42
Variationnal Data assimilation, Earth, Atmosphere, Ocean Serge Gratton University of Toulouse CERFACS-IRIT, Toulouse, France Joint work with S. Gurol, P. Jiranek, D. Titley-Peloquin, Ph.L. Toint, J. Tshimanga (CERFACS-IRIT) O. Titaud, I. Mirouze, A. Weaver (CERFACS) L. Berre, G. Desroziers, H. Varella (M´ et´ eo-France) R. Biancale, L. Seoane, W. Zerhouni (CNES) ADTAO seminar, Toulouse 2013 Serge G. (CERFACS) The ADTAO Fondation RTRA-STAE, ADTAO 2013 1 / 26

Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Variationnal Data assimilation, Earth, Atmosphere,Ocean

Serge GrattonUniversity of Toulouse

CERFACS-IRIT, Toulouse, France

Joint work with S. Gurol, P. Jiranek, D. Titley-Peloquin, Ph.L. Toint, J. Tshimanga(CERFACS-IRIT)

O. Titaud, I. Mirouze, A. Weaver (CERFACS)L. Berre, G. Desroziers, H. Varella (Meteo-France)

R. Biancale, L. Seoane, W. Zerhouni (CNES)

ADTAO seminar, Toulouse 2013

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 1

/ 26

Page 2: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Acknowledgements

The ADTAO project

Is funded by RTRA-STAE

Is a 4 year project

Involves international experts : I.S. Duff, J.Mandel, A. Moore,Ph.L. Toint, L.N. Vicente,

Recruited 6 postdocs : J. Tshimanga, L. Seoane, W. Zerhouni, H.Varella, P. Jiranek, D. Titley-Peloquin

Is a collaboration between 5 entities : CERFACS, CNES, IRIT,Mteo-France, Obervatoire Midi-Pyrnes

Produced 25 journal papers, 2 international conferences, operationalsoftwares for NEMOVAR, GINS, ROMS, Arpege-IFS

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 2

/ 26

Page 3: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Outline

Introduction to data assimilation

Dual iterative solvers

Summary and ongoing related work

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 3

/ 26

Page 4: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Outline

Introduction to data assimilation

Dual iterative solvers

Summary and ongoing related work

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 4

/ 26

Page 5: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Introduction to DA

A dynamical integration model predicts the state of the system given thestate at an earlier time.−→ integrating may lead to very large prediction errors−→ (inexact physics, discretization errors, approximated parameters)

Observational data are used to improve accuracy of the forecasts.−→ but the data are inaccurate (measurement noise, under-sampling)

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 5

/ 26

Page 6: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Introduction to DA

A dynamical integration model predicts the state of the system given thestate at an earlier time.−→ integrating may lead to very large prediction errors−→ (inexact physics, discretization errors, approximated parameters)

Observational data are used to improve accuracy of the forecasts.−→ but the data are inaccurate (measurement noise, under-sampling)

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 5

/ 26

Page 7: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Introduction to DA

Solve a large-scale non-linear weighted least-squares problem:

minx∈Rn

1

2‖x − xb‖2

B−1 +1

2

N∑j=0

∥∥Hj

(Mj (x)

)− yj

∥∥2

R−1j

where

x ≡ x(t0) is the control variable

Mj are model operators: x(tj ) =Mj (x(t0))

Hj are observation operators: yj ≈ Hj (x(tj ))

the obervations yj and the background xb are noisy

B and Rj are covariance matrices

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 6

/ 26

Page 8: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Introduction to DA

Project desciption:

minx∈Rn

1

2‖x − xb‖2

B−1 +1

2

N∑j=0

∥∥Hj

(Mj (x)

)− yj

∥∥2

R−1j

where

Improving B : CERFACS and CNES, using diffusion operator andensemble techniques (Talks of L. Berre, A. Weaver)

Optimization algorithms : CERFACS, IRIT, CNES dual algorithmsand Ensemble Kalman filters (Talks of Ph. Toint, L. Vicente)

Modelling : CNES

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 7

/ 26

Page 9: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Introduction to DA

Solve a large-scale non-linear weighted least-squares problem:

minx∈Rn

1

2‖x − xb‖2

B−1 +1

2

N∑j=0

∥∥Hj

(Mj (x)

)− yj

∥∥2

R−1j

Typically solved using a truncated Gauss-Newton algorithm(known as 4D-Var in the DA community).

−→ linearize Hj

(Mj (x

(k) + δx (k)))≈ Hj

(Mj (x

(k)))

+ H(k)j δx (k)

−→ solve the linearized subproblem

minδx(k)∈Rn

1

2‖δx (k) − (xb − x (k))‖2

B−1 +1

2

∥∥∥H(k)δx (k) − d (k)∥∥∥2

R−1

−→ update x (k+1) = x (k) + δx (k)

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 8

/ 26

Page 10: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Introduction to DA

Solve a large-scale non-linear weighted least-squares problem:

minx∈Rn

1

2‖x − xb‖2

B−1 +1

2

N∑j=0

∥∥Hj

(Mj (x)

)− yj

∥∥2

R−1j

Typically solved using a truncated Gauss-Newton algorithm(known as 4D-Var in the DA community).

−→ linearize Hj

(Mj (x

(k) + δx (k)))≈ Hj

(Mj (x

(k)))

+ H(k)j δx (k)

−→ solve the linearized subproblem

minδx(k)∈Rn

1

2‖δx (k) − (xb − x (k))‖2

B−1 +1

2

∥∥∥H(k)δx (k) − d (k)∥∥∥2

R−1

−→ update x (k+1) = x (k) + δx (k)

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 8

/ 26

Page 11: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Outline

Introduction to data assimilation

Dual iterative solvers

Summary and ongoing related work

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 9

/ 26

Page 12: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Dual Approach

Exploiting the structure: Dual Approach

The exact solution can be rewritten from duality theory or using theSherman-Morrison-Woodbury formula

xb − xk + BHTk (HkBH

Tk + R)−1(dk − Hk (xb − xk ))︸ ︷︷ ︸

Lagrange mult. : requires solving a linear system iteratively in Rm

If m << n, then performing the minimization in Rm can reduce memory andcomputational cost.

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 10

/ 26

Page 13: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Dual Approach

Exploiting the structure: Dual Approach

The exact solution can be rewritten from duality theory or using theSherman-Morrison-Woodbury formula

xb − xk + BHTk (HkBH

Tk + R)−1(dk − Hk (xb − xk ))︸ ︷︷ ︸

Lagrange mult. : requires solving a linear system iteratively in Rm

If m << n, then performing the minimization in Rm can reduce memory andcomputational cost.

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 10

/ 26

Page 14: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Dual Approach

Exploiting the structure: Dual Approach

The exact solution can be rewritten from duality theory or using theSherman-Morrison-Woodbury formula

xb − xk + BHTk (HkBH

Tk + R)−1(dk − Hk (xb − xk ))︸ ︷︷ ︸

Lagrange mult. : requires solving a linear system iteratively in Rm

If m << n, then performing the minimization in Rm can reduce memory andcomputational cost.

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 10

/ 26

Page 15: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Dual Approach

Preconditioned CG algorithm

Initialization

r0 = Aδx0 − b, z0 = Fr0, p0 = z0

For i = 0, 1, ...

1 qi = (B−1 + HTR−1H)pi

2 αi =< ri , zi > / < qi , pi > Compute the step-length

3 δxi+1 = δxi + αipi Update the iterate

4 ri+1 = ri − αiqi ; Update the residual

5 ri+1 = ri+1 − RZT ri+1 Re-orthogonalization

6 zi+1 = F ri+1 Update the preconditioned residual

7 βi =< ri+1, zi+1 > / < ri , zi > Ensure A-conjugate directions

8 R = [R, r/βi ] Re-orthogonalization

9 Z = [Z , z/βi ] Re-orthogonalization

10 pi+1 = zi+1 + βipi Update the descent direction

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 11

/ 26

Page 16: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Dual Approach

Theorem

Suppose that

1 BHTG = FHT.

2 v0 = xb − x0.

→ vectors ri , pi , vi , zi and qi such that

ri = HTri ,

pi = BHTpi ,

vi = v0 + BHTvi ,

zi = BHTzi ,

qi = HTqi

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 12

/ 26

Page 17: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Dual Approach

Initialization steps

given v0; r0 = (HTR−1H + B−1)v0 − b, . . .

Loop: WHILE

1 HTqi−1 = HT(R−1HB−1HT + Im)pi−1

2 αi−1 = rTi−1zi−1 / qTi−1pi−1

3 BHTvi = BHT(vi−1 + αi−1pi−1)

4 HTri = HT(ri−1 + αi−1qi−1)

5 BHTzi = FHTri = BHTGri FHT = BHTG

6 βi = (rTi zi / rTi−1zi−1)

7 BHTpi = BHT(−zi + βi pi−1)

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 13

/ 26

Page 18: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Dual Approach

Initialization

λ0 = 0, r0 = R−1(d − H(xb − x)),z0 = Gr0, p1 = z0, k = 1

Loop on k

1 qi = Api

2 αi =< ri−1, zi−1 >C / < qi , pi >C

3 λi = λi−1 + αi pi

4 ri = ri−1 − αi qi

5 βi =< ri−1, zi−1 >C / <ri−2, zi−2 >C

6 zi = Gri

7 pi = zi−1 + βi pi−1

A = R−1HBHT + Im

G is the preconditioner.

C is the inner-product.

RPCG Algorithm: C = HBHT

identical CG on original system :preserves monotonic decrease ofquadratic cost and exploit geometry

G should be symmetric w.r.t. to C(FHT = BHTG)

Best known reference : PSASAlgorithm for C = R

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 14

/ 26

Page 19: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Dual Approach

Initialization

λ0 = 0, r0 = R−1(d − H(xb − x)),z0 = Gr0, p1 = z0, k = 1

Loop on k

1 qi = Api

2 αi =< ri−1, zi−1 >C / < qi , pi >C

3 λi = λi−1 + αi pi

4 ri = ri−1 − αi qi

5 βi =< ri−1, zi−1 >C / <ri−2, zi−2 >C

6 zi = Gri

7 pi = zi−1 + βi pi−1

A = R−1HBHT + Im

G is the preconditioner.

C is the inner-product.

RPCG Algorithm: C = HBHT

identical CG on original system :preserves monotonic decrease ofquadratic cost and exploit geometry

G should be symmetric w.r.t. to C(FHT = BHTG)

Best known reference : PSASAlgorithm for C = R

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 14

/ 26

Page 20: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Dual Approach

Observations: SST (Sea Surface Temperature) and SSH(Sea Surface Height) observationsfrom satellites. Sub-surface hydrographic observations from floats.

Number of observations (m): 105

Number of state variables (n): 106 for strong constraint and 107 for weak constraint.

Computation: 64 CPUs

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 15

/ 26

Page 21: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

It is possible to maintain the one-to-one correspondance between primal and dualiterates, under the assumption that

Fk−1HTk = BHT

k Gk−1

where Fk−1 is a preconditioner for a primal solver and Gk−1 is a preconditioner fora dual solver (Gratton and Tshimanga 2009).

The preconditioner Gk−1 needs to be symmetric in HkBHTk inner product.

Use Preconditioned Conjugate Gradient method (PCG)

→ Preconditioning with the quasi-Newton Limited Memory Preconditioner(Morales and Nocedal 2000) (Gratton, Sartenaer and Tshimanga 2011)

For linear case, Gratton, Gurol and Toint (2012) derive the quasi-Newton LMP indual space which generates mathematically equivalent iterates to those of primalapproach.

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 16

/ 26

Page 22: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

The quasi-Newton LMP in dual space (Linear case)

The quasi-Newton LMP: The descent directions pi , i = 1, ..., l generated by a CGmethod are used.

Fi =

(In −

pipTi A

pTi Api

)Fi−1

(In −

ApipTi

pTi Api

)+

pipTi

pTi Api

,

→ F = Fl .

The corresponding quasi-Newton preconditioner in dual space is given as

Gi =

(Im −

pi pTi AC

pTi AC pi

)Gi−1

(Im −

Api pTi C

pTi AC pi

)+

pi pTi C

pTi AC pi

where i = 1, ..., l , C = HBHT , A = Im + R−1HBHT and pi is the search direction.→ G = Gl .

→ This preconditioner satisfies the relation: FHT = BHTG and it is symmetric inthe C inner product (Gratton, Gurol and Toint 2012).

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 17

/ 26

Page 23: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

The quasi-Newton LMP in dual space (Linear case)

The quasi-Newton LMP: The descent directions pi , i = 1, ..., l generated by a CGmethod are used.

Fi =

(In −

pipTi A

pTi Api

)Fi−1

(In −

ApipTi

pTi Api

)+

pipTi

pTi Api

,

→ F = Fl .

The corresponding quasi-Newton preconditioner in dual space is given as

Gi =

(Im −

pi pTi AC

pTi AC pi

)Gi−1

(Im −

Api pTi C

pTi AC pi

)+

pi pTi C

pTi AC pi

where i = 1, ..., l , C = HBHT , A = Im + R−1HBHT and pi is the search direction.→ G = Gl .

→ This preconditioner satisfies the relation: FHT = BHTG and it is symmetric inthe C inner product (Gratton, Gurol and Toint 2012).

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 17

/ 26

Page 24: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

The quasi-Newton LMP in dual space (Linear case)

The quasi-Newton LMP: The descent directions pi , i = 1, ..., l generated by a CGmethod are used.

Fi =

(In −

pipTi A

pTi Api

)Fi−1

(In −

ApipTi

pTi Api

)+

pipTi

pTi Api

,

→ F = Fl .

The corresponding quasi-Newton preconditioner in dual space is given as

Gi =

(Im −

pi pTi AC

pTi AC pi

)Gi−1

(Im −

Api pTi C

pTi AC pi

)+

pi pTi C

pTi AC pi

where i = 1, ..., l , C = HBHT , A = Im + R−1HBHT and pi is the search direction.→ G = Gl .

→ This preconditioner satisfies the relation: FHT = BHTG and it is symmetric inthe C inner product (Gratton, Gurol and Toint 2012).

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 17

/ 26

Page 25: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

The quasi-Newton LMP in dual space (Linear case)

The quasi-Newton LMP: The descent directions pi , i = 1, ..., l generated by a CGmethod are used.

Fi =

(In −

pipTi A

pTi Api

)Fi−1

(In −

ApipTi

pTi Api

)+

pipTi

pTi Api

,

→ F = Fl .

The corresponding quasi-Newton preconditioner in dual space is given as

Gi =

(Im −

pi pTi AC

pTi AC pi

)Gi−1

(Im −

Api pTi C

pTi AC pi

)+

pi pTi C

pTi AC pi

where i = 1, ..., l , C = HBHT , A = Im + R−1HBHT and pi is the search direction.→ G = Gl .

→ This preconditioner satisfies the relation: FHT = BHTG and it is symmetric inthe C inner product (Gratton, Gurol and Toint 2012).

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 17

/ 26

Page 26: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

For nonlinear case, inheriting the previous preconditioner may not be possible!

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 18

/ 26

Page 27: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

Re-generate the pairs and the preconditioner using the current inner product.

Gi =

(Im −

pi pTi AC

pTi AC pi

)Gi−1

(Im −

Api pTi C

pTi AC pi

)+

pi pTi C

pTi AC pi

where i = 1, ..., l , C = HBHT , A = Im + R−1HBHT and pi is the search direction.

→ It is costly for large-scale problems.

Define a criterion on whether we precondition the system or not by using ameasure on symmetry.

→ Sensitive to the threshold value.

Objective:

A robust algorithm that handles this sensitivity

A globally convergent algorithm

Most cases are not highly nonlinear : → Perturb as little as possible thepreconditioner of the linear case, and check a posteriori

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 19

/ 26

Page 28: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

Re-generate the pairs and the preconditioner using the current inner product.

Gi =

(Im −

pi pTi AC

pTi AC pi

)Gi−1

(Im −

Api pTi C

pTi AC pi

)+

pi pTi C

pTi AC pi

where i = 1, ..., l , C = HBHT , A = Im + R−1HBHT and pi is the search direction.

→ It is costly for large-scale problems.

Define a criterion on whether we precondition the system or not by using ameasure on symmetry.

→ Sensitive to the threshold value.

Objective:

A robust algorithm that handles this sensitivity

A globally convergent algorithm

Most cases are not highly nonlinear : → Perturb as little as possible thepreconditioner of the linear case, and check a posteriori

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 19

/ 26

Page 29: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

Re-generate the pairs and the preconditioner using the current inner product.

Gi =

(Im −

pi pTi AC

pTi AC pi

)Gi−1

(Im −

Api pTi C

pTi AC pi

)+

pi pTi C

pTi AC pi

where i = 1, ..., l , C = HBHT , A = Im + R−1HBHT and pi is the search direction.

→ It is costly for large-scale problems.

Define a criterion on whether we precondition the system or not by using ameasure on symmetry.

→ Sensitive to the threshold value.

Objective:

A robust algorithm that handles this sensitivity

A globally convergent algorithm

Most cases are not highly nonlinear : → Perturb as little as possible thepreconditioner of the linear case, and check a posteriori

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 19

/ 26

Page 30: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

Re-generate the pairs and the preconditioner using the current inner product.

Gi =

(Im −

pi pTi AC

pTi AC pi

)Gi−1

(Im −

Api pTi C

pTi AC pi

)+

pi pTi C

pTi AC pi

where i = 1, ..., l , C = HBHT , A = Im + R−1HBHT and pi is the search direction.

→ It is costly for large-scale problems.

Define a criterion on whether we precondition the system or not by using ameasure on symmetry.

→ Sensitive to the threshold value.

Objective:

A robust algorithm that handles this sensitivity

A globally convergent algorithm

Most cases are not highly nonlinear : → Perturb as little as possible thepreconditioner of the linear case, and check a posteriori

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 19

/ 26

Page 31: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Preconditioning in dual space

The quasi-Newton LMP in dual space (Nonlinear case)

Solution:

Re-generate the pairs and the preconditioner using the current inner product.

Gi =

(Im −

pi pTi AC

pTi AC pi

)Gi−1

(Im −

Api pTi C

pTi AC pi

)+

pi pTi C

pTi AC pi

where i = 1, ..., l , C = HBHT , A = Im + R−1HBHT and pi is the search direction.

→ It is costly for large-scale problems.

Define a criterion on whether we precondition the system or not by using ameasure on symmetry.

→ Sensitive to the threshold value.

Objective:

A robust algorithm that handles this sensitivity

A globally convergent algorithm

Most cases are not highly nonlinear : → Perturb as little as possible thepreconditioner of the linear case, and check a posteriori

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 19

/ 26

Page 32: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Globally convergent algorithm in dual space

Global convergence can be ensured by inserting the Gauss-Newton strategy in atrust region framework.

Trust-region method simply solves the following problem at iteration k:

minδxk∈Rn

J(δxk ) =1

2‖δxk − xb + xk‖2

B−1 +1

2‖Hkδxk − dk‖2

R−1

subject to ‖δxk‖F−1k≤ ∆k (primal approach)

where ∆k is the trust region radius.

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 20

/ 26

Page 33: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Globally convergent algorithm in dual space

Trust-region in dual space

The preconditioner Gk−1 that is inherited from previous iteration may not besymmetric in the current inner product and may not be positive-definite in thefull dual space (merely in one direction).

We need to adapt the strategy in the trust region algorithm.

TR Step calculation with a flexible (Steihaug-Toint) RPCGalgorithm

1 Check the positive-definiteness along the steepest descent direction.

2 Compute the Cauchy step

3 Compute the step beyond the Cauchy step with the RPCG algorithm (ignoringsymmetry problem)

4 Backtrack along the CG path if needed

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 21

/ 26

Page 34: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Globally convergent algorithm in dual space

Trust-region in dual space

The preconditioner Gk−1 that is inherited from previous iteration may not besymmetric in the current inner product and may not be positive-definite in thefull dual space (merely in one direction).

We need to adapt the strategy in the trust region algorithm.

TR Step calculation with a flexible (Steihaug-Toint) RPCGalgorithm

1 Check the positive-definiteness along the steepest descent direction.

2 Compute the Cauchy step

3 Compute the step beyond the Cauchy step with the RPCG algorithm (ignoringsymmetry problem)

4 Backtrack along the CG path if needed

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 21

/ 26

Page 35: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Globally convergent algorithm in dual space

Trust-region in dual space

The preconditioner Gk−1 that is inherited from previous iteration may not besymmetric in the current inner product and may not be positive-definite in thefull dual space (merely in one direction).

We need to adapt the strategy in the trust region algorithm.

TR Step calculation with a flexible (Steihaug-Toint) RPCGalgorithm

1 Check the positive-definiteness along the steepest descent direction.

2 Compute the Cauchy step

3 Compute the step beyond the Cauchy step with the RPCG algorithm (ignoringsymmetry problem)

4 Backtrack along the CG path if needed

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 21

/ 26

Page 36: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Globally convergent algorithm in dual space

Trust-region in dual space

The preconditioner Gk−1 that is inherited from previous iteration may not besymmetric in the current inner product and may not be positive-definite in thefull dual space (merely in one direction).

We need to adapt the strategy in the trust region algorithm.

TR Step calculation with a flexible (Steihaug-Toint) RPCGalgorithm

1 Check the positive-definiteness along the steepest descent direction.

2 Compute the Cauchy step

3 Compute the step beyond the Cauchy step with the RPCG algorithm (ignoringsymmetry problem)

4 Backtrack along the CG path if needed

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 21

/ 26

Page 37: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Globally convergent algorithm in dual space

Trust-region in dual space

Flexible trust region algorithm

1 Initialization

2 Compute the step by the flexible (Steihaug Toint) RPCG algorithm

3 Accept the step beyond the Cauchy step if

f (yk ) < f (xCk )

4 Accept the trial point according to the ratio of achieved to predicted reduction

5 Update the trust region

→ The global convergence can be proved! (see S. Gurol PhD)

→ This approach is similar to the approach that computes the magical step proposed by(Conn, Gould, Toint 2000).

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 22

/ 26

Page 38: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Globally convergent algorithm in dual space

Trust-region in dual space

Flexible trust region algorithm

1 Initialization

2 Compute the step by the flexible (Steihaug Toint) RPCG algorithm

3 Accept the step beyond the Cauchy step if

f (yk ) < f (xCk )

4 Accept the trial point according to the ratio of achieved to predicted reduction

5 Update the trust region

→ The global convergence can be proved! (see S. Gurol PhD)

→ This approach is similar to the approach that computes the magical step proposed by(Conn, Gould, Toint 2000).

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 22

/ 26

Page 39: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Numerical Results

Numerical experiment on heat equation (1/3)

The dynamical model is considered to be the nonlinear heat equation defined by

δx

δt− δ2x

δu2− δ2x

δv 2+ f [x ] = 0 in Ω× (0,∞)

x [u, v , t] = 0 on δΩ× (0,∞)

where the temperature variable x [u, v , t] depend on both time t and position given byspatial coordinates u and v . The function f [x ] is defined by

f [x ] = exp[ηx ]

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 23

/ 26

Page 40: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Numerical Results

Numerical experiment on heat equation (2/3)

f [x ] = exp[ηx ] η = 2

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 24

/ 26

Page 41: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

Numerical Results

Numerical experiment on heat equation (3/3)

f [x ] = exp[ηx ] η = 4.2

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 25

/ 26

Page 42: Variationnal Data assimilation, Earth, Atmosphere, Ocean · Introduction to data assimilation Dual iterative solvers Summary and ongoing related work Serge G. (CERFACS) The ADTAO

References

Conclusion

We developed and implemented a fast and robust preconditioned non-linear solverfor large-scale problems

The solver is implemented in operational systems in Meteorology andOceanography

Other techniques are used based on variant of Kalman filters : model reduction,ensemble algorithms

• S. Gratton, P. Toint and J. Tshimanga.Inexact range-space Krylov solvers for linear systems arising from inverse problems.SIAM Journal on Matrix Analysis and Applications, 32(3):969-986, 2011

• S. Gratton, P. Laloyaux, A. Sartenaer, and J. Tshimanga.A reduced and limited-memory preconditioned approach for the 4d-var data-assimilation problem. Q. J. Roy. Meteor. Soc.,137:452–466, 2011.

• S. Gratton and J. Tshimanga.An observation-space formulation of variational assimilation using a restricted preconditioned conjugate gradient algorithm. Q.J. Roy. Meterol. Soc., 135:1573–1585, 2009.

• J. Tshimanga, S. Gratton, A.T. Weaver, and A. Sartenaer.Limited-memory preconditioners with application to incremental four-dimensional variational data assimilation. Q. J. Roy.Meterol. Soc., 134:753–771, 2008.

• S. Gratton, S. Gurol, Ph.Toint. Preconditioning and Globalizing Conjugate Gradients in Dual Space for QuadraticallyPenalized Nonlinear-Least Squares Problems. Computational Optimization and Applications, 54(1), pp. 1-25, 2013.

• S. Gratton, J. Tshimanga and Ph. L. Toint. Conjugate-gradients versus multigrid solvers for diffusion-based correlationmodels in data assimilation. Quarterly Journal of the Royal Meteorological Society, to appear, 2013.

• S. Gratton and L. N. Vicente. A surrogate management framework using rigorous trust-region steps. Optimization Methodsand Software to appear, 2013.

Serge G. (CERFACS) The ADTAOFondation RTRA-STAE, ADTAO 2013 26

/ 26