MACROMOLECULES PROTEINES ACIDES NUCLEIQUES. Molécules de PM > ou très largement > 1000...

Preview:

Citation preview

MACROMOLECULES

PROTEINES

ACIDES NUCLEIQUES

Molécules de PM > ou très largement > 1000

Structure complexe et précise à 3 ou 4 niveau d’organisationprimaire, secondaire, tertiaire et quaternaire*forme définitive et souvent « active » de la molécule

Responsables des fonctions les plus caractéristiques de la

cellule vivante :assemblage des constituants cellulaires

catalyse des transformations chimiques

production de mouvements

hérédité

Les fonctions des macromolécules

informations apportées par les macromolécules

qui elles-mêmes

de l’enchaînement des sous-unités par liaisons covalentes

de la structure tridimensionelle

des interactions entre molécules ou entre différentes parties

de la molécule par liaisons non covalentes

(ioniques, hydrogènes ou de van der Waals)

Constante de liaison ou d’affinité

Processus d’interactions moléculairesDiffusion

due à l’agitation thermique Itinéraire aléatoire distance proportionnelle à la racine carrée du temps

Mouvement constant Translocation : mvt d’une molécule d’un endroit à un autre Vibration : mvt rapide de va et vient d’atomes liés de façon

covalente rotations

Formation du complexe Immédiate : vitesse de formation limitée par diffusion Plus lente : nécessite des forces de liaison non covalentesNotion de constante d’équilibre (v formation et dissociation sont égales)

= constante d’affinité

PROTEINES

Liaison peptidique:permet la construction des protéines à partir des 20 acides aminés

Ex. le lysosyme :

129 acides aminés

1er acide aminé (Lysine)

129e acide aminé (Leucine)

Structure primaire de la protéine = ordre dans lequel sont placés les acides aminés.

Les protéines sont des molécules très variées:

On peut imaginer:

3,6 millions de protéines différentes de 10 acides aminés chacune,

1,3 milliards de 15 acides aminés,

15,5 milliards de 25 acides aminés.

Si on assemblait au hasard 129 acides aminés piqués au hasard parmi les 20, il y aurait une chance sur 20129 d'obtenir du lysosyme.

Les protéines sont des molécules très variées:

On peut imaginer:

3,6 millions de protéines différentes de 10 acides aminés chacune,

1,3 milliards de 15 acides aminés,

15,5 milliards de 25 acides aminés.

Si on assemblait au hasard 129 acides aminés piqués au hasard parmi les 20, il y aurait une chance sur 20129 d'obtenir du lysosyme.

La protéine assemblée se replie pour former une structure tridimensionnelle précise:

Lysosyme

Insuline

Hexokinase

Certaines parties de la protéine peuvent adopter une forme régulière = structure secondaire:

Feuillet bêta

Hélice alpha

Pas de conformation régulière

Forme finale = structure tertiaire

Figure 2.17 p. 50

Acétylcholinestérase

Hélices alpha

Feuillets bêta

Feuillets bêta en jaune

Hélices alpha en violet

Beaucoup de protéines sont formées de plusieurs chaînes d'acides aminés qui s'imbriquent les unes dans les autres = structure quaternaire

Ex.

Hémoglobine : 2 chaînes alpha et 2 chaînes bêta

2 chaînes

2 chaînes

Protéines globulaires et fibreuses (p. 51)

La plupart des protéines ont une forme compacte (comme un petit nuage) = protéines globulaires

Certaines sont longues et filiformes (formées d'une seule hélice alpha). Elles peuvent s'associer entre elles pour former des fibres résistantes = protéines fibreuses

chromatographie

Électrophorèseprincipeméthodes

Méthodes physiques d’analyse des protéines

Principales fonctions des protéines

1. Structure, support mécanique

2. Régulation du métabolisme

3. Mouvement

4.Transport de molécules

5. Défense de l'organisme

6. Transport membranaire

7. Métabolisme (les enzymes)

Les protéines fibreuses forment des fibres résistantes.

Ex. le collagène et la kératine

1. Structure et support mécanique

2. Régulation

3. Mouvement

4.Transport

5. Immunité

6. Transport membranaire

7. Métabolisme

Collagène : formé de trois chaînes d'acides aminés imbriquées

Collagène forme la peau (derme), les tendons, les ligaments, l'armature des os, etc.

Collagène = protéine la plus abondante de l'organisme.

Kératine : forme les ongles, la couche cornée de la peau, les plumes, les écailles, les sabots, etc.

La plupart des hormones sont des protéines

Ex.

L'insuline : 2 chaînes pour un total de 51 ac. Aminés

La vasopressine : 1 chaîne courte de 9 ac. aminés

1. Structure

2. Régulation du métabolisme : les hormones

3. Mouvement

4.Transport

5. Immunité

6. Transport membranaire

7. Métabolisme

N.B. Certaines hormones sont des stéroïdes

Mouvements dus à 2 protéines : l'actine et la myosine.

Les cellules formant les muscles sont remplies de ces protéines.

1. Structure

2. Régulation

3. Mouvement

4. Transport

5. Immunité

6. Transport membranaire

7. Métabolisme

L'hémoglobine : transporte l'oxygène

La myoglobine : transporte l'oxygène dans les muscles

L'albumine sérique : transporte le gras dans le sang

Les anticorps (ou immunoglobulines) sont faits de protéines

1. Structure

2. Régulation

3. Mouvement

4. Transport

5. Immunité

6. Transport membranaire

7. Métabolisme

Beaucoup de substances chimiques traversent la membrane des cellules en passant par des canaux formés par des protéines.

Anticorps IGE

Canal responsable de l'expulsion du chlore hors des cellules.

Certaines protéines forment un canal pouvant s'ouvrir ou se fermer.

Catalyseur = substance qui active une réaction chimique qui, sans le catalyseur, serait très lente ou impossible.

Ex. Pourquoi le sucrose ne se défait-il pas en glucose et fructose dans votre café alors qu'il le fait rapidement dans votre intestin?

1. Structure

2. Régulation du métabolisme

3. Mouvement

4.Transport

5. Immunité

6. Transport membranaire

7. Métabolisme : les enzymes

La plupart des réactions chimiques qui se déroulent dans la cellule sont catalysées par des protéines spéciales: les enzymes.

Enzyme = catalyseur

Mode d'action d'une enzyme

L'enzyme peut resservir à faire à nouveau la réaction

Figure 2.20, p. 54

Quelques centaines des milliers de réactions qui se déroulent

dans la cellule.

Chaque point représente une substance chimique. Les traits entre les points représentent la transformation chimique d'une

substance en une autre.

Chacune de ces réactions est catalysée par une enzyme

spécifique.

La cellule ne peut vivre qu'en effectuant des milliers de réactions chimiques différentes.

Chaque réaction est catalysée par une enzyme spécifique.

L'enzyme ne peut fonctionner que si elle possède une forme parfaitement adaptée à la ou aux molécules qu'elle catalyse.

Les enzymes, comme toutes les protéines globulaires, peuvent se déformer = dénaturation de l'enzyme

Enzymes sensibles:

• aux températures élevées

• au pH trop élevé ou trop faible

Une protéine dénaturée ne peut plus remplir sa fonction.

Les enzymes peuvent servir à assembler de petites molécules en plus grosses = anabolisme

OU

à défaire de grosses molécules en plus petites = catabolisme

OU

à modifier des molécules en d'autres molécules semblables (changer un glucose en fructose, par exemple)

Une enzyme donnée ne peut catalyser qu'une réaction bien précise. Il y a donc autant d'enzymes différentes que de réactions différentes.

Protéine des aliments

Digestion

Acides aminés

Circulation

Les cellules synthétisent leurs protéines à partir des acides aminés provenant de la digestion

Notre alimentation doit contenir des protéines

ACIDES NUCLEIQUESADN - ARN

Les acides nucléiques sont des polymères de nucléotidesPrésents chez tous les êtres vivants *

*Cas particulier des virus chez lesquels peut se trouver un seul acide nucléique

ADN = acide desoxyribonucléique molécule de l’hérédité

ARN = acide ribonucléiquemolécule de la synthèse des protéines

Nucléosides et nucléotides

Structure d’une chaîne d’acide nucléique

ADNContient sous forme codée toutes les informations relatives à la vie d'un organisme vivant, du plus simple au plus complexe, viral, procaryote ou eucaryote (bactérien, végétal, animal). Un organisme eucaryote est constitué de plusieurs milliers de milliards de cellules. Ces cellules ont toutes un rôle particulier, et forment les organes, les muscles, la peau... Dans chaque cellule on retrouve un noyau, et dans ce noyau, de l'ADN, le même ADN, quelle que soit la cellule. Sous forme de pelotes, l'ADN est aggloméré en chromosomes. L'homme en porte 23 paires dans ses cellules.Si le contenu de l'ADN humain était mis sous forme d'une encyclopédie, il faudrait à peu près 500 volumes de 800 pages chacun.

Une molécule d'ADN se présente sous la forme d'une double hélice enroulée. Cette double hélice est une macromolécule composée de 150 milliards d'atomes. C'est en fait un motif identique tout le temps répété caractéristique de la composition des nucléotides :

groupement phosphate, sucre (désoxyribose) base azotée,

C'est d'ailleurs le sucre qui donne son nom à l'ADN, tout comme pour l'ARN l'acide ribonucléique..

Dans l'ensemble des 23 paires de chromosomes, on décompte approximativement trois milliards de bases azotées.

ADN

ADN structure

Ce qui différencie un motif d'un autre est la nature de la base azotée. Le sucre et le phosphate sont identiques.

La forme en double hélice est due à l'existence de nombreuses interactions dans la molécule. - à l’intérieur d’une simple chaîne repliement en hélice. -entre chaque hélice : deux à deux, les bases azotées sont associées par liaisons hydrogènes. Ceci assure la stabilité de l'ensemble. Cette capacité d’attraction spécifique a des conséquences importante dans les fonctions des acides nucléiques. On parle d’appariement des basesIl existe une interaction à deux liaisons hydrogènes entre Adénine et Thymine Il existe une interaction à trois liaisons hydrogènes entre Guanine et Cytosine

Les trois structures classiques sont les formes A et B (la plus courante) composées d'hélices droites emmêlées en torsade, tandis que la forme Z est composée d'hélices gauches.

La forme B contient 10 bases par tour, un tour d'hélice correspond à 34Å.

Réplication de l’ADNL’ADN sert de matrice à sa propre duplication. La réplication s’effectue par polymérisation d’une nouvelle chaîne complémentaire sur chacune des chaînes parentalesComme le nucléotide A ne pourra réussir à s’apparier qu’avec T et G avec C, chaque brin d’ADN peut déterminer la séquence de nucléotides de son brin complémentaire. De cette façon, la double hélice d’ADN peut être copiée avec précision

Reconnaissance ADN - protéinesDans l’organisation des hélices, il apparaît deux sillons, à peu près également creusés mais plus (grand sillon) ou moins (petit sillon) larges. Les chaînes de phosphodiesters sont proéminentes dans la structure. Le fond des sillons est composé d'atomes appartenant aux bases ; chaque paire de base est apparente dans le petit comme dans le grand sillon.

Les sillons sont tapissés d'atomes différents pour chaque paire de bases GC ou AT qui peuvent interagir avec des composants extérieurs aux acides nucléiques, comme les nucléases, les enzymes de restriction, les facteurs de transcription, les polymérases...

Ces protéines interagissent donc avec des atomes qui peuvent donner ou accepter des liaisons hydrogènes, ou d'autres qui sont plus (méthyle) ou moins (hydrogène) encombrants, orientés dans la suite de la séquence et reconnaissent donc spécifiquement une séquence nucléique et sa séquence complémentaire.

En fait des torsions de la molécule d'ADN (qui font que l'axe de l'hélice devient courbe) ou des tensions entre spires (qui éloignent certaines et en rapprochent d'autres) jouent tout autant sur la reconnaissance ADN-protéines

Une molécule d'ARN se présente sous la forme d'une hélice simple Cette hélice utilise le même motif de construction que l’ADN, soit la succession de nucléotides formés de phosphate, de sucre (ribose) et de bases azotées, C'est également le sucre qui donne son nom à l'ARN : acide ribonucléique..

ARN

Dans ce cas, les bases sont également au nombre de 4liées par liaisons H comme dans l’hélice de l’ADN:

cytosine et guanine, adénine et uracile.

Structure de la molécule d’ARN

SYNTHESE DES PROTEINES

Une fonction de la cellule est de se reproduire quand on le lui de demande (facteurs de croissances). Lorsqu'elle doit se reproduire, elle se dédouble en se dupliquant. L'ADN de la cellule mère est reproduit à l'identique pour former l'ADN de la cellule fille.

Une autre fonction de la cellule est de produire les protéines nécessaires à sa structure et à son fonctionnement. L’information sur la construction des protéines est incluse dans le code génétique porté par les nucléotides de l’ADN.L’ADN est traduit en protéines par l’intermédiaire de l’ARN qui joue le rôle de traducteur du message génétiquePour traduire cet ADN en protéine, les quatre lettres A, C, G et T s'associent en mot de trois lettres (GGA, CTA...) pour former un codon.

Dans l’ADN eucaryote, la plupart des gènes sont découpés en un certain nombre de régions codantes plus petites (exons)interrompues par des régions non codantes (introns).

Quand un gène eucaryote est transcrit de l’ADN en ARN, les exons et introns sont copiés pour produire le transcrit primaire d’ARN

Les introns sont éliminés par épissage (introns excisés et exons liés entre eux) dans une réaction catalysée par des complexes ribonucléoprotéiques snRNP

ARNm migre alors vers le cytoplasme

L’expression de l’information génétique stockée dans l’ADN implique que la séquence linéaire des nucléotides soit traduite en une séquence colinéaire d’acides aminés.

1) segment limité d’ADN copié en chaîne complémentaire d’ARN.

2) transcrit primaire d’ARN épissé pour supprimer les séquences d’intronsARNm.

3) traduction en protéines par un ensemble de réactions complexes qui se déroulent sur un ribosome (ARNt et ARNr).

Chaque ARNt porteur d’un anticodon donnéest spécifique d’un acide aminé donné

Site anticodon

Ribosome

Structuremicroscopie électronique

Synthèse des protéines sur les ribosomes

Hypothèse sur l’évolution

Cellules initiales : ARN =fonctions génétiques,structurales, catalytiques

Actuellement :ADN = génétiqueProtéines = structure et catalyseARN = messager dans la synthèse protéique etcatalyseur de réactions cruciales(ribozymes)

Le code génétique

Conséquence :toute modificationde nucléotideprotéine anormaleou absente

La synthèse des protéines est régulée à différents niveaux

ADN : inhibiteurs, inducteurs, promoteurs…ARN : épissageProtéine : modifications post traductionnellescatabolisme

Recommended