23
RECENT MODELLING ADVANCES FOR ULTRASONIC TOFD INSPECTIONS Michel DARMON 1 , Adrien FERRAND 1 , Vincent DORVAL 1 , Sylvain CHATILLON 1 CEA LIST, Gif-sur-Yvette, France [email protected] QNDE | July 2014

ADVANCES FOR ULTRASONIC TOFD Shadowing by a near surface crack CRACK DIFFRACTION • 3D models CALIBRATION ECHOES • Exact SOV model on SDH CONCLUSION AND PERSPECTIVES QNDE| 07.2014|

Embed Size (px)

Citation preview

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

RECENT MODELLING

ADVANCES FOR ULTRASONIC

TOFD INSPECTIONS

Michel DARMON1, Adrien FERRAND1, Vincent DORVAL1, Sylvain CHATILLON1

CEA LIST, Gif-sur-Yvette, France

[email protected]

QNDE | July 2014

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

CONTEXT

• TOFD inspection principle

• Simulation tools developed for TOFD inspection

LATERAL WAVES

• 3D simulation on planar components

• 2D simulation on irregular surfaces

• Shadowing by a near surface crack

CRACK DIFFRACTION

• 3D models

CALIBRATION ECHOES

• Exact SOV model on SDH

CONCLUSION AND PERSPECTIVES

OUTLINE

QNDE| 07.2014| 3

CONTEXT

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

CONTEXT

• Widespread ultrasonic inspection technique using two probes mechanically connected

used for locating and sizing cracks by their diffraction echoes

used in more and more complex and realistic 3D geometries

TOFD INSPECTION PRINCIPLE

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

Two probes of opposite axis are used in a pitch-catch arrangement

Emitter Receiver

Case of an embedded crack

1

2’ 3

2

scanning

PRINCIPLE OF TOFD TECHNIQUE

scanning

tim

e

Emitter Receiver

1

2

3

Case of a backwall breaking flaw : shadowing effects from the flaw 1

2

3

2’ : bottom diffraction

scanning

tim

e

1 : lateral wave

3 : backwall echo

2 : top diffraction

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

CONTEXT

• Widespread ultrasonic inspection technique using two probes mechanically connected

used for locating and sizing cracks by their diffraction echoes

used in more and more complex and realistic 3D geometries

TOFD INSPECTION PRINCIPLE

IMPROVEMENTS OF TOFD SIMULATION TOOLS FOR COMPLEX CONFIGURATIONS

• Simulation of lateral surface waves in complex geometries

• Account for shadowing effects from flaws

• Prediction of the ultrasonic response in realistic 3D configurations

(misoriented rectangular or complex flaws)

• Precise modelling of calibration echoes

LATERAL WAVES

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

3D SIMULATION OF LATERAL WAVES ON PLANAR ENTRY SURFACES

LATERAL WAVES

critical Refraction Head wave radiated

at the critical angle

Planar Interface

Emitter Receiver

(1) (1) (1)( , , )L TV V

(2) (2) (2)( , , )L TV V

𝑃𝑖 𝑃𝑗

𝜃∗

1) Discretization of transmitting and receiving surfaces

2) Between two points 𝑃𝑖 and 𝑃𝑗 :

Calculating the 3D path of the lateral head wave (HW)

Application of asymptotic ray theory (Cerveny’s model) for HW amplitude

3) Summation over the transmitter and receiver surfaces and frequency loop

Numerical validations by comparison with FEM modeling (Athena)

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

2D SIMULATION ON IRREGULAR SURFACES

LATERAL WAVES

• Experimental highlight on scoured specimens :

Head wave

Crack diffraction

Scan direction

Time

Scouring Defect

TOFD transducers

Scan direction

Top view

Compared to the planar case, differences are observed on the time of flight and on the amplitude of the head wave signal

Side view

Planar part of the specimen

Scoured part of the specimen

Defect

TOFD transducers TOFD transducers

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

SIMULATION OF LATERAL WAVES FRONTS USING RAY TRACING

Comparison of the wavefront obtained by GRTT and FEM simulations near the receiver surface

Grazing ray Diffraction on curved part Non critical refraction

Good agreement between GRTT and FEM (Athena) results using

the head wave propagation includes bulk propagation and diffraction on surface irregularities.

LATERAL WAVES ON IRREGULAR

SURFACES

Development of a Generic Ray Tracing Tool (GRTT) based on the Generalized Fermat’s Principle

Able to simulate ray paths between two points for of all waves (including head waves)

“Modeling of ray paths of head waves on irregular interfaces in TOFD inspection for NDE”

A. Ferrand, M. Darmon, S. Chatillon and M. Deschamps, Ultrasonics (in press)

Head wave front

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

LATERAL WAVES ON IRREGULAR

SURFACES

2D AMPLITUDE MODEL FOR LATERAL WAVES USING RAY TRACING

SOUTENANCE DE THÈSE | ADRIEN FERRAND | 11

1

Source Point 𝑃0 observation point 𝑃𝑛

(1) (1) (1)( , , )L TV V

(2) (2) (2)( , , )L TV V

(3) (3) (3)( , , )L TV V

(4) (4) (4)( , , )L TV V

𝑢(𝑃1)

𝑢(𝑃2)

𝑢(𝑃3)

𝑢(𝑃4) 𝑢(𝑃5) 𝑢(𝑃6)

𝑢(𝑃7)

𝑢(𝑃8)

- Creeping ray along a cylindrical part - Grazing ray along a planar part

Application of an amplitude ray model for each interaction

Ray path between the source and observation points determined by GRTT time of flight

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

LATERAL WAVES ON IRREGULAR

SURFACES

2D AMPLITUDE MODEL FOR LATERAL WAVES USING RAY TRACING

Numerical validations (comparison with FEM) on

cylindrical irregularities for large radii of curvature 𝑎 Surface

2dB

Entry surface

Head wave Backwall

reflection

First experimental validation on a realistic scouring

Calibration using a

2mm SDH

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

• Complex interferences between the head wave and the top edge diffracted wave.

• Development of a empirical model using finite elements calculations

• Adjusting an amplitude law for the HW amplitude according to the ligament

𝐴𝐻𝑊= 𝐴𝐻𝑊0𝑙𝑙𝑖𝑔𝑎𝑚𝑒𝑛𝑡

𝑙𝑐

2

where 𝐴𝐻𝑊0 is the HW amplitude without flaw

𝑙𝑐 = 3 𝜆

SIMULATION OF SHADOWING BY A NEAR SURFACE CRACK

LATERAL WAVES

Transmitter Receiver

Surface breaking crack

1

2’

3

Interruption of the lateral wave Effect of the ligament on the lateral wave

Transmitter Receiver

Near Surface crack

1

2’

3

2

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

Ligament 6mm Ligament 2mm Ligament 1mm

SHADOWING BY A NEAR SURFACE CRACK

• Analytical Civa Simulations on a plane specimen

LATERAL WAVES

The simulation provides a progressive extinction of the lateral wave with a

decreasing ligament.

Total HW transmission

(no flaw influence) Decrease of HW

amplitude

Ligament 0mm

P60° 2MHz PCS 70mm

HW extinction

Lateral wave (+top edge)

Bottom edge diffraction

20mm

CRACK DIFFRACTION

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout MAIN IMPROVEMENTS

CFA| 23.04.2014| 3

EDGES DIFFRACTION SIMULATION

- Previous 2D GTD model in CIVA has been removed:

directions projected onto the plane perpendicular to the edge.

- Replacement by 3D GTD and 3D PTD models developed in

collaboration with L. Fradkin

Advantages:

- Better prediction for strong 3D crack misorientation.

- Use of a new TV-TH decomposition : continuous limit when turning the 3D problem

into 2D one.

- Correction of some numerical bugs due to the previous 2D codes

- Rewriting the 3D codes from Fortran to C++ for numerical optimization

Edge diffraction echoes can be modelled

identically by GTD or new PTD models.

A. K. Gautesen (2010). A note on the diffraction coefficients for elastodynamic

diffraction by sharp edges. Wave Motion, 47(5), 327-332.

td. athematics ound LM

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

SKEWING EFFECTS

EDGES: « 3D » CONFIGURATION

• Very good agreement between

3D PTD/GTD and measure.

• Improvement obtained with

3D GTD/PTD for important skew.

Crossing point of fields near the top edge

Rotation of the specimen (skew from 0° to 70°)

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0 10 20 30 40 50 60 70

am

plitu

de (

dB

)

skew angle (°)

3D GTD

3D PTD

Experience

2D GTD CIVA 10

P45° 2,25MHz

Defect 10*20mm

Experiment

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

DIFFRACTION ECHO AMPLITUDE VERSUS b ANGLE

EDGES: COMPARISON WITH LITERATURE

300 mm diameter Cylinder,

5MHz probe

Large planar flaw

(real fatigue crack)

b

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Re

lati

ve a

mp

litu

de

(d

B)

Probe position (°)

Bottom and top edge diffraction, probe fc=5MHz

Civa10 2D-2D (crack aperture=0mm)

Kirchoff GTD dev 17-10-12 (2D-2D)

Exp

GTD 2D CIVA 10

b

b

3D PTD 3D

Good agreement 3D PTD/measure Civa11 improvement for small incident angles on bottom edges

Bottom edge diffraction Top edge diffraction

CIVA 11

EXP (Ravenscroft)

F. Ravenscroft, C. Scruby, Ultrasonics 1991

SIMULATION OF THE CALIBRATION ON SDH

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

CALIBRATION WITH SIDE DRILLED HOLES

ACCURATE SIMULATION OF THE RESPONSE OF CALIBRATION DEFECT IS A CRUCIAL ISSUE

PCS Effect on SDHs response

Improvement due to creeping waves modelling (not accounted in Kirchhoff model)

For more important PCS:

• more field amplitude on the

SDH bottom

• Smaller path and attenuation

for creeping waves (CW)

Increasing CW amplitude

Specular

reflection

Creeping

wave

EXACT ANALYTICAL MODEL (SOV) FOR SDH

CONCLUSION AND PERSPECTIVES

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

CONCLUSION AND PERSPECTIVES

CONCLUSION • Lateral waves

• 3D simulation on planar components

• 2D simulation on irregular surfaces (cylindrical or scoured irregularities)

First validation: Good agreement. To be completed by other studies

• Shadowing by a near surface crack

• Edge diffraction

• Integration of 3D models and of the generic PTD

• Calibration reflectors

• New SOV exact analytical model: account of creeping wave for better prediction

PERSPECTIVES

• Lateral waves on irregular surfaces

• 3D configuration / wedge irregularities

• Impedance interfaces / anisotropic media

• Interaction with defects located in the

specimen shadow

• Edge diffraction

• Simulation improvement near critical angles

Defect

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de de

pied de page

Cliquer sur appliquer partout

Thank you for your attention

[email protected]

QNDE 2014 - SESSION 34 | JULY 25, 2013