12
Les Atomes I. L’atome et les particules élémentaires A. Introduction Les atomes sont les composantes des molécules. Les propriétés et la structure des atomes vont conditionner la réactivité des biomolécules. B. Constitution de l’atome Modèle de Rutherford La structure d’un atome est impossible à observer directement. Plusieurs théories ont permis de construire le modèle actuel de l’atome. Modèle de Rutherford = un atome est composé d’électrons qui gravitent autour d’un noyau composé à son tour de nucléons (protons + neutrons). Particules Localisation Charge Neutrons Noyau 0 Protons Noyau +e Electrons Périphérie (autour du noyau) -e Un atome à l’état fondamental est électriquement neutre quand il possède Z protons et Z electrons. Ex : Na Z = 11 protons A = 23 nucléons A = nombre de masse = nombre de nucléons Z = numéro atomique = nombre de protons X = symbole de l’élément

sd6fa59db7de61780.jimcontent.com · Web viewLa plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y

  • Upload
    ngokien

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: sd6fa59db7de61780.jimcontent.com · Web viewLa plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y

Les Atomes

I. L’atome et les particules élémentaires

A. Introduction

Les atomes sont les composantes des molécules. Les propriétés et la structure des atomes vont conditionner la réactivité des biomolécules.

B. Constitution de l’atome Modèle de Rutherford

La structure d’un atome est impossible à observer directement. Plusieurs théories ont permis de construire le modèle actuel de l’atome.

Modèle de Rutherford = un atome est composé d’électrons qui gravitent autour d’un noyau composé à son tour de nucléons (protons + neutrons).

Particules Localisation ChargeNeutrons Noyau 0Protons Noyau +eElectrons Périphérie (autour du noyau) -e

Un atome à l’état fondamental est électriquement neutre quand il possède Z protons et Z electrons. Ex : Na

Z = 11 protons

A = 23 nucléons

entité neutre donc possède 11 électrons.

La masse atomique d’un élément chimique est égale à A (nombre de masse) exprimée en u.m.a (unité arbitraire de masse).

La masse d’une mole (ou masse molaire) d’un élément chimique est égale à A exprimée en g.mol -1.

A = nombre de masse = nombre de nucléons

Z = numéro atomique = nombre de protons

X = symbole de l’élément

Page 2: sd6fa59db7de61780.jimcontent.com · Web viewLa plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y

1 mole d’atome contient 6,02 * 1023 atomes

Nombre d’Avogadro : NA = 6,02 * 1023 mol-1

1 u.m.a = 1/ NA

Ex : Sodium 2311 Na un atome de Na pèse 23 u.m.a et 1 mole de Na pèse 23 g.mol-1

La masse molaire d’un molécule est égale à la somme des masses molaires des éléments chimiques de cette molécule. Ex : H2O M(H2O) = 2 M(H) + M(O)

Un élément X peut posséder plusieurs isotopes qui possèdent le même nombre de protons (Z identiques) mais un nombre de neutrons différents et donc une masse différente (A différents).

La proportion en % d’un isotope naturel est appelée abondance isotopique. La masse molaire atomique de l’élément naturel est la somme des masses molaires atomique de chaque isotope pondéré par leur abondance isotopique.

Ex : Brome naturel : 2 isotopes : 50,5 % de Br 79 et 49,5 % de Br 81

Masse de Br naturel = (50,5% x m 7935Br ) + (49,5% x m 8135 Br)

La plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y a perte ou gains d’électrons, jamais de protons.

On parle de cation (+) pour une perte d’électrons = déficit électronique : Na + , Ca ++On parle d’anion (-) pour un gain d’électrons

II. Structure électronique de l’atome

A. Evolution des théories – Modèle de l’atome d’hydrogène

Rutherford : modèle planétaire (et lacunaire)

Les électrons gravitent autour du noyau. C’est le calque du système solaire. Une force électrique attractive s’exerce entre l’électron (-) et le proton (+). Selon ce modèle, il y a destruction de l’atome, les électrons étant attirés par les protons du noyau. Le modèle est insuffisant.

Bohr : modèle quantique

L’électron décrit des orbites circulaires de rayons définis atour du noyau. Chaque orbite a une E (énergie) bien établie : En

(n étant le nombre quantique principal)Seulement c’est limité à la description de l’atome d’H.

Page 3: sd6fa59db7de61780.jimcontent.com · Web viewLa plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y

De Broglie établit que l’électron a des propriété ondulatoires (microscopie électronique). A un électron est associé une fonction d’onde ψ (psi). MOPincipe d’incertitude d’Heisenberg : il est impossible de décrire exactement la trajectoire d’un électron de part sa masse bien trop faible il existe cependant une possibilité de présence de l’électron à un point de l’espace.

Schrödinger : modèle quantique

C’est une des théorie les plus intéressantes. La probabilité de trouver l’électron dans l’espace tout entier doit être égal à 1.La résolution de l’équation de Schrödinger (E d’un système liée au mouvement ondulatoire de l’électron) permet d’obtenir :

- Les valeurs d’E accessible à l’électron (valeur quantifiée)- Une fonction ce coordonnées (x, y, z) de l’électron et du temps t = une fonction d’onde de

l’électron Ψ qui régit le comportement de l’électron dans l’espace = orbitale atomique OA.Une orbitale atomique est une région de l’espace où la probabilité de localiser un électron est grande, mais ne permet pas de localiser la position exacte de l’électron.

B. Les solutions de l’équation de Schrödinger : nombres quantiques et OA

Les nombres quantiques

n Nombre quantique principalDéfini la couche électronique de l’électron

n > 0 nombre entier positif

l Nombre quantique secondaire ou azimutalDéfini la sous-couche de l’électronCaractérise l’orbitale atomique

0 ≤ l ≤ n-1Chaque type d’OA a une géométrie particulière

ml Nombre quantique magnétiqueCarcatérise l’orientation de l’OA dans l’espaceMl indique le nombre d’OA dans une sous-couche

-l ≤ ml ≤ +l2l + 1 valeurs

ms Nombre quantique magnétique de spin ou nombre quantique de spinL’électron possède un mouvement de révolution sur lui-même appelé « spin »Le sens de la rotation est caractérisé par ms

Ms = +1/2 ou -1/2= 2 électrons max par OA de ms opposés (Principe de Pauli)

Lorsque l = 0 sous couche électronique s 1 OA possible (ml = 0) 2 électrons maxLorsque l = 1 sous-couche électronique p 3 OA dégénérées (ml = -1, 0, 1) 6 électrons maxLorsque l = 2 sous-couche électronique d 5 OA dégénérées (ml = -2, -1, 0, 1 ,2 ) 10 é maxLorsque l = 3 sous-couche électronique f 7 OA dégénérées (ml = -3, -2, -1, 0 , 1, 2, 3) 14 é

OA dégénérées = OA de même énergie

Page 4: sd6fa59db7de61780.jimcontent.com · Web viewLa plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y

Géométrie des orbitales atomiqueLa géométrie des OA dépend du nombre l. Plus l augmente plus la géométrie des OA est compliquée !

1 OA sL = 0 er ml = 0 pour une valeur de n donnée

3 OA pL = 1 et ml =-1, 0, 1 (n ≥ 2)

Page 5: sd6fa59db7de61780.jimcontent.com · Web viewLa plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y

5 OA dL = 2 er ml = -2, -1, 0, 1 ,2 (n ≥ 3)

Les orientation des OA conditionnent les réactivités des atomes.

C. Configuration électronique des atomes

Les règles de remplissage :Chaque électron d’un atome est caractérisé par 4 nombres quantiques vus précédemment.La configuration électronique d’un atome à l’état fondamental permet de décrire l’ensemble des propriétés de l’élément. Il existe des règles de remplissage des électrons pour un atome à l’état fondamental.A l’état fondamental, un atome se trouve dans son état énergétique le plus stable, il s’agit de l’état de plus faible énergie.

Principe d’exclusion de Pauli

Le principe d’exclusion de Pauli énonce que 2 électrons d’un même atome ne peuvent pas posséder les 4 mêmes valeurs de nombres quantiques = il ne peut y avoir 2 électrons à la même place, au moins un des 4 nombres quantiques change.Une OA donnée ne peut décrire que 2 électrons possédant des nombres quantiques de spin m s opposés antiparallèles (+1/2 , -1/2).

Règle de Klechkowski : principe de stabilité

Les OA sont remplies en fonction de leur énergie croissante en commençant par l’OA de plus basse énergie (OA 1s) = règle de KlechkowskiLes différentes OA d’une même sous-couche sont dites dégénérées car possédant la même énergie (ex les 3 OA d’une sous-couche p…).

L’énergie d’une sous-couche augmente quand la somme (n+l) augmente.Si (n+l) est identique pour les 2 sous-couche, la sous-couche de plus basse énergie est celle pour laquelle n est le plus petit.

Page 6: sd6fa59db7de61780.jimcontent.com · Web viewLa plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y

(Ordre de remplissage)

Cependant, une configuration électronique s’écrit en remettant les sous-couches électronique par ordre de n croissant : 1s 2s 2p 3s 3p 3d 4s 4p …

Règle de Hund

Lorsque les OA sont de même énergie (dégénérées), les électrons vont occuper préférentiellement des OA distinctes avec des spin parallèles = dans les OA dégénérées, la répartition des électrons conduit à un nombre de spin parallèles maximal = état minimal d’énergie pour l’atome.

On peut représenter les couches électroniques et les orbitales par des cases (quantiques) ou des traits dans lesquelles on schématise les électrons par des flèches verticales (sens = spin)

Lorsque les électrons vont par paires on dit qu’ils sont appariés. Lorsqu’ils sont seul dans l’OA, ce sont des électrons célibataires.

Page 7: sd6fa59db7de61780.jimcontent.com · Web viewLa plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y

Electrons de cœur et électrons périphériques

Electrons périphériques (externes) = électrons ajoutés dans les différentes sous-couches de la période en remplissage = électrons de la sous-couche n maximale. Il s’agit d’électrons qui interviendront en premier dans la réactivité car ils sont moins retenus par les forces attractives du noyau que les électrons de cœur. Ils partent en premier lors d’interactions chimiques.Electrons de cœur = électrons internes ajoutés dans les sous-couches des périodes précédentes.

Il est possible de simplifier l’écriture de la configuration électronique en écrivant le gaz noble précédent et seulement les électrons périphériques (ou de valence) à la suite.

Cette écriture permet de ne visualiser que la couche en cours de remplissage = électrons périphériques.

Il existe des exceptions pour l’ordre de remplissage des couches électroniques :- Le Chrome 24Cr (Z = 24) : 1s2 2s2 2p6 3s2 3p6 3d5 4s1

- Les Cuivre 29 Cu (Z = 29) : 1s2 2s2 2p6 3s2 3p6 3d10 4s1

D. Structure électronique d’un ion monoatomique

Il faut établir en premier lieu la configuration électronique de l’élément chimique correspondant à l’état fondamental.

Si l’ion considéré est positif alors les électrons qui partent sont les électrons les plus externes (n le plus grand) = on arrache 4s avant 3d (les électrons 4s sont plus externes que les électrons 3d).

Si l’ion considéré est négatif alors les électrons supplémentaires viennent compléter les OA les plus externes si toutes les OA sont complètes, l’ion est très stable.

Page 8: sd6fa59db7de61780.jimcontent.com · Web viewLa plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y

III. La classification périodique

A. Classification de Mendeleïev

La première classification a été établie par Mendeleïev.La classification actuelle est établie par Z croissant (de gauche à droite et de bas en haut) et les éléments suivent ainsi le remplissage des OA = l’organisation de le classification est donc dépendante de la structure électronique des atomes.

La classification périodique est constituée de :- 7 lignes appelées périodes. Les éléments chimiques d’une même période ont la même valeur

du nombre quantique principal maximal n.- 18 colonnes appelées familles = configuration électronique externe en générale identique =

propriétés physico-chimiques et physiques voisines réactivité chimique comparable.

Exception : H a des propriété différentes de celles des autres éléments de sa colonne.

Il est possible de déterminer la configuration électronique d’un élément grâce à sa place dans le tableau. Il est possible de déterminer la colonne à partir de la configuration électronique.

Les Blocs

Bloc s = Colonne 1 (ns1) et 2 (ns2) = on remplit les OA s

Le numéro de colonne correspond au nombre d’électrons dans les OA externes

Bloc p = Colonnes 13 à 18 (sauf He) = on remplit les OA p (ns2npx avec 1 ≤ x ≤ 6)

Le numéro de la colonne correspond à 12 + x le nombre d’électrons dans les OA externes p

Bloc d = Colonnes 3 à 12 = on remplit les OA d (4e période = [Ar]3dy4sw avec 1 ≤ y ≤ 10 et w = 2 sauf pour Cr et Cu où w = 1

Le numéro de la colonne correspond au nombre d’électrons dans les OA externes d et s

Page 9: sd6fa59db7de61780.jimcontent.com · Web viewLa plupart du temps, les atomes n’existent pas à l’état atomique : ils ont tendance à évoluer vers des ions plus stables. Il y

B. Les familles (colonnes)

Colonne Famille Configuration électronique externe

Remarques

Colonne 1 Alcalins (sauf H) ns1 Ils perdent facilement un électron pour donner un cation monovalent. NA + : milieu extracellulaire, K+ : milieu intracellulaire ions stables car on aboutit à la configuration complète de la colonne 18

Colonne 2 Alcalino-terreux ns2 Ils perdent facilement 2 électrons pour donner un cation bivalent (Mg2+, Ca2+ …)

Colonne 3 à 12

Eléments (métaux) de transition

Remplissage des couches d

Colonne 13 Famille du bore ns2np1

Colonne 14 Famille du carbone ns2np2

Colonne 15 Famille de l’azote ns2np3 Similitude au niveau des électrons périphériques = comportements physico-chimique similaire réactivité chimique comparable

Colonne 16 Famille de l’oxygène

ns2np4 O en 2e période et S en 3e période

Colonne 17 Halogènes ns2np5 Ils gagnent facilement un électron pour devenir F-, Cl-, Br- …

Colonne 18 Gaz nobles (rares) ns2np6 (+He en 1s2)

Couche externe complète = très stable = ne réagissent pasL’ionisation des autres éléments tend à obtenir cette configuration.

C. Caractéristiques atomiques et périodicité

L’énergie de première ionisation (EI1) est l’énergie minimale à fournir à 1 atome (A) à l’état gazeux (g) pour lui arracher un électron. EI1 est toujours positive.

Dans une colonne : Z ↗ de haut en bas le rayon atomique ↗ l’attraction électron-noyau ↘ EI ↘

Dans une période : Z ↗de gauche à droite l’attraction électron-noyau ↗ le rayon atomique ↘ EI ↗

L’affinité électronique (AE) est l’énergie libérée pour la capture d’un électron pour un élément (A) à l’état gazeux (g) (création d’un anio A-). Elle est toujours négative.

Energie d’ionnisation (gauche) Rayon atomique (droite)