119
PFE ENIT 2008 CHAIBI&JENZRI 1 Sommaire INTRODUCTION................................................................................................................................... 7 Chapitre 1 : Présentation du projet, conception et caractéristiques des matériaux....................... 8 I. Présentation du projet ................................................................................................................... 8 II. Conception de la structure ............................................................................................................. 9 III. Problèmes rencontrés et solutions .......................................................................................... 11 1. Sous sol...................................................................................................................................... 11 2. RDC et Mezzanine ..................................................................................................................... 11 3. Etages courants ......................................................................................................................... 12 IV. Les caractéristiques des matériaux et les hypothèses de calcul ............................................. 12 1. Les caractéristiques fondamentales du béton......................................................................... 12 2. Les caractéristiques fondamentales de l’acier......................................................................... 13 3. Les hypothèses de calcul .......................................................................................................... 14 V. Les Planchers à corps creux .......................................................................................................... 15 1. Présentation............................................................................................................................. 15 2. Evaluation des charges ........................................................................................................... 15 Chapitre 2 : Modélisation par ARCHE Ossature ............................................................................. 17 1. Présentation du logiciel utilisé ................................................................................................. 17 2. Modélisation ............................................................................................................................. 17 3. Calcul de la descente de charges .............................................................................................. 19 4. Principe de vérification des calculs .......................................................................................... 19 5. Module poutre .......................................................................................................................... 19 6. Module poteau ......................................................................................................................... 19 7. Module semelle ........................................................................................................................ 20 8. Module Longrine ....................................................................................................................... 20 Chapitre 3 : Etude du contreventement ......................................................................................... 21 1. Introduction .............................................................................................................................. 21 2. Action du vent ........................................................................................................................... 21 3. Méthode du centre de torsion ................................................................................................. 26 4. Distribution des sollicitations d’ensemble par la méthode du centre de torsion .................. 30 5. Conclusion ................................................................................................................................. 34

45865632-pfe-Enit1

Embed Size (px)

Citation preview

Page 1: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 1

Sommaire INTRODUCTION................................................................................................................................... 7

Chapitre 1 : Présentation du projet, conception et caractéristiques des matériaux....................... 8

I. Présentation du projet ................................................................................................................... 8

II. Conception de la structure ............................................................................................................. 9

III. Problèmes rencontrés et solutions .......................................................................................... 11

1. Sous sol...................................................................................................................................... 11

2. RDC et Mezzanine ..................................................................................................................... 11

3. Etages courants......................................................................................................................... 12

IV. Les caractéristiques des matériaux et les hypothèses de calcul ............................................. 12

1. Les caractéristiques fondamentales du béton......................................................................... 12

2. Les caractéristiques fondamentales de l’acier......................................................................... 13

3. Les hypothèses de calcul .......................................................................................................... 14

V. Les Planchers à corps creux .......................................................................................................... 15

1. Présentation............................................................................................................................. 15

2. Evaluation des charges........................................................................................................... 15

Chapitre 2 : Modélisation par ARCHE Ossature ............................................................................. 17

1. Présentation du logiciel utilisé ................................................................................................. 17

2. Modélisation ............................................................................................................................. 17

3. Calcul de la descente de charges.............................................................................................. 19

4. Principe de vérification des calculs .......................................................................................... 19

5. Module poutre .......................................................................................................................... 19

6. Module poteau ......................................................................................................................... 19

7. Module semelle ........................................................................................................................ 20

8. Module Longrine....................................................................................................................... 20

Chapitre 3 : Etude du contreventement ......................................................................................... 21

1. Introduction .............................................................................................................................. 21

2. Action du vent........................................................................................................................... 21

3. Méthode du centre de torsion ................................................................................................. 26

4. Distribution des sollicitations d’ensemble par la méthode du centre de torsion .................. 30

5. Conclusion ................................................................................................................................. 34

Page 2: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 2

Chapitre 4 : Etude d’une dalle pleine................................................................................................. 35

I. Etude d’une dalle pleine............................................................................................................... 35

II. Méthode de calcul ....................................................................................................................... 35

1. Dimensionnement .................................................................................................................... 35

2. Sollicitations.............................................................................................................................. 36

3. Ferraillages ................................................................................................................................ 37

4. Effort tranchant ........................................................................................................................ 38

III. Calcul d’un panneau de dalle ................................................................................................... 39

1. Dimensionnement de la dalle .................................................................................................. 39

2. Sollicitations.............................................................................................................................. 40

3. Armatures longitudinales ......................................................................................................... 41

4. Effort tranchant ........................................................................................................................ 44

5. Arrêt des barres ........................................................................................................................ 44

6. Plans de ferraillage ................................................................................................................... 45

Chapitre 5 : Etude des poutres et des nervures................................................................................ 47

1. Méthode de calcul .................................................................................................................... 47

2. Moments maximaux sur appuis ............................................................................................... 48

3. Moments en travées................................................................................................................. 54

4. Détermination des efforts tranchants maximaux ................................................................... 58

5. Armatures longitudinales ......................................................................................................... 59

6. Armatures transversales .......................................................................................................... 63

7. Plan de ferraillage ..................................................................................................................... 65

Chapitre 6 : Etude des poteaux .......................................................................................................... 69

1. Introduction ............................................................................................................................ 69

2. Hypothèses ............................................................................................................................... 69

3. Exemple de calcul d’un poteau rectangulaire ....................................................................... 69

4. Exemple détaillé de calcul d’un poteau circulaire P8 .......................................................... 73

5. Ferraillage ................................................................................................................................ 76

Chapitre 7 : Etude des escaliers.......................................................................................................... 78

1. Terminologie ............................................................................................................................ 78

2. Vue en plan de l’escalier ......................................................................................................... 79

3. Prédimensionnement de l’épaisseur de la dalle .................................................................... 80

4. Détermination des charges ..................................................................................................... 80

Page 3: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 3

5. Calcul des sollicitations ........................................................................................................... 82

6. Vérification et calcul des aciers .............................................................................................. 82

7. Ferraillage ................................................................................................................................ 83

Chapitre 8 : Etude des fondations ...................................................................................................... 84

1. Généralités ............................................................................................................................... 84

2. Désignations.............................................................................................................................. 85

3. Exemple de calcul ..................................................................................................................... 85

4. Semelle rigide sous mur soumise à une charge verticale centrée .......................................... 88

5. Les longrines ............................................................................................................................. 91

Chapitre 9 : Etude des acrotères ........................................................................................................ 94

1. Introduction ............................................................................................................................ 94

2. Acrotère sur mur ..................................................................................................................... 94

3. Acrotère sur joint .................................................................................................................... 94

4. Ferraillage ................................................................................................................................ 95

Chapitre 10 : Etude d’une poutre courbe .......................................................................................... 96

1. Présentation et modèle de calcul ............................................................................................ 96

2. Chargement de la poutre ........................................................................................................ 97

3. Méthode de calcul des poutres continues circulaires uniformément chargées [6]............ 97

4. Calcul du moment fléchissant en travée ................................................................................ 98

5. Calcul de l’effort tranchant en travée ................................................................................... 98

6. Calcul du couple de torsion en travée.................................................................................... 98

7. Tableau de résultats ................................................................................................................ 99

8. Travée P0-P1 ......................................................................................................................... 100

9. Travée P1-P2 ......................................................................................................................... 104

Chapitre 11 : Etude d’un mur voile ............................................................................................... 109

1. Présentation et modèle de calcul........................................................................................... 109

2. Les sollicitations...................................................................................................................... 111

3. Le ferraillage ........................................................................................................................... 112

Chapitre 12 : Estimation du coût du lot structure .......................................................................... 117

CONCLUSION ....................................................................................................................................... 118

Bibliographie ....................................................................................................................................... 119

Page 4: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 4

Liste des figures Figure 1. Façade latérale de l’ouvrage .................................................................................................................... 9 Figure 2. Exemple d’utilisation d’une poutre plate ............................................................................................... 11 Figure 3. Modélisation 3D du bloc A.................................................................................................................... 18 Figure 4.Modélisation 3D du bloc B..................................................................................................................... 18 Figure 5.Modélisation de l’immeuble ................................................................................................................... 23 Figure 6.Diagrammes de Tn pour les vents 1 et 2................................................................................................. 25 Figure 7.Eléments de définition d’un voile ........................................................................................................... 27 Figure 8.Résultantes P et Q................................................................................................................................... 28 Figure 9.Angle δ.................................................................................................................................................... 28 Figure 10. Résultante P ......................................................................................................................................... 29 Figure 11.Distances rxi et ryi .................................................................................................................................. 29 Figure 12.Caractéristiques géométriques des voiles de contreventement ............................................................. 30 Figure 13.Caractéristiques de la dalle ................................................................................................................... 35 Figure 14.Moments à prendre en compte.............................................................................................................. 36 Figure 15.Moments pour une dalle continue......................................................................................................... 37 Figure 16.Arrêt des barres..................................................................................................................................... 39 Figure 17.Panneau de dalle ................................................................................................................................... 39 Figure 18.Aciers de la nappe inférieure. ............................................................................................................... 45 Figure 19.Aciers de la nappe supérieure. .............................................................................................................. 46 Figure 20.Caractéristiques de la nervure............................................................................................................... 47 Figure 22.Cas de chargement 1............................................................................................................................. 49 Figure 23.Cas de chargement 1............................................................................................................................. 50 Figure 24.Cas de chargement 2............................................................................................................................. 50 Figure 25.Cas de chargement2.............................................................................................................................. 51 Figure 26.Cas de chargement 3............................................................................................................................. 51 Figure 27.Cas de chargement 4............................................................................................................................. 52 Figure 28.Portées des travées................................................................................................................................ 54 Figure 29.Efforts tranchants sur appuis................................................................................................................. 58 Figure 30.Diagramme des efforts tranchants sur appuis ....................................................................................... 59 Figure 31.Ferraillage de la nervure hyperstatique................................................................................................. 65 Figure 33.FerraillageT2 ........................................................................................................................................ 67 Figure 34.FerraillageT3 ........................................................................................................................................ 68 Figure 35.Caractéristiques de la section................................................................................................................ 70 Figure 36.Ferraillage poteau ................................................................................................................................. 72 Figure 37.Détail de ferraillage d’un poteau type P6.............................................................................................. 73 Figure 38.Détail de ferraillage du poteau.............................................................................................................. 75 Figure 39.Détail de ferraillage du poteau.............................................................................................................. 76 Figure 40.Détail de ferraillage du poteau circulaire.............................................................................................. 77 Figure 41.Coupe d’une volée escalier ................................................................................................................... 78 Figure 42.Vue en plan de l’escalier....................................................................................................................... 79 Figure 43.Coupe des volées d’escalier .................................................................................................................. 80 Figure 44.Charge sur escalier................................................................................................................................ 81 Figure 45.Détail de ferraillage de l’escalier. ......................................................................................................... 83 Figure 46.Ferraillage de la semelle ....................................................................................................................... 88 Figure 48.Ferraillage de la semelle sous mur........................................................................................................ 90 Figure 49.Ferraillage de la semelle sous mur voile............................................................................................... 90 Figure 50.Caractéristiques de la longrine.............................................................................................................. 91 Figure 51.Ferraillage manuel ................................................................................................................................ 92 Figure 52.Ferraillage ARCHE .............................................................................................................................. 93 Figure 53.Détail acrotère sur mur ......................................................................................................................... 95 Figure 54.Détail acrotère sur joint......................................................................................................................... 95 Figure 55.Caractéristiques de la poutre................................................................................................................. 96 Figure 56.Modélisation de la poutre. .................................................................................................................... 97 Figure 57.Section équivalente. ............................................................................................................................ 100 Figure 58.Ferraillage T1 ..................................................................................................................................... 104 Figure 59.Ferraillage T2 ..................................................................................................................................... 108

Page 5: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 5

Figure 60.Dimensions du voile ........................................................................................................................... 109 Figure 61.Modèle de calcul................................................................................................................................. 110 Figure 62.Moment fléchissant à l’ELS, Ms (kN.m/ml).................................................................................... 111 Figure 63.Effort tranchant à l’ELS, Vs (KN/ml)............................................................................................... 111 Figure 64.Effort normal à l’ELS, Ns (kN) ...................................................................................................... 112 Figure 65.Ferraillage d’un mètre linéaire de voile .............................................................................................. 116

Page 6: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 6

Liste des tableaux

Tableau 1.Charges permanentes pour planchers ................................................................................................... 16 Tableau 2.Charges permanentes des murs ............................................................................................................ 16 Tableau 3.Détermination des coefficients pour le vent 1 ...................................................................................... 23 Tableau 4.Détermination de Tn pour le vent1....................................................................................................... 24 Tableau 5.Détermination des coefficients pour le vent 2 ...................................................................................... 24 Tableau 6.Détermination de Tn pour le vent2....................................................................................................... 25 Tableau 7.Détermination des moments ................................................................................................................. 26 Tableau 8.caractéristiques du voile ....................................................................................................................... 30 Tableau 9 .Détails de calcul .................................................................................................................................. 31 Tableau 10.Détermination du moment.................................................................................................................. 32 Tableau 11.Efforts dus à la translation.................................................................................................................. 33 Tableau 12.Efforts dans les voiles......................................................................................................................... 34 Tableau 13.Récapitulatif des moments ................................................................................................................. 53 Tableau14.Moments en travées............................................................................................................................. 58 Tableau 15. Comparaison entre calcul manuel et calcul ARCHE......................................................................... 65 Tableau 16.Récapitulatif des résultats................................................................................................................... 99 Tableau 17.Coût unitaire et coût global .............................................................................................................. 117

Page 7: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 7

INTRODUCTION

Le présent travail s’inscrit dans le cadre du projet de fin d’études. Il est consacré à la

conception et au calcul des structures et des fondations en béton armé d’un immeuble (sous

sol+RDC + 5étages).

Un projet de conception et de calcul des structures en béton armé est indispensable afin

d’acquérir une méthode de travail et de confronter les difficultés qui peuvent rencontrer

l’ingénieur lors de l’étude d’un projet réel, aussi bien au niveau de la conception qu’au

niveau du calcul.

Le travail demandé consiste à étudier tous les éléments du bâtiment .En effet, on a

commencé par proposer une conception de l’ossature en béton armé (plans de coffrage) puis

étudier le contreventement du bâtiment et enfin calculer tous les éléments de l’ossature.

D’autre part nous avons tenu à respecter au maximum les aspects de sécurité et les

aspects économiques.

Pour le calcul du ferraillage des éléments de la structure, nous avons utilisé le logiciel

« ARCHE 14.1 » .Nous avons tenu à vérifier le calcul des ferraillages effectués manuellement

pour quelques exemples types.

Les parties principales du projet sont présentées ci-dessous:

• Le premier chapitre vise à donner une idée architecturale et structurale, Les

caractéristiques des matériaux et l’évaluation des charges.

• Les autres chapitres sont consacrés au calcul des éléments de la structure.

Page 8: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 8

Chapitre 1 : Présentation du projet, conception et caractéristiques des matériaux

I. Présentation du projet

Le projet concerne l’étude de la structure en béton armé d’un immeuble situé à Sousse ; zone

touristique. L’élévation de ce bâtiment est de 23.2 mètres et son emprise est de forme

rectangulaire. Il est composé de :

• Sous sol avec une hauteur sous plafond (HSP) de 3m.

• RDC avec une HSP de 3.2 m.

• Mezzanine avec une HSP de 3.2 m.

• Cinq étages courants avec une HSP de 2.8 m.

L’immeuble comporte un joint de dilatation de deux centimètres d’épaisseur, ce joint

débute à partir du RDC, jusqu’au Mezzanine. D’autre part, il comporte deux terrasses

couvertes au niveau du RDC et de la Mezzanine. Il comporte aussi un ascenseur qui relit

le sous-sol aux autres étages.

L’espace couvert du projet est marqué par des usages différents à dominance bureautique

(Voir plans d’architecture).

L’immeuble se compose de deux blocs : bloc A et bloc B séparés par un joint de

dilatation.

On présente ci-dessous la fonctionnalité des différents étages :

• Sous sol : composé d’un parking de 18 places, un vestiaire, un bureau et une salle

de préparation.

• RDC : comprend une cafeteria, un café maure, un dépôt, une pâtisserie glacerie et

un poste transformateur.

• Mezzanine : comporte une cafeteria, un dépôt, un café internet et un café.

• 5 étages identiques : composés par des bureaux et des salles d’attentes

Page 9: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 9

La figure ci-dessous, présente la façade latérale de l’immeuble :

Figure 1. Façade latérale de l’ouvrage

II. Conception de la structure

La conception consiste à proposer une solution structurale adéquate afin de concrétiser les

contraintes architecturales ; elle détermine la nature et la disposition des éléments porteurs

verticaux et horizontaux et des fondations.

La conception met en épreuve le savoir-faire de l’ingénieur dans la mesure où elle varie d’un

édifice à l’autre et ne présente pas des règles absolues à suivre. L’expérience de l’ingénieur et

sa réflexion y sont déterminants.

Une bonne conception doit tenir compte, en outre des choix faits par l’architecte, de

l’économie, de la faisabilité et de la fonctionnalité du projet considéré. Pour cela,

l’élaboration de plusieurs variantes avec les études préliminaires correspondantes est

indispensable afin d’en adopter, lors d’une étude comparative, la plus adéquate.

Pour les grands projets l’enjeu économique est énorme. Un choix réfléchi de la conception

pourrait alors présenter des gains importants.

Page 10: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 10

Les éléments porteurs à axes horizontaux sont les poutres et les nervures. Ceux à axes

verticaux étant les poteaux et les murs porteurs.

On a essayé de prendre en considération les conditions de conception suivantes :

- Éviter d’avoir des poutres traversant les pièces avec des retombées apparentes ce qui

serait esthétiquement inadmissible. Pour cela, on a essayé dans la mesure du possible de

choisir la disposition des poutres de telle façon que les éventuelles retombées soient cachées

dans les cloisons.

- Éviter d’adopter un sens unique pour toutes les nervures (à déconseiller en

prévention d’éventuelles actions sismiques).

- Minimiser les portées des poutres et des nervures.

- Minimiser le nombre des poutres et des poteaux.

- Se conformer aux choix de l’architecte et n’y porter pas de modifications.

Etant donné la bonne capacité portante du sol (la contrainte admissible est égale à 0.2 Mpa),

on a prévu une fondation superficielle sur des semelles isolées.

Les dalles pleines sont utilisées pour réaliser des planchers ayant des formes compliquées,

des planchers qui supportent des charges relativement importantes ou concentrées.

Dans notre projet, on n’a eu recours aux dalles pleines que quand il est difficile de choisir la

solution plancher traditionnel à corps creux.

Les cages d’ascenseurs ont été dimensionnées pour résister à l’action du vent. L’étude du

contreventement a pris en compte deux directions du vent. Le dimensionnement des refends a

été alors réalisé pour les cas les plus défavorables.

Les joints de la structure représentent une solution de continuité voulue c’est à dire une

rupture rectiligne ménagée dans un ouvrage pour absorber les différences de mouvement ou

de comportement. Ils sont, en fait, destinés à découper verticalement une construction de

grandes dimensions en plusieurs parties indépendantes en vue de parer d’une part aux retraits

et dilatations thermiques d’autre part aux tassements différentiels des infrastructures.

Page 11: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 11

III. Problèmes rencontrés et solutions 1. Sous sol

Pour le sous-sol, on doit respecter le plan d’architecture lors de l’emplacement des poteaux et de conserver le nombre de places des voitures (parking 18 places). On a évité de placer des poteaux qui nuisent au déplacement ou à l’emplacement des voitures. Cette obligation mène à l’emploi des poutres et des nervures de grandes portées.

Pour s’en sortir, on a utilisé des planchers à corps creux (19+6) et (25+5). 2. RDC et Mezzanine

On a des formes particulières des planchers. Il est difficile d’utiliser des planchers à corps creux. En outre, on a des zones où il faut éviter les retombées des poutres (par exemple plancher du café maure). Dans ces niveaux, on évite d’ajouter des poteaux qui n’existent pas au sous-sol pour ne pas obtenir des poteaux implantés sur des poutres. On a utilisé des dalles pleines, des poutres plates et des planchers à corps creux (19+6) et

(25+5).

On peut citer l’exemple de la poutre plate A26 du plancher mezzanine représentée par la

figure 2. Nous avons utilisé ce type de poutres afin de réduire la retombée qui nuit à

l’esthétique du plafond du café maure.

Figure 2. Exemple d’utilisation d’une poutre plate

Page 12: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 12

3. Etages courants Pour ne pas avoir des poteaux implantés sur des poutres, il faut éviter d’ajouter des poteaux à part ceux provenant du RDC et de la mezzanine. En plus, il existe des zones où il faut éviter les retombées des poutres. Les étages courants comportent des planchers avancés par rapport aux ceux du RDC et de la mezzanine. Pour remédier à ces problèmes, on a utilisé des poutres plates, des planchers à corps creux (19+6) et (25+5) et des portes- à- faux.

IV. Les caractéristiques des matériaux et les hypothèses de calcul La référence de cette section est le règlement BAEL91 [1]. En effet nous avons tenu à

suivre les recommandations apportées par ce règlement que ce soit au niveau du

dimensionnement ou au moment du calcul de ferraillage des différents éléments de la

construction en béton armé.

1. Les caractéristiques fondamentales du béton 1.1 Béton pour éléments armés

Pour les éléments armés, le béton est le plus souvent dosé à 3/350 mkg avec comme liant le

ciment Portland (C.P.A) à dominance de clinker .La résistance caractéristique à la

compression à 28 jours est de 20 Mpa. On retiendra un coefficient partiel de sécurité pour le

béton égal à 5.1=γ b . Ainsi peut-on définir les paramètres suivants :

- La résistance caractéristique à la traction du béton à 28 jours :

28 280,6 0,06 1.8 MPat cf f= + × = - Le module de déformation longitudinale instantanée du béton à 28 jours valable

pour des charges dont la durée d’application est inférieure à 24h:

3328 2811000 11000 20 29859 MPai cE f= × = × =

- Le module de déformation longitudinale différé du béton à 28 jours pour des

charges dont la durée d’application est supérieure à 24h:

MPa10043203700 3700 332828 =×=×= cfEν

- Le coefficient de Poisson

Pour le calcul des sollicitations à l’état limite ultime ELU et à l’état limite de

service ELS, on prend 0=ν .Pour le calcul des déformations à l’état limite de

service ELS, on prend 2.0=ν

- Le retrait du béton (On supposera l’hypothèse de l’implantation de la

construction dans un climat chaud et sec)

Page 13: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 13

4010.4 −=

∆ll

- Le coefficient prenant en compte la durée d’application des charges

heures 24 si 1 >=θ t

- Le coefficient d’équivalence

15==b

s

EE

n

1.2 Béton pour les couches d’assise de l’infrastructure 1.2.1 Le béton de propreté

Pour ce genre de béton destiné à séparer la semelle du sol d’assise, le béton est le plus souvent dosé à 3200 /kg m avec comme liant le ciment Portland (C.P.A).

1.2.2 Le gros béton - Le ciment est dosé à :

3/250 mkg

- La capacité portante du gros béton est:

MPagb 6,0=σ Avec ρgb=2300 daN/m3.

2. Les caractéristiques fondamentales de l’acier 2.1 Aciers destinés aux armatures longitudinales

Pour ce type, on prévoira des aciers haute adhérence à nuance FeE400

- La limite d’élasticité garantie :

MPafe 400= - Le module d’élasticité :

MPaEs510.2=

- Le coefficient partiel de sécurité des aciers:

15.1=sγ (On ne tiendra pas compte des combinaisons accidentelles).

- Le coefficient de fissuration :

6.1=η - Le coefficient de scellement : 1.5sψ =

Page 14: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 14

2.2 Aciers destinés aux armatures transversales

Pour ce type, on prévoira des ronds lisses à nuance FeE235

- La limite d’élasticité garantie : 235etf MPa=

- Le coefficient partiel de sécurité des aciers: 1.15 =sγ (On ne tiendra pas compte des combinaisons accidentelles).

- Le coefficient de fissuration :

0.1=η - Le coefficient de scellement :

1.0sψ =

3. Les hypothèses de calcul Les hypothèses de calcul sont les suivantes :

• Pour le dimensionnement et le ferraillage des éléments de la superstructure :

- L’enrobage des armatures sera égal à 2.5cm.

- La fissuration sera considérée comme peu préjudiciable.

• Pour le dimensionnement et le ferraillage des infrastructures :

- L’enrobage des armatures sera égal à 5cm.

- La fissuration sera considérée comme peu préjudiciable.

- La contrainte ultime du béton armé en compression :

280.85 0.85 20 11.331.50

cbu

b

ff MPaγ× ×

= = =

- La contrainte ultime des aciers longitudinaux en traction :

400 3481.15

eed

s

ff MPaγ

= = =

- La contrainte limite du béton en compression :

280.6 0.6 20 12bc cf MPaσ = × = × =

- Les coefficients de pondération des charges :

À l’ELU 35.1=γG et 50.1=γ Q

À l’ELS 00.1=γG et 00.1=γ Q

Page 15: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 15

V. Les Planchers à corps creux Les planchers d’une construction doivent remplir différentes fonctions :

- Relatives à la stabilité de l’ouvrage tel que la reprise et la transmission des

charges aux porteurs verticaux.

- Relatives à la fonction entre deux nivaux selon le cas: isolation thermique ou

isolation acoustique (bruits aériens et bruits d’impact)

Pour notre projet nous avons utilisé des planchers en corps creux. En effet, il se distingue par

son prix abordable, par sa facilité d’exécution et sa bonne isolation thermique et acoustique. Il

existe 3 types de planchers à corps creux : 16+5 ; 19+6 et 25+5 et le choix entre ces types est

régi par l’importance des portées à envisager.

1. Présentation Les planchers à corps creux sont le plus souvent constitués de :

- Une chape en béton coulée sur place qui est en fait une dalle de transmission et de

répartition des charges aux nervures

- Nervures coulées sur place : représentent les éléments porteurs du plancher

et reposent de part et d’autre sur les poutres. Les dimensions (hauteur et largeur) et

l’espacement entre les nervures dépendent uniquement des dimensions du corps creux utilisé

- Des corps creux : utilisés comme un coffrage perdu.

2. Evaluation des charges

La composition du plancher détermine la nature des charges permanentes appliquées au

plancher. En effet, elles sont fonction des masses volumiques ainsi que des épaisseurs de

chaque constituant. Quand aux charges d’exploitation, elles sont celles qui résultent de

l’usage des locaux par opposition aux poids des ouvrages constituant ces locaux, ou à celui

des équipements fixes. Toutefois, certains équipements fixes et légers peuvent être inclus dans

les valeurs fixées pour les charges d’exploitation. Les charges d’exploitation des éléments

constitutifs du bâtiment sont données par les plans du coffrage ainsi que les charges

permanentes sont données ci-dessous en fonction du type de chaque plancher.

2.1 Les Charges d’exploitation

Les charges d’exploitation sont variables en fonction de l’usage du local.

Page 16: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 16

Les charges d’exploitation sont données (Voir plans de coffrage). 2.2 Charges permanentes pour planchers

Les charges permanentes des différents planchers sont présentées sur le tableau1. Tableau 1.Charges permanentes pour planchers

2.3 Charges permanentes des murs

Les charges permanentes des différents types de murs sont présentées sur le tableau2. Tableau 2.Charges permanentes des murs

Epaisseur (cm) charges Cloison10 150 kg/m² Cloison15 210 kg/m² Cloison20 240 kg/m² Cloison25 280 kg/m² Double Cloison30 320 kg/m² Double Cloison35 350 kg/m²

planchers intermédiaire terrasse 16+5 630 kg/m² 650 kg/m² 19+6 670 kg/m² 690 kg/m² 25+5 710 kg/m² 730 kg/m² 30+5 750 kg/m² 780 kg/m²

Page 17: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 17

Chapitre 2 : Modélisation par ARCHE Ossature

1. Présentation du logiciel utilisé

ARCHE Ossature est un logiciel de simulation de bâtiment qui, intégrant une CAO pour la

saisie, nous a permis de modéliser le bâtiment, le prédimensionner, d'en effectuer la descente

de charges puis de créer des métrés et des notes de calcul.

En phase d’exploitation des résultats, le calcul précis du ferraillage des éléments se fait par

appel aux modules de ferraillage correspondants.

Les modules poutre, poteau, voile, dalle, plaque, Semelle 3D et longrine servent à

dimensionner et réaliser les plans de ferraillage et les notes de calcul des différents éléments

conformément au règlement B.A.E.L.91.

2. Modélisation

La conception de la structure se traduit par l’élaboration des plans de coffrage en se basant

sur les plans d’architecture. La définition des emplacements et des dimensions des éléments

porteurs permet de modéliser la structure à l’aide du logiciel « ARCHE v 14.1 » dans son

module « ARCHE Ossature ». Vu la complexité géométrique de quelques éléments, cette

démarche offre un modèle simplifié de la structure.

La saisie de la structure se fait étage par étage. En premier lieu, on définit chaque type

d’élément (poteau, poutre, dalle, semelle ou voile) par un calque à partir du plan de coffrage.

ensuite on lance le module ossature et on importe ces calques sous format dxf. Ainsi obtient-

on le modèle. Une fois le modèle est introduit dans le logiciel et après vérification de sa

cohérence, le calcul pourra être lancé.

Page 18: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 18

On présente par la suite les modèles obtenus des deux blocs A et B du bâtiment.

Figure 3. Modélisation 3D du bloc A

Figure 4.Modélisation 3D du bloc B

Page 19: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 19

3. Calcul de la descente de charges

Dans cette étape, on doit définir les chargements, les caractéristiques des matériaux utilisés et

les familles des éléments. En outre, on doit simuler la présence des escaliers par rajouter des

charges réparties sur les poutres qui les supportent.

On a opté enfin pour la descente de charges traditionnelle qui fait le report de charges des

éléments les uns sur les autres, étage par étage, jusqu’aux fondations, en passant par les

poteaux, les poutres et les voiles.

4. Principe de vérification des calculs

Une fois la descente de charges est établie, on pourra lancer les calculs des éléments de la

structure.

Dans cette partie, on présentera les principaux modules de ferraillages intégrés dans le logiciel

« ARCHE » et utilisés dans notre projet.

5. Module poutre

C’est un module de calcul et de vérification des poutres isostatiques et continues soumises

à un ensemble de chargements. Il permet d’élaborer les plans de ferraillage détaillés des

poutres. Dans ce module on peut saisir les différentes formes de poutres.

La méthode de calcul utilisée est la méthode des foyers qui permet de lever l'hyperstaticité

de la poutre étudiée. Cette méthode présente l'avantage de la rapidité de calcul et permet de

traiter n'importe quel cas de charge.

Le module interactif donne la possibilité à l’utilisateur de choisir le nombre de barres, les

armatures et la forme des armatures transversales.

6. Module poteau

Ce module permet de calculer les poteaux sous l’effet des charges verticales ou des

moments. Le calcul est basé sur trois méthodes de calcul bien précises à savoir la méthode

simplifiée, la méthode forfaitaire et la méthode itérative ou méthode de FAESSEL.

Dans ce qui suit nous allons décrire la méthode que nous avons utilisée pour calculer les

poteaux de ce projet. C’est la méthode simplifiée. Elle permet un calcul en compression

centrée selon la méthode forfaitaire qui figure au B.A.E.L.91.

Dans cette méthode, on considère que le centre de gravité des aciers et celui du béton sont

confondus ce qui explique que le module fournit toujours un ferraillage symétrique.

Page 20: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 20

7. Module semelle

Ce module traite des fondations superficielles en béton armé constituées par des semelles

isolées ou par des semelles filantes.

En plus du torseur transmis par l'élément porté et des charges sur le sol fini qui sont saisis

par l'utilisateur, le programme calcule les actions suivantes :

- celle due par le poids propre de l'élément porté

- celle due par le poids propre de la semelle,

- celle due par le poids propre des terres sur la semelle,

- celle due par la présence d'une nappe phréatique.

8. Module Longrine

La description des longrines est facilitée par une interface graphique qui prend en compte la

géométrie précise des longrines et les caractéristiques du sol sur lequel elles reposent.

Page 21: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 21

Chapitre 3 : Etude du contreventement

1. Introduction

Le contreventement consiste à rigidifier la structure contre les actions du vent. Pour ce

projet, il s’agit d’un contreventement interne assuré par la cage d’ascenseur.

Le contreventement du bâtiment peut être assuré par les voiles de la cage d’ascenseur.

Dans ce qui suit, nous vérifierons ce choix. [2] et [3].

2. Action du vent

2.1 Hypothèses et données - épaisseur des voiles 0.2m. - hauteur du bâtiment exposé au vent 23.2m. - hauteur totale du bâtiment 23.2m. - site normal - vent région II dont la direction moyenne est horizontale - Les différents coefficients et les sollicitations d’ensemble sont déterminés à partir

des abaques et des tableaux proposés par les règles N.V 65.

2.2 Force de trainée

Pour un vent à vitesse normale, on définit la force de traînée (action dynamique) par :

entn DqcT ⋅⋅⋅⋅= δβ

2.3 Pression du vent normal SHn Kqq ⋅=

La pression dynamique doit être multipliée par un coefficient de site : ks : c’est un coefficient dépendant de l’emplacement de la structure et de la région

(Région II et site normal, donc ks =1). qH : la pression dynamique normale à la hauteur H : fonction de la hauteur au-dessus du

sol : 10

18 .2,5.60H

zq qz

+=

+

Avec :

:hq Pression dynamique agissant à une hauteur H au-dessus du sol. :10q Pression dynamique de base à 10 m de hauteur (la construction est implantée dans la région II 10 70 / ² 10q daN m H m= ∀ ≤ )

Page 22: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 22

2.4 Coefficient de traînée

Le coefficient de trainée est donné par la formule suivante : Ct = cto . γ0

Avec :

cto : coefficient global de trainée, or notre bâtiment est assimilé à un prisme de trois

ou quatre cotés (catégorie I), par suite cto = 1,3.

γ0 : c’est un coefficient déterminé à partir d’un d’abaque, qui dépend du rapport de

dimension λ .

λ : c’est le rapport de la hauteur H (toiture comprise) et la largeur d de maitre

couple.

dH

2.5 Coefficient de majoration dynamique β = Ө x (1+ξτ)

Ө : coefficient global dépendant du type de construction, or pour les constructions à usage d’habitation ou bureautique, Ө est pris égal à 1.

β : c’est un coefficient dépendant de la période propre de vibration et du niveau pris en

considération, il est lié aux effets de résonance. Avec :

)(Hf=τ : coefficient de pulsation qui varie avec H. )(Tf=ξ : coefficient de réponse, il est fonction de la période propre de vibration T.

HD

HDHT

ee += ..08,0

De : diamètre équivalent à la côte considérée.

2.6 Coefficient de réduction C’est un coefficient qui tient compte de l’effet des dimensions. Il est pris à partir d’un abaque. La hauteur de calcul H à prendre en compte pour la console est égale à: H = H0 +H1

Pour un bâtiment ayant une partie en sous-sol, la hauteur de la console à considérer dépend de la nature du sol. H est prise selon la nature du sol sur lequel le bâtiment est fondé. Pour notre cas H = H1 puisque le bâtiment est fondé sur rocher (substratum). (Voir figure5).

Page 23: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 23

Figure 5.Modélisation de l’immeuble

On a δ=0,77 (puisque H<30m). Pour un sol non rocheux, la construction est modélisée par une console de longueur H1+H0.

2.7 Calcul des forces de trainée

Tableau 3.Détermination des coefficients pour le vent 1

γ02

z(m) τ Τ(s) ξ β qz

(daN/m²) 0 0.35 0.24 0.16 1.06 52.50 0.85

3.2 0.35 0.26 0.18 1.06 58.70 0.88 6.61 0.35 0.26 0.18 1.06 64.66 0.88 9.42 0.35 0.33 0.22 1.08 69.12 0.94 12.63 0.357 0.33 0.22 1.08 73.80 0.94 15.84 0.35 0.33 0.22 1.08 78.09 0.94 19.05 0.346 0.33 0.22 1.08 82.02 0.94 22.26 0.342 0.33 0.22 1.08 85.65 0.94 23.2 0.34 0.33 0.24 1.0816 86.66 0.94

Page 24: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 24

D’où la force de trainée pour le vent1:

Tableau 4.Détermination de Tn pour le vent1

Vent1 ct1 De1 Λ Tn1 daN/m

1.11 28 0.81 1,320.79 1.14 24.34 0.93 1,337.91 1.14 24.34 0.93 1,473.60 1.22 17.92 1.26 1,255.27 1.22 17.92 1.26 1,342.16 1.22 17.92 1.26 1,418.03 1.22 17.92 1.26 1,488.28 1.22 17.92 1.26 1,552.85 1.22 17.92 1.26 1,580.44

Et pour le vent 2 on a :

Tableau 5.Détermination des coefficients pour le vent 2

γ02

z(m) τ Τ(s) ξ β qz

(daN/m²) 0 0.35 0.24 0.16 1.06 52.50 0.85

3.2 0.35 0.21 0.11 1.04 58.70 0.78 6.61 0.35 0.21 0.11 1.04 64.66 0.78 9.42 0.35 0.24 0.16 1.06 69.12 0.85 12.63 0.357 0.24 0.16 1.06 73.80 0.85 15.84 0.35 0.24 0.16 1.06 78.09 0.85 19.05 0.346 0.24 0.16 1.06 82.02 0.85 22.26 0.342 0.24 0.16 1.05 85.65 0.85 23.2 0.34 0.24 0.16 1.05 86.66 0.85

Page 25: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 25

D’où la force de trainée pour le vent2:

Tableau 6.Détermination de Tn pour le vent2

Vent2 ct2 De2 Λ Tn2 daN/m

1.11 28 0.81 1,320.79 1.01 33.38 0.68 1,588.83 1.01 33.38 0.68 1,749.97 1.11 28 0.81 1,738.99 1.11 28 0.81 1,858.68 1.11 28 0.81 1,964.47 1.11 28 0.81 2,062.23 1.11 28 0.81 2,152.14 1.11 28 0.81 2,176.85

Les résultats sont résumés sur la figure6.

Figure 6.Diagrammes de Tn pour les vents 1 et 2

Page 26: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 26

2.8 Sollicitations d’ensemble Ayant Tn, on calcule l’effort tranchant et le moment par niveaux tout en considérant la

structure comme une console de longueur H chargée par Tn. L’effort tranchant et le moment au niveau i sont calculés comme suit :

11

2i ii iT TH h H +++

= × ∆ +,

11

2i ii iH HM h M +++

= × ∆ +

∆h étant la différence de niveau entre i et i+1.

Tableau 7.Détermination des moments

vent1 VENT 2 Mn2

z(m) Tn1

daN/m Hn1 daN Mn1

daN.m Tn2

daN/m Hn2 daN daN.m 0 1,320.79 32498.87 385738.42 1320.79 42422.10 524375.38

3.2 1,337.91 28244.95 288548.29 1588.83 37766.71 396073.296.61 1,473.60 23451.33 200406.13 1749.97 32074.05 276994.809.42 1,255.27 19617.27 139894.75 1738.99 27172.06 193754.0112.63 1,342.16 15448.39 83614.36 1858.68 21397.80 115799.3815.84 1,418.03 11018.29 41135.34 1964.47 15261.65 56960.9619.05 1,488.28 6353.66 13253.37 2062.23 8798.79 18343.9622.26 1,552.85 1472.65 692.14 2152.19 2034.65 956.2823.2 1,580.44 0 0 2176.85 0 0

3. Méthode du centre de torsion

La méthode du centre de torsion consiste à décomposer l’action extérieure en :

- un effort H passant par le centre de torsion C de l’ensemble des éléments de

contreventement et provoquant une translation sans rotation.

- un moment M = H. e de l’effort extérieur H par rapport au centre de torsion et

provoquant une rotation sans translation.

3.1 Détermination du centre de torsion C

Pour un voile ou un ensemble de voiles assurant le contreventement d’une structure et

liés par des planchers rigides, le centre de torsion C est un point tel que :

- toute force passant par ce point provoque une translation du plancher et donc de

l’ensemble des éléments de contreventement parallèlement à la force et sans

rotation.

Page 27: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 27

- tout moment autour de ce point provoque une rotation du plancher dans le même

sens que le moment et ce sans translation.

Chaque voile i est défini par :

- son centre de torsion Oi.

- ses axes principaux d’inertie par rapport à son centre de gravité Gi : Oixi, et Oiyi.

- l’orientation өi avec le repère général : өi = angle de l’axe principal de l’inertie la plus

grande avec l’axe oyi.

Les éléments de définition d’un voile sont représentés par la figure7.

Figure 7.Eléments de définition d’un voile

Or, pour un voile en U symétrique, le centre de torsion est situé à l’extérieur de l’âme à une

distance2 2

1

4h t h

Iδ = .

3.2 Etude de la translation due à l’effort extérieur H

a. hypothèses Nous supposerons que :

- les voiles sont de sections constantes sur toute la hauteur du bâtiment ou au moins les inerties varient toutes dans les mêmes niveaux.

- pour les voiles avec ouvertures, on prendra leur inertie équivalente. - les planchers sont infiniment rigides dans leur plan. - les voiles ont les mêmes conditions d’encastrement en pied et ont le même module

d’élasticité. - la répartition de l’effort H sera faite au prorata des rigidités donc des inerties des

voiles car le rapport rigidité / inertie est le même pour une même déformation à une

même altitude et que les déformées sont de la forme ( )k f z FEI

pour une force F

appliquée à la côte z.

Page 28: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 28

b. Action d’une translation sur un voile

Pour toute translation unitaire du voile n°i parallèlement à ox, on obtient deux forces de rappel :

- l’une parallèle à ox et proportionnelle à l’inertie Iyi par rapport à oiyi. - l’autre perpendiculaire à ox et proportionnelle à l’inertie composée Ixyi.

De même, pour tout voile n°i parallèlement à oy, on obtient deux forces de rappel : - l’une parallèle à oy et proportionnelle à l’inertie Ixi par rapport à oixi. - l’autre perpendiculaire à oy et proportionnelle à l’inertie composée Ixyi.

Les inerties Ixi, Iyi et Ixyi sont obtenues à partir des inerties principales I’xi, I’yi. On obtient ainsi :

2 2

2 2

' cos ' sin

' sin ' cos

( ' ' ) cos sin

xi xi i yi i

yi xi i yi i

xyi xi yi i i

I I I

I I I

I I I

θ θ

θ θ

θ θ

= +

= +

= −

Comme toutes les forces de rappel sont proportionnelles aux rigidités donc aux inerties, avec le même facteur de proportionnalité, nous pouvons remplacer ces forces de rappel par les vecteurs-inerties. Soient i et j les vecteurs unitaires du repère oxy. On obtient donc les résultantes P et Q des forces (donc d’inerties) présentées sur la figure8.

Figure 8.Résultantes P et Q.

Le point d’intersection de ces résultantes définit le centre de torsion. • Calcul de l’angle δ :

Figure 9.Angle δ

Page 29: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 29

On doit avoir ∑ IXYi = 0 où IXYi est l’inertie composée du voile par rapport aux OiXiYi. c. Détermination des résultantes P et Q

La distance de la droite support de P au point O est déterminée en écrivant l’équilibre des moments des forces (figure10) où xoi et yoi sont les coordonnées du centre de rotation Oi du voile i.

Figure 10. Résultante P

On a donc :

x

y

P Iyi

P Ixyi

=

=∑∑

3.3 étude de la rotation due au moment M = H. e

Les efforts Rxi et Ryi dus à la rotation et repris dans chaque voile sont proportionnels à (voir figure11) :

- leurs inerties principales I’xi et I’yi. - leur distance au centre de torsion C pour une même rotation d’angle α.

'

'xi xi yi

yi yi xi

R K r I

R K r I

α

α

=

=

Avec rxi = distance de C à l’axe Oix’i et ryi = distance de C à l’axe Oiy’i.

Figure 11.Distances rxi et ryi

Page 30: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 30

Le coefficient de proportionnalité K est obtenu en écrivant l’équilibre des moments des forces par rapport au centre de torsion C, soit :

2 2

'

'

( ' ' )

xi yixi

yi xiyi

yi yi xixi

M r IR

JM r I

RJ

Avec J r I r I

=

=

= +∑

3.4 Efforts finaux dans les voiles

Les efforts dans chaque voile i, dirigés suivant leurs axes principaux d’inerties Oix’iy’i, valent :

''x xi xi

y yi yi

H F RH F R

= +

= +

4. Distribution des sollicitations d’ensemble par la méthode du centre de torsion

On n’étudiera que le vent 2. Le groupe de refend schématisé sur la figure12 est soumis à l’action de l’effort tranchant agissant à la base du bâtiment et vaut: 4.25H MN= . La plupart des refends ayant des axes principaux d’inertie parallèles. On peut effectuer un calcul simplifié.

Figure 12.Caractéristiques géométriques des voiles de contreventement

a. Caractéristiques du voile Les caractéristiques du voile sont représentés par le tableau8 suivant.

Tableau 8.caractéristiques du voile

Rectangles t h φ a b 1 0.2 2 -90° 16.55 23.1 2 0.2 2 0° 17.55 22 3 0.2 2 90° 16.55 19.9

Page 31: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 31

Le calcul des inerties donne: 3 3

4

3 34

2.2 2' 2. 1.8. 0.574612 12

2 0.2' 2. 0.2 2.2 . 0.268112 12

x

y

I m

I m

= − =

= + =

Or, pour un voile en U symétrique, on a :

2 2 2 21 2 0.2 2 1.44 4 0.5746

h t h mI

δ × ×= = =

×

D’où les coordonnées du centre de torsion : 17.65 1.4 18.0521

c

c

x my m

= + ==

Les résultats de calcul sont représentés sur les tableaux suivants.

Tableau 9 .Détails de calcul

Notation Formule Unité Valeur TotalI'xi donnée m4

0.575 0.575

I'yi donnée m40.268 0.268

ti donnée m 0.15angle ө donnée ° 0

m40.575 0.575

m40.268 0.268

m40

xc donnée m 18.05yc donnée m 21

Ixyi

Inertie principale

centre de torsion

inerties /Oixiy

Ixi=I'xicos2θi+I'yicos2θi

Iyi=I'xisin2θi+I'yicos2θi

Ixyi=(I'xi-I'yi)cosθicosθi

Ixi

Iyi

Page 32: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 32

Tableau 10.Détermination du moment

Ixi xc m5 10.37Iyi yc m5 5.63Ixyi xc m5 0Ixyi yc m5 0

Ai=(I'xi‐I'yi)sin2θi m4 0

Bi=(I'xi‐I'yi)cos2θi m4 0.307angle δ (artg(‐∑Ai/∑Bi))/2 ° 0

Px ∑Iyi m4 0.268

py ∑Ixyi m4 0

Qx ∑Ixyi m4 0

Qy ∑Ixi m4 0.575

Hx donnée MN 0

Hy donnée MN 4.25XHy donnée m 14YHx donnée m 0

Moment M (XHy-XC)Hy+(YHx+yC)Hx MN.m 29.75

Composante de P

composante de Q

force extèrieurr /OXY

Page 33: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 33

Tableau 11.Efforts dus à la translation

HY 4.25

notation unité valeur total

angle φ ° 0

inertie/CXY Ixi m4 0.5746 0.575

Iyim4 0.2681 0.268

IXYi m4 0 0

m4 0 0

m4 0.5746 0.575

m4 0 0

m4 0.2681 0.268

m4 0 0

m4 0 0

effort dus

Fxi

MN 0

à la translationFyi

MN 4.25

formule

ө + δ

MN

MN

0HXcos sinx yH Hδ δ+

sin cosx yH Hδ δ− +

2 2' cos ' sinxi i yi iI Iϕ ϕ+2 2' sin ' cosxi i yi iI Iϕ ϕ+

( ' ' ) cos sinxi yi i iI I ϕ ϕ−

sinxi iI ϕ

sinyi iI ϕ

sinxyi iI ϕ

cosxyi iI ϕ

cosxi iI ϕ

cosyi iI ϕ

[ ] [ ]cos cosX Yxi Yi XYi X Yi Xi

Yi Xi

H HF I I sin I I sinI I

ϕ ϕ ϕ ϕ= − + −∑ ∑

[ ] [ ]cos cosY Xyi Xi XYi X Yi Yi

Xi Yi

H HF I I sin I I sinI I

ϕ ϕ ϕ ϕ= − + −∑ ∑

Page 34: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 34

Tableau 12.Efforts dans les voiles

rxi m 0ryi m 0

Rxi MN 0

Ryi MN 0

H'xi MN 0

H'yi MN 4.25

Hxi MN 0

Hyi MN 4.25

-y’ic

-x’ic

efforts dus à la torsion

Fxi+Rxi

Fyi+Ryi

efforts dans les voiles

distance de C à Oiyi distance de C à Oixi

' cos ' sinxi i yi iH Hθ θ+

' sin ' cosxi i yi iH Hθ θ− +

Avec :

[ ][ ]

' ( ) cos ( )sin

' ( )sin ( ) cosic c oi i c oi i

ic c oi i c oi i

x X X y y

y X X y y

θ θ

θ θ

= − − − −

= − − − −

De même on vérifie, pour le vent 1.

5. Conclusion

On a bien vérifié que la somme des composantes des efforts des voiles suivant les axes d’origine est égale à celle des efforts extérieurs : 4.25 MN suivant Oy et 0 suivant Ox. Parsuite, on peut conclure que le contreventement du bâtiment est assuré

Page 35: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 35

Chapitre 4 : Etude d’une dalle pleine

I. Etude d’une dalle pleine

Une dalle est un élément, généralement rectangulaire, dont une dimension (épaisseur) est

faible vis-à-vis des deux autres (dimensions en plan).

Dans un plancher, on appelle panneaux de dalle les parties de dalle bordées par les poutres-

supports (poutrelles et poutres du plancher).

Dans cette section, on vise dimensionner et calculer une dalle pleine [4].

II. Méthode de calcul

1. Dimensionnement

On pose : cot 1cot

l longueur du petit é de la dallexαl longueur du grand é de la dalley

= = ≤

L’épaisseur h0 de la dalle est déterminée forfaitairement en fonction des conditions suivantes : -Si 400,α< : La dalle porte dans un seul sens.

- 200xlh > : pour les panneaux isolés.

- 250xlh > : pour les panneaux de dalles continues.

- Si 0,40≥α : la dalle porte dans les deux sens.

- 300xlh > : pour les panneaux isolés.

- 400xlh > : pour les panneaux de dalles continues.

Figure 13.Caractéristiques de la dalle

Page 36: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 36

• 2éme cas

400,α<

2. Sollicitations

Le calcul se fait à l’ELU avec Pu = 1,35G+1,50Q où G et Q sont respectivement les charges surfaciques permanente et d’exploitation.

a) Moments dans les dalles articulées sur leurs contours (M0x/y)

• 1er cas

400,α≥

)4.21(81

3αµ

+=x et ( )[ ]

41195.01 22 ≥−−= ααµ y

20x x xM Plµ= et 0 0y y xM Mµ=

00 =yM et 8

2

0x

x

PlM =

b) Moments dans les dalles partiellement encastrées

• Cas où α<0.4 et la charge p est uniforme

Les moments de flexion dans le sens lx évalués suivant la méthode forfaitaire de calcul des poutres de planchers sont donnés par :

( ) 1 0.3 ; 1.052

wx extx ox ox

M MM Max M Mα++ ≥ +

Avec B

B

QGQ+

Les moments minimaux étant :

Figure 14.Moments à prendre en compte

Page 37: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 37

• Pour les autres cas

- Pour une bande de 1m de largeur parallèle à lx/y : yxytx MM /0/ 85.0= Si le panneau est de rive et yxyax MM /0/ 3.0≥

yxytx MM /0/ 75.0= Si le panneau est intermédiaire et / 0 /0.5ax y x yM M=

Figure 15.Moments pour une dalle continue.

Ce qui réalise :

025.12

MMMM ewt ≥

++

c) Valeurs minimales à respecter

En travée : 4

txty

MM ≥

Sur appuis : May = Max

3. Ferraillages

a) Section d’acier calculée • En travée

- Sens lx : 20 dfbM

bu

tybu =µ ; )6.01( bub dz µ−= ;

edb

txtx fz

MA =

- Sens ly : bu

tybu fdb

M2

0

=µ ; )6.01( bub dz µ−= ;edb

tyty fz

MA =

• Sur appui

20 dfbM

bu

axbu=µ ; )6.01( bub dz µ−= ;

edb

axax fz

MA = .

Page 38: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 38

b) Diamètre des armatures

100h

≤φ

c) Section minimale d’acier

02

0

0

12 :

( / ) 8 : 400

6 : 500yMin

h Rond lisse

A cm m Min h FeE

h FeE ou Ts

⎧ ⎫⎪ ⎪

= ⎨ ⎬⎪ ⎪⎩ ⎭

2 (3 )( / )2xMin yMinA cm m Aα−

=

d) Espacement des aciers

Cas des charges réparties + fissuration préjudiciable :

• En travée

Sens lx : ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

≤cm

hMinst

33

.3 0

Sens ly : ⎭⎬⎫

⎩⎨⎧

≤cm

hMinst 45

.4 0

• Sur appui : cmst 33≤

4. Effort tranchant

a) sollicitations ultimes (Charges réparties) • 1er cas

0,40≥α

)

21(2 α

+= xu

uxlP

V ; 3xu

uylPV = .

• 2éme cas

0,40<α

2xu

uxlPV = ; 0=uyV

Page 39: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 39

b) Vérification du béton

On n’a pas besoin d’armatures transversales si : - La dalle est bétonnée sans reprise dans son épaisseur - La contrainte tangente vérifie :

b

cuu

fd

τ 2807.0 <=

c) Arrêt des barres

⎟⎟⎟

⎜⎜⎜

×⎟⎟⎠

⎞⎜⎜⎝

⎛+

=x

s

lMM

lMaxl

0

11 3.025.0

⎟⎟⎟

⎜⎜⎜

⎛=

212 l

lMaxl

s

Figure 16.Arrêt des barres III. Calcul d’un panneau de dalle

1. Dimensionnement de la dalle On se propose d’étudier la dalle pleine du plancher mezzanine modélisée par la figure17.

Figure 17.Panneau de dalle

Page 40: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 40

On a :

D’où il s’agit d’un panneau portant dans les deux sens. Dalle continue :

400xlh ≥ ⇒ cm 25 =h0Soit 82.3

40153

0 ⇒=≥ cmh

2. Sollicitations

a) Charges par m² de plancher

Les charges permanentes appliquées sur le plancher sont calculées en fonction de l’épaisseur de chaque constituant. Les charges permanentes de ce type de plancher sont les suivantes :

- Plancher terrasse • Protection de l’étanchéité 30 daN /m² • Enduit de planéité 30 daN / m² • Asphalte coulé sablé 50 daN / m² • Forme de pente 200 daN / m² • Dalle pleine (d’épaisseur e) 25e daN / m² • Enduit de plafond (1.5 cm) 30 daN / m²

- Plancher intermédiaire • 3 cm de sable (17 daN / cm d’épaisseur) 51 daN / m² • 2 cm de mortier pour carrelage (20 daN / cm d’épaisseur) 40 daN / m² • carrelage 25x25x2.5 45 daN / m² • dalle pleine (d’épaisseur e) 25e daN / m² • enduit de plafond (1.5 cm) 30 daN / m² • cloison léger 75 daN / m²

Pour notre cas, il s’agit d’un plancher intermédiaire :

G = 866 daN/m² Q = 400 daN/m²

Pu = 1.35 G + 1.5 Q = 17.7 kN/m²

4.0 43.056.353.1

>⇒==⇒= αααy

x

ll

Page 41: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 41

b) Moments fléchissants pour le panneau de dalle articulé sur son contour

On a : 43.0=α

])43.01(95.01[43.0])1(95.01[et )43.04.21(8

1)4.21(8

1 222233 −−=⇒−−=

×+=⇒

+= yyxx µααµµ

αµ

25.0

25.0127..0et 105.0

=→

==

y

yx

µ

µµ p

D’où les moments pour une bande de largeur 1m: 2 2

0 0

0 0 0

0.105 17.7 1.53 4.35 /0.25 4.35 1.08 /

x x u x x

y y x y

M p l M kNm mM M M kNm m

µµ

= ⇒ = × × =

= ⇒ = × =⇒

4.35 . /1.08 . /

ox

oy

M kN m mM kN m m

=

=

c) Moments dans la dalle partiellement encastrée

- Bande de largeur 1 m parallèle à lx :

0

0

0.75. 0.75. 4.35 3.27 . /

0.5. 0.5.4.35 2.175 . /

tx x tx

ax x ax

M M donc M kN m m

M M donc M kN m m

= = =

= = =

- Bande de largeur 1 m parallèle à ly :

00.75. 0.75 . 1.08 0.81 . /ty yM M kN m m= = = Valeurs minimales à respecter :

- En travée :

okM

M txty →=≥ 81.0

4

- Sur appuis : 2.175 . /ay axM M kN m m= =

Donc on a :

0.81 . /

2.175 . /ty

ay ax

M kN m m

M M kN m m

=

= =

3. Armatures longitudinales

Sachant que Mu est proportionnel à M0 qui est lui-même proportionnel à pu ,on a:

4.1466.8

7.17=

+=

+=

QGpuγ

En outre, pour FeE400 HA, fc28=20 < 30MPa et θ =1, µlu est calculé par la formule suivante :

⇒−×+×

=⇒−+= 4284

10305020494.13440305049344010 luclu f µγµ 0.276luµ =

Page 42: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 42

a) Calcul des sections d’acier

• aciers en travée « sens lx »

⇒××

==−

33.11225.0110.27.32

3

20 bu

txbu fdb

Mµ 005.0=buµ Alors

lubuµµ < ⇒ A’=0 (Pas d’aciers

comprimés) 274.0<buµ ⇒ Nous utilisons les formules simplifiées pour déterminer la section des aciers

tendus. ( ) ( ) ⇒×−=−= 005.06.01225.06.01 bub dz µ mzb 224.0=

( )⇒

×==

348224.010.10.27.3 43

edb

txtx fz

MA mcmAtx /41.0 2=

• aciers en travée « sens ly »

⇒××

==−

33.11225.0110.81.02

3

20 bu

tybu fdb

Mµ 0014.0=buµ Alors

lubuµµ < ⇒ A’=0 (Pas d’aciers

comprimés) 274.0<buµ ⇒ Formules simplifiées

( ) ( ) ⇒×−=−= 0014.06.01225.06.01 bub dz µ mzb 224.0= ( )

⇒×

×==

348224.010.1081.0 43

edb

tyty fz

MA mcmAty /104.0 2=

• aciers sur appuis (Chapeaux)

⇒××

×==

33.11225.0110175.2

2

3

20 bu

axbu fdb

Mµ 0038.0=buµ Alors

lubuµµ < ⇒ A’=0 (Pas d’aciers

comprimés) 274.0<buµ ⇒ Formules simplifiées

( ) ( )1 0.6 0.225 1 0.6 0.0038b uz d µ= − = − × ⇒ mzb 224.0=

( )⇒

××

==−

348224.010.10175.2 43

edb

axa fz

MA mcmAa /28.0 2=

b) Sections minimales d’armatures

• bande suivant « ly »

mcmAFeE

FeEhFeEh

lisse

Rondh

A yy /225.08400 ;

500:6;400:8

;

:12

2min

0

0

0

min =×=⇒

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

=

min

min

yay

yty

AA

AA

p

=< ⇒

mcmA

mcmA

ay

ty

/2

/22

2

=

=

Page 43: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 43

• bande suivant « lx »

⇒−

×=⇒×−

=2

43.0322

3minminmin xyx AAA α mcmAx /57.2 2

min =

min

min

xax

xtx

AAAA

p

p⇒

mcmA

mcmA

ax

tx

/57.2

/57.22

2

=

=

c) Choix des aciers et de l’espacement

Dispositions constructives : ⇒=≤10250

100h

φ mm25≤φ donc nous prenons au plus φ 20.

• en travée sens « lx »

L’espacement entre les armatures est donné par la formule suivante :

( )( )

cmscmcms

cmhs

t

t

t

3333;75253min

33;3min 0

≤⇒=×≤⇒

On a : mcmAtx /57.2 2= Alors nous prenons : 4 HA 10 /m

cmst 204

100== : A=3.16 cm2/m

• en travée sens « ly »

L’espacement entre les armatures est donné par la formule suivante :

( )( )0min 4 ;45

min 4 25 100 ; 45 45

⇒ ≤ × = ⇒ ≤t

t t

s h cm

s cm cm s cm 22 / =tyOr A cm m

Alors nous avons : 4 HA 8 /m

cmst 204

100==

• en chapeau

cmsmcmA

t

a

33et /57.2 2

<=

Alors nous avons : 4 HA 8 /m ; cmst 20=

Page 44: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 44

2HA8 / m filants. 2HA8 / m arrêté à 15 cm.

4. Effort tranchant

a) Sollicitations ultimes

- Au milieu du grand côté (charge répartie) :

⎟⎟⎟⎟

⎜⎜⎜⎜

+

×=⇒

⎟⎟⎟⎟

⎜⎜⎜⎜

+=

243.01

12

53.17.17

21

12

ux

xuux

V

lpV

α

11.14 /uxV kN m=

- Au milieu du petit côté (charge répartie) :

317.7 1.53 9.03 /

3

u xuy

uy ux

p lV

V kN m V

=

×⇒ = = p

b) Vérification

225.0110.14.11 3

0

×=⇒

=

u

uu db

V

τ

τ

MPau 05.0=τ

Et ⇒=⇒=5.1

2007.007.0 lim28

lim τγ

τb

cf MPa933.0lim =τ

Alors MPau 933.005.0 lim =<= ττ ⇒ On a pas besoin d’armatures transversales.

5. Arrêt des barres

Les arrêts des barres dans le sens lx, ly et sur appuis sont les suivants :

En travée sens « lx », on alterne : 2 HA 10 / m filants 2 HA 10 / m arrêté à 15 cm

En travée sens « ly », on alterne :

Page 45: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 45

Sur appuis :

cml

cmMaxl

lMaxl

cmlcmlcmMaxl

lMM

lMaxl

s

x

xa

s

322

32;322

;

326.301532.02.0;328.04040

.3.041;

2

12

1

1

01

=⇒⎭⎬⎫

⎩⎨⎧=

⎭⎬⎫

⎩⎨⎧=

=⇒=×=×=×==⇒

⎭⎬⎫

⎩⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

φ

2HA8 / m l1 = 32 cm 2HA8 / m l2 = 32 cm

6. Plans de ferraillage

Le ferraillage de la nappe inférieure, de la nappe supérieure et les arrêts des barres sont représentés par les figures18 et 19.

Figure 18.Aciers de la nappe inférieure.

Page 46: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 46

2HA8 pm

2HA8pm

2 HA8pm

2HA8pm

30 cm Coupe A-A

32 cm

Figure 19.Aciers de la nappe supérieure.

Page 47: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 47

Chapitre 5 : Etude des poutres et des nervures

On se propose d’étudier la nervure hyperstatique du plancher haut sous sol, représentée sur la

figure20. [4]

Un exemple de poutre est calculé dans l’annexe.

La charge permanente exercée sur la nervure est :

0.33 6.3 0.33 2.08 / .N totalG G kN ml= × = × =

La charge d’exploitation étant: 0.33 4 0.33 1.32 / .NQ Q kN ml= × = × =

Figure 20.Caractéristiques de la nervure.

1. Méthode de calcul

1) 263.0

08.232.1

≤==N

N

GQ

. 2 24 / 5 / .NQ KN m kN m= ≤ 2) Etant donné que la fissuration est peu préjudiciable, elle ne compromet pas la tenue des revêtements ni celle des cloisons. 3) Les trois travées ont une même inertie.

4) 25.16.0

8.495.2

11

2 ≥⇒==+i

i

ll

ll

.25.18.025.1

95.269.3

12

3 ≤≤⇒==−i

i

ll

ll

Page 48: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 48

D’après le règlement BAEL91, l’une des hypothèses de la méthode forfaitaire n’est pas vérifiée et la charge d’exploitation n’est pas assez élevée pour pouvoir suivre la méthode de Caquot.

Dans ces conditions, les règles BAEL91 recommandent l’utilisation de la méthode de Caquot minorée applicable pour les planchers à charge d’exploitation élevée en multipliant la part des moments sur appui provenant des seules charges permanentes par un coefficient variant entre 1 et 2/3. Pour cette étude, on le prendra égal à 2/3.

2. Moments maximaux sur appuis

On note par M G les moments dus aux charges permanentes et par M Q les moments dus aux charges d’exploitation :

( )

( ) .5.8

.5.83

2

''

3'3'

''

3'3'

⎟⎟⎠

⎞⎜⎜⎝

⎛+×

×+×−=

⎟⎟⎠

⎞⎜⎜⎝

⎛+×

×+×−=

ew

eewwQ

ew

eewwG

lllQlQ

M

lllGlG

M

- Appui A .0KNmMM AQAG ==

- Appui B

( ) ( )( )

( ) ( )( )

3 3

3 3

2.08 4.8 2.08 2.362 2.923 8.5 2.36 4.8

1.32 4.8 1.32 2.362.78

8.5 2.36 4.8

BG

BQ

M kNm

M kNm

⎛ ⎞× + ×⎜ ⎟= − = −⎜ ⎟× +⎝ ⎠

⎛ ⎞× + ×⎜ ⎟= − = −⎜ ⎟× +⎝ ⎠

- Appui C : ( ) ( )

( )

( ) ( )( )

3 3

3 3

2.08 3.69 2.08 2.362 1.713 8.5 2.36 3.69

1.32 3.69 1.32 2.361.62

8.5 2.36 3.69

CG

CQ

M kNm

M kNm

⎛ ⎞× + ×⎜ ⎟= − = −⎜ ⎟× +⎝ ⎠

⎛ ⎞× + ×⎜ ⎟= − = −⎜ ⎟× +⎝ ⎠

A B C D

4.8m 2.95m 3.69m il

4.8m 2.36m 3.69m 'il

Figure 21.Travées réelles est travées fictives

Page 49: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 49

- Appui D

0 .DG DQM M kNm= = La pondération nous donne les résultats suivants :

• à l’ELU

( ) ( )( ) ( )

0 .1.35 1.5 1.35 2.92 1.5 2.78 8.11 .

1.35 1.5 1.35 1.71 1.5 1.62 4.73 .

0 .

UA

UB BG BQ

UC CG CQ

UD

M kNmM M M kNm

M M M kNm

M KNm

=

= × + × = × − + × − = −

= × + × = × − + × − = −

=

• à l’ELS

0 .5.7 .

3.33 .

0 .

SA

SB BG BQ

SC CG CQ

SD

M kNmM M M kNm

M M M kNm

M kNm

== + = −

= + = −

=

a. Calcul des moments sur appuis pour les différents cas de charges

• Calcul de M 1

Figure 22.Cas de chargement 1

En B

- à l’ELS : G=2.08 kN/m et 1=Gγ , d’où :

( )3 3

1 2 4.8 2.362.08 2.82 .3 8.5 4.8 2.36BSM kNm

⎛ ⎞+= − × × = −⎜ ⎟⎜ ⎟× +⎝ ⎠

- à l’ELU : G=2.08 KN/m et 35.1=Gγ , d’où : 1.35 2.08 2.81 / .G G kN mγ × = × =

( )3 3

1 2 4.8 2.362.81 3.8 .3 8.5 4.8 2.36BUM kNm

⎛ ⎞+= − × × = −⎜ ⎟⎜ ⎟× +⎝ ⎠

Page 50: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 50

En C :

Figure 23.Cas de chargement 1

- à l’ELS

( )3 3

1 2 2.36 3.692.08 1.71 .3 8.5 2.36 3.69CSM kNm

⎛ ⎞+= − × × = −⎜ ⎟⎜ ⎟× +⎝ ⎠

- à l’ELU

( )3 3

1 2 2.36 3.692.81 2.3 .3 8.5 2.36 3.69CUM kNm

⎛ ⎞+= − × × = −⎜ ⎟⎜ ⎟× +⎝ ⎠

• Calcul de M 2 - à l’ELU

1.35 2.08 2.81 / .G G kN mγ × = × = 1.5 1.32 1.98 / .Q Q kN mγ × = × =

En B

Figure 24.Cas de chargement 2

- à l’ELS

( )3 32 4.8 2.362.08 2.82 .

3 8.5 4.8 2.36BGM kNm⎛ ⎞+

= − × × = −⎜ ⎟⎜ ⎟× +⎝ ⎠

( )34.81.32 2.4 .

8.5 4.8 2.36BQM kNm⎛ ⎞

= − × = −⎜ ⎟⎜ ⎟× +⎝ ⎠

Donc 2 2.82 2.4 5.22BSM kNm= − − = −

Page 51: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 51

- à l’ELU 2 1.35 2.82 1.5 2.4 7.4BUM kNm= × − + × − = −

En C

Figure 25.Cas de chargement2

- à l’ELS

( )3 32 2.36 3.692.08 1.71 .

3 8.5 3.69 2.36CGM kNm⎛ ⎞+

= − × × = −⎜ ⎟⎜ ⎟× +⎝ ⎠

( )32.361.32 0.34 .

8.5 3.69 3.68CQM kNm⎛ ⎞

= − × = −⎜ ⎟⎜ ⎟× +⎝ ⎠

Donc 2 1.71 0.34 2.05 .CSM kN m= − − = − - à l’ELU Donc 2 1.35 1.71 1.5 0.34 2.82 .CUM kN m= × − + × − = −

• Calcul de M 3 Le schéma général de calcul de M 3 en B et en C (l’appui intermédiaire étant l’appui

B ou C) est le suivant :

Figure 26.Cas de chargement 3

Page 52: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 52

En B - à l’ELS :

2.82 . .BGM kN m= −

( )32.361.32 0.28 . .

8.5 4.8 2.36BQM kN m⎛ ⎞

= − × = −⎜ ⎟⎜ ⎟× +⎝ ⎠

3 2.82 0.28 3.1 .BSM kN m= − − = − - à l’ELU :

3 1.35 2.82 1.5 0.28 4.22 .BUM kN m= × − + × − = − En C :

- à l’ELS :

1.71 .CGM kN m= −

3 1.71 1.29 3 .CSM kN m= − − = −

( )33.691.32 1.29 .

8.5 3.69 2.36CQM kN m⎛ ⎞

= − × = −⎜ ⎟⎜ ⎟× +⎝ ⎠

- à l’ELU :

3 1.35 1.71 1.5 1.29 4.25 .CUM kN m= × − + × − = − • Calcul de M 4

Le schéma général de calcul de M 4 en B et en C est le suivant (l’appui intermédiaire étant l’appui B ou C).

Figure 27.Cas de chargement 4

Ce cas de charge correspond aux moments maximaux sur appuis. Ce cas a été traité précédemment.

Page 53: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 53

On rappelle les résultats obtenus :

• à l’ELU

( ) ( )( ) ( )

0 .1.35 1.5 1.35 2.92 1.5 2.78 8.11 .

1.35 1.5 1.35 1.71 1.5 1.62 4.73 .

0 .

UA

UB BG BQ

UC CG CQ

UD

M kN mM M M kN m

M M M kN m

M kN m

=

= × + × = × − + × − = −

= × + × = × − + × − = −

=

• à l’ELS

0 . .5.7 .

3.33 .

0 .

SA

SB BG BQ

SC CG CQ

SD

M kN mM M M kN m

M M M kN m

M kN m

== + = −

= + = −

=

Pour récapituler, on dresse le tableau13 suivant.

Tableau 13.Récapitulatif des moments

Appuis

il (m) 4.8 2.95 3.69 'il (m) 4.8 2.36 3.69

E.L.U. 0 -3.8 -2.3 0 ( )1 .M kN m E.L.S. 0 -2.81 -1.71 0

E.L.U. 0 -7.44 -2.82 0 ( )2 .M kN m E.L.S. 0 -5.22 -2.05 0

E.L.U. 0 -4.22 -4.25 0 ( )3 .M kN m E.L.S. 0 -3.1 -3 0

E.L.U. 0 -8.11 -4.73 0 ( )4 .M kN m E.L.S. 0 -5.7 -3.33 0

A B C D

Page 54: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 54

3. Moments en travées

a. Moments maximaux en travées

Figure 28.Portées des travées

Le moment maximal en travée i est donné par :

2310max 41 i

ii

ii

t MlxM

lxm

lxM +⎟⎟

⎞⎜⎜⎝

⎛+×⎟⎟

⎞⎜⎜⎝

⎛−= −

Avec :

iiii l

mMMl

x ××

−+= −

0

31

2

82 : Abscisse du moment maximal.

( )

8

2

0iQG lQG

m××+×

=γγ

: Moment isostatique de la travée associée.

• Travée AB l = 4.8 m

À l’ELU

2

04.79 4.8 13.8 .

8m kN m×

= =

.07.28.48.138044.7

28.4 mx =×

×−−

+=

( )max2.07 2.07 21 4 13.8 0 7.44 10.44 .4.8 4.8 4.8

tM kN m⎛ ⎞ ⎛ ⎞= − × × × + + × − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

À l’ELS

2

03.4 4.8 9.8 .

8m kN m×

= =

.08.28.48.98

022.528.4 mx =×

×−−

+=

( )max2.08 2.08 2.081 4 9.8 0 5.22 7.36 .4.8 4.8 4.8

tM kN m⎛ ⎞ ⎛ ⎞= − × × × + + × − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Page 55: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 55

• Travée BC l = 2.95 m

À l’ELS 2

03.4 2.95 3.7 .

8m kN m×

= =

.58.195.27.38

1.305.2295.2 mx =×

×+−

+=

( )max1.58 1.58 1.581 4 3.7 3.1 2.05 1.14 .2.95 2.95 2.95

tM kN m⎛ ⎞ ⎛ ⎞= − × × × − + × − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

À l’ELU

2

04.79 2.95 5.21 .

8m kN m×

= =

.57.195.221.58

22.482.2295.2 mx =×

×+−

+=

( )max1.57 1.57 1.571 4 5.21 4.22 2.82 1.71 .2.95 2.95 2.95

tM kN m⎛ ⎞ ⎛ ⎞= − × × × − + × − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

• Travée CD

l = 3.69 m

À l’ELS

2

03.4 3.69 5.78 .

8m kN m×

= =

.08..269.378.58

3269.3 mx =×

×+=

max2.08 2.08 2.081 4 5.78 3 0 4.38 .3.69 3.69 3.69

tM kN m⎛ ⎞ ⎛ ⎞= − × × × − + × =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

à l’ELU

2

04.79 3.69 8.15 .

8m kN m×

= =

.08.269.315.88

25.4269.3 mx =×

×+=

max2.08 2.08 2.081 4 8.15 4.25 0 6.16 .3.69 3.69 3.69

tM kN m⎛ ⎞ ⎛ ⎞= − × × × − + × =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Page 56: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 56

b. Moments minimaux en travées L’intérêt de la détermination des valeurs des moments minimaux en travée est de vérifier que

ces moments sont positifs. Dans le cas contraire, on aura des aciers supérieurs à dimensionner

avec les valeurs négatives des moments trouvés.

3210min 41 i

ii

ii

t MlxM

lxm

lxM +⎟⎟

⎞⎜⎜⎝

⎛+×××⎟⎟

⎞⎜⎜⎝

⎛−= −

Avec :

iiii l

mMMl

x ××

−+= −

0

21

3

82 : abscisse du moment minimal

( )

8

2

0iG lG

m××

: moment isostatique de la travée associée

• Travée AB

l = 4.8 m

À l’ELS 2

02.08 4.8 6 .

8m kN m×

= =

.09.28.4681.3

28.4 mx =×

×−

+=

( )min2.09 2.09 2.091 4 6 0 3.1 4.55 . 0.4.8 4.8 4.8

tM kN m⎛ ⎞ ⎛ ⎞= − × × × + + × − = ≥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

À l’ELU

2

02.81 4.8 8.1 .

8m kN m×

= =

.09.28.41.88

22.428.4 mx =×

×−

+=

( )min2.09 2.09 2.091 4 8.1 0 4.22 6.12 . 0.4.8 4.8 4.8

tM kN m⎛ ⎞ ⎛ ⎞= − × × × + + × − = ≥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

• Travée BC

l = 2.95 m

À l’ELS 2

02.08 2.95 2.26 .

8m kN m×

= =

Page 57: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 57

.82.195.226.28

22.51.3295.2 mx =×

×+−

+=

( )min1.82 1.82 1.821 4 2.26 5.22 3 1.71 . 0.2.95 2.95 2.95

tM kN m⎛ ⎞ ⎛ ⎞= − × × × − + × − = − ≤⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

À l’ELU

2

02.81 2.95 3.05 .

8m kN m×

= =

.86.195.205.38

44.725.4295.2 mx =×

×+−

+=

( )min1.86 1.86 1.861 4 3.05 7.44 4.25 2.58 . 0.2.95 2.95 2.95

tM kN m⎛ ⎞ ⎛ ⎞= − × × × − + × − = − ≤⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

• Travée CD

l = 3.69 m

À l’ELS ( ) 2

0

2.08 3.693.54 .

8m kN m

×= =

.11.269.354.38

05.2269.3 mx =×

×+=

min2.11 2.11 2.111 4 3.54 2.05 0 2.59 . 0.3.69 3.69 3.69

tM kN m⎛ ⎞ ⎛ ⎞= − × × × − + × = ≥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

À l’ELU ( ) 2

0

2.81 3.694.78 .

8m kN m

×= =

.11.269.378.48

82.2269.3 mx =×

×+=

min2.11 2.11 2.111 4 4.78 2.82 0 3.47 . 0.3.69 3.69 3.69

tM kN m⎛ ⎞ ⎛ ⎞= − × × × − + × = ≥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Page 58: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 58

c. Récapitulatif

Pour récapituler, on dresse le tableau14 suivant :

Tableau14.Moments en travées

4. Détermination des efforts tranchants maximaux

Le calcul des efforts tranchants est mené à l’ELU.

( ) ( ) ( )

( )

( )1

21

4

1max

431

max

1

25.135.1

25.135.1

.

+

++

−+×

×+×−=

−+×

×+×=

−+=−=

i

iii

di

i

iii

gi

i

ii

lMM

lQGT

lMM

lQGT

lMM

xtdx

xdMxT

Figure 29.Efforts tranchants sur appuis

On pose 1.35 1.5 4.79= × + × =P G Q kN

En A

4 2

0

4.79 4.8 3.8 10.72 2 4.8

=

× − ×= − + = − + = −

Ag

AB A BAd

AB

T kN

P l M MT kNl

Travées A-B B-C C-D

Longueur(m) 4.8 2.95 3.69

Etat Limite ELU ELS ELU ELS ELU ELS

maxx (m) 2.07 2.08 1.57 1.58 2.08 2.08

tMmax

(kN.m) 10.44 7.36 1.71 1.14 6.16 4.38

minx (m) 2.09 2.09 1.86 1.82 2.11 2.11

tMmin

(kN.m) 6.12 4.55 -2.58 -1.71 3.47 2.59

Page 59: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 59

En B

3 4

4 2

4.79 4.8 8.11 13.18 .2 2 4.8

4.79 2.95 8.11 2.82 8.26 .2 2 4.4

AB A BBg

AB

BC B CBd

BC

P l M MT kNl

P l M MT kNl

× − ×= + = + =

× − × − += − + = − + = −

En C

3 4

4 2

4.79 2.95 4.22 4.73 7.23 .2 2 2.95

4.79 3.69 4.73 10.12 .2 2 3.69

BC B CCg

BC

CD C DCd

CD

P l M MT kNl

P l M MT kNl

× − × − += + = + =

× − × −= − + = − + = −

En D 3 4 4.79 3.69 4.25 7.68 .

2 2 3.690 .

CD C DDg

cd

Dd

P l M MT kNl

T kN

× − × −= + = + =

=

Figure 30.Diagramme des efforts tranchants sur appuis

5. Armatures longitudinales

• En travée AB

( )00 0.33 0.05 11.33 09 0.21 0.025 0.0306 .

2uT bu

hM b h f d MN m⎛ ⎞= × × × − = × × × × − =⎜ ⎟⎝ ⎠

Or, .1044.10 3 MNmM u−=

uuT MM ≥ Le dimensionnement se fait pour une section rectangulaire de dimensions

(0.33 m x 0.21 m) :

( )

3

22

10.44 10 0.078 0.2760.33 0.9 0.21 11.33

' 0.

−×= = = ≤ =

× × × × ×

⇒ → =

uu lu

bu

sc

Mb d f

Pas d aciers comprimés A

µ µ

Page 60: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 60

[ ] 1.021125.1 =×−−×= µα

.66.1

.66.134818.0

1044.10.18.0)4.01(

2

23

cmA

cmFz

MA

mdz

ed

u

=

=

=−=−

α

On prend alors 1HA16 .01.2 2cmA =⇒

Vérification à l’ELS

( )21

31

1

153

ydAyb

orI

IyM

stSRH

SRH

serbc

−××+×

=

×=σ

1y est la solution de l’équation de second degré suivante :

.0107.5003.0165.0

.015152

41

21

121

=×−×+×⇒

=××−××+×

−yy

dAyAybstst

La résolution de cette équation donne : 1y =0.015 m. Ainsi, obtient-on :

( )3

24 4 4SRH

3

bc 4

0.33 0.015I 15 2.01 10 0.189 0.015 0.91 10 m .3

10.44 10 0.015 1.72MPa.0.91 10

− −

×= + × × × − = ×

× ×σ = =

×

.126.0 28 MPafcbc =×=σ

Donc, on a bien bcbc σσ ≤ -OK-

Condition de non-fragilité 28

min 0

28 28

0.23 .

0.06 0.6 1.8 .

t

e

t c

fA b df

or f f MPa

= × × ×

= × + =

okmmA →×≤×=×××= −− .1001.21054.0189.033.0400

8.123.0 2424min

• Sur appui B

8.11 . .uM kN m= −

uuT MM ≥ Le dimensionnement se fait pour une section rectangulaire de dimensions

(0.07 m x 0.21 m) :

Page 61: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 61

( )

3

22

8.11 10 0.2860.07 0.189 11.33

0.

ubu lu

bu

sc

Mb d f

A

µ µ−×

= = = ≥× × × ×

⇒ ≠

1.25 1 1 2 1.25 (1 (1 2 0.276) 0.41luα µ⎡ ⎤= × − − × = × − − × =⎣ ⎦

2 21

211

(1 0.4 ) 0.158 .0.276 0.07 0.189 11.33 0.0078 .

0.0078 1.42 .0.158 348

= − =

= × × × = × × × =

= = =× ×

lu bu

ed

z d mM b d f MN m

MA cmz F

α

µ

2

222

0.4 0.0032 .0.0032 0.59 .

( ') 348(0.189 0.032)

≤ =

= = =× − −

u

ed

M M MN mMA cm

F d d

Donc la section d’acier tendue est : A’u = A1 + A2 =2.01cm2 1 16→ HA et la section d’acier comprimé est égale à Au = 0.59 cm2 1 10→ HA

• En travée BC Or, 1.71 . .uM MN m=

uuT MM ≥ Le dimensionnement se fait pour une section rectangulaire de dimensions

(0.33 m x 0.21 m) :

( ).0

012.033.11189.033.0

1071.12

3

2

=⇒

≤=××

×=

××=

sc

lubu

ubu

Afdb

Mµµ

015.0=α

.26.0

.26.0348188.0

1071.1.188.0)4.01(

2

23

cmA

cmFz

MA

mdz

ed

u

=

=

=−=−

α

On prend 1HA10 .79.0 2cmA =⇒

Vérification à l’ELS

( )21

31

1

153

ydAyb

orI

IyM

stSRH

SRH

serbc

−××+×

=

×=σ

1y est la solution de l’équation de second degré suivante :

Page 62: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 62

.01024.21018.1165.0

.015152

41

321

121

=×−××+×⇒

=××−××+×

−− yy

dAyAybstst

La résolution de cette équation donne : 1y =0.032m. Ainsi, on obtient :

( )

.11.110328.0

032.01014.1

.10328.0032.0189.01079.0153

032.033.0

4

3

44243

MPa

morI

bc

SRH

××=

×=−×××+×

=

−−

σ

Donc, on a bien bcbc σσ ≤ OK

Condition de non-fragilité

.1079.0 24min mA −×≤

• Sur appui C .73.4 KNmM u −=

uuT MM ≥ Le dimensionnement se fait pour une section rectangulaire de dimensions

(0.07 m x 0.21 m) :

( )

3

22

4.73 10 0.1660.07 0.189 11.33

0.

ubu lu

bu

sc

Mb d f

A

µ µ−×

= = = ≤× × × ×

⇒ =

0.228α =

32

(1 0.4 ) 0.171 .4.7310 0.79 .

0.171 348u

ed

z d mMA cm

z F

α−

= − =

= = =× ×

On prend alors 1HA10 .79.0 2cmA =⇒

Ce résultat vérifie la condition bcbc σσ ≤ à l’ELS

• En travée CD 6.16 .uM kN m=

uuT MM ≥ Le dimensionnement se fait pour une section rectangulaire de dimensions : (0.33

m x 0.21 m) :

( ).0

046.033.11189.033.0

1016.62

3

2

=⇒

≤=××

×=

××=

sc

lubu

ubu

Afdb

Mµµ

Page 63: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 63

058.0=α

.96.0348184.0

1016.6.184.0)4.01(

23

cmFz

MA

mdz

ed

u =×

=

=−=−

α

On prend alors 1HA12 21.13 .A cm⇒ =

Condition de non-fragilité

.13.1 2min mA ≤

Soit 1HA12 .13.1 2cmA =

Vérification à l’ELS

( )21

31

1

153

ydAyb

orI

IyM

stSRH

SRH

serbc

−××+×

=

×=σ

1y étant la solution de l’équation de second degré suivante :

.0102.30017.0165.0

.015152

41

21

121

=×−×+×⇒

=××−××+×

−yy

dAyAybstst

La résolution de cette équation donne : 1y =0.037 m. Ainsi, obtient-on :

( )3

24 4 4SRH

3

bc 4

0.33 0.037I 15 1.13 10 0.189 0.037 0.447 10 m .3

3.33 10 0.037 2.75MPa.0.447 10

− −

×= + × × × − = ×

× ×σ = =

×

Donc, on a bien bcbc σσ ≤ OK

6. Armatures transversales

La contrainte tangente ultime est donnée par :

dbVu

u ⋅=τ

0 Or l’effort tranchant maximal est :

max 13.18uV kN= Donc

MPadb

Vuu 21.0

189.033.018.13

0

maxmax =

×=

⋅=τ

Page 64: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 64

mcmb

SA u

t

t /76.35.211

21.033.015.15,211

15.1 20 =××

=××

≥τ

6étrier 1Soit Φ

Soit At = 0.58 cm2. Or l’espacement maximal est défini comme suit:

cmcmd

St 01.170A si 15

409,0

min''

min l

≤⎪⎩

⎪⎨

≠⋅

⋅≤

φ Soit St = 15 cm Le pourcentage minimal d’armatures est donné par la formule suivante:

mmfb

SA

ett

t /1061.54,0 240 −=≥

Donc soit St = 10 cm

Vérification du béton Dans l’âme :

.66.25,2.0inf 28 MPaMPaf

b

cu =⎟⎟

⎞⎜⎜⎝

⎛×=

γτ

( )u umax0.21MPa OKτ = ≤ τ ⇒

Jonction table-nervure table u max 1u

0

tableu u

V b 13.18 0.13 0.61MPa.0.9 d b h 0.9 0.189 0.33 0.05

OK

× ×τ = = =

× × × × × ×

τ ≤ τ ⇒

Vérification des aciers de glissement

Appui de rive :

.64.0235

15.11018.1315.1 23max

cmf

VA

e

ug =

××=

×≥

Il suffit alors de prolonger la barre inférieure. Bielle d’about

a = 0.2 - 0.02 - 0.025 = 0.155 m ;

.515.033.0155.0

1018.1322 3

0

max

MPaba

Vubiellec =

××

×=

σ

bielle c28c

0.8 f 10.66MPa OK1.5×

σ ≤ = ⇒

Page 65: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 65

7. Plan de ferraillage

Figure 31.Ferraillage de la nervure hyperstatique

7.1 Comparaison entre calcul manuel et calcul ARCHE

Dans cette partie, on va comparer les sollicitations et les sections d’aciers données par le calcul manuel et par le calcul d’ARCHE.

Tableau 15. Comparaison entre calcul manuel et calcul ARCHE

Appuis A B C D Mu 0 -8.11 -4.73 0 Calcul

manuel Mu 0 -8 -5 0 Calcul

ARCHE 0 0.59 0 0 Calcul

manuel At Ac 0 2.01 0.79 0 At 0 2.02 0 0 Calcul

ARCHE Ac 0 5.62 1.54 0

• Interprétations

On peut conclure que les sollicitations et parsuite les sections d’armatures données par

ARCHE sont supérieures aux sollicitations calculées manuellement.

Page 66: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 66

7.2 Plan de ferraillage

• Travée A-B

Figure 32.Ferraillage T1

Page 67: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 67

• Travée B-C

Figure 33.FerraillageT2

Page 68: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 68

• Travée C-D

Figure 34.FerraillageT3

Page 69: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 69

Chapitre 6 : Etude des poteaux

1. Introduction [5]

Un poteau est une poutre droite verticale soumise uniquement à la compression centrée. L’ensemble des forces extérieurs agissant à gauche d’une section se réduit à un effort normal unique N de compression perpendiculaire à la section et appliquée au centre de gravité G. Le béton résiste très bien à la compression ; les armatures sont donc inutiles, en effet, les charges appliquées ne sont jamais parfaitement centrées (dissymétrie de chargement, imperfections d’exécution, solidarité avec les poutres). Pour cette raison, on introduit des armatures destinées à résister aux moments ainsi créés. Ces moments sont difficiles à évaluer. Les armatures sont donc calculées forfaitairement dans le cas de bâtiments courants. Le poteau ainsi constitué de béton et d’armatures longitudinales seules a une résistance médiocre au flambement des armatures ; on introduit donc des armatures transversales pour y remédier.

2. Hypothèses On considère conventionnellement comme soumis à une compression centrée pour faire la distinction avec la flexion composée tout poteau sollicité par :

• Un effort normal de compression N. • Des moments n’intervenant pas dans les calculs de stabilité et de résistance des

éléments qui lui sont liés lorsque les excentricités sont faibles (point d’application de l’effort normal à l’intérieur d’une zone réduite du noyau central par une homothétie de rapport 1/2. Dans un poteau en compression centrée le centre de gravité du béton et celui des armatures sont confondus.

3. Exemple de calcul d’un poteau rectangulaire

3.1 Présentation

Nous détaillerons dans ce qui suit une étude complète du poteau P6 de sous-sol. Ce poteau est

soumis à une compression simple. [4]

Le poteau est soumis à :

• Un effort de compression permanent 1415.72GN kN=

• Un effort de compression d’exploitation 573QN kN=

On adoptera l’hypothèse que plus de la moitié des charges est appliquées avant 90 jours. On

note que la durée d’application des charges est supérieure à 24 heures.

3.2 Sollicitation à l’état limite ultime

MNkNNNN QGu 7777.272.27775735.172.141535.1.5.1.35.1 ==×+×=+= 3.3 Coffrage

a. Dimension imposée

L’épaisseur de la poutre du plancher est mb 4.0=

Page 70: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 70

b. Dimensionnement

• La longueur de flambement :

Poteau de section rectangulaire :

Figure 35.Caractéristiques de la section

( )3poutre 4 3

poutre

I 0.3 0.4K 4.14.10 m

l 12 3.86−×

= = =×

l : étant la plus grande travée voisine au poteau

La raideur du poteau est égale à :

( ) 343

10.66.103124.06.0 m

lI

Kpoteau

poteaupoteau

−=×

×==

poutre poteauK K<

mll f 3.30 ==

• L’élancement

Section rectangulaire : 57.284.0

123.312

12=

×==⇒=

alai fλ

• Le coefficient β

13.135

57.282.0135

2.0150 2

2

2

2

=+=+=⇒≤λβλ

• La section réelle calculée

100.85.0

9.0

..edbu

ur ff

NKB

β≥

jours. 90j à appliquéeest charges des moitié la de pluscar 10.1 <=k

Page 71: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 71

222.0

100348.85.0

9.033.111

7777.213.11.1 mBr =+

××≥

a = 40cm et b = 60 cm. rB = 0.2204 m2 > 0.22 m2 OK

3. 4 Armatures longitudinales

a. Effort normal ultime

Charges sur plancher : 2777.7 kN

Poids propre du poteau : 26.73 kN

Nu = 2804.43kN = 2.804MN.

b. La section résistante

• L’effort équilibré par le béton

( )( ) MNfB

N burb 77.2

9.033.11.02.06.0.02.04.0.1

9.0.

. =−−

== θ

• L’effort équilibré par les aciers

MNNNkN bus 71.077.2804.213.110.1.. =−××=−= β • La section des aciers longitudinaux

24 cm 241034885.0

71.0.85.0

==ed

s

fN

A

c. Les sections extrêmes

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

=

100B 0.2

perimetre de /4max

2

min

mcmA

( )( )

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

=+×=

2

2

min cm 8.4100

4006 0.2

84.06.0.24max

cmA

100

5maxBA = ( ) 2

max 120100

40605 cmA =×

×=

d. La section retenue

16HA 14 : 2cm 64.2454.116 =×

Page 72: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 72

3. 5 Armatures transversales

a. Choix des armatures transversales

On prend 16 HA 16 et 2 cadres et 2 étriers RL de diamètre 6 mm comme suit :

Figure 36.Ferraillage poteau

mmmm

mmt

t

lt 612

666.41431

31

=φ⇒⎪⎭

⎪⎬⎫

≤φ

==φ≈φ

Suivant (b = 60) et avec un enrobage de 2.5 cm et 144φ , l’espacement des armatures est :

⇒<=×−×−−

= cmcmc 4066.153

)6.04()4.14(560 Ok

Suivant (a= 40) et avec un enrobage de 2.5 cm et 144φ on aura

⇒<=×−×−−

= cmcmc 4093

)4.14()6.04(540' Ok

b. Espacement en zone courante

⎪⎭

⎪⎬

⎪⎩

⎪⎨

≥Φ+≤

minlmin AApour 15cm 10a

cm 40MinSt cmMinSt 21

21cm15.1.4cm 1040

cm 40=

⎪⎭

⎪⎬

⎪⎩

⎪⎨

=+≤

2 Cadre +2 épingle φ6 St=20 cm

c. Zone de recouvrement

La longueur de recouvrement pour les Barres HA Fe E 400 est donnée par la formule

suivante : φ40=sl .

cmls 564.14014 =×=⇒φ

Cas courants sr ll .6.0=⇒ cmlr 356.33566.014 ==×=⇒φ

Recouvrement des φ 14 :

3 (2cadre + 2 épingle) φ 6 :

Page 73: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 73

cmSt 6.162

6.0335=

×−=

Soit cmSt 6.16=

Figure 37.Détail de ferraillage d’un poteau type P6

4. Exemple détaillé de calcul d’un poteau circulaire P8

On se propose d’étudier un poteau circulaire de type P8 de sous-sol.

On a pour un poteau circulaire: alai

aB

aIf.4

4

4.

64.

2

4

=⇒=

⎪⎪⎭

⎪⎪⎬

=

π

π

Ce poteau est soumis à une compression simple estimée à :

• 1200GN kN= Un effort de compression permanent.

• 450QN kN= Un effort de compression d’exploitation.

4.1 Sollicitation à l’état limite ultime

MNkNNNN QGu 295.222954505.1120035.1.5.1.35.1 ==×+×=+=

Page 74: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 74

4.2 Coffrage

a. Dimension imposée

L’épaisseur de la poutre du plancher est mb 4.0=

b. Dimensionnement

• La longueur de flambement

( )3poutre 4 3

poutre

I 0.3 0.4K 4.14.10 m

l 12 3.86−×

= = =×

En estimant la longueur du poteau à 3 m, la raideur du poteau est égale à :

( ) 343

10.45.203645.0 m

lI

Kpoteau

poteaupoteau

−=×

×==

π

poteaupoutre KK <

mll f 3.30 ==

• L’élancement

Section circulaire : 4.265.0

3.34.44

==⇒=alai fλ

• Le coefficient β

11.135

4.262.0135

2.0150 2

2

2

2

=+=+=⇒≤λβλ

• La section réelle calculée

jours. 90j à appliquéeest charges des moitié la de pluscar 10.1 <=k

2168.0

100348.85.0

9.033.111

295.207.11.1 mBr =+

××≥

. Or pour un cercle de diamètre a =0.5 m : 222

18.04

)48.0(4

)2( maBr ==−

=ππ OK

4.3 Armatures longitudinales

a. Effort normal ultime

Charges sur plancher : 2295 kN

Poids propre du poteau : 1.35 x 16.2 kN

Nu = 2316kN = 2.316MN

Page 75: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 75

b. La section résistante

• L’effort équilibré par le béton

MNfB

N burb 28.2

9.0433.1148.0.1

9.0.

.2

××==

πθ

• L’effort équilibré par les aciers

MNNNkN bus 54.028.2316.211.110.1.. =−××=−= β • La section des aciers longitudinaux

24 cm 25.181034885.0

54.0.85.0

==ed

s

fN

A

c. Les sections extrêmes

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

=

100B 0.2

perimetre de /4max

2

min

mcmA

( )( )

⎪⎭

⎪⎬

⎪⎩

⎪⎨

=××

=×××=

22

2

mincm 92.3

100450 0.2

28.625.02.4max π

π cmA

100

5maxBA = ( ) 2

2

max 981004505 cmA =

××

×=π

d. La section retenue

12A 14 : 2cm48.1854.112 =× 4.4 Armatures transversales

a. Choix des armatures transversales

On adopte le ferraillage (12HA14+1cerce+4épinglesD6) représenté sur la

figure38.

Figure 38.Détail de ferraillage du poteau

Page 76: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 76

mmmm

mmt

t

lt 612

666.41431

31

=φ⇒⎪⎭

⎪⎬⎫

≤φ

==φ≈φ

b. Espacement en zone courante

⎪⎭

⎪⎬

⎪⎩

⎪⎨

≥Φ+≤

minlmin AApour 15cm 10a

cm 40MinSt

⎪⎭

⎪⎬

⎪⎩

⎪⎨

==+≤

21cm15.1.406cm 1050

cm 40cmMinSt

St=18cm

5. Ferraillage a. Poteau rectangulaire

Figure 39.Détail de ferraillage du poteau

Page 77: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 77

b. Poteau circulaire

Figure 40.Détail de ferraillage du poteau circulaire

Page 78: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 78

Chapitre 7 : Etude des escaliers

1. Terminologie

Un escalier se compose d’un certain nombre de marches. On définira dans ce qui suit la terminologie spécifique aux escaliers :

- L’emmarchement : largeur des marches perpendiculairement à la pente - g : Le giron (marche) : largeur d’une marche, variant de 0.26 à 0.36m - h : la hauteur d’une marche (contremarche), variant de 0.13 à 0.17m - Le mur d’échiffre : mur qui limite l’escalier - La paillasse : plafond qui monte sous les marches

- Pente : gh

=

- α : inclinaison de la volée

⎟⎟⎠

⎞⎜⎜⎝

⎛=

gharctgα

- H : hauteur de la volée, égale à la hauteur libre sous plafond + épaisseur du plancher

fini.

- L : longueur projetée de la volée.

- e : épaisseur de dalle (paillasse ou palier).

- La cage : volume circonscrit à l’escalier. - La volée : ensemble de marches (3 au minimum) entre deux parties horizontales. - Le palier : partie horizontale d’accès ou d’arrivée d’une volée. - Profondeur de marche = giron +débord de nez de marche.

a

paillasse

h(contre-marche)

g(marche)

palier

nez de la marche

e

e L

H

Figure 41.Coupe d’une volée escalier

Page 79: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 79

des escaliers: On se propose dans cette partie de dimensionner et de déterminer le ferraillage de l’escalier d’étage courant. [3] La hauteur de ces escaliers est de 2.8 m, avec deux volées.

Pour le dimensionnement, on peut utiliser la règle suivante : 65.06.02 àgh =+×

Soit par exemple h = 0.17 m et g = 0.24 m Le nombre de contre marches étant égal à (pour un escalier à deux volée):

923.817.0

8.25.0=→=

×= nsoitn

La hauteur de la contre marche est définie par :

nHh =

94.1

=h =15.55 cm.

Or on a la formule à vérifier, donnée par : mhD 64.0260.0 <+<

G = 0.3 m 0.30 +2×0.1555 = 0.611 m Vérifié

Soit alors g = 30 cm et h = 15.55 cm.

⎟⎠⎞

⎜⎝⎛=⎟⎟

⎞⎜⎜⎝

⎛=

3055.15arctg

gharctgα = 27.4°.

2. Vue en plan de l’escalier L’escalier étudié est schématisé par les figures42 et 43.

6.3 m

3.7 m

1.95 m 1.95 m

Figure 42.Vue en plan de l’escalier

Page 80: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 80

Figure 43.Coupe des volées d’escalier

3. Prédimensionnement de l’épaisseur de la dalle

30.018 25e l e q= ⋅ ⋅ ⋅ + .

Avec :

l : La longueur projetée de l’escalier ml 3.6= q : la charge d’exploitation q = 4 kN /m2

3 4253.6018.0 +⋅⋅⋅= ee e = 24 cm;

Soit e = 24 cm.

4. Détermination des charges

a. Charges sur paillasses

On dispose comme revêtement d’un carrelage de 25 mm sur 15 mm, de mortier sur marches et contremarche et de 15 mm de plâtre en sous de paillasse.

Les charges par m2 à considérer sont :

- Le poids propre ⎟⎠⎞

⎜⎝⎛ +×=

2cos1heg ba α

γ

- g2=le revêtement sur marche (p1 kN par m2 horizontal), contremarche (p2 kN par

m2 vertical) et en sous -face de la paillasse (p3 KN par m2 suivant la pente).

Donc αcos

3212

pghppg +×+=

- q = la charge d’exploitation par m2 horizontal.

Page 81: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 81

b. Charges sur paliers

- Pour la zone de palier, le poids propre /m2 est : 20 geg ba +×=γ

- q = la charge d’exploitation par m2 horizontal.

• évaluation des charges :

- 21

0.24 0.325 10.51 /cos 27.4 2

g kN m⎛ ⎞= × + =⎜ ⎟⎝ ⎠

- 3 21 19.6 / (0.025 0.015) 0.784 / .p KN m m kN m= × + =

- 22 1 0.784 / .p p kN m= =

- 3 23 12.75 / 0.015 0.191 / .p KN m m kN m= × =

- 232 1 2

0.1555 0.1910.784 0.784 1.405 / .cos 0.3 0.887

phg p p kN mg α

= + × + = + × + = .

- 21 2 10.51 1.405 11.905 / .g g g kN m= + = + = .

- 20 25 0.24 1.405 7.405 / .bag e g kN mγ= × + = × + =

- q = 4 kN / m2.

Avec :

- 19.6 kN/m3 : masse volumique du carrelage, mortier.

- 12.75kN/m3 : masse volumique du plâtre.

- Le chargement est représenté sur la figure44.

Figure 44.Charge sur escalier

Page 82: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 82

5. Calcul des sollicitations Vu que la charge est symétrique on a :

• Effort tranchant à l’ELU

0 1 21.35 ( 0.5 )uv g L gL= × +

1.35 (7.405 1.95 0.5 11.905 2.4) 38.78uv kN= × × + × × =

• Moment fléchissant à l’ELU

( )8

5.18

22

35.12

222

10 qLLLgLLgM u +⎟

⎟⎠

⎞⎜⎜⎝

⎛ −+=

( )2 211.905 2.4 2 6.3 2.47.405 2.4 4 6.31.35 1.5

2 8 8

107.73 .

u

u

M

M kNm

⎛ ⎞× −= + +⎜ ⎟

⎝ ⎠=

6. Vérification et calcul des aciers

• Cisaillement : 3

uv 38.78 0.07 2010 0.184 0.933Mpa okd 0.21 1.5

− ×τ = = × = = →p

• Contrainte de compression du béton :

( )2 211.905 2.4 2 6.3 2.47.405 2.4 4 6.3

2 8 8

77.6 .

ELS

ELS

M

M kN m

⎛ ⎞× −= + +⎜ ⎟

⎝ ⎠=

3

2

77.6 10 1.76 2.66 ok0.21

−×β= = →p

• Aciers :

3u

lu2 2bu

M 107.73 10. 0.21 0.274d 0.21 11.33

−×µ = = = µ =

σ ×p

Donc :

MPaf

F eed 348

15.1400

15.1===

Page 83: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 83

mdz 185.0)21.0211(21.05.0)211(5.0 =×−+××=−+= µ Donc on a :

32u

sed

M 107.73 10A 16.73 cm /mz F 0.185 348

−×= = =

× ×

Soit 11 HA 14 espacées de 8 cm.

Aciers transversaux = cmdeespacéesHASoitmcmAs 24124,/16.44

2=

Acier en chapeau = cmdeespacéesHASoitmcmAs 24104,/5.215.0 2=× 7. Ferraillage

Figure 45.Détail de ferraillage de l’escalier.

Page 84: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 84

Chapitre 8 : Etude des fondations

1. Généralités [5]

Les fondations d’une construction sont constituées par les parties de l’ouvrage qui sont

en contact avec le sol auquel elles transmettent les charges de la superstructure. Elles

constituent donc la partie essentielle de l’ouvrage puisque de leur bonne conception et

réalisation découle la bonne tenue de l’ensemble .Les éléments de fondation transmettent les

charges au sol, soit directement (cas des semelles reposant sur le sol ou cas des radiers), soit

par l’intermédiaire d’autres organes (cas des semelles sur pieux par exemple).

Les massifs de fondations doivent être stables ; c’est à dire qu’ils ne doivent donner

lieu à des tassements que si ceux-ci permettent la tenue de l’ouvrage ; des tassements

uniformes sont admissibles dans certaines limites. Par contre, les tassements différentiels sont

rarement compatibles avec la tenue de l’ouvrage .Il est donc nécessaire d’adopter le type et la

structure des fondations à la nature du sol qui va supporter l’ouvrage. L’étude géologique et

géotechnique a pour but de préciser le type , le nombre et la dimension des fondations

nécessaires pour fonder un ouvrage sur un sol donné.

D’autre part, lorsque les couches de terrain susceptibles de supporter l’ouvrage (bon sol)

sont à faible profondeur, on réalise des fondations superficielles. Dans le cas où ces couches

sont à une grande profondeur, on réalise des fondations profondes.

Les fondations superficielles sont des fondations situées immédiatement sous la base de

l’ouvrage ; on distingue :

Les fondations fonctionnelles, constituées par des semelles isolées sous poteau.

Les fondations linéaires, constituées par des semelles continues sous poteaux ou murs.

Les fondations surfaciques, constituées par des radiers et cuvelages sous poteaux ou

murs.

Or, pour notre cas les couches susceptibles de supporter l’ouvrage sont à faible profondeur,

par suite on réalise des fondations superficielles sur semelles isolées reposées sur du gros

béton.

Page 85: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 85

2. Désignations

On désigne par : - Pu : charge à l’ELU - Pser : charge à l’ELS - a, b : dimensions du poteau. - A, B : dimensions de la semelle. - A’, B’ ; dimensions du gros béton. - c : enrobage des armatures. - h : hauteur ou épaisseur de la semelle. - σsol : la contrainte limite du sol. - σg : la contrainte limite du gros béton.

3. Exemple de calcul

Comme exemple de calcul, on se propose d’étudier la semelle S13 reposant sur du gros béton. Cette semelle supporte le poteau P6 (60 x 40).

- La semelle repose sur du gros béton de portance MPag 6.0=σ .

- La portance du sol d’assise sous le gros béton est limitée à MPasol 2.0=σ . - La semelle est soumise à l’action d’un effort normal NG=1443 KN et NQ= 573 kN.

D’où: - Pser = 2018 kN. - P u =2807 kN.

3.1 Dimensions de la semelle

mPserbaB

GB

83.16.0

018.26.04.0

23

23

==≥σ

, soit B = 2 m

Or, on a : mABA

ba 32.166.0 =⇒==

La hauteur utile doit respecter : aAdbetdabB−≤≤

−4

, cmdbetdacm 9235 ≤≤

En prenant une semelle de 2 m sur 1.5 m, de hauteur 50 cm, le poids propre de la semelle est égal à P = 25 x 1.5 x 2 x 0.5 =37.5 kN Pu = 2.85 MN.et P ser =2.05 MN.

mPserbaB 84.1

23

=≥σ

,

On retient : A =1.5 m B =2 m et h = 50 cm

Page 86: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 86

3.2 Calcul des armatures L’enrobage est égal à c = 5 cm, on utilise des armatures HA 20.

eda

ua fd

aApA

8)( −

= , avec da = h – c - φ b- (φ a/2) = 50 – 5 – 2 - 1 = 42cm.

edb

ub fd

bBpA

8)( −

= , avec db = h – c - (φ b/2) = 50 – 5 – 1 = 44cm

Donc : 22.85 (1.5 0.4) 26.88 0.42 348aA cm−

= =× ×

22.85 (2 0.6) 32.578 0.44 348bA cm−

= =× ×

Pour une répartition bitriangulaire sous la semelle, on aura

9 35.73 ²8

91; 32.57 ²8

a bitr a rect

b bitr b rect

BA A cmA

AA A Max cmB

− −

− −

= × =

⎧ ⎫= × =⎨ ⎬⎩ ⎭

Donc on choisit comme ferraillage 12 2011 20

a bitr

b bitr

A HAA HA

==

3.3 Dispositions constructives

La longueur de scellement est donnée par :

tjs

es f

fl 26.04 ψ

φ=

28 20

61.72 61.72 2 123.44400

fc MPa ls ls cmfe MPa φ

= ⎫⇒ = ⇒ = × =⎬= ⎭

⇒≤== lsmcB 5042

4Toutes les barres doivent être prolongées jusqu'aux extrémités de la

semelle et comporter des ancrages courbes.

3.4 Vérification au poinçonnement 31.4 1.6 1.4 1.6' 2.85 1 1.35 37.5 10 0.38

2.64 2.64uP MN−× ×⎛ ⎞ ⎛ ⎞= − − × × =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Cette charge doit vérifier : MNP u 2.15.1

205.04045.0' =⋅⋅⋅≤

Page 87: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 87

3.5 Dimensionnement du gros béton La section du gros béton est déterminée par la relation suivante :

sol

PBASσ

''' ≥=

Hg = max * , * 0.7 1.52 2 g

B b A atg tg soit H mβ β− −⎛ ⎞ = → =⎜ ⎟⎝ ⎠

(ρgb,=2300 daN/m3), on aura :

On suppose que les dimensions de la semelle sont ( A’xB’) = (3 m x 4m), d’où:

P’ =2.05 + Pp =2.05 + 0.276 =2.326 MN.

Il faut que : ' 2.362 2' 3.96 ' 4

0.2 1.5sol

P BB m Soit B mAσ

× ×≥ = = → =

× ×

Or, on a :

' ' 3'

A A A mB B

= → =

3.6 Schéma de ferraillage

Page 88: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 88

Figure 46.Ferraillage de la semelle

3.7 Ferraillage par ARCHE • Semelle S13 :

4. Semelle rigide sous mur soumise à une charge verticale centrée Comme exemple de calcul, on se propose d’étudier la semelle sous le mur voile d’ascenseur. Cette semelle supporte un voile de 20cm qui lui transmet un effort normal réparti par mètre linéaire évalué à:

mlMNN

mlMNN

q

g

/08.0

/3.0

=

= mlMNP

mlMNP

u

ser

/525.008.05.13.035.1/38.0

=×+×==

Figure 47.Ferraillage de la semelle S13.

Page 89: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 89

4.1 Calcul des dimensions de la semelle

La largeur de la semelle est donnée par la formule suivante :

4 4 0.38 0.84 1.53 3 0.6

ser

gb

PB m mσ

≥ = = ≈

La hauteur utile vaut : 1.5 0.2 0.32 504 4

B bd m soit h cm− −≥ = = → =

En prenant une largeur de 1.5 m et une hauteur totale moyenne de 50 cm, le poids propre est : 1 1.5 0.5 25 0.019 /pp MN m= × × × =

Les charges appliquées au gros béton valent : 0.38 0.019 0.4 /

0.525 1.35 0.019 0.551 /ser

u

P MN mP MN m

= + =

= + × =

On a :

4 4 0.4 0.663 3 0.6

serPB m okσ

≥ = = →

4.2 Calcul des armatures a. Calcul des armatures transversales

( ) ( ) 20.551 1.5 0.24 4 7.65 /3 8 3 8 0.45 348

us

s

P B bA cm m

d σ− × −

= = =⋅ ⋅ × ×

Soit 5 HA 14 / m.

Pour fc28 = 20 MPa et Fe 400 : slφ

= 41.2

On a donc, ls > cmB 254

= , parsuite toutes les barres doivent être prolongées jusqu’aux

extrémités de la semelle et comporter des ancrages courbes. b. Armatures de répartition :

217.7 2 / 3 10 /4 4r sBA A cm m soit HA m= × = × = →

c. dimensionnement du gros béton:

La section du gros béton est déterminée par la relation suivante :

sol

PBASσ

''' ≥=

Hg =' 'max * , * 0.65 1

2 2 gB b A atg tg soit H mβ β− −⎛ ⎞ = → =⎜ ⎟

⎝ ⎠

P’

=0.551 MN,

Page 90: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 90

On vérifie la relation: 4 ' 4 0.551 1.5' 2.35 ' 2.53 3 0.2 1sol

P BB m Soit B mAσ

× ×≥ = = → =

× × d. ferraillage :

Figure 48.Ferraillage de la semelle sous mur

e. ferraillage ARCHE

Figure 49.Ferraillage de la semelle sous mur voile

Page 91: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 91

5. Les longrines Les longrines ont pour rôle d’assurer la rigidité et la résistante de la structure. Elles supportent leur poids propre et le poids des murs et cloisons. Elles sont disposées dans deux sens perpendiculaires, permettent de chaîner les poteaux et de palier les effets probables des excentrements entre les poteaux et les semelles.

a. Exemple Dans ce paragraphe, on étudiera la longrine L1 (40 x 50) liant le poteau P3 et P6. [4]

Figure 50.Caractéristiques de la longrine

• Armatures longitudinales

Le chargement de la longrine est : G = Gl + G mur =5 + 58.8 = 63.8 kN/m. Donc on a:

21.35 63.8 4.57 0.11 .8 8uPlP MN m×

= = =

( )22

0.11 0.120.4 0.45 11.33

0.

uu lu

bu

sc

Mb d f

A

µ µ= = =× × × ×

⇒ ≈

p

1.25 1 1 2 0.16uα µ⎡ ⎤= × − − × =⎣ ⎦

2

2

(1 0.4 ) 0.42 .0.11 7.55 .

0.42 348

7.55 .

u

ed

z d mMA cm

z F

A cm

α= − =

= = =× ×

=

On prend alors 5HA14 27.7 .A cm⇒ = • Armatures transversales

La contrainte tangente ultime est donnée par :

dbVu

u ⋅=τ

0

Page 92: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 92

Or l’effort tranchant maximal est :

max 145.7uV kN= Donc

maxmax

0

145.7 0.810.4 0.45

uu

V MPab d

τ = = =⋅ ×

201.15 1.15 0.4 0.81 17.16 /211,5 211.5

t u

t

A b cm mS

τ× × × ×≥ = =

Soit 1 cadre+3 étrier 6Φ

Par suite : At = 2.24cm2 Or l’espacement maximal est défini comme suit:

' 'l min

0,9min 40 40

15 si A 0t

dS cm cm

φ

⎧ ⋅⎪≤ ≤⎨⎪ ⋅ ≠⎩

Soit St = 13 cm Le pourcentage minimal d’armature est donné par la formule suivante:

4 200,4 6.8 10 /t

t et

A b m mS f

−≥ =

Donc soit St = 13 cm

b. ferraillage: Le ferraillage adopté est représenté par la figure suivante :

Figure 51.Ferraillage manuel

Page 93: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 93

c. Ferraillage ARCHE

Figure 52.Ferraillage ARCHE

Page 94: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 94

Chapitre 9 : Etude des acrotères

1. Introduction [1]

Les acrotères sont des éléments de façade situés au dessus du niveau de la toiture ou de la

terrasse couronnant le bâtiment. Ils constituent des rebords ou des garde-corps.

Selon l’article B53.2 du BAEL 91, ces éléments prennent une section d’armature

longitudinale au moins égale à 0.5% de la section du béton/m. De plus, l’article B53.3 indique

que les barres de gros diamètres placées à l’extrémité d’un élément mince exposé aux

intempéries (cas des acrotères) sont à éviter vu le risque de corrosion de l’acier et

d’éclatement du béton. Le diamètre des armatures des éléments saillants ne doit pas dépasser

10 mm.

D’autre part, les joints de dilatation nécessitent un type spécial d’acrotère pour empêcher

l’infiltration de l’eau inter bloc. De ce fait, deux modèles d’acrotères sont à dimensionner.

2. Acrotère sur mur Section de béton 21200B cm= Section d’acier As :

20,005 6s sA B A cm≥ ⇒ ≥ Soit 8HA10

3. Acrotère sur joint Section de béton : B 1 =1430 cm2 (petit acrotère). B 2 = 750 cm2 (acrotère couvrant le joint). Section d’acier As :

1 7.2scA ≥ cm2 (petit acrotère). Soit 10HA10

2 3.75scA ≥ cm2 (acrotère couvrant le joint). Soit 5HA10

Page 95: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 95

On présente ci-après les détails des deux modèles d’acrotère.

4. Ferraillage

Figure 53.Détail acrotère sur mur

Figure 54.Détail acrotère sur joint

Page 96: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 96

Chapitre 10 : Etude d’une poutre courbe

1. Présentation et modèle de calcul L’objet de cette section est l’étude d’une poutre continue circulaire située au niveau du plancher haut rez-de-chaussée. La figure 55 présente les caractéristiques de cette poutre.

Figure 55.Caractéristiques de la poutre.

La poutre en question est à une fibre moyenne circulaire de rayon r = 5m. En outre elle comprend deux travées repérées par les angles au centre :

λ1=46°=0.803 rad λ2=42°=0.733 rad

La section de la poutre étant carrée de côté a=30 cm, ce qui donne les caractéristiques intrinsèques suivantes :

E : module d’élasticité longitudinale (module d’Young)

32811000 29859cE f MPa= =

G : module d’élasticité transversale 29859 12441

2(1 ) 2(1 0.2)EG MPa

ν= = =

+ +

I : moment d’inertie de la section [7] 4 4

430 6750012 12aI cm= = =

K : moment de rigidité à la torsion 4

41350006aK cm= =

Page 97: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 97

2. Chargement de la poutre

En plus de son poids propre et la surcharge de mur, la poutre est soumise à une surcharge permanente et à une surcharge d’exploitation transmises par le plancher. D’après la visualisation des lignes de rupture et des zones de report de charge des dalles au moyen du logiciel Arche ossature lors de la phase d’analyse, on supposera que la zone d’influence des charges surfaciques est une bande de largeur 1m.

Charge permanente

Charge d’exploitation

1.5 1 1.5q kN m= × =

1.35 1.5 18.25 /13.35 /

1.37

u

s

u

s

p g q kN mp g q kN m

pp

γ

= + == + =

⇒ = =

3. Méthode de calcul des poutres continues circulaires uniformément chargées [6]

Figure 56.Modélisation de la poutre.

Une poutre continue à fibre moyenne circulaire comportant n travées et n+1 appuis Ai est 2(n+1)-3=2n-1 fois hyperstatique. La connaissance des n-1 moments fléchissants Mi sur les appuis intermédiaires nous suffit pour calculer les efforts dans chaque travée. Pour ce faire, on applique la relation des trois moments :

" '1 1 1 1 1( )i i i i i i i i ib M c a M b M ω ω− + + + ++ + + = −

Avec : ai, bi et ci sont les coefficients de souplesse de la ième travée Ai-1Ai . Dans notre cas, le moment d’inertie I est constant le long d’une travée. Ce qui donne les valeurs suivantes des coefficients de souplesse :

225 0.3 2.3 7.3 1 11.85g kN m= × + + × =

Page 98: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 98

2

2

sin cos1 1 1 1( ) ( )2 sin

sin cos1 1 1 1( ) ( )2 sin sin

i i ii i

i i i

i i ii

i i i

ra c rEI GK GK tg

rb rEI GK GK

λ λ λλ λ λ

λ λ λλ λ λ

−= = + − −

−= + − −

' ", :i iω ω Les rotations des extrémités de la ième travée Ai-1Ai supposée indépendante et soumise à la charge répartie p :

23' " (1 (2 ) )

24 10i

i ipl EI

EI GKλω ω= − = + +

4. Calcul du moment fléchissant en travée

Le moment fléchissant dans une travée s’exprime en fonction du moment ( )iµ θ dans la travée supposée indépendante et des moments sur appuis :

1sin( ) sin( ) ( )

sin sini

i i i ii i

m M Mλ θ θθ µ θλ λ−

−= + +

iλ Désignant la portée angulaire de la travée, et θ l’abscisse angulaire d’une section comptée à partir de l’appui de gauche Ai-1.

2sin sin( )

2 2( ) 2cos( )

2

i

ii

pr

λ θθ

µ θ λ

=

5. Calcul de l’effort tranchant en travée On suppose que la rigidité de torsion est constante. Ce qui donne la formule simplifiée suivante de calcul de l’effort tranchant en travée de la poutre continue :

1( ) ( ) i ii i

i

M MTr

θ τ θλ

−−= +

Avec :

( ) ( )2

ii pr λτ θ θ= − : L’effort tranchant dans la travée supposée indépendante.

6. Calcul du couple de torsion en travée De même, Le couple de torsion en travée de la poutre est calculé comme suit :

1cos( )1 1 cos( )( ) ( ) ( ) ( )

sin sini

i i i ii i i i

C M Mλ θ θθ χ θλ λ λ λ−

−= − − + −

Avec :

2sin( )

2( ) ( ( ))2cos( )

2

i

ii

ipr

λ θλ θχ θ λ

−−

= − − : Couple de torsion dans la travée isolée.

Page 99: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 99

7. Tableau de résultats L’application numérique des formules évoquées se récapitule dans le tableau16.

Tableau 16.Récapitulatif des résultats

Appuis

travée

Portée angulaire λi (rad)

Portée l i(m)

ai=ci

bi

g:Charge perm (kN/m)

q:Charge d'exploit (kN/m)

pu:Charge ultime (kN/m)

rotations ω'i //ω"i 2,4442E‐06 ‐2,444E‐06 1,8061E‐06 ‐1,806E‐06Moments sur app Mi (kNm)

μi(θmi)

τi(θ=0)&τi(θ=λi) 30,40 ‐30,40 27,75 ‐27,75

χi(θ=0)&χi(θ=λi) ‐8,73 0 ‐6,57 0

m(θmi)

Ti(θ=0)&Ti(θ=λi) 30,40 ‐59,75 ‐1,61 ‐27,75

Ci(θ=0)&Ci(θ=λi) ‐4,48 ‐8,22 0,88 ‐3,82

A1 A2 A3

0 ‐29,3550 0

9,55 9,55

1,5 1,515,14 15,14

4,015 3,6657,65773E‐08 6,82106E‐08

18,54

travée de la poutre continue

13,34

4,2204E‐08 3,70159E‐08

T1 T20,803 0,733

travée supposée indép

30,86 24,32

Avec : θm1 (rad) 0,31

θm2 (rad) 0,48 Représentent les portées angulaires correspondant aux moments fléchissants maximaux dans les deux travées de la poutre. Par ailleurs, l’effort tranchant et le couple de torsion atteignent leurs valeurs maximales sur appuis.

Page 100: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 100

8. Travée P0-P1 [4]

8.1 Contrainte tangente due à l’effort tranchant

1 11 2 2

0.072 0.80.3uT

T T MPabd a

τ = = = =

8.2 Contrainte tangente due au couple de torsion La figure56 présente la section équivalente.

Figure 57.Section équivalente.

11

02u

uCCa

τ =Ω

Avec :

a0 =5cm : épaisseur de la paroi de la section creuse équivalente

C1max=0,099 MNm : couple de torsion maximal

r = 30 cm : plus petit diamètre du cercle inscriptible dans le contour extérieur

030 5

6 6aa cm= = =

Ω = (30-5)2 =625 cm2 : aire grisée

10.0099 1.584

2 0.05 0.0625uC MPaτ = =× ×

8.3 Vérification du béton On doit respecter, dans le cas d’une section pleine, la condition suivante :

2 2limuτ τ≤

Avec, pour une fissure peu préjudiciable :

Page 101: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 101

lim

2 2 2 21 1

lim

min(0.2 ;5 ) 2.67

1.584 0.8 1.77' . .

cj

b

u uC uT

u

fMPa MPa

MPaD où O K

τγ

τ τ ττ τ

= × =

= + = + =

8.4 Armatures longitudinales

Armatures longitudinales pour la flexion

2 2

284

0.0223 0.090.3 0.27 11.33

3440 49 3050 0.26410' 0

0.275(1 0.6 ) 0.255

ubu

bu

clu

bu lu

bu

b bu

Mad f

f

AMéthode simplifiée

z d m

µ

γµ

µ µµ

µ

= = =× ×

+ −= =

≤ ⇒ =≤ ⇒

= − =

On calcule alors la section des aciers tendus pour la section la plus sollicitée en moment fléchissant :

44 2

228min

10 0.0223 10 2.510.255 348

1.80.23 0.23 30 27 0.84400

u

b ed

t

e

MA cmz f

fA ad cmf

= = =×

= = × =

On retient 22.51A cm= Armatures longitudinales pour la torsion

Le calcul est mené par l’application de la règle des coutures au plan de la section droite sur appui et correspondant à la valeur du couple de torsion maximale :

1 1

1 6 2

21

20.0099 110 /

2 625 348 444 25 2.27

44 44

ued

A Cfu

Acm cm

uuA cm

= =× ×

×= = =

On vérifie ensuite la condition du pourcentage minimal de la quantité d’acier :

Page 102: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 102

1

0

1 2

0.4.

1 5 10.4 / . .44 400 200

e

Af MPa

a uA

cm cm O Ku

= ≥ =

Détermination des armatures longitudinales

Le cumul des armatures longitudinales pour la flexion et pour la torsion donne :

21

2

2.51 2.27 4.78

4 14 6.16réel

A A cm

Soit HA A cm

+ = + =

⇒ =

8.5 Armatures transversales

Armatures transversales pour l’effort tranchant

L’application de la règle des coutures nous permet de calculer les armatures d’âme pour l’effort tranchant :

0.3

.. 0.9 (sin cos )

u tjt et

t s

k fA fa s

τγ α α

−=

+

Avec : 1k = : Cas de flexion simple 90α = ° : Les armatures transversales sont perpendiculaires aux armatures longitudinales

2

( 0.3 )0.9

30(0.8 0.3 1.8) 1.150.9 235

1 /23.6

u tjt s

t et

a fAs f

cm cm

τ γ−=

− ×=

=

‐ Pourcentage minimal :

2 2

0.4.

0.3 10.4 10 /235 19.6

tet

t

t

t

A f MPaa s

A cm cms

⇒ ≥ =

D’où : 21 /19.6

t

t T

A cm cms

⎡ ⎤=⎢ ⎥

⎣ ⎦

Page 103: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 103

‐ Espacement maximal :

min(0.9 ;40 ) min(0.9 27;40): 24

t

t

s d cmSoit s cm

≤ = ×≤

Armatures transversales pour la torsion

‐ Calcul:

1

2 2

.2

0.0099 110 /2 0.0625 235 29.7

t uet

t

t

t

A Cfs

A cm cms

⇒ = =× ×

‐ Pourcentage minimal :

0

2 2

0.4.

0.05 10.4 10 /235 117.5

tet

t

t

t

A f MPaa s

A cm cms

⇒ ≥ =

On retient : 21 /

29.7t

t C

A cm cms

⎡ ⎤=⎢ ⎥

⎣ ⎦

Détermination des armatures transversales

Le cumul des deux systèmes d’armatures transversales donne :

21 1 1 /19.6 29.7 11.8

t t t

t t tT C

A A A cm cms s s

⎡ ⎤ ⎡ ⎤= + = + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

Répartition des armatures transversales

Pour un 0 10ts cm= , on a 20.85tA cm=

Pour coudre les armatures longitudinales, on se dispose d’un cadre et de deux étriers de

diamètres 2,6 6 0.28 1.68t réelmm A cmφ = ⇒ = × =

Les espacements (en cm) à adopter en partant du nu d’appui et jusqu’à mi-portée sont les

suivants : [8]

10 + (2 × 20) + (3 × 20) + (2 × 25) + (2 × 35) + (4 × 40)

Le ferraillage est ensuite complété par symétrie jusqu’au nu d’appui.

En revanche, on doit tenir compte de l’espacement maximal : 24ts cm≤

Page 104: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 104

Ce croquis montre la répartition des armatures d’âme dans la travée T1 de la poutre

courbe. Il est à mentionner que le rayon de courbure est de 5m.

8.6 ferraillage T1

Figure 58.Ferraillage T1

9. Travée P1-P2 [4] 9.1 Contrainte tangente due à l’effort tranchant

2 2

2 2 2

0.0334 0.370.3uT

T T MPabd a

τ = = = =

9.2 Contrainte tangente due au couple de torsion

22

02u

uCCa

τ =Ω

Avec : a0 =5cm : épaisseur de la paroi de la section creuse équivalente C2max=0,0461 MNm : couple de torsion maximal r= 30 cm : plus petit diamètre du cercle inscriptible dans le contour extérieur

Page 105: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 105

030 5

6 6aa cm= = =

Ω = (30-5)2 =625 cm2

20.00461 0.74

2 0.05 0.0625uC MPaτ = =× ×

9.3 Vérification du béton On doit respecter, dans le cas d’une section pleine, la condition suivante :

2 2limuτ τ≤

Avec, pour une fissure peu préjudiciable :

lim

2 2 2 22 2

lim

min(0.2 ;5 ) 2.67

0.74 0.37 0.83' . .

cj

b

u uC uT

u

fMPa MPa

MPaD où O K

τγ

τ τ ττ τ

= × =

= + = + =

9.4 Armatures longitudinales

Armatures longitudinales pour la flexion

2 2

0.0161 0.0650.3 0.27 11.33

0.264' 0

0.275(1 0.6 ) 0.26

ubu

bu

lu

bu lu

bu

b bu

Mad f

AMéthode simplifiée

z d m

µ

µµ µµ

µ

= = =× ×

=

≤ ⇒ =

≤ ⇒

= − =

On calcule alors la section des aciers tendus pour la section la plus sollicitée en moment fléchissant :

44 2

228min

10 0.0161 10 1.780.26 348

1.80.23 0.23 30 27 0.84400

u

b ed

t

e

MA cmz f

fA ad cmf

= = =×

= = × =

On retient 21.78A cm= Armatures longitudinales pour la torsion

Le calcul est mené par l’application de la règle des coutures au plan de la section droite sur appui et correspondant à la valeur du couple de torsion maximale :

Page 106: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 106

2 2

2 6 2

22

20.00461 110 /

2 625 348 94.44 25 0.94

94.4 94.4

ued

A Cfu

Acm cm

uuA cm

= =× ×

×= = =

On vérifie ensuite la condition du pourcentage minimal de la quantité d’acier :

1

0

1 2

0.4.

1 5 10.4 / . .94.4 400 200

e

Af MPa

a uA

cm cm O Ku

= ≥ =

Détermination des armatures longitudinales

Le cumul des armatures longitudinales pour la flexion et pour la torsion donne :

21

2

1.78 0.94 2.72

4 10 3.14réel

A A cm

Soit HA A cm

+ = + =

⇒ =

9.5 Armatures transversales

Armatures transversales pour l’effort tranchant

L’application de la règle des coutures nous permet de calculer les armatures d’âme pour l’effort tranchant :

0.3

.. 0.9 (sin cos )

u tjt et

t s

k fA fa s

τγ α α

−=

+

Avec : 1k = : Cas de flexion simple 90α = ° : Les armatures transversales sont perpendiculaires aux armatures longitudinales

2

( 0.3 )0.9

30(0.83 0.3 1.8) 1.150.9 235

1 /21.1

u tjt s

t et

a fAs f

cm cm

τ γ−=

− ×=

=

Page 107: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 107

‐ Pourcentage minimal :

2 2

0.4.

0.3 10.4 10 /235 19.6

tet

t

t

t

A f MPaa s

A cm cms

⇒ ≥ =

D’où : 21 /19.6

t

t T

A cm cms

⎡ ⎤=⎢ ⎥

⎣ ⎦

‐ Espacement maximal :

min(0.9 ;40 ) min(0.9 27;40): 24

t

t

s d cmSoit s cm

≤ = ×≤

Armatures transversales pour la torsion

‐ Calcul:

2

6 2

.2

0.00461 110 /2 625 235 63.7

t uet

t

t

t

A Cfs

A cm cms

⇒ = =× ×

‐ Pourcentage minimal :

0

2 2

0.4.

0.05 10.4 10 /235 117.5

tet

t

t

t

A f MPaa s

A cm cms

⇒ ≥ =

On retient :

21 /63.7

t

t C

A cm cms

⎡ ⎤=⎢ ⎥

⎣ ⎦

Page 108: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 108

Détermination des armatures transversales

Le cumul des deux systèmes d’armatures transversales donne :

21 1 1 /19.6 63.7 15

t t t

t t tT C

A A A cm cms s s

⎡ ⎤ ⎡ ⎤= + = + =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

Répartition des armatures transversales

Pour un 0 10ts cm= , on a 20.67tA cm= Pour coudre les armatures longitudinales, on se dispose d’un cadre et deux étriers de diamètres

2,6 6 0.28 1.68t réelmm A cmφ = ⇒ = × =

Les espacements (en cm) à adopter en partant du nu d’appui et jusqu’à mi-portée sont les

suivants : [8]

10 + (2 × 20) + (3 × 20) + (2 × 25) + (2 × 35) + (4 × 40)

Le ferraillage est ensuite complété par symétrie jusqu’au nu d’appui. En revanche, on doit tenir compte de l’espacement maximal : 24ts cm≤ Ce croquis montre la répartition des armatures d’âme dans la travée T1 de la poutre courbe. Il est à mentionner que le rayon de courbure est de 5m.

9.6 Ferraillage T2

Figure 59.Ferraillage T2

Page 109: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 109

Chapitre 11 : Etude d’un mur voile

1. Présentation et modèle de calcul

1.1 Dimensions

On se propose, dans cette section, de modéliser et calculer le voile porteur n°17 situé au niveau du sous-sol. Les dimensions du voile sont, comme indiqué sur la figure 60 : [4]

: 3: 4.96: 0.2

H auteur h mLongueur l mEpaisseur e m

===

Figure 60.Dimensions du voile

1.2 chargement

Le mur-voile porte la dalle n°23 du plancher haut sous-sol et reçoit la poussée des terres. • Charges réparties verticales

G0 : Poids propre du voile

0 25 0.2 2,7 13.5 /G kN m= × × = G1, Q1 : charges issues de la dalle et sont données par le module Exploitation de Arche Ossature

1

1

15.45 /8.87 /

G kN mQ kN m

==

Résumé :

Page 110: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 110

0 1

1

28.95 /8.87 /

G G G kN mQ Q kN m

= + =⎧ ⎫⎨ ⎬= =⎩ ⎭

• Charges horizontales

Poussée de la terre g(z) : c’est une charge permanente qui dépend de la profondeur z :

2

( )

0.5 189 ( / )

pg z K z

zz kN m

γ=

= ×

=

Surcharge d’exploitation q : Elle est due à la présence d’un ouvrage avoisinant qui est le bloc B.

24 2 /aq K kN m= × = 1.3 Modèle de calcul

Le mur-voile est encastré par son extrémité inférieure à la longrine sur laquelle il repose. Cet encastrement est assuré par des dispositions de ferraillage convenables. En plus, son extrémité supérieure est considérée simplement appuyée sur le plancher haut sous-sol. Le voile sera calculé comme une poutre encastrée d’un côté et simplement appuyée de l’autre. La largeur de la poutre étant 1m et sa hauteur 0,2m. Le modèle et les différents chargements sont représentés sur la figure61.

Figure 61.Modèle de calcul

Page 111: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 111

2. Les sollicitations

On suppose que les fissurations sont préjudiciables, ce qui mène à calculer les sollicitations à l’ELS. Pour ce faire, on exploitera le module Arche Poutre afin de déterminer les courbes du moment fléchissant (Figure 62), de l’effort tranchant (Figure 63) et de l’effort normal (Figure 64).

Figure 62.Moment fléchissant à l’ELS, Ms (kN.m/ml)

Figure 63.Effort tranchant à l’ELS, Vs (KN/ml)

Page 112: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 112

Figure 64.Effort normal à l’ELS, Ns (kN)

3. Le ferraillage

On commence par présenter les sollicitations qu’on utilisera pour le calcul : 8.5 . /

18.5 . /37.8

36 /

st

sa

s

s

M kN m mlM kN m mlN kNV kN ml

=

= −

==

La fissuration est préjudiciable, le calcul est mené à l’ELS : 2( ; (0.5 ;110 )32( 400; (0.5 400;110 1.6 1.8)3

267

s e e tjMin f Max f f

Min Max

MPa

σ η=

= × ×

=

0.6 0.6 20 12bc cjf MPaσ = = × = Moment résistant du béton réduit :

115 12 0.403

15 12 267bc

bc s

nn

σασ σ

×= = =

× ++

11

1 1 0.1742 3rb

αµ α ⎛ ⎞= − =⎜ ⎟⎝ ⎠

Page 113: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 113

3.1 Armatures en travée

- Sollicitations de calcul en travée :

37.8

8.5 . s

s

N kN

M kN m

=

=

Ce qui donne l’excentricité par rapport au centre de gravité de la section du béton seul à l’ELS :

0 0.22ss

s

Me mN

= =

- Sollicitations ramenées au centre de gravité des aciers tendus :

0

/

( )2

. a s

s A s a

he e d

M N e

= + −

=

0

/

0.2( ) 0.22 (0.17 ) 0.292 2

. 37.8 0.29 10.96 . a s

s A s a

he e d m

M N e kN m

= + − = + − =

= = × =⇒

- Type de calcul :

On a 0sN f : (Compression) et 0 0.29 0.0336she m= = ⇒f Section partiellement

tendue. Dans une première partie, les calculs seront effectués en flexion simple. Les résultats seront ensuite utilisés pour un calcul en flexion composée. - Calcul des armatures en flexion simple :

3/

220

10.96 10 0.031 0.17 12

s As

bc

Mb d

µσ

−×= = =

× ×× ×

'0.03 0.174 0s rb sAµ µ= = ⇒ =p ⇒ Méthode simplifiée :

1

34 2/

1 0.153

10.96 10 10 2.740.15 267

b

s As

b s

z d m

MA cmz

α

σ

⎛ ⎞= − =⎜ ⎟⎝ ⎠

×= = =

×

Page 114: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 114

- Armatures en flexion composée : '

34 2

' ' 037.8 102.74 10 1.32

267 s

ss

s

A A ANA A A cmσ

= =

×= − = − =

- Condition de non fragilité :

20min

0

0.450.23 1.450.185

tj s

e s

f e dA b d cmf e d

−= =

2 2min 1.45 1.32A cm A cm= =f

⇒ Il faut donc prévoir la section minimale, soit 24 8 2réelHA A cm⇒ =

3.2 Armatures sur appuis

- Sollicitations de calcul sur appui :

37.8

18.5 . s

s

N kN

M kN m

=

= −

Ce qui donne l’excentricité par rapport au centre de gravité de la section du béton seul à l’ELS :

0 0.49ss

s

Me mN

= =

- Sollicitations ramenées au centre de gravité des aciers tendus :

0

/

( )2

. a s

s A s a

he e d

M N e

= + −

=

0

/

0.2( ) 0.49 (0.17 ) 0.562 2

. 37.8 0.56 21.17 . a s

s A s a

he e d m

M N e kN m

= + − = + − =

= = × = −⇒

- Type de calcul :

On a 0sN f : (Compression) et 0 0.49 0.0336she m= = ⇒f Section partiellement

tendue. Dans une première partie, les calculs seront effectués en flexion simple. Les résultats seront ensuite utilisés pour un calcul en flexion composée.

Page 115: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 115

- Calcul des armatures en flexion simple :

3/

220

21.17 10 0.061 0.17 12

s As

bc

Mb d

µσ

−×= = =

× ×× ×

'0.06 0.174 0s rb sAµ µ= = ⇒ =p ⇒ Méthode simplifiée :

1

34 2/

1 0.153

21.17 10 10 5.290.15 267

b

s As

b s

z d m

MA cmz

α

σ

⎛ ⎞= − =⎜ ⎟⎝ ⎠

×= = =

×

- Armatures en flexion composée :

'

34 2

' ' 037.8 105.29 10 3.87

267 s

ss

s

A A ANA A A cmσ

= =

×= − = − =

- Condition de non fragilité :

20min

0

0.450.23 1.590.185

tj s

e s

f e dA b d cmf e d

−= =

2 2min 1.59 3.87A cm A cm= =p ⇒ OK

⇒ On prévoit la section A, soit 24 12 4.52réelHA A cm⇒ =

3.3 Arrêt des barres

- Armatures sur appuis La longueur de recouvrement est égale à 40 48rl cmφ= =

- Armatures en travée

0

0 0

40 32( ) 0 0.6

rl cm à partir de xavec M x x m

φ= =

= → =

Page 116: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 116

3.4 Schéma de ferraillage

Figure 65.Ferraillage d’un mètre linéaire de voile

Page 117: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 117

Chapitre 12 : Estimation du coût du lot structure

Les quantités estimatives du béton de propreté, du béton armé en fondation et en élévation, du

béton banché, des fouilles et des planchers sont données sur le tableau17 ci-dessous. Les

détails de calcul du métré lot structure sont présentés dans l’annexe.

Tableau 17.Coût unitaire et coût global

N° DÉSIGNATION UNIT QUANTITE

1 FOUILLES EN PUITS

m3 230,00

2 FOUILLES EN RIGOLES

m3 596,00

3

REMBLAI PROVENANT DE FOUILLES

m3

74,00

4 BETON DE PROPRETE

m3 107,00

5 BETON BANCHE

m3 664,00

6 GROS BETON m3 381,00

7 BETON ARME EN FONDATION

m3 464,00

8 BETON ARME EN ELEVATION

m3 355,00

9 PLANCHER (16+5) m2 1 034,00

10 PLANCHER (19+6)

m2 408,00

11 PLANCHER (25+5)

m2 349,00

13 CHAPE ARME DE 8cm

m2 1 790,00

14

HERISSON EN PIERRE SECHE DE 15 cm

m2

1790,00

15

BETON LEGEREMENT ARME

m2

102,0

Page 118: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 118

CONCLUSION

Vu la diversité des éléments étudiés, ce projet nous a été l’occasion d’approfondir nos

connaissances et de les mettre en preuve en confrontant des problèmes réels et des

difficultés à les quelles nous aurons à faire face dans l’avenir.

De plus, nous avons pu noter l’importance de la conception qui représente une étape de

travail principale pour l’ingénieur et qui réside dans le choix judicieux des éléments de la

structure, la prise en compte des contraintes architecturales et les difficultés de réalisation

sur chantier et la réflexion à propos de l’économie de la structure conçue.

Enfin, il est à signaler que l’étude des différents éléments du projet nous a permis de

maîtriser et d’appliquer les connaissances théoriques acquises au cours de nos études et de

manipuler des logiciels de calcul et de conception indispensables à savoir Arche et

AUTOCAD.

Page 119: 45865632-pfe-Enit1

PFE ENIT 2008

CHAIBI&JENZRI 119

Bibliographie

[1] Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états-limites (Règles BAEL 91 modifiées99), 2000, édition Eyrolles. [2] Règles Neige et vent 65 et annexes, RèglesN84, édition Eyrolles

[3] Henry THONIER : conception et calcul des structures bâtiments (tomes 1et4),1999,

édition Presses de l’école nationale des ponts et chaussés.

[4] Jean PERCHAT, Jean ROUX : Pratique du BAEL91, 1995, édition Eyrolles

[5] Jean Pierre MOUGIN: Guide de calcul Béton armé, édition Eyrolles

[6] Jean COURBON: Techniques de l’Ingénieur, traité Construction, Structures élastiques planes chargées normalement à leur plan [C2 020] [7] Jean COURBON, Jean-Noël THEILLOUT: Techniques de l’Ingénieur, traité Construction, Résistance des matériaux(Formulaire) [C2 060]

[8] Jean PERCHAT: Techniques de l’Ingénieur, traité Construction, Pièces soumises à des sollicitations tangentes et Sollicitations d’adhérence [C2 308]