

modélisation de la polarisation et de la conduction, sont nombreuses. Elles concernent

notamment la mise en œuvre des méthodes inverses, la prise en considération de l’influence

de la température dans le modèle global appliqué au cas du PEN et la construction d’un

modèle numérique global permettant de reproduire les résultats expérimentaux obtenus dans

le cas du LDPE.

Page 200: TTHHÈÈSSEE - thesesups.ups-tlse.fr
Page 201: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

179

Références Bibliographies

A

[ADA75] H. Adachi et Y. Shibata, « Asymmetric two-site hopping model for high-electric-

field-excited thermally stimulated current in evaporated silicon oxide films »,

Journal of Physics D: Applied Physics, Vol. 8, pp. 1120‑1132, 1975.

[ADA81] V. Adamec et J.H. Calderwood, « On the determination of electrical conductivity in

polyethylene », Journal of Physics D: Applied Physics, Vol. 14, pp. 1487‑1494,

1981.

[AHM97] N.H. Ahmed et N.N. Srinivas, « Review of space charge measurements in

dielectrics », IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 4, pp.

644‑656, 1997.

[AI75] B. Ai, P. Destruel, H.T. Giam et R. Loussier, « Piezostimulated Current. A New

Approach to the Study of Dielectric Relaxation with the Pressure as the Parameter »,

Physical Review Letters, Vol. 34, pp. 84‑85, 1975.

[AID97] F. Aida, S. Wang, M. Fujita, G. Tanimoto et Y. Fujiwara, « Study of the mechanism

of space charge formation in polyethylene », Journal of Electrostatics, Vol. 42, pp.

3‑15, 1997.

[AKL83] J.J. Aklonis et W.J. MacKnight, « Introduction to polymer viscoelasticity », 2

ème

édition, Wiley, New York, 1983.

[ALI94] J.M. Alison et R.M. Hill, « A model for bipolar charge transport, trapping and

recombination in degassed crosslinked polyethene », Journal of Physics D: Applied

Physics, Vol. 27, pp. 1291‑1299, 1994.

[ALV91] F. Alvarez, A. Alegría et J. Colmenero, « Relationship between the time-domain

Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation

functions », Physical Review B, Vol. 44, pp. 7306‑7312, 1991.

[ALV93] F. Alvarez, A. Alegría et J. Colmenero, « Interconnection between frequency-domain

Havriliak-Negami and time-domain Kohlrausch-Williams-Watts relaxation

functions », Physical Review B, Vol. 47, pp. 125‑130, 1993.

[AMB07] M. Ambid, « Evaluation de nanocomposites polypropylène/silicate pour l’isolation

électrique : étude des phénomènes de polarisation, de conduction et des propriétés

optiques », Thèse de doctorat, Université Toulouse III, Toulouse, France, 2007.

Page 202: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

180

[AMR93] N. Amroun, M. Saidi, M. Bendaoud, R. Essolbi, T. Elallam et T.G. Hoang,

« Pressure effect on the space charge in low density polyethylene (LDPE) »,

Materials Chemistry and Physics, Vol. 33, pp. 168‑170, 1993.

[ANT02] J.A. Anta, G. Marcelli, M. Meunier et N. Quirke, « Models of electron trapping and

transport in polyethylene: Current–voltage characteristics », Journal of Applied

Physics, Vol. 92, pp. 1002‑1008, 2002.

[ARA13] A. Aragoneses, I. Tamayo, A. Lebrato, J.C. Cañadas, J.A. Diego, D. Arencón et J.

Belana, « Effect of humidity in charge formation and transport in LDPE », Journal

of Electrostatics, Vol. 71, pp. 611‑617, 2013.

[AUB08] E. Aubert, « Diagnostic optique du vieillissement électrique des résine époxydes

sous faible champ électrique », Thèse de doctorat, Université Toulouse III, Toulouse,

France, 2008.

[AUG00a] J.L. Augé, G. Teyssedre, C. Laurent, T. Ditchi et S. Holé, « Combined

electroluminescence and charge profile measurements in poly(ethylene-2,6-

naphthalate) under a dc field », Journal of Physics D: Applied Physics, Vol. 33, pp.

3129‑3138, 2000.

[AUG00b] J.L. Augé, C. Laurent, D. Fabiani et G.C. Montanari, « Investigating dc polyethylene

threshold by space charge. Current and electroluminescence measurements », IEEE

Transactions on Dielectrics and Electrical Insulation, Vol. 7, pp. 797‑803, 2000.

B

[BAR83] R. Bartnikas et R.M. Eichhorn, « Engineering Dielectrics Volume IIA: Electrical

Properties of Solid Insulating Materials: Molecular Structure and Electrical

Behavior. », ASTM STP 783, American Society for Testing and Materials,

Philadelphia, 1983.

[BEL93] J. Belana, M. Mudarra, J. Calaf, J.C. Cañadas et E. Menendez, « TSC study of the

polar and free charge peaks of amorphous polymers », IEEE Transactions on

Electrical Insulation, Vol. 28, pp. 287‑293, 1993.

[BEL96] J.P. Bellomo et T. Lebey, « On some dielectric properties of PEN », Journal of

Physics D: Applied Physics, Vol. 29, pp. 2052‑2056, 1996.

[BER11] S. Berdous, N.S. Amroun, M. Saidi et M. Bendaoud, « Trapping Effect on Electrical

Behavior of Polyester Film: I. Unipolar Injection », International Journal of Polymer

Analysis and Characterization, Vol. 16, pp. 416‑430, 2011.

[BER12] S. Berdous, N. Saidi-Amroun, M. Saidi et M. Bendaoud, « Trapping Effect on

Electrical Behavior of Polyester Film. II: Bipolar Injection », International Journal

of Polymer Analysis and Characterization, Vol. 17, pp. 524‑533, 2012.

[BER55] A. Bernanose, « Electroluminescence of organic compounds », British Journal of

Applied Physics, Vol. 6, pp. S 54‑S 56, 1955.

Page 203: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

181

[BHA84] R.P. Bhardwaj, J.K. Quamara, B.L. Sharma et K.K. Nagpaul, « On the nature of

space charge and dipolar relaxations in Kapton film », Journal of Physics D: Applied

Physics, Vol. 17, pp. 1013‑1017, 1984.

[BLA01] G. Blaise, « Charge localization and transport in disordered dielectric materials »,

Journal of Electrostatics, Vol. 50, pp. 69‑89, 2001.

[BÖT78] C.J.F. Böttcher et P. Bordewijk, « Theory of Electric Polarization, Vol. II:

Dielectrics in Time-Dependent Fields », Elsevier Science, Amsterdam, 1978.

[BOU06] F. Boufayed, « Simulation du transport électrique dans un polyéthylène pour câble

d’énergie par un modèle de conduction bipolaire avec distribution exponentielle de

pièges », Thèse de doctorat, Université de Toulouse III, Toulouse, France, 2006.

[BRA03] S.P. Bravard et R.H. Boyd, « Dielectric Relaxation in Amorphous Poly(ethylene

terephthalate) and Poly(ethylene 2,6-naphthalene dicarboxylate) and Their

Copolymers », Macromolecules, Vol. 36, pp. 741‑748, 2003.

[BUC64] C. Bucci et R. Fieschi, « Ionic Thermoconductivity. Method for the Investigation of

Polarization in Insulators », Physical Review Letters, Vol. 12, pp. 16‑19, 1964.

[BUC89] S. Buchner, D. Wiswe et H.G. Zachmann, « Kinetics of crystallization and melting

behaviour of poly(ethylene naphthalene-2,6-dicarboxylate) », Polymer, Vol. 30, pp.

480‑488, 1989.

[BUK07] M.F. Bukhina et S.K. Kurlyand, « Low-Temperature Behaviour of Elastomers »,

VSP, Leiden, 2007.

C

[CAÑ99] J.C. Cañadas, J.A. Diego, M. Mudarra, J. Belana, R. Díaz-Calleja, M.J. Sanchis et C.

Jaimés, « Relaxational study of poly(ethylene-2,6-naphthalene dicarboxylate) by

t.s.d.c., d.e.a. and d.m.a. », Polymer, Vol. 40, pp. 1181‑1190, 1999.

[CAÑ00] J.C. Cañadas, J.A. Diego, J. Sellarès, M. Mudarra, J. Belana, R. D az-Calleja et M.J.

Sanchis, « Comparative study of amorphous and partially crystalline poly(ethylene-

2,6-naphthalene dicarboxylate) by TSDC, DEA, DMA and DSC », Polymer, Vol. 41,

pp. 2899‑2905, 2000.

[CAP98] S. Capaccioli, M. Lucchesi, P.A. Rolla et G. Ruggeri, « Dielectric response analysis

of a conducting polymer dominated by the hopping charge transport », Journal of

Physics: Condensed Matter, Vol. 10, pp. 5595‑5617, 1998.

[CHA04] J.F. Chavez, J.J. Martinez-Vega, N. Zouzou et J. Guastavino, « Influence of

morphology on electric conductance in poly(ethylene naphthalene-2,6-

dicarboxylate) », Macromolecular Symposia, Vol. 212, pp. 485‑490, 2004.

[CHO74] A. Chowdry et C.R. Westgate, « The role of bulk traps in metal-insulator contact

charging », Journal of Physics D: Applied Physics, Vol. 7, pp. 713‑725, 1974.

Page 204: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

182

[COB86] J.C. Coburn et R.H. Boyd, « Dielectric relaxation in poly(ethylene terephthalate) »,

Macromolecules, Vol. 19, pp. 2238‑2245, 1986.

[COE93] R. Coelho et B. Aladenize, « Les diélectriques : Propriétés diélectriques des

matériaux isolants », Hermès Science Publications, Paris, 1993.

[COL41] K.S. Cole et R.H. Cole, « Dispersion and Absorption in Dielectrics I. Alternating

Current Characteristics », The Journal of Chemical Physics, Vol. 9, pp. 341‑351,

1941.

[COL75] R.E. Collins, « Distribution of charge in electrets », Applied Physics Letters, Vol. 26,

pp. 675‑677, 1975.

D

[DAN67] V.V. Daniel, « Dielectric Relaxation », Academic Press, London and New York,

1967.

[DAV51] D.W. Davidson et R.H. Cole, « Dielectric Relaxation in Glycerol, Propylene Glycol,

and n‐Propanol », The Journal of Chemical Physics, Vol. 19, pp. 1484‑1490, 1951.

[DEB29] P.J.W. Debye, « Polar Molecules », Dover, New York, 1929.

[DIS92] L.A. Dissado et J.C. Fothergill, « Electrical Degradation and Breakdown in

Polymers », Peter Peregrinus Ltd., London, 1992.

[DIS79] L.A. Dissado et R.M. Hill, « Non-exponential decay in dielectrics and dynamics of

correlated systems », Nature, Vol. 279, pp. 685‑689, 1979.

[DÖR97] H. Dörlitz et H.G. Zachmann, « Molecular mobility in poly(ethylene-2,6-

naphthalene dicarboxylate) as determined by means of deuteron NMR », Journal of

Macromolecular Science, Part B, Vol. 36, pp. 205‑219, 1997.

[DOU10] L. Douminge, « Etude du comportement du polyéthylène haute densité sous

irradiation ultraviolette ou sollicitation mécanique par spectroscopie de

fluorescence », Thèse de doctorat, Université de La Rochelle, La Rochelle, France,

2010.

[DUB98] J.-C. Dubois, « Propriétés diélectriques des polymères », Techniques de l’Ingénieur,

traité Électronique, E 1 850, 1998.

[DUB01] J.-C. Dubois, « Propriétés diélectriques des plastiques », Techniques de l’Ingénieur,

traité Plastiques et Composites, AM 3 140, 2001.

[DUH95] B. Duh, « Solid state polymerization process for foamed poly(ethylene

naphthalate) », U.S. Patent 5,449,701, 1995.

[DUK69] C.B. Duke, « Tunneling in solids », Academic Press, New York, 1969.

Page 205: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

183

E

[EHR00] G.W. Ehrenstein et F. Montagne, « Matériaux polymères : structure, propriétés et

applications », Hermès Science Publications, Paris, 2000.

[EIS82] W. Eisenmenger et M. Haardt, « Observation of charge compensated polarization

zones in polyvinylindenfluoride (PVDF) films by piezoelectric acoustic step-wave

response », Solid State Communications, Vol. 41, pp. 917‑920, 1982.

[ERD54] A. Erdelyi, « Tables of Integral Transforms, Vol. 1 », McGraw-Hill, New York,

1954.

[ESC01] C. Escribe-Filippini, R. Tobazéon et J.C. Filippini, « Conduction characterization of

polymer films using the alternate square wave method », Proceedings of the 2001

IEEE International Conference on Solid Dielectrics (ICSD), Eindhoven, the

Netherlands, pp. 315‑318, 2001.

[ETI12] S. Etienne et L. David, « Introduction à la physique des polymères », Sciences Sup,

Dunod, Paris, 2012.

[EYR35] H. Eyring, « The Activated Complex and the Absolute Rate of Chemical

Reactions », Chemical Reviews, Vol. 17, pp. 65‑77, 1935.

[EZQ93] T.A. Ezquerra, F.J. Baltà-Calleja et H.G. Zachmann, « Dielectric relaxation of

amorphous random copolymers of poly(ethylene terephthalate) and poly(ethylene-

2,6-naphthalene dicarboxylate) », Acta Polymerica, Vol. 44, pp. 18‑24, 1993.

F

[FER80] J.D. Ferry, « Viscoelastic Properties of Polymers, 3rd Edition », 3

ème édition, Wiley,

New York, 1980.

[FIL04] J.C. Filippini, R. Tobazéon, C. Marteau, R. Coelho, J. Matallana et H. Janah, « The

alternate polarization current method for conduction analysis in polymers »,

Proceedings of the 2004 IEEE International Conference on Solid Dielectrics (ICSD),

Toulouse, France, Vol. 1, pp. 115‑118, 2004.

[FOU00] R. Fournié et R. Coelho, « Diélectriques - Bases théoriques », Techniques de

l’Ingénieur, traité Génie électrique, D 2 300, 2000.

[FOW28] R.H. Fowler et L. Nordheim, « Electron Emission in Intense Electric Fields »,

Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, Vol. 119, pp. 173‑181, 1928.

[FRA97] J.L. Franceschi et V. Haas, « Laser thermoacoustic modulation for space charge

measurement », Applied Physics Letters, Vol. 70, pp. 2236‑2237, 1997.

Page 206: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

184

[FRE36] H. Frei et G. Groetzinger, « The Electrical Energy Released in Melting Waxes »,

Zeitschrift für Physik, Vol. 37, pp. 720‑724, 1936.

[FUK88] T. Fukuda, « Technological progress in high-voltage XLPE power cables in Japan.

I », IEEE Electrical Insulation Magazine, Vol. 4, pp. 9‑16, 1988.

[FUK94] M. Fukuma, M. Nagao et M. Kosaki, « Computer analysis on transient space charge

distribution in polymer », Proceedings of the 4th

International Conference on

Properties and Applications of Dielectric Materials (ICPADM), Brisbane, Australia,

Vol. 1, pp. 24‑27, 1994.

[FUK04] M. Fukuma, G. Teyssèdre, K. Fukunaga et C. Laurent, « Millisecond-time range

analysis of space charge distribution and electroluminescence in PE and PEN under

transient electric stress », 2004 Annual Report Conference on Electrical Insulation

and Dielectric Phenomena (CEIDP), Boulder, Colorado, USA, pp. 69‑72, 2004.

[FUO41] R.M. Fuoss et J.G. Kirkwood, « Electrical Properties of Solids. VIII. Dipole

Moments in Polyvinyl Chloride-Diphenyl Systems », Journal of the American

Chemical Society, Vol. 63, pp. 385‑394, 1941.

G

[GAB10] C. Gabrielli et H. Takenouti, « Méthodes électrochimiques appliquées à la corrosion

- Techniques dynamiques », Techniques de l’Ingénieur, Essais et expertise en

corrosion et vieillissement, COR 811, 2010.

[GAL05] O. Gallot-Lavallée, V. Griseri, G. Teyssedre et C. Laurent, « The pulsed electro-

acoustic technique in research on dielectrics for electrical engineering. Today’s

achievements and perspectives for the future », Revue internationale de génie

électrique, Vol. 8, pp. 749‑772, 2005.

[GAR74] C.G. Garton, « Charge transfer from metal to dielectric by contact potential »,

Journal of Physics D: Applied Physics, Vol. 7, pp. 1814‑1823, 1974.

[GIL89] R. Gilbert, J.P. Crine, B. Noirhomme et S. Pélissou, « Measurement of organic and

inorganic ions in cable insulation and shields », 1989 Annual Report Conference on

Electrical Insulation and Dielectric Phenomena (CEIDP), Leesburg, Virginia, USA,

pp. 235‑240, 1989.

[GOO56] R.H. Good et E.W. Müller, « Field Emission », in Electron-Emission Gas

Discharges I / Elektronen-Emission Gasentladungen I, Vol. 21, Springer Berlin

Heidelberg, Berlin, pp. 176‑231, 1956.

[GOU06] A.F. Gourgues-Lorenzon et J.M. Haudin, « Matériaux pour l’ingénieur », MINES

PARIS Les Presses, Paris, 2006.

[GRE10] J. Grenet et B. Legendre, « Analyse calorimétrique différentielle à balayage (DSC) »,

Techniques de l’Ingénieur, Méthodes thermiques d’analyse, P 1 205, 2010.

Page 207: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

185

[GRE91] C. Le Gressus, F. Valin, M. Henriot, M. Gautier, J.P. Duraud, T.S. Sudarshan, R.G.

Bommakanti et G. Blaise, « Flashover in wide‐band‐gap high‐purity insulators:

Methodology and mechanisms », Journal of Applied Physics, Vol. 69, pp.

6325‑6333, 1991.

[GUA99] J. Guastavino, E. Krause et C. Mayoux, « Influence of aging on electrical properties

of polyethylene naphthalate-2,6 dicarboxylate films », IEEE Transactions on

Dielectrics and Electrical Insulation, Vol. 6, pp. 792‑797, 1999.

[GUP76] D.K.D. Gupta et K. Joyner, « On the nature of absorption currents in

polyethyleneterephthalate (PET) », Journal of Physics D: Applied Physics, Vol. 9,

pp. 829, 1976.

H

[HAK05] C. Hakme, I. Stevenson, L. David, G. Boiteux, G. Seytre et A. Schönhals,

« Uniaxially stretched poly(ethylene naphthalene 2,6-dicarboxylate) films studied by

broadband dielectric spectroscopy », Journal of Non-Crystalline Solids, Vol. 351, pp.

2742‑2752, 2005.

[HAR01] L. Hardy, I. Stevenson, G. Boiteux, G. Seytre et A. Schönhals, « Dielectric and

dynamic mechanical relaxation behaviour of poly(ethylene 2,6 naphthalene

dicarboxylate). I. Amorphous films », Polymer, Vol. 42, pp. 5679‑5687, 2001.

[HAR03] L. Hardy, I. Stevenson, A. Fritz, G. Boiteux, G. Seytre et A. Schönhals, « Dielectric

and dynamic mechanical relaxation behaviour of poly(ethylene 2,6-naphthalene

dicarboxylate). II. Semicrystalline oriented films », Polymer, Vol. 44, pp.

4311‑4323, 2003.

[HAV66] S. Havriliak et S. Negami, « A complex plane analysis of α-dispersions in some

polymer systems », Journal of Polymer Science Part C: Polymer Symposia, Vol. 14,

pp. 99‑117, 1966.

[HAV67] S. Havriliak et S. Negami, « A complex plane representation of dielectric and

mechanical relaxation processes in some polymers », Polymer, Vol. 8, pp. 161‑210,

1967.

[HEN06] F. Henn, J.-C. Giuntini, J. Bisquert et G. Garcia-Belmonte, « An explanation of the

peculiar behavior of TSDC peaks at Tg: a simple model of entropy relaxation »,

IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 13, pp. 1042‑1048,

2006.

[HEN99] F. Henn, J. Vanderschueren, J.-C. Giuntini et J. v. Zanchetta, « Cooperative or

noncooperative dielectric relaxation in ionic solids: A discriminating experimental

approach », Journal of Applied Physics, Vol. 85, pp. 2821‑2827, 1999.

[HIL88] M. Hilaire, C. Marteau et R. Tobazéon, « Apparatus developed for measurement of

the resistivity of highly insulating liquids », IEEE Transactions on Electrical

Insulation, Vol. 23, pp. 779‑789, 1988.

Page 208: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

186

[HIL78] R.M. Hill, « Characterisation of dielectric loss in solids and liquids », Nature, Vol.

275, pp. 96‑99, 1978.

[HOA12] M.-Q. Hoang, L. Boudou, S. Le Roy et G. Teyssèdre, « Electrical characterization

of LDPE films using Thermo-Stimulated Depolarization Currents method:

measurement and simulation based on a transport model », Proceedings of the 8ème

conférence de la Société Française d’Electrostatique, Cherbourg-Octeville, France,

2012.

[HOA13] M.-Q. Hoang, L. Boudou, S. Le Roy et G. Teyssèdre, « Electrical characterization

of PEN films using TSDC and PEA measurements », Proceedings of the 2013 IEEE

International Conference on Solid Dielectrics (ICSD), Bologna, Italy, pp. 488‑491,

2013.

[HOA14a] M.-Q. Hoang, « Implémentation des phénomènes de polarisation dans un modèle de

transport de charges pour un isolant sous contrainte électrique », Journée annuelle

l’ED GEET, Université Paul Sabatier, Toulouse, France, 2014.

[HOA14b] M.-Q. Hoang, L. Boudou, S. Le Roy et G. Teyssèdre, « Implementation of

polarization processes in a charge transport model using time and frequency domain

measurements on PEN films », Proceedings of the 9ème

conférence de la Société

Française d’Electrostatique, Toulouse, France, 2014.

[HOA14c] M.-Q. Hoang, L. Boudou, S. Le Roy et G. Teyssèdre, « Dissociating space charge

processes from orientation polarization in poly(ethylene naphthalate) films »,

Journal of Physics D: Applied Physics, Vol. 47, pp. 455306, 2014.

[HUZ13] A. Huzayyin, S. Boggs et R. Ramprasad, « Depths of chemical impurity states in

Polyethylene; The big picture from first principles », Proceedings of the 2013 IEEE

International Conference on Solid Dielectrics (ICSD), Bologna, Italy, pp. 15‑18,

2013.

I

[ILL63] K.H. Illers et H. Breuer, « Molecular motions in polyethylene terephthalate »,

Journal of Colloid Science, Vol. 18, pp. 1‑31, 1963.

[IMA88] Y. Imanishi, K. Adachi et T. Kotaka, « Dielectric relaxation spectra for the bulk and

concentrated solutions of cis‐polyisoprene », The Journal of Chemical Physics, Vol.

89, pp. 7593‑7598, 1988.

[IRL00] Irlab, Le Saule, 38360 Noyarey, France.

[ISH11] K. Ishimoto, T. Tanaka, Y. Ohki, Y. Sekiguchi et Y. Murata, « Thermally stimulated

current in low-density polyethylene/MgO nanocomposite. On the mechanism of its

superior dielectric properties », Electrical Engineering in Japan, Vol. 176, pp. 1‑7,

2011.

Page 209: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

187

J

[JON05] J.P. Jones, J.P. Llewellyn et T.J. Lewis, « The contribution of field-induced

morphological change to the electrical aging and breakdown of polyethylene », IEEE

Transactions on Dielectrics and Electrical Insulation, Vol. 12, pp. 951‑966, 2005.

[JON75] A.K. Jonscher, « A new model of dielectric loss in polymers », Colloid and Polymer

Science, Vol. 253, pp. 231‑250, 1975.

K

[KAN99] K. Kaneko, T. Mizutani et Y. Suzuoki, « Computer simulation on formation of space

charge packets in XLPE films », IEEE Transactions on Dielectrics and Electrical

Insulation, Vol. 6, pp. 152‑158, 1999.

[KAU48] W. Kauzmann, « The Nature of the Glassy State and the Behavior of Liquids at Low

Temperatures », Chemical Reviews, Vol. 43, pp. 219‑256, 1948.

[KIT83] I. Kitani et K. Arii, « Effect of Prestressing on the ns Range Electrical Breakdown in

Polymeric Insulating Films », Japanese Journal of Applied Physics, Vol. 22, pp.

857‑862, 1983.

[KIT84] I. Kitani, Y. Tsuji et K. Arii, « Analysis of Anomalous Discharge Current in Low-

Density Polyethylene », Japanese Journal of Applied Physics, Vol. 23, pp. 855‑860,

1984.

[KIT85] I. Kitani et K. Arii, « Anomalous Discharge Current in Polyethylene (PE), Ethylene-

Vinylacetate Copolymer (EVA) and PE-EVA Laminated Films », Japanese Journal

of Applied Physics, Vol. 24, pp. 285‑288, 1985.

[KIT07] C. Kittel, « Physique de l’état solide », 8

ème édition, Sciences Sup, Dunod, Paris,

2007.

[KOH54] R. Kohlrausch, « Theorie des elektrischen Rückstandes in der Leidner Flasche »,

Annalen der Physik, Vol. 91, pp. 56‑82, 1854.

[KRE02] F. Kremer et A. Schönhals, « Broadband Dielectric Spectroscopy », Springer-Verlag,

Berlin, 2002.

L

[LAM70] M.A. Lampert et P. Mark, « Current injection in solids », Academic Press, New York

and London, 1970.

Page 210: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

188

[LAN45] P. Langevin, « Sur la recombinaison des ions », Journal de Physique et le Radium,

Vol. 6, pp. 1‑5, 1945.

[LAN81] S.B. Lang et D.K. Das-Gupta, « A technique for determining the polarization

distribution in thin polymer electrets using periodic heating », Ferroelectrics, Vol.

39, pp. 1249‑1252, 1981.

[LAU99] C. Laurent, « Diélectriques solides et charge d’espace », Techniques de l’Ingénieur,

traité Génie électrique, D 2 305, 1999.

[LAU09] C. Laurent, G. Teyssedre, S. Le Roy et F. Baudoin, « Knowledge-based modelling of

charge transport in insulating polymers: From experiments to model optimization »,

Proceedings of the 9th

International Conference on the Properties and Applications

of Dielectric Material (ICPADM), Harbin, Chine, pp. 1‑8, 2009.

[LAV93] C. Lavergne et C. Lacabanne, « A review of thermo-stimulated current », IEEE

Electrical Insulation Magazine, Vol. 9, pp. 5‑21, 1993.

[LEW86] T.J. Lewis, « Electrical Effects at Interfaces and Surfaces », IEEE Transactions on

Electrical Insulation, Vol. EI-21, pp. 289‑295, 1986.

[LIN80] C.P. Lindsey et G.D. Patterson, « Detailed comparison of the Williams–Watts and

Cole–Davidson functions », The Journal of Chemical Physics, Vol. 73, pp.

3348‑3357, 1980.

[LOG13] E. Logakis, L. Petersson et J. Viertel, « Dielectric spectroscopy and thermally

stimulated depolarization current investigations in low density polyethylene »,

Proceedings of the 2013 IEEE International Conference on Solid Dielectrics (ICSD),

Bologna, Italy, pp. 948‑951, 2013.

[LV13] Z. Lv, X. Wang, K. Wu, X. Chen, Y. Cheng et L.. Dissado, « Dependence of charge

accumulation on sample thickness in Nano-SiO2 doped IDPE », IEEE Transactions

on Dielectrics and Electrical Insulation, Vol. 20, pp. 337‑345, 2013.

M

[MAC72] R.C. Mackenzie, « Differential thermal analysis: Applications », Academic Press,

London and New York, 1972.

[MAE85] T. Maeno, H. Kushibe, T. Takada et C.M. Cooke, « Pulsed Electro-acoustic Method

for the Measurement of Volume Charges in E-Beam Irradiated PMMA », 1985

Annual Report Conference on Electrical Insulation and Dielectric Phenomena

(CEIDP), New York, USA, pp. 389‑397, 1985.

[MAN62] A. Many et G. Rakavy, « Theory of Transient Space-Charge-Limited Currents in

Solids in the Presence of Trapping », Physical Review, Vol. 126, pp. 1980‑1988,

1962.

Page 211: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

189

[MAR63] D.W. Marquardt, « An algorithm for least-squares estimation of nonlinear

parameters », Journal of the Society for Industrial and Applied Mathematics, Vol.

11, pp. 431‑441, 1963.

[MAR86] J.J. Martinez-Vega, « Etude par relaxation mécanique du vieillissement physique et

de la déformation plastique du PMMA au voisinage de la transition vitreuse », Thèse

de doctorat, Université de Poitiers, Poitiers, France, 1986.

[MAR01] J.J. Martinez-Vega, N. Zouzou, L. Boudou et J. Guastavino, « Molecular mobility in

amorphous and partially crystalline PEN after isothermal crystallization », IEEE

Transactions on Dielectrics and Electrical Insulation, Vol. 8, pp. 776‑784, 2001.

[MCK75] S.W.S. McKeever et D.M. Hughes, « Thermally stimulated currents in dielectrics »,

Journal of Physics D: Applied Physics, Vol. 8, pp. 1520‑1529, 1975.

[MEL05] A. Mellinger, R. Singh, M. Wegener, W. Wirges, R. Gerhard-Multhaupt et S.B.

Lang, « Three-dimensional mapping of polarization profiles with thermal pulses »,

Applied Physics Letters, Vol. 86, pp. 082903, 2005.

[MEN99] J. Menegotto, P. Demont, A. Bernes et C. Lacabanne, « Combined dielectric

spectroscopy and thermally stimulated currents studies of the secondary relaxation

process in amorphous poly(ethylene terephthalate) », Journal of Polymer Science

Part B: Polymer Physics, Vol. 37, pp. 3494‑3503, 1999.

[MEN97] C. Menguy, « Mesure des caractéristiques des matériaux isolants solides »,

Techniques de l’Ingénieur, traité Génie électrique, D 2 310, 1997.

[MEU01] M. Meunier, N. Quirke et A. Aslanides, « Molecular modeling of electron traps in

polymer insulators: Chemical defects and impurities », The Journal of Chemical

Physics, Vol. 115, pp. 2876‑2881, 2001.

[MIL73] A.G. Milnes, « Deep Impurities in Semiconductors, Chapter 9 », Wiley-Interscience,

New York, 1973.

[MIN12] D. Min, M. Cho, S. Li et A. Khan, « Charge transport properties of insulators

revealed by surface potential decay experiment and bipolar charge transport model

with genetic algorithm », IEEE Transactions on Dielectrics and Electrical

Insulation, Vol. 19, pp. 2206‑2215, 2012.

[MIU14] M. Miura, M. Fukuma et S. Kishida, « Electrical Breakdown and Space Charge

Formation at High-Temperature Region in Long-Time Heating Treatment PVC »,

Electrical Engineering in Japan, Vol. 188, pp. 18‑28, 2014.

[MIZ79] T. Mizutani, M. Ieda et I.B. Jordan, « Anomalous Transient Currents in High-

Density Polyethylene around 50–70°C », Japanese Journal of Applied Physics, Vol.

18, pp. 65‑70, 1979.

[MIZ81] T. Mizutani, K. Kaneko et M. Ieda, « Anomalous Discharging Currents due to Space

Charge », Japanese Journal of Applied Physics, Vol. 20, pp. 1443‑1448, 1981.

Page 212: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

190

[MIZ82] T. Mizutani, T. Oomura et M. Ieda, « Anomalous TSC and Space Charge in High-

Density Polyethylene », Japanese Journal of Applied Physics, Vol. 21, pp.

1195‑1198, 1982.

[MON77] J.C. Monpagens, D.G. Chatain, C. Lacabanne et P.G. Gautier, « A new method for

the study of molecular motion in polymeric solids: Thermally stimulated creep »,

Journal of Polymer Science: Polymer Physics Edition, Vol. 15, pp. 767‑772, 1977.

[MON05] G.C. Montanari et P.H.F. Morshuis, « Space charge phenomenology in polymeric

insulating materials », IEEE Transactions on Dielectrics and Electrical Insulation,

Vol. 12, pp. 754‑767, 2005.

[MOT48] S.N.F. Mott et R.W. Gurney, « Electronic processes in ionic crystals », Clarendon

Press, London, 1948.

[MOU02] J.J. Moura Ramos, N.. Correia, R. Taveira-Marques et G. Collins, « The activation

energy at Tg and the fragility index of indomethacin, predicted from the influence of

the heating rate on the temperature position and on the intensity of thermally

stimulated depolarization current peak. », Pharmaceutical research, Vol. 19, pp.

1879‑1884, 2002.

N

[NAK11] H. Nakamura, Y. Shirakawa, S. Takahashi et H. Shimizu, « Evidence of deep-blue

photon emission at high efficiency by common plastic », Europhysics Letters, Vol.

95, pp. 22001, 2011.

[NOG00] A. Nogales, Z. Denchev et T.A. Ezquerra, « Influence of the Crystalline Structure in

the Segmental Mobility of Semicrystalline Polymers: Poly(ethylene naphthalene-2,6-

dicarboxylate) », Macromolecules, Vol. 33, pp. 9367‑9375, 2000.

[NOV10] Novocontrol Technologies, « Alpha-A High resolution Dielectric, Conductivity,

Impedance and Gain Phase Modular Measurement System »,

http://www.novocontrol.de, 2010.

[NOV14] Novocontrol Technologies, « Alpha-A, Alpha and Beta High Performance

Dielectric, Conductivity and Electrochemical Impedance Analyzers »,

http://www.novocontrol.de, 2014.

O

[ODW73] J.J. O’Dwyer, « The theory of electrical conduction and breakdown in solid

dielectrics », Clarendon Press, Oxford, 1973.

[OGA90] K. Ogawa, T. Kosugi, N. Kato et Y. Kawawata, « The world’s first use of 500 kV

XLPE insulated aluminium sheathed power cables at the Shimogo and Imaichi

power stations », IEEE Transactions on Power Delivery, Vol. 5, pp. 26‑32, 1990.

Page 213: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

191

[OSH76] M. Oshiki et E. Fukada, « Piezoelectric Effect in Stretched and Polarized

Polyvinylidene Fluoride Film », Japanese Journal of Applied Physics, Vol. 15, pp.

43‑52, 1976.

P

[PEL88] S. Pelissou, H. St-Onge et M.R. Wertheimer, « Electrical conduction of polyethylene

below and above its melting point », IEEE Transactions on Electrical Insulation,

Vol. 23, pp. 325‑333, 1988.

[PER92] J. Perez, « Physique et mécanique des polymères amorphes », Lavoisier, Paris, 1992.

[PER08] C. Perrin, V. Griseri et C. Laurent, « Measurement of internal charge distribution in

dielectrics using the pulsed electro-acoustic method in non contact mode », IEEE

Transactions on Dielectrics and Electrical Insulation, Vol. 15, pp. 958‑964, 2008.

[PIP55] W.W. Piper et F.E. Williams, « Theory of Electroluminescence », Physical Review,

Vol. 98, pp. 1809‑1813, 1955.

[PSA06] G.C. Psarras, A.S. Beobide, G.A. Voyiatzis, P.K. Karahaliou, S.N. Georga, C.A.

Krontiras et J. Sotiropoulos, « Dielectric and conductivity processes in poly(ethylene

terephthalate) and poly(ethylene naphthalate) homopolymers and copolymers »,

Journal of Polymer Science Part B: Polymer Physics, Vol. 44, pp. 3078‑3092, 2006.

R

[RAÏ05] T. Raïssi, L. Ibos, N. Ramdani et Y. Candau, « Analyse de spectres de relaxation

diélectrique par inversion ensembliste : Une première approche », Revue

internationale de génie électrique, Vol. 8, pp. 97‑117, 2005.

[ROU53] P.E. Rouse, « A Theory of the Linear Viscoelastic Properties of Dilute Solutions of

Coiling Polymers », The Journal of Chemical Physics, Vol. 21, pp. 1272‑1280,

1953.

[ROY04] S. Le Roy, « Modélisation numérique des phénomènes de transport électrique dans

un isolant polyéthylène sous contrainte électrique », Thèse de doctorat, Université de

Toulouse III, Toulouse, France, 2004.

[ROY06] S. Le Roy, G. Teyssedre, C. Laurent, G.C. Montanari et F. Palmieri, « Description of

charge transport in polyethylene using a fluid model with a constant mobility: fitting

model and experiments », Journal of Physics D: Applied Physics, Vol. 39, pp.

1427‑1436, 2006.

[ROY10] S. Le Roy, F. Baudoin, L. Boudou, C. Laurent et G. Teyssedre, « Thermo-Stimulated

Depolarization Currents in polyethylene films. Numerical simulations and

experiments », Proceedings of the 2010 IEEE International Conference on Solid

Dielectrics (ICSD), Potsdam, Germany, pp. 1‑4, 2010.

Page 214: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

192

[RUN97] J.P. Runt et J.J. Fitzgerald, « Dielectric Spectroscopy of Polymeric Materials:

Fundamentals and Applications », American Chemical Society, Washington, DC,

1997.

S

[SAI04] N. Saidi-Amroun, S. Berdous et M. Bendaoud, « Measured and simulated transient

current in polyethylene terephthalate films below and above the glass transition

temperature », Proceedings of the 2004 IEEE International Conference on Solid

Dielectrics (ICSD), Toulouse, France, Vol. 1, pp. 137‑140, 2004.

[SAI06] N. Saidi-Amroun, H. Oubouchou, S. Berdous, M. Saidi et M. Bendaoud,

« Temperature Effect on Transient Charge and Discharge Currents in Poly(Ethylene

Naphthalene-2,6-dicarboxylate) », International Journal of Polymer Analysis and

Characterization, Vol. 11, pp. 159‑169, 2006.

[SAI07] N. Saidi-Amroun, S. Berdous, M. Saidi et M. Bendaoud, « Modeling of Transient

Currents in Polyethylene Terephtalate », International Journal of Polymer Analysis

and Characterization, Vol. 12, pp. 359‑371, 2007.

[SAN93] L. Sanche, « Electronic aging and related electron interactions in thin-film

dielectrics », IEEE Transactions on Electrical Insulation, Vol. 28, pp. 789‑819,

1993.

[SCH95] B. Schartel et J.H. Wendorff, « Dielectric investigations on secondary relaxation of

polyarylates: comparison of low molecular models and polymeric compounds »,

Polymer, Vol. 36, pp. 899‑904, 1995.

[SCH03] A. Schönhals et F. Kremer, « Analysis of Dielectric Spectra », in Broadband

Dielectric Spectroscopy, Springer Berlin Heidelberg, Berlin, pp. 59‑98, 2003.

[SEB03] G.A.F. Seber et C.J. Wild, « Nonlinear regression », Wiley-Interscience, Hoboken,

NJ, 2003.

[SEG00] Y. Segui, « Diélectriques - Courants de conduction », Techniques de l’Ingénieur,

traité Génie électrique, D 2 301, 2000.

[SES82] G.M. Sessler, J.E. West, R. Gerhard-Multhaupt et H. Von Seggern, « Nondestructive

Laser Method for Measuring Charge Profiles in Irradiated Polymer Films », IEEE

Transactions on Nuclear Science, Vol. 29, pp. 1644‑1649, 1982.

[SNY99] C.R. Snyder et F.I. Mopsik, « Critical comparison between time- and frequency-

domain relaxation functions », Physical Review B, Vol. 60, pp. 984‑990, 1999.

[STE13] I. Steinborn-Rogulska et G. Rokicki, « Solid-state polycondensation (SSP) as a

method to obtain high molecular weight polymers. Part I. Parameters influencing the

SSP process », Polimery, Vol. 58, pp. 3‑13, 2013.

Page 215: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

193

[STE65] G. Stetter, 1965 Annual Report Conference on Electrical Insulation and Dielectric

Phenomena (CEIDP), USA, pp. 21, 1965.

[SUH92] K.-S. Suh, J. Tanaka et D. Damon, « What is TSC? », IEEE Electrical Insulation

Magazine, Vol. 8, pp. 13‑20, 1992.

T

[TAI98] TA Instruments DSC 2010, « DSC 2010 - Differential Scanning Calorimeter:

Operator’s Manual ». TA Instruments, 1998.

[TAL11] M. Taleb, « Phénomènes aux interfaces des isolants : mesure et simulation », Thèse

de doctorat, Université Toulouse III, Toulouse, France, 2011.

[TAL13] M. Taleb, G. Teyssedre, S. Le Roy et C. Laurent, « Modeling of charge injection and

extraction in a metal/polymer interface through an exponential distribution of surface

states », IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 20, pp.

311‑320, 2013.

[TEB08] M. Tebani, L. Boudou et J. Guastavino, « Thermally stimulated depolarization

current and space charge measurements on low-density polyethylene: Influence of

the presence of antioxidant », Journal of Applied Polymer Science, Vol. 109, pp.

2768‑2773, 2008.

[TEI02] Teijin DuPont Films, [En ligne]. Disponible sur : http://www.teijindupontfilms.com/.

[TEY97] G. Teyssèdre et Lacabanne, « Caractérisation des polymères par analyse

thermique », Techniques de l’Ingénieur, traité Plastiques et Composites, AM 3 274,

1997.

[TEY01] G. Teyssèdre, C. Laurent, G.C. Montanari, F. Palmieri, A. See, L.A. Dissado et J.C.

Fothergill, « Charge distribution and electroluminescence in cross-linked

polyethylene under dc field », Journal of Physics D: Applied Physics, Vol. 34, pp.

2830‑2844, 2001.

[TEY10] G. Teyssèdre et L. Boudou, « Polymères et composites pour l’électrotechnique »,

Techniques de l’Ingénieur, Matériaux isolants en électrotechnique, D 2 335, 2010.

[THO08] C. Thomas, « Développement de la Méthode Electro-Acoustique Pulsée pour des

Mesures sous Contrainte Périodique de Forme Arbitraire : Caractérisation de la

Charge d’Espace dans les Isolants Polymères », Thèse de doctorat, Université

Toulouse III, Toulouse, France, 2008.

[TOB94] R. Tobazéon, J.C. Filippini et C. Marteau, « On the measurement of the conductivity

of highly insulating liquids », IEEE Transactions on Dielectrics and Electrical

Insulation, Vol. 1, pp. 1000‑1004, 1994.

[TOB98] R. Tobazéon, J.C. Filippini et C. Marteau, « In search of a new method to measure

the resistivity of insulating solids », Proceedings of the 1998 IEEE International

Page 216: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

194

Conference on Conduction and Breakdown in Solid Dielectrics (ICSD), Västerås,

Sweden, pp. 569‑572, 1998.

[TOO80] R. Toomer et T.J. Lewis, « Charge trapping in corona-charge polyethylene films »,

Journal of Physics D: Applied Physics, Vol. 13, pp. 1343‑1356, 1980.

[TOU87] A. Toureille, « Sur une méthode de détermination de densité spatiale de charge

d’espace dans le PE », Proceedings of the 2nd

International Conference on Polymer

Insulated power cables (JICABLE), Versailles, France, pp. 98‑103, 1987.

[TSC89] N.W. Tschoegl, « The phenomenological theory of linear viscoelastic behavior: an

introduction », Springer-Verlag, New York, 1989.

[TUR71] J. van Turnhout, « Thermally Stimulated Discharge of Polymer Electrets », Polymer

Journal, Vol. 2, pp. 173‑191, 1971.

[TUR87] J. van Turnhout, « Thermally stimulated discharge of electrets », in Electrets,

Springer Berlin Heidelberg, Berlin, pp. 81‑215, 1987.

V

[VAN77] J. Vanderschueren, « General properties of secondary relaxations in polymers as

determined by the thermally stimulated current method », Journal of Polymer

Science: Polymer Physics Edition, Vol. 15, pp. 873‑880, 1977.

[VES63] M. Vesly et Z. Zamorsky, « Mixed polycondensates based on terephthalic acid-2,6-

naphthalene dicarboxylic acid and ethylene glycol », Plast and Kautshuk, Vol. 10,

pp. 146‑149, 1963.

[VIS14] B. Vissouvanadin, T.T.N. Vu, L. Berquez, S. Le Roy, G. Teyssèdre et C. Laurent,

« Deconvolution techniques for space charge recovery using pulsed electroacoustic

method in coaxial geometry », IEEE Transactions on Dielectrics and Electrical

Insulation, Vol. 21, pp. 821‑828, 2014.

W

[WAK90] K. Wakino, Y. Tsujimoto, K. Morimoto et N. Ushio, « Technological progress in

materials application for electronic capacitors in Japan », IEEE Electrical Insulation

Magazine, Vol. 6, pp. 29‑43, 1990.

[WIL55] M.L. Williams, R.F. Landel et J.D. Ferry, « The Temperature Dependence of

Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming

Liquids », Journal of the American Chemical Society, Vol. 77, pp. 3701‑3707, 1955.

[WIL70] G. Williams et D.C. Watts, « Non-symmetrical dielectric relaxation behaviour

arising from a simple empirical decay function », Transactions of the Faraday

Society, Vol. 66, pp. 80‑85, 1970.

Page 217: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Références Bibliographies

195

[WIL98] G. Williams et D.K. Thomas, « Phenomenological and Molecular Theories of

Dielectric and Electrical Relaxation of Materials », Novocontrol, 1998.

X

[XIA11] J. Xia, Y. Zhang, F. Zheng, Z. An et Q. Lei, « Numerical analysis of packetlike

charge behavior in low-density polyethylene by a Gunn effectlike model », Journal

of Applied Physics, Vol. 109, pp. 034101, 2011.

Y

[YEN93] S.P.S. Yen, L. Lowry, P.J. Cygan et J.R. Jow, « The investigation of 6µm biaxially

oriented polyethylene-2,6-naphtalene as a possible dielectric for pulse power

capacitors », Proceedings of the 13th

Capacitor and Resistor Technology Symposium

(CRTS), Costa Mesa, California, USA, 1993.

Z

[ZAN91] E. Zanoni, S. Bigliardi, M. Manfredi, A. Paccagnella, P. Pisconi, P. Telaroli, C.

Tedesco et C. Canali, « Correlation between impact ionisation, recombination and

visible light emission in GaAs MESFETs », Electronics Letters, Vol. 27, pp.

770‑772, 1991.

[ZIE77] M. Zielinski et M. Samoc, « An investigation of the Poole-Frenkel effect by the

thermally stimulated current technique », Journal of Physics D: Applied Physics,

Vol. 10, pp. L105‑L107, 1977.

Page 218: TTHHÈÈSSEE - thesesups.ups-tlse.fr

Auteur : HOANG Mai Quyen Directeurs de thèse : Laurent BOUDOU, Séverine LE ROY Lieu et date de soutenance : Toulouse, le 10 décembre 2014 Discipline administrative : Génie Electrique

Titre : Implémentation de la polarisation dans un modèle de transport de charges appliqué au PEN sous contrainte électrique

Résumé : Un modèle, unidimensionnel et bipolaire, capable de décrire les phénomènes de transport, de piégeage et de recombinaison sur la base de résultats expérimentaux a été développé dans l’équipe DSF du laboratoire LAPLACE. Il donne déjà de bons résultats sur du polyéthylène basse densité. Cependant, des améliorations restent possibles, notamment afin de pouvoir prédire le comportement d'un matériau quelconque sous contrainte thermoélectrique, particulièrement lorsque celui-ci est polaire. L’objectif principal de ce travail de thèse est d’implémenter la polarisation dans ce modèle de transport de charges et de définir des paramètres optimisés afin de prédire le comportement du matériau sous une quelconque contrainte thermoélectrique. Dans ce contexte, le polyéthylène naphtalène (PEN) a été choisi comme polymère polaire à étudier. Dans un premier temps, des mesures de courants de dépolarisation thermostimulés –TSDC, de charges d'espace (PEA), et de spectroscopie diélectrique –SD ont été utilisées pour caractériser les propriétés électriques, diélectriques et physico-chimiques du matériau en champ et en température, afin d'appréhender les phénomènes liés aux dipôles et à la conduction. Quatre pics de relaxation ont été observés dans l’ordre croissant de la température. Les trois premiers pics, β, β* et α, observés par SD et TSDC, sont liés à des processus de polarisation d’orientation. Le dernier pic ρ, observé par TSDC uniquement, a pu être attribué à la présence de charges négatives piégées dans le volume, et observées par mesures de charges d'espace. Les phénomènes de polarisation ont ensuite été pris en compte dans le modèle de transport sur la base des résultats de mesure de spectroscopie diélectrique. La réponse diélectrique est modélisée à l'aide d'une fonction de Cole-Cole appliquée à chaque relaxation. Ensuite, à l’aide d’une transformée de Fourier inverse du domaine fréquentiel au domaine temporel, elle est introduite dans le modèle de transport de charges. Les résultats du modèle développé sont validés par des mesures de courant à champ faible à différentes températures. La comparaison entre les courants simulés et mesurés donne une bonne cohérence pour des protocoles expérimentaux où la réponse est essentiellement polaire. Le modèle est ensuite utilisé pour des protocoles expérimentaux où la polarisation et la conduction sont présentes (champ et/ou température élevés). Les premières simulations réalisées ont donné des résultats encourageants concernant les densités totales de courant simulées et mesurées, qui sont comparables.

Mots clés : modèle de transport de charges, polarisation d’orientation, PEN, relaxations diélectriques, Cole-Cole, transformée de Fourier inverse, courants de polarisation, APC, PEA, TSDC, DSC, électroluminescence.

Title: Implementation of polarization in a charge transport model applied to PEN under electrical stress

Abstract: A 1D bipolar model, able to describe transport, trapping and recombination of electronic carriers (electrons and holes) on the basis of experimental results, has been developed. This model already gives good results on low density polyethylene. However improvements are still possible, especially in order to predict any dielectric behavior under electrical stress, particularly polar ones. This work aims at implementing the polarization processes in the charge transport model for polyethylene naphtalene (PEN), a polar polymer, and to define an optimized set of parameters for the model in order to predict the material behavior under any thermo-electrical stress. Thermo-stimulated depolarization current (TSDC), space charge (PEA) measurements, and dielectric spectroscopy (DS) were used to characterize the electrical, dielectric and physic-chemical properties of the material under electric field and temperature, in order to have access to processes related to dipoles and conduction. Four relaxation peaks were observed in the increasing order of temperature. The first three peaks, β, β* and α, observed using DS and TSDC, are related to the orientation polarization process. The last peak, ρ, only observed by TSDC, has been attributed to negative charges trapped in the dielectric, and measured with space charge measurement. Polarization phenomena have then been implemented in the charge transport model based on dielectric spectroscopy measurements. The dielectric response has been treated using a Cole-Cole function for each relaxation process, function of the temperature. Then, with the help of an inverse transform Fourier, the time dependent permittivity has been obtained and is added to a charge transport model. Simulated currents are then compared to measured currents under low fields. Experimental and simulated currents are in good agreement when the material response is essentially from dipolar origin. Finally, the developed model was used for experimental protocols where polarization and conduction are present (high fields and/or high temperatures). The first simulations yield to encouraging results regarding the simulated and measured currents, which are comparable.

Keywords: charge transport model, orientation polarization, PEN, dielectric relaxations, Cole-Cole, inverse Fourier transform, polarization current, APC, PEA, TSDC, DSC, electroluminescence.