10
Chapitre V – Les hacheurs - LES HACHEURS (DC/DC) I- Introduction : Ils peuvent être utilisés pour alimenter un récepteur sous une tension continue variable (machine à courant continu), ou destinés à fournir une tension continue constante pour servir d’alimentation régulée (alimentations à découpage, convertisseurs PFC – Power Factor Control). L’étude portera sur des convertisseurs reliant directement un générateur à un récepteur (tension et courant sont continus) : Les hacheurs seront donc composés exclusivement d’interrupteurs semi-conducteurs, Pour respecter les règles d’interconnexion entre le générateur et le récepteur, il faudra, à chaque changement d’état d’un interrupteur, que la source de courant ne soit jamais en circuit ouvert (sauf si i = 0 A) et que le générateur de tension ne soit jamais court-circuité. II- Hacheur Série : Il est appelé aussi abaisseur de tension, dévolteur, Buck converter, Step down converter. Ce hacheur commande le débit d’un générateur de tension V e , dans un récepteur de courant, tout deux unidirectionnels en tension et en courant. Source de tension. Elle impose V e . Elle "subit" I e . Source de courant. Elle impose I S . Elle "subit" V S . Figure IV. 1 : Symbole d’une source de tension et d’une source de courant, unidirectionnelles en tension et en courant. Configuration de base Figure IV. 2 : Schéma de principe du hacheur série et ses 3 phases de fonctionnement. L’interrupteur "K" a une fonction de "transistor" (2 segments). Pour cette première étude, nous considérons la source de courant parfaite, I S = constante. 1 ère Phase : Si K est "ON" alors D est polarisée en inverse, v S (t) = V e et i e (t) = I S . La durée, t ON , de cette phase est notée T (ne pas confondre avec le du pont tout thyristor). Ici est appelé rapport cyclique . Fait sous Linux et OpenOffice/StarOffice page 1/10 V e I e I S V S V e i K i D i e D K I S V S V e i K i D i e D K I S V S "Phase 2" V e i K i D i e D K I S V S "Phase 1" V e i K i D i e D K I S V S "Phase 3"

ChapitreV Les Hacheurs

Embed Size (px)

DESCRIPTION

hach

Citation preview

Page 1: ChapitreV Les Hacheurs

Chapitre V – Les hacheurs -

LES HACHEURS (DC/DC)

I- Introduction :Ils peuvent être utilisés pour alimenter un récepteur sous une tension continue variable (machine à courant continu), ou destinés à fournir une tension continue constante pour servir d’alimentation régulée (alimentations à découpage, convertisseurs PFC – Power Factor Control).

L’étude portera sur des convertisseurs reliant directement un générateur à un récepteur (tension et courant sont continus) :– Les hacheurs seront donc composés exclusivement d’interrupteurs semi-conducteurs,– Pour respecter les règles d’interconnexion entre le générateur et le récepteur, il faudra, à chaque

changement d’état d’un interrupteur, que la source de courant ne soit jamais en circuit ouvert (sauf si i = 0 A) et que le générateur de tension ne soit jamais court-circuité.

II- Hacheur Série :Il est appelé aussi abaisseur de tension, dévolteur, Buck converter, Step down converter. Ce hacheur commande le débit d’un générateur de tension Ve, dans un récepteur de courant, tout deux unidirectionnels en tension et en courant.

Source de tension.Elle impose Ve.Elle "subit" Ie.

Source de courant.Elle impose IS.Elle "subit" VS.

Figure IV. 1 : Symbole d’une source de tension et d’une source de courant, unidirectionnelles en tension et en courant.Configuration de base

Figure IV. 2 : Schéma de principe du hacheur série et ses 3 phases de fonctionnement.L’interrupteur "K" a une fonction de "transistor" (2 segments).Pour cette première étude, nous considérons la source de courant parfaite, IS = constante.

1ère Phase :Si K est "ON" alors D est polarisée en inverse, vS(t) = Ve et ie(t) = IS. La durée, tON, de cette phase est notée T (ne pas confondre avec le du pont tout thyristor). Ici est appelé rapport cyclique.

Fait sous Linux et OpenOffice/StarOffice page 1/10

Ve

Ie I

SV

S

Ve

iK

iD

ie

DKIS

VS

Ve

iK

iD

ie

DKIS

VS

"Phase 2"

Ve

iK

iD

ie

DKIS

VS

"Phase 1"

Ve

iK

iD

ie

DKIS

VS

"Phase 3"

Page 2: ChapitreV Les Hacheurs

Chapitre V – Les hacheurs -

2ième Phase :Si K est "OFF" alors D est "ON". Elle est parcourue par IS. Cette phase est appelée phase de roue libre et a une durée de (T - T), vS(t) = 0 V et ie(t) = 0 A.

{3ième Phase : K et D "OFF", cette phase n’apparaît que si le courant s’annule}

Le rapport cyclique est compris entre 0 et 1 (en théorie).

VSmoy = Ve ( IV. 0)

Iemoy = IS ( IV. 0)La tension de sortie est obligatoirement inférieure à Ve, d’où le nom d’abaisseur. Son réglage est réalisé par .

Figure IV. 3 : Forme d’onde dans le cas où la source de courant est parfaite.Modélisation du récepteurPour ce rapprocher de cas concrets (ondulation du courant de sortie), le récepteur peut être modélisé par une inductance en série avec un circuit RC parallèle ou une fem (charge RLE). Dans les deux cas, l’inductance en série assure que la charge est une source de courant.

Figure IV. 4 : Sources de sortie du hacheur.

Remarque : dans la majorité des cas, un condensateur est placé à l’entrée du hacheur assurant ainsi une tension quasi-continue. Dans la suite, nous garderons donc le même générateur que celui de la Figure IV. 1 et en considérant qu’il fournit une tension constante.Conduction continue : Charge RLE

Figure IV. 5 : Hacheur série charge RLE.

Hypothèse : Régime établi, semi-conducteurs parfaits.

Fait sous Linux et OpenOffice/StarOffice page 2/10

Ve

iK

iD

ie

DK

iS

v

L

R

E

vS(IS

T Tt

tTT0

0

Ve

K D

ie(tV

eI

==

ve(t)

L REL RC

Page 3: ChapitreV Les Hacheurs

Chapitre V – Les hacheurs -

Calcul de valeurs moyennes :

Vmoy = Ve ( IV. 0)

eSmoy

V EV EI

R R

( IV. 0)

Figure IV. 6 : Forme d’onde du Hacheur série sur Charge RLE en mode continu.

Fonctionnement :

1ère phase : K "ON"; D "OFF"; t 0 ; T ( = tON/T)

Se S

L d i tV R i t E

d t( IV. 0)

La résolution de cette équation est obtenue à l’aide du théorème fondamental ou en appliquant :

t

S Final Initial FinalLi (t) I I I e avec R ( IV. 0)

Dans le mode de conduction continue : iS(t = 0) = IInitial = ISmin (> 0 A)En admettant que K soit toujours fermé, iS(t) atteindrait une valeur maximale définie par : IFinal = (Ve – E)/R

te e

S Smin

V E V Ei (t) I e

R R( IV. 0)

Nous pouvons exprimer la valeur maximale qu’atteint le courant pour t = T :

Te e

Smax S SminV E V E

I i t T I eR R

( IV. 0)

2nd phase : K "OFF"; D "ON"; t T ; T

SS

L d i t0 R i t E

d t( IV. 0)

avec IInitial = ISmax et IFinal = – E/R

't'

S Smax

t T

S Smax

E Ei (t ) I e

R R

E Ei (t T) I e

R R

( IV. 0)

Nous pouvons exprimer la valeur minimale qu’atteint le courant pour t = T :

1 T

Smin S Smax

E EI i t T I e

R R( IV. 0)

Nous pouvons maintenant en déduire l’ondulation de courant I S :

Fait sous Linux et OpenOffice/StarOffice page 3/10

v(t)

T Tt

tTT0

0

K D

iS(t)

Page 4: ChapitreV Les Hacheurs

Chapitre V – Les hacheurs -

1 TT

eS Smax Smin S T

1 e 1 eV

I I I i t TR

1 e

( IV. 0)

Hypothèse : pour simplifier les calculs, nous pouvons approximer les morceaux d’exponentielle par des segments de droite. Cela revient à dire que >> T. La nouvelle expression pour l’ondulation de courant devient :

e

S Smax Smin

1 VI I I

L f( IV. 0)

Lors du TP2, vous avez pu voir l’influence des termes de l’équation précédente sur I S. L’ondulation est maximale pour = 0,5, elle diminue quand L ou f augmente et elle est indépendante de R (tant que le mode de conduction est continue).

Figure IV. 7 : Ondulation du courant en supposant que >> T.

Conduction discontinue : Charge RLELe régime correspond à l’annulation du courant sur la période de fonctionnement. Le courant atteint 0 A lors de la phase de roue libre, il existe alors les 3 phases de fonctionnement.Pour l’étude, nous considérons R négligeable (le courant est formé de segments de droites).

Figure IV. 8 : Forme d’onde du hacheur série sur charge RLE en mode discontinu.

Calcul de valeurs moyennes :

'moy e

moy Lmoy

T V T V E T 1

V E V 0 V

( IV. 0)

'e

EV

( IV. 0)

Fait sous Linux et OpenOffice/StarOffice page 4/10

v(t)

tT0

K D

iS(t)

Ve

T+’T T

E

iS(t)

tTT0

Page 5: ChapitreV Les Hacheurs

Chapitre V – Les hacheurs -

'SmaxSmoy

II

2( IV. 0)

Fonctionnement :

1ère phase : K "ON"; D "OFF"; t 0 ; T ( = tON/T)

S

L

d i tv t L

dt( IV. 0)

ev t V ( IV. 0)

L ev t V E ( IV. 0)

eS

V Ei t t

L( IV. 0)

eSmax S

V EI i t T

L( IV. 0)

2nd phase : K "OFF"; D "ON"; 't T ; T T v t 0 ( IV. 0)

Lv t E ( IV. 0)

S Smax

Ei t t T I

L( IV. 0)

' 'S Smax

'Smax

E0 i t T T T I

LE

I TL

( IV. 0)

3ième phase : K "OFF"; D "OFF"; 't T T ; T v t E ( IV. 0)

Si t 0 ( IV. 0)

Remarque : dans ce fonctionnement l’ondulation du courant est égale à Ismax.Pour comparer le fonctionnement en mode continu et discontinu, il faut représenter la caractéristique Vmoy, tension aux bornes de la charge RLE, en fonction du courant ISmoy, paramétrée par . Calculons alors I Smoy :

'Smax e eSmoy

2e

Smoy e

I V E V EI T

2 2 L E

V TI V E

2 L E

( IV. 0)

moy eSmoy

2e

1V E V

2 L f I1

V( IV. 0)

Par rapport à la conduction continue (formule ( IV. 0 )), La tension de sortie ne dépend plus directement du rapport cyclique, mais le courant moyen de sortie intervient. Le contrôle à faible

Fait sous Linux et OpenOffice/StarOffice page 5/10

Page 6: ChapitreV Les Hacheurs

Chapitre V – Les hacheurs -

charge est donc difficile.Caractéristiques du Hacheur SérieGrandeurs de sortie :

ApplicationNumérique :

Ve = 30 V,f = 500 Hz,R = 50 ,L = 200 mH.

(valeurs numériques du TP2).

Figure IV. 9 : Grandeurs de sortie.

Légende :Trait continu : VSmoy = f(ISmoy) pour différent .Trait discontinu : limite de conduction continue/discontinue.

Les hyperboles représentent le régime discontinu, les droites horizontales le régime continu.

Procédés de réglage :La tension moyenne de sortie du hacheur varie en fonction du rapport cyclique = tON/T (tON : durée de conduction du transistor).Il existe donc deux procédés de réglage :

tON = cte, T variable, T = cte, tON variable,

L’avantage de la première solution est d’obtenir une tension moyenne de sortie très faible si T est grand (= fdec faible).L’avantage de la seconde est de travailler à fdec élevée pour diminuer l’ondulation de courant.Pour l’alimentation d’une machine à courant continu, il faut lors du démarrage une tension d’induit très faible (E = 0 V quand N = 0 tr/mn) pour éviter les pointes de courant. Le hacheur est alors commandé selon la 1ère méthode, puis T diminue jusqu’à obtenir le rapport cyclique minimal. Dés cet instant, le réglage à tON variable, permet l’alimentation du moteur sous une tension continue variable (Figure IV. 10).

Fait sous Linux et OpenOffice/StarOffice page 6/10

Page 7: ChapitreV Les Hacheurs

Chapitre V – Les hacheurs -

Figure IV. 10 : Exemple de procédure de démarrage pour une MCC.Hacheur Quatre QuadrantsPrésentationLe convertisseur statique recherché doit permettre une réversibilité totale en tension et en courant du récepteur (source de courant) ce qui entraîne que le générateur de tension soit réversible.

Générateur : source de tension unidirectionnelleRécepteur : source de courant bidirectionnelle.

Deux configurations sont possibles :-dans les 2 cas, la source de tension est parcourue par un courant bidirectionnel.-suivant le cas, la source de tension impose + ou – Ve à la source de courant.

Figure IV. 11 : Nature et disposition des sources d’entrée et de sortie pour le hacheur 4 quadrants.Des schémas de la figure précédente, nous constatons qu’avec les deux manières d’interconnecter les sources, nous avons besoin d’une source de tension réversible en courant pour assurer la réversibilité totale de la source de courant. Nous déduisons alors qu’une structure en pont permet de réaliser un hacheur 4 quadrants.

Fait sous Linux et OpenOffice/StarOffice page 7/10

tON

T1

T2

T3

T4

tON1

tON2

tON3

tON4

T1 =>

T2

T3

T4

tON1

tON2

tON3

tON4

Dém

arr

age

Ie

Ve V

S IS

K1

K2 K

3

K4

VS

IS

Ie

Ve

Ve I

S

Ve I

S

Ve I

S

Page 8: ChapitreV Les Hacheurs

Chapitre V – Les hacheurs -

Figure IV. 12 : Sources et structure du hacheurs 4 quadrants.

Fonctionnement :La commande des interrupteurs K1 et K2 (K3 et K4) doit être complémentaire pour éviter de court-circuiter la source de tension et de laisser en circuit ouvert la source de courant : 21 KK et 43 KK .Deux fonctionnements sont possibles :- 4321 KKKK : c’est la commande simultanée ou symétrique. La tension de la source de courant peut être égale à + ou – Ve.- 21 KK et 43 KK : c’est la commande décalé. La tension de la source de courant peut être égale à +, – Ve ou 0 V.

Il ne nous reste plus qu’à définir la nature des interrupteurs (Ki) pour conclure sur la présentation de ce convertisseur. Il est tout d’abord évident que ces interrupteurs doivent être bidirectionnels en courant. Si K1 est fermé, le courant peut être positif ou négatif. Dans ces conditions, VK1 est nul et VK2 est égal à +Ve. Maintenant si K1 est "ON" (donc K2 "OFF"), nous avons VK1 = +Ve et VK2 = 0 V. Les interrupteurs ont donc besoin d’être unidirectionnels en tension. Comme ces interrupteurs peuvent être commandés quelque soit le courant qui les traverse, ils sont forcément entièrement commandables. Un tel interrupteur est en fait, l’association de deux semi-conducteurs comme le montre la Figure IV. 13.

Figure IV. 13 : Nature des interrupteurs d’un hacheur 4 quadrants.Formes d’onde, commande simultanéeEn supposant une charge LE (R est négligée), nous avons représenté sur la Figure IV. 14, tous les cas de la commande pleine onde (VSmoy > ou < 0V, iS(t) > ou < 0 A).

Fait sous Linux et OpenOffice/StarOffice page 8/10

iK

vK

Trait continu : TransistorTrait pointillé : Diode

ik

vk

amorçage

blocage

Page 9: ChapitreV Les Hacheurs

Chapitre V – Les hacheurs -

Figure IV. 14 : Commande simultanée du hacheur 4 quadrants.

Expression de vS(t) :

Fait sous Linux et OpenOffice/StarOffice page 9/10

vS(t)

iS(t)

ie(t)

iS(t)

ie(t)

iS(t)

ie(t)

T Tt

t

t

t

t

t

t

T

T

T

T

T

T

T

T

T

T

T

T

0

0

0

0

0

0

0-V

e

Ve

K1 et K

3K

2 et K

4

i S(t

) > 0

Ai S

(t) 

<0A

i S(t

) > o

u <

 0A

VS_moy

 > 0V

T1 et T

3D

2 et D

4

D1/2

D2/4

T1/2

T2/4

D1 et D

3T

2 et T

4

ie(t)

tTT0

iS(t)

tTT0

i S(t

) > 0

A

D2 et D

4T

1 et T

3

vS(t)

T Tt

0-V

e

Ve

VS_moy

 < 0V

K2 et K

4K

1 et K

3

iS(t)

ie(t)

t

t

T

T

T

T0

0

i S(t

) > o

< 0

A

D2/4

D1/3

T1/3

T2/4

ie(t)

iS(t)

t

t

T

T

T

T

0

0

i S(t

) <0A

T2 et T

4D

1 et D

3

Page 10: ChapitreV Les Hacheurs

Chapitre V – Les hacheurs -

Smoy e e

Smoy e

T V T V T 1 V

V V 2 1

( IV. 0)

SS

Smoy Lmoy e

d i tv t L E

dtV V E E V 2 1

( IV. 0)

SS e

d i tv t L V 2 1

d t ( IV. 0)

Expression de iS(t) :

1ère phase : K1, K3 "ON"; K2, K4 "OFF"; t 0 ; T : vS(t) = Ve

Se e e

d i tL V V 2 1 2 V 1

d t ( IV. 0)

iS(t) croît linéairement en partant d’une valeur non nulle ISmin.

eS Smin

Vi t I 2 1 t

L ( IV. 0)

2nd phase : K "OFF"; D "ON"; t T ; T : vS(t) = 0

Se e e

d i tL V V 2 1 2 V

d t ( IV. 0)

iS(t) décroît linéairement en partant pour t = T/2 de ISmax.

eS Smax

2 Vi t I t T

L ( IV. 0)

Ondulation de courant : e

S Smax Smin

1 VI I I 2

L f

( IV. 0)

L’ondulation est doublée par rapport au hacheur série. L doit donc être doublée pour garder la même ondulation de courant. Celle-ci est toujours maximale pour =1/2.

Intérêt :- Passer de manière continue avec , d’une tension V smoy positive à Vsmoy négative, tout en gardant I supérieur à zéro (pour une machine à courant continu : garder le couple constant).- L’énergie peut transiter de l’entrée vers la sortie et inversement (fonctionnement réversible).- Si le récepteur est une machine à courant continu, le hacheur 4 quadrants permet le fonctionnement avec 2 sens de rotation et la possibilité de fonctionner en traction ou en freinage : nombreuses applications en robotique (grande dynamique exigée), mais aussi dans le domaine de la traction ferroviaire en courant continu (1500 V – 3000 V).

Fait sous Linux et OpenOffice/StarOffice page 10/10