MB-JASS 2006 Nathalie Munnikes, TUM€¦ · MB-JASS 2006 Nathalie Munnikes, TUM. Commercial...

Preview:

Citation preview

Commercial Biosensors - Nathalie Munnikes - TUM 1

Commercial BiosensorsCommercial Biosensors

MB-JASS 2006Nathalie Munnikes, TUM

Commercial Biosensors - Nathalie Munnikes - TUM 2

OverviewOverviewWhat is a biosensor?The biological component

Immobilization

Some transducer principlesElectrochemicalOpticalAcoustic-Piezoelectric

Some application areasDiabetesMarine observation

Conclusion

Commercial Biosensors - Nathalie Munnikes - TUM 3

IntroductionIntroduction

Aim: combining the specificity and sensitivity of biological systems with the computing power of the microprocessor

[1]

Commercial Biosensors - Nathalie Munnikes - TUM 4

The AnalyteThe Analyte

In principle any substance that takes part in a biochemical process:Anorganic:

– Gases– Ions (pH)– Heavy metals

Organic:– Organic acids ( proteins)– Carbohydrates (sugars)– Urea (NH2)2CO

More generally: any unit, (part of) which is involved in a biochemical process:Microorganisms(Microbial) cells

AntibodiesAntigens

Commercial Biosensors - Nathalie Munnikes - TUM 5

The BioreceptorThe Bioreceptor

EnzymesAntibodiesNucleic acidsReceptors

Organisms, slices of tissue, cells, organelles, membranes

Any biological substance that can attach itself to a particular analyte:

...and unpurified material containing such a substance:

[1]

Commercial Biosensors - Nathalie Munnikes - TUM 6

The Bioreceptor (2)The Bioreceptor (2)

EnzymesAntibodiesNucleic acidsReceptors

Catalytists

Based on bioaffinity:binding & labelling

Commercial Biosensors - Nathalie Munnikes - TUM 7

Example: labelling antibodiesExample: labelling antibodies

Antibodies

Oxygen electrode

Label: catalase

Antigens

Catalase: 2 H2O2 2 H2O + O2

[11]

Commercial Biosensors - Nathalie Munnikes - TUM 8

The Bioreceptor (2)The Bioreceptor (2)

EnzymesAntibodiesNucleic acidsReceptors

Catalytists

Based on bioaffinity:binding (& labelling)

Based on hybridization:binding of a unique

DNA/RNA sequence

Based on a physiological responsee.g. neurotransmitters

Commercial Biosensors - Nathalie Munnikes - TUM 9

Receptors: specificity vs. stabilityReceptors: specificity vs. stability

[1]

Commercial Biosensors - Nathalie Munnikes - TUM 10

ImmobilizationImmobilization

adsorption

Commercial Biosensors - Nathalie Munnikes - TUM 11

ImmobilizationImmobilization

Polymer gel

adsorptionentrapment

Commercial Biosensors - Nathalie Munnikes - TUM 12

ImmobilizationImmobilization

Membrane

adsorptionentrapment

microencapsulation

Commercial Biosensors - Nathalie Munnikes - TUM 13

ImmobilizationImmobilization

adsorptionentrapment

microencapsulation cross-linking

Stabilises adsorbed material

Commercial Biosensors - Nathalie Munnikes - TUM 14

ImmobilizationImmobilization

Designed bond

adsorptionentrapment

microencapsulation cross-linking

covalent binding

[1]

Commercial Biosensors - Nathalie Munnikes - TUM 15

Example: covalent bondingExample: covalent bonding

Carboxyl group

Amine group

[11]

Commercial Biosensors - Nathalie Munnikes - TUM 16

Transducers: an overviewTransducers: an overviewElectrochemical:

Optical:

Mechanical-piezoelectricAcoustical-piezoelectric

Calorimetric

ConductimetryField Effect Transistors

Internal Reflection Spectroscopy – Surface Plasmon Resonance (SPR)

PotentiometryAmperometry

Ultraviolet-visible absorptionLuminescenceLaser light scattering

Surface Acoustic Wave (SAW)

Commercial Biosensors - Nathalie Munnikes - TUM 17

Electrochemical transducersElectrochemical transducersDifference between indicator

and reference electrode potential at equilibrium (i.e.

zero current)

PotentiometryAmperometryConductimetryField Effect Transistors

Commercial Biosensors - Nathalie Munnikes - TUM 18

The electrochemical cellThe electrochemical cell

Gibbs free energy of a half cell (Ox + ne- = Red):

∆G = -nFE = -RT ln K

Measured potential:Ecell = Eind - Eref

Nernst equation for the electromotive force of a half-cell:

E = E* + RT/nF · ln (aOx/aRed)

Commercial Biosensors - Nathalie Munnikes - TUM 19

IonIon--selective Electrode (ISE)selective Electrode (ISE)

[1,10]

Commercial Biosensors - Nathalie Munnikes - TUM 20

Electrochemical transducersElectrochemical transducersDifference between indicator

and reference electrode potential at equilibrium (i.e.

zero current)

PotentiometryAmperometryConductimetryField Effect Transistors Current flowing between

working and reference electrode

Commercial Biosensors - Nathalie Munnikes - TUM 21

AmperometryAmperometry

At t0 a voltage is applied over the electrodes, causing the cell to “recharge”.The diffusion rate of fresh Ox decreases.Fick’s law: dC/dt = D * d2C/dC2

Commercial Biosensors - Nathalie Munnikes - TUM 22

Amperometry (2)Amperometry (2)

The diffusion-limited current decays over time:id = nFADCOx / √(πt)

Commercial Biosensors - Nathalie Munnikes - TUM 23

Electrochemical transducersElectrochemical transducersDifference between indicator

and reference electrode potential at equilibrium (i.e.

zero current)

PotentiometryAmperometryConductimetryField Effect Transistors Current flowing between

working and reference electrode

Transistors where the gate metal has been replaced by a chemically

sensing surface

Commercial Biosensors - Nathalie Munnikes - TUM 24

Field Effect TransistorField Effect Transistor

1 Silicon substrate2 Insulator SiO2/Si3N4

3 Furrow Metals4 Lacune (gap)5 Selective coating

[1,9]

Commercial Biosensors - Nathalie Munnikes - TUM 25

Optical transducersOptical transducers

Ultraviolet-visible absorptionLuminescenceInternal Reflection Spectroscopy

Surface Plasmon Resonance (SPR)

Laser light scattering

Commercial Biosensors - Nathalie Munnikes - TUM 26

Example: luminescenceExample: luminescence

Combining chemiluminescence and fluorescence

Commercial Biosensors - Nathalie Munnikes - TUM 27

Total Internal Reflection (TIR)Total Internal Reflection (TIR)

Snell’s law:n1sin θ1 = n2sin θ2

θc = sin-1(n2/n1)

Commercial Biosensors - Nathalie Munnikes - TUM 28

The evanescent waveThe evanescent wave

Commercial Biosensors - Nathalie Munnikes - TUM 29

Total Internal Reflection Total Internal Reflection FluorescenceFluorescence

Commercial Biosensors - Nathalie Munnikes - TUM 30

Plasmons & TIRPlasmons & TIR

A plasmon is a quasiparticle, belonging to a collective oscillation of the free electron gas in (semi)conductors.

An evanescent wave at a dielectric/conducting medium interface can excite surface plasmons

[12]

Commercial Biosensors - Nathalie Munnikes - TUM 31

Plasmons & TIR (2)Plasmons & TIR (2)

Gap in the reflected light intensity

How to involve biomaterial in this?

Thin conducting layer with biomaterial on the other side. A small change in refractive index of the biomaterial causes a large shift of θ.

[12]

Commercial Biosensors - Nathalie Munnikes - TUM 32

Surface Plasmon ResonanceSurface Plasmon Resonance

Commercial Biosensors - Nathalie Munnikes - TUM 33

PiezoelectricityPiezoelectricity

Applied stress: T = cS - eTEElectric displacement (polarization):D = eS + εE

Commercial Biosensors - Nathalie Munnikes - TUM 34

The Rayleigh Surface WaveThe Rayleigh Surface Wave

Amplitude ~ 10Å

[1]

Commercial Biosensors - Nathalie Munnikes - TUM 35

Surface Acoustic Wave TransducerSurface Acoustic Wave Transducer

Commercial Biosensors - Nathalie Munnikes - TUM 36

Surface Acoustic Wave TransducerSurface Acoustic Wave Transducer

Resonance frequency:F0 = VR/λ = VR / 4d

[1]

Commercial Biosensors - Nathalie Munnikes - TUM 37

OverviewOverviewWhat is a biosensor?The biological component

Immobilization

Some transducer principlesElectrochemicalOpticalAcoustic-Piezoelectric

Some application areasDiabetesMarine observation

Conclusion

Commercial Biosensors - Nathalie Munnikes - TUM 38

Application areasApplication areas

Health industryBlood glucose sensors for diabetes patients

Food industry– Determination of the composition– Degree of contamination:

Pathogens, pesticides, microorganisms, toxins– On line control of the fermentation process

Natural environmentWater quality control

Commercial Biosensors - Nathalie Munnikes - TUM 39

History of the biosensorHistory of the biosensor

Invented by Clark in 1962Commercialized in 1974World market in 2004:$5 billion

Leland C. Clark Jr. (1918-2005) First commercial glucose biosensor

Commercial Biosensors - Nathalie Munnikes - TUM 40

DiabetesDiabetes

Medical disorder, where the hormone that regulates uptake of sugars fails

high blood glucose levelType 1: lack of insulinType 2: lack of insulin sensitivity2006: 171 million people, 2030: twice as much#6 of the leading causes of death in the US

Commercial Biosensors - Nathalie Munnikes - TUM 41

Blood glucose biosensorsBlood glucose biosensors

Replaced the reflectance metersNow: 85% of the world market for biosensors

[4]

Commercial Biosensors - Nathalie Munnikes - TUM 42

Marine observationMarine observation

Nitrate biosensor

Nutrient concentrations, algal biomass, species composition, water quality (oxygen, toxins etc.)

Commercial Biosensors - Nathalie Munnikes - TUM 43

Commercial success & Commercial success & expectationsexpectations

Commercial succes due to popularity in:Academic research (cheap equipment, broad learning field)Politics (improvement of human health / environment; defence against biochemical terrorism)

Sensor type Advantages DisadvantagesSingle use high accuracy and

sensitivity, modest costsIntermittent use fast not precise, very expensiveContinuous use cannot hold calibration yet

[3]

Commercial Biosensors - Nathalie Munnikes - TUM 44

ReferencesReferences

[7] Evanescent wave fluorescence biosensorsC. Taitt, G. Anderson, F. LiglerBiosensors and Bioelectronics 20, 2005

[8] Listening to the brain: microelectrode biosensors for neurochemicalsN. Dale, S. Hatz, F. Tian and E. LlaudetTrends in Biotechnology 23, 2005

[9] Review of the use of biosensors as analytical tools in the food and drink industriesL. Mello, L. KubotaFood Chemistry 77, 2002

[10] Ion-Selective Electrodes (2005)Chemical Sensors Research Group, Warsaw University of Technologyhttp://csrg.ch.pw.edu.pl

[11] Biosensors : an introductionBrian EgginsWiley Teubner, Stuttgart 1996

[12] Surface Plasmon ResonanceArnoud Marquarthttp://home.hccnet.nl/ja.marquart/BasicSPR/BasicSpr01.htm

E-Mail: n.munnikes@mytum.de

[1] Lecture “Biochemical Sensors” (2003/04)Jose Garrido, Technische Universität Münchenhttp://www.wsi.tu-muenchen.de/E25/research/DiamondGarrido/josegarrido/lecture.htm

[2] Biosensors: Fundamentals and ApplicationsA. Turner, I. Karube and G. WilsonOxford University Press, Oxford 1987

[3] Biosensors – a perspectivePeter KissingerBiosensors and Bioelectronics 20, 2005

[4] Home blood glucose biosensors: a commercial perspectiveJ. Newman, Anthony TurnerBiosensors and Bioelectronics 20, 2005

[5] Enzyme inhibition-based biosensors for food safety and environmental monitoringA. Amine, H. Mohammadi, I. Bourais, G. PalleschiBiosensors and Bioelectronics 21, 2006

[6] Biosensors for marine applications – we all need the sea, but does the sea need biosensors?S. Kröger, R. LawBiosensors and Bioelectronics 20, 2005

Commercial Biosensors - Nathalie Munnikes - TUM 45