Nicolas Delpierre (dir. Eric Dufrêne)

Preview:

DESCRIPTION

Etude du déterminisme des variations interannuelles des échanges carbonés des écosystèmes forestiers européens: une approche basée sur la modélisation des processus. Nicolas Delpierre (dir. Eric Dufrêne). Saclay, 14 décembre 2009. Terrestrial vegetation modulates atmospheric [CO 2 ]. - PowerPoint PPT Presentation

Citation preview

Etude du déterminisme des variations interannuelles des échanges carbonés des

écosystèmes forestiers européens: une approche basée sur la modélisation des

processusNicolas DelpierreNicolas Delpierre (dir. Eric Dufrêne)

Saclay, 14 décembre 2009

Terrestrial vegetation modulates atmospheric [CO2]

2

1960 1970 1980 1990 2000 2010

Flu

x (G

t C

y-1

)

0

2

4

6

8

10

Fossil fuels + Land Use Change

Le Quéré et al., 2009

Terrestrial vegetation modulates atmospheric [CO2]

2

1960 1970 1980 1990 2000 2010

Flu

x (G

t C

y-1

)

0

2

4

6

8

10

Atmosph.40%

Fossil fuels + Land Use ChangeAtm increase

Le Quéré et al., 2009

Terrestrial vegetation modulates atmospheric [CO2]

2

1960 1970 1980 1990 2000 2010

Flu

x (G

t C

y-1

)

0

2

4

6

8

10

Atmosph.40%

Ocean30%

Fossil fuels + Land Use ChangeAtm increaseOcean uptake

Le Quéré et al., 2009

Terrestrial vegetation modulates atmospheric [CO2]

2

1960 1970 1980 1990 2000 2010

Flu

x (G

t C

y-1

)

0

2

4

6

8

10

Atmosph.40%

Ocean30%

Vegetation30%

Vegetation C uptakeVegetation C uptake accounts for most of the IAV

Forests ~60% of vegetation uptake

Fossil fuels + Land Use ChangeAtm increaseOcean uptakeVegetation uptake

Le Quéré et al., 2009

FLUXNETMonitoring the vegetation / atmosphere C exchanges

Forest sitesNon-forest sites

8CARBOEUROPE CARBOEUROPE

networknetwork

CARBOEUROPEEcological gradient

Coniferous forests

Pinus spp.Picea spp.

Deciduous forests

Fagus sylvaticaQuercus spp.

Evergreen Broadleaves

Quercus ilex

Mixed forests

9

CARBOEUROPEAnnual NEP sums

Boreal (Pinus)

Temperate (Picea)

Temperate (Fagus)

Mediterranean (Q.ilex)

2001 2003 2005 2007

2001 2003 2005 2007

2001 2003 2005 2007

2001 2003 2005 200711

R²=0.40R²=0.40 R²=0.80R²=0.80

CARBOEUROPEExplaining Intersite variations of the C balance

Water balance Temperature

GPP(gC / m² / y)

12

One color =

One site

Southern <52°N Northern >52°N

adapted from Reichstein et al., 2007

CARBOEUROPEExplaining Intersite variations of the C balance

R²=0.40R²=0.40 R²=0.80R²=0.80

R²=0.30R²=0.30 R²=0.70R²=0.70

GPP(gC / m² / y)

Reco(gC / m² / y)

12

Water balance Temperature

Southern <52°N Northern >52°N

adapted from Reichstein et al., 2007

CARBOEUROPEExplaining Intersite variations of the C balance

R²=0.40R²=0.40 R²=0.80R²=0.80

GPP(gC / m² / y)

R²=0.30R²=0.30 R²=0.70R²=0.70

Reco(gC / m² / y)

R²<0.10R²<0.10 R²=0.20R²=0.20

NEP(gC / m² / y)

12

What about interannual variations

???

Southern <52°N Northern >52°N

Water balance Temperatureadapted from Reichstein et al., 2007

CARBOEUROPEExplaining Interannual variations of the C balance

GPP(gC / m² / y)

Reco(gC / m² / y)

NEP(gC / m² / y)

SignificantRelationships

5 sites over 25

SignificantRelationships

3 sites over 25

SignificantRelationships

4 sites over 25

13

Southern <52°N Northern >52°N

Water balance Temperature

  Info used Logical linkInterannual

Climate indexes

Annual climate correlative

Empirical vs. Process-based models

14

Statisticalmodels

  Info used Logical linkInterannual

Climate indexes

Annual climate correlative

CASTANEACASTANEAClimateClimate

Biological Biological driversdrivers

?? ?? To be To be

tested ??tested ??

Empirical vs. Process-based models

14

Statisticalmodels

Process

Basedmodel

  Info used Logical linkInterannual

Climate indexes

Annual climate correlative

CASTANEACASTANEAClimateClimate

Biological Biological driversdrivers

explanatory Proces

sBasedmodel

Empirical vs. Process-based models

14

Quantify the influences of ClimateClimate and Biological driversBiological driversoperating at several timescalesseveral timescales to determine the interannual variations of GPP, Reco and NEP

Statisticalmodels

3)Availability of Statistical tools for signal deconvolution

Criteria for using CASTANEA as a deconvolution tool

1) Biological realism of the simulated processes

2) Accuracy of flux simulations

15

Seasonality of photosynthesis in conifers Seasonality of photosynthesis in deciduous species

- Spring phase- Autumn phase

Evaluation of data quality Model validation at multiple time scales

SA technique revealing seasonal influences SA technique revealing influences at multiple time scales

4. Influence of climate and biological drivers

across time scales

OUTLINEOUTLINE

2. Modelling canopy senescence in deciduous

forests

16

1. Materials & methodsAn overview of the CASTANEA model

3. Model Validation

1. Materials & methodsAn overview of the CASTANEA model

CO2

Solar radiation

temperature

Radiation interceptionGlobal PAR

PhotosynthesisStomatal Cond.

CASTANEAmodel

Dufrêne et al., 2005

Transpiration

Water vapour

GP

P

17

Solar radiation

temperature

Water vapour

Radiation interceptionGlobal PAR

Photosynthesis

Precipitations

Canopy interception

Throughfall

Stem flow

Litter

Surface

Root zone

drainage

Soil evaporation

TranspirationCanopy

evaporation

CO2

Stomatal Cond.

GP

P

CASTANEAmodel

Dufrêne et al., 2005 17

Solar radiation

temperature

Water vapour

Radiation interceptionGlobal PAR

Photosynthesis

Precipitations

Canopy interception

Throughfall

Stem flow

Litter

Surface

Root zone

Soil evaporation

Transpiration

Carbon AllocationC leaves

C coarse roots

C fine roots

Growth Respiration

C litter

C surface

C deep

HeterotrophicRespiration

CO2

Canopy evaporation

drainage

Stomatal Cond.

GP

P

Rec

o

C aerial wood

C reserves Maintenance Respiration

CASTANEAmodel

Dufrêne et al., 2005 17

CASTANEA Modelling the C balance of European forests

Coniferous forests

Hyytiälä(Boreal Pine)

Tharandt(Temperate Spruce)

Evergreen Bleaves

Puéchabon(Mediterranean Q. ilex)

Deciduous forests

SoroeHainich (Temperate Beech)Hesse

18

2. Modelling canopy

senescencein deciduous

forests

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

19

N resorption

Sep Oct Nov Dec

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

19

N resorption

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)Sep Oct Nov Dec

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

19

N resorption

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)Sep Oct Nov Dec

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

19

N resorption

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)Sep Oct Nov Dec

OakOakBeechBeech

RENECOFOR observationsSenSen9090 = 90% x 36 trees = 90% x 36 trees

  Sites n MAT (°C) Alt (m) Sen90

Beech 18 159 9.8 400 20 October

Autumn phenology The RENECOFOR dataset (1997-2006)

20

Driver Effect References

TemperaturesTemperatures

Addicott, 1968

Low temperatures ++ Schnelle, 1952

Schulze, 1970

PhotoperiodPhotoperiod

Long days ++ / / --Addicott, 1968Seyfert, 1970Chuine, 2001

Estrella & Menzel, 2006

Short days ++ / / --Other potential driversOther potential drivers

•Water balance•Mineral deficits

•atmospheric pollution•parasites…

Designing a bioclimatic modelLiterature review

21

8

10

12

14

16

Rel

ati

ve

sen

esc

ence

Tem

per

atu

reDesigning a bioclimatic model

Model formulation

22

Model parameters

Rel

ativ

e se

nes

cen

ceT

emp

erat

ure

Day

len

gth

Senescence initiation date Base temperature Critical T sum

Model formulation

non-linear T x DayLength effects

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

1.0Jul Aug Sep Oct Nov Dec

Jul Aug Sep Oct Nov Dec

Tbase

  Beech

 RMSE ( days )

ME (%)

Null model 16a 0

White et al. 15a 10

Jolly et al. 15a 7

This study 13b 33

BeechBeech

Fitting subsetValidation subset

Senescence model assessment (1)

23

Prediction error =13 days(Observation resolution = 7 days)

Observations

Sim

ula

tio

ns

Delpierre et al., 2009

 RMSE (days)

ME (%)

Beech 2 46

Senescence model assessment (2)

24

BeechBeech

Yel

low

ing

dat

e (D

oY

)

Validation statistics

Important reduction of the prediction error

Observation uncertainty averaging Reduced contribution of extreme dates

1997 1999 2001 2003 2005

observations

simulations

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

25

N resorption

Sep Oct Nov Dec

Davi et al. (2005)Sep Oct Nov Dec

Impro

ved

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

25

N resorption

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)Sep Oct Nov Dec

Impro

ved

Over

estim

ation

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

25

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)Sep Oct Nov Dec

Impro

ved

Impro

ved

N investment

xN resorption

3. Model Validation

Model validation across time scalesDAILYDAILY

Hyytiälä(Pinus)

R²=0.92bias= +0.11

Tharandt(Picea)

R²=0.91bias= +0.10

Puéchabon(Q. ilex)

R²=0.74bias= +0.21

Hainich(Fagus)

R²=0.95bias= -0.08

2000 2001 2002 2003 2004 2005 2006 2007

2000 2001 2002 2003 2004 2005 2006 2007

26

Model validation across time scalesANNUALANNUAL

FIHyy RMSE=13, r²=0.82DETha RMSE=66, r²=0.51FRPue RMSE=59, r²=0.82

CASTANEA reproduces 36% - 82% of C flux interannual variance36% - 82% of C flux interannual variance

Model validated Model challenged

27

4. Influence ofclimate & biological

driversacross time scales

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007 28

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007 29

Jan Jul DecApr Oct

Mean annualpattern

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007 30

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007 30

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007 31

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007

inte

gra

tion

31

Influence on Influence on GPPGPP

Influence on Influence on RecoReco

Climate drivers

Incident Radiation

Temperature

Relative Humidity

Soil water content

Biological drivers

Thermal acclimation

Canopy dynamics (LAI)

Woody biomass

Soil C stock

No effect

No effect

No effect

No effect

No effect

32

Conifers

Conifers

dailycycle

annualcycle

Climate and biological drivers interact at different time scales

Climate drivers Biological drivers

Var

ian

ce i

nd

ex

Var

ian

ce i

nd

ex

Global radiationTemperatureVPD

Leaf Area Index

annualcycle

33

hour day month year hour day month year

dailycycle

annualcycle

Climate and biological drivers interact at different time scales

Climate drivers Biological drivers

Var

ian

ce i

nd

ex

Var

ian

ce i

nd

ex

Global radiationTemperatureVPD

GPP

Leaf Area Index

GPP

annualcycle

Climate modulates short-term flux variability Climate + Biological drivers modulate flux IAV 33

hour day month year hour day month year

Constrained simulations

blue = « mean Rg » referencegrey = original flux (year 2000)

Single driver contribution to flux modulationSingle driver contribution to flux modulation

Day of Year

Day of Year

Hyytiälä, Boreal Pine

34

Proper Rg effect on GPP

Constrained simulations

8 years of dailyGPP anomalies due to radiation

8 years of dailyGPP anomalies

due to Water Stress

2000 2002 2004 2006

2000 2002 2004 2006

Hyytiälä, Boreal Pine

Hyytiälä, Boreal Pine

35

0.000

0.002

0.006

0.008

0.010

OWT variance decomposition

Orthonormal wavelet transform

(Haar basis)

Localize and compare residual signal variances

across time scales

Residual signals variance spectra

36

d w m s y >y

2000 2002 2004 2006

2000 2002 2004 2006

Hyytiälä, Boreal Pine

Hyytiälä, Boreal Pine

0.0

0.2

0.4

0.6

0.8

1.0

OWT variance decomposition

37

Residual signals relative influences

Orthonormal wavelet transform

(Haar basis)

calculate relative influencesof both drivers

d w m s y >y

2000 2002 2004 2006

2000 2002 2004 2006

Hyytiälä, Boreal Pine

Hyytiälä, Boreal Pine

decreasing influence of climate drivers at higher timescales

Deconvolution across time scales

Hyytiälä (Boreal Pine)GPP

d w m s y >y

clim

ate

clim

ate

bio

log

ica

lb

iolo

gic

alAccP

38

RglobalRglobal + LAILAI + droughtdrought control GPP annual IAV

decreasing influence of climate drivers at higher timescales

Deconvolution across time scales

Hyytiälä (Boreal Pine)GPP

clim

ate

clim

ate

bio

log

ica

lb

iolo

gic

alAccP

39

RglobalRglobal + LAILAI + droughtdrought control GPP annual IAV

RglobLAI

REWAccP

Significant contribution of biological driversbiological drivers to GPP-IAV modulation

Deconvolution across time scales

Hyytiälä (Boreal Pine)GPP

clim

ate

clim

ate

bio

log

ica

lb

iolo

gic

alAccP

39

Climatedrivers

60%

Biologicaldrivers

40%

AccP45%

AccP9%

GPP-IAV controls in conifers(2000-2007)

Hyytiälä (Boreal Pine)GPP

Tharandt (Temperate Spruce)GPP

Stronger influence of thermal acclimationthermal acclimation at the warmer site !!!

40

+9°C+9°C +4°C+4°C

RglobTair

VPDVPD

REW

AccPLAIBwood

CsoilCsoilClim

ate

Bio

log

ical

Bio

log

ical

Thermal acclimation AccPThermal acclimation AccP

Jan Jul Nov

Hyytiälä (Boreal Pine)GPP

Tharandt (Temperate Spruce)GPP

GPP-IAV controls in conifers(2000-2007)

40

+9°C+9°C +4°C+4°C

AccP45%

AccP9%

Ac

cP

0.0

0.2

0.4

0.6

0.8

1.0

AccP constraint ++++++AccP constraint ++

Acc

P

0.0

0.2

0.4

0.6

0.8

1.0Thermal acclimation AccPThermal acclimation AccP

Jan Jul Nov

AccP constraint ++++++AccP variations ++

AccP constraint ++AccP variations ++++++

Hyytiälä (Boreal Pine)GPP

Tharandt (Temperate Spruce)GPP

GPP-IAV controls in conifers(2000-2007)

40

+9°C+9°C +4°C+4°C

AccP45%

AccP9%

HyyHyyBoreal Boreal PinusPinus

ThaThaTemperateTemperate

PiceaPicea

HaiHaiTemperateTemperate

FagusFagus

PuePueMedit.Medit.Q. ilexQ. ilex

Contrast of thermal acclimation influence in conifers

Strong influence of REW• Recurrent in Puéchabon

• 2003 drought in Hainich

RglobTair

VPDVPD

REW

AccPLAIBwood

CsoilCsoilClim

ate

Bio

log

ical

Bio

log

ical

Flux-IAV controls in European forests (2000-2007)

41

GPPGPP

REW

REW

AccP

LAI Rg

REW

RecoReco

HyyHyyBoreal Boreal PinusPinus

ThaThaTemperateTemperate

PiceaPicea

HaiHaiTemperateTemperate

FagusFagus

PuePueMedit.Medit.Q. ilexQ. ilex

Temperature vs Soil Water control

Low influence of Biomass

RglobTair

VPDVPD

REW

AccPLAIBwood

CsoilCsoilClim

ate

Bio

log

ical

Bio

log

ical

Flux-IAV controls in European forests (2000-2007)

41

GPPGPP

REW

REW

AccP

LAI Rg

REW REW

REW

Temp

Temp

RecoReco

HyyHyyBoreal Boreal PinusPinus

ThaThaTemperateTemperate

PiceaPicea

HaiHaiTemperateTemperate

FagusFagus

PuePueMedit.Medit.Q. ilexQ. ilex

RglobTair

VPDVPD

REW

AccPLAIBwood

CsoilCsoilClim

ate

Bio

log

ical

Bio

log

ical

Flux-IAV controls in European forests (2000-2007)

41

GPPGPP

REW

REW

AccP

LAI Rg

REW REW

REW

Temp

Temp

NEPNEP

Rg

AccP Temp

REW

REWTemp

NEP control unpredictable from

elementary flux responses

Compensation effects

noticeable

CONCLUSION

Process-based modelsallow to address the determinism of C fluxes

from detailed processes to ecosystem scale

from hourly to decadal time scale

42

CONCLUSION

42

Increased contribution of Biological Drivers

at higher timescales

Constraint vs. Modulation

Unpredictability of NEP controls from GPP/Reco controls

Process-based modelsallow to address the determinism of C fluxes

CONCLUSION

42

Limits of the approach

Poor quality of Eddy Covariance nighttime fluxes Are our models reliable ?

(van Gorsel et al., 2009)

Model challenged at some sites (Hesse, Soroe)Are we missing something ?

Process-based modelsallow to address the determinism of C fluxes

PERSPECTIVES

43

Deconvolution methodology on longer time series

for an increased number of sites

Model developmentsSupra-decadal simulations

age effects (C allocation) acclimation (e.g. respiration, phenology)

Carbon-Water-Nitrogen coupling

Genericity

Merci

Recommended