12
14 février 2011 Evaluation AERES 1 Equipe de Nanophysique Groupe 2 Membres permanents Adeline Crépieux MdC U2 Pierre Devillard MdC U1 Thibaut Jonckheere CR CNRS Thierry Martin Prof. U2 Jérôme Rech CR CNRS

14 février 2011Evaluation AERES1 Equipe de Nanophysique – Groupe 2 Membres permanents Adeline Crépieux MdC U2 Pierre Devillard MdC U1 Thibaut Jonckheere

Embed Size (px)

Citation preview

14 février 2011 Evaluation AERES 1

Equipe de Nanophysique – Groupe 2

Membres permanents

Adeline Crépieux MdC U2

Pierre Devillard MdC U1

Thibaut Jonckheere CR CNRS

Thierry Martin Prof. U2

Jérôme Rech CR CNRS

14 février 2011 Evaluation AERES 2

Equipe de Nanophysique – Groupe 2

• Etudiants en thèse

D. Chevallier (soutenance 09/2011)

R. Zamoum débutée en 2010

C. Wahl débutée en 2011

14 février 2011 Evaluation AERES 3

Electronic transport in mesoscopic and nanoscopic devices

• Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …)

• Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)

• 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)

• High frequency noise, theory of noise measurement• Time-dependent problems – time-resolved single electron

excitations• Theory of Quantum Hall effect (impact of the atomic lattice,

anomalous and spin Hall effects, …)

14 février 2011 Evaluation AERES 4

Electronic transport in mesoscopic and nanoscopic devices

• Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …)

• Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)

• 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)

• High frequency noise, theory of noise measurement• Time-dependent problems – time-resolved single electron

excitations• Theory of Quantum Hall effect (impact of the atomic lattice,

anomalous and spin Hall effects, …)

14 février 2011 Evaluation AERES 5

Electronic transport in mesoscopic and nanoscopic devices

• Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …)

• Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)

• 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)

• High frequency noise, theory of noise measurement• Time-dependent problems – time-resolved single electron

excitations• Theory of Quantum Hall effect (impact of the atomic lattice,

anomalous and spin Hall effects, …)

14 février 2011 Evaluation AERES 6

Electronic transport in mesoscopic and nanoscopic devices

• Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …)

• Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)

• 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)

• High frequency noise, theory of noise measurement• Time-dependent problems – time-resolved single electron

excitations• Theory of Quantum Hall effect (impact of the atomic lattice,

anomalous and spin Hall effects, …)

14 février 2011 Evaluation AERES 7

Electronic transport in mesoscopic and nanoscopic devices

• Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …)

• Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)

• 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)

• High frequency noise, theory of noise measurement• Time-dependent problems – time-resolved single electron

excitations• Theory of Quantum Hall effect (impact of the atomic lattice,

anomalous and spin Hall effects, …)

14 février 2011 Evaluation AERES 8

Electronic transport in mesoscopic and nanoscopic devices

• Transport through a single molecule; effect of the internal degrees of freedom (spin, phonons, …)

• Superconducting and hybrid systems (Josephson effect, Multiple Andreev reflection, etc.)

• 1d conductors with electronic interactions – Luttinger liquid (Carbon nanotubes, edge states of the Quantum Hall effect, …)

• High frequency noise, theory of noise measurement• Time-dependent problems – time-resolved single electron

excitations• Theory of Quantum Hall effect (impact of the atomic lattice,

anomalous and spin Hall effects, …)

14 février 2011 Evaluation AERES 9

Projets en cours – possibilités de séminaires, stages, thèses…

Emission et manipulation d’électrons uniques dans des états de bords :

Optique quantique électronique(ANR 1 shot, coll. LPA ENS Paris, ENS Lyon)

Effets thermo-électriques dépendant du temps (coll. F. Michelini, IM2NP)

Etude du splitter à paire de Cooper”,et du courant de quartets (paires de paires de Cooper)

(coll. R. Melin Grenoble, T. Kontos Paris)

14 février 2011 Evaluation AERES 10

Josephson effect through an isotropic magnetic molecule

Phase diagram of the Josephson junction (0 or state). The exchange interaction J has a deep impact on the Joseph-son current

M. Lee, T. Jonckheere and T. Martin, Phys. Rev. Lett. 101, 146804 (2008)

14 février 2011 Evaluation AERES 11

Screening in a Luttinger liquid coupled to a STM tip

Study of the impact of screening on the transport between a STM tip and a Luttinger liquid

Calculation of the spectral properties and of transport properties (screening reduces the current).

M. Guigou, T. Martin and A. Crépieux, Phys. Rev. B 80, 045420 (2009) and

. . Phys Rev B 80, 045421 (2009)

14 février 2011 Evaluation AERES 12

Dynamic response of the quantum RC circuit with strong electronic interactions

Systematic study of the effect of strong electronic interaction on the dynamical behavior of the quantum RC circuit, using a Luttinger liquid model.

Relaxation resistance is universal even for strong Coulomb blockade, but strong interactions in the leads induce a quantum phase transition to an incoherent regime

Y. Hamamoto, T. Jonckheere, T. Kato and T. Martin, Phys. Rev. B 81, 153305 (2010)

(from LPA Physique mésoscopique group)