5
1 EE232 Lecture 21-1 Prof. Ming Wu EE 232 Lightwave Devices Lecture 21: Avalanche Photodiode (APD) Reading: Chuang 15.4 (2 nd Ed) Instructor: Ming C. Wu University of California, Berkeley Electrical Engineering and Computer Sciences Dept. EE232 Lecture 21-2 Prof. Ming Wu Avalanche Photodiode (APD)

EE232-21-Avalanche Photodiode (APD)ee232/sp16/lectures/EE232...Avalanche"Photodiode"(APD) 2 EE232 Lecture 21-3 Prof. Ming Wu Typical"APD"Structure: Separate"Absorption"and"Multiplication"(SAM)"APD

  • Upload
    others

  • View
    5

  • Download
    1

Embed Size (px)

Citation preview

Page 1: EE232-21-Avalanche Photodiode (APD)ee232/sp16/lectures/EE232...Avalanche"Photodiode"(APD) 2 EE232 Lecture 21-3 Prof. Ming Wu Typical"APD"Structure: Separate"Absorption"and"Multiplication"(SAM)"APD

1

EE232 Lecture 21-1 Prof. Ming Wu

EE  232  Lightwave  DevicesLecture  21:  Avalanche  Photodiode  (APD)

Reading:  Chuang  15.4  (2nd Ed)

Instructor:  Ming  C.  Wu

University  of  California,  BerkeleyElectrical  Engineering  and  Computer  Sciences  Dept.

EE232 Lecture 21-2 Prof. Ming Wu

Avalanche  Photodiode  (APD)

Page 2: EE232-21-Avalanche Photodiode (APD)ee232/sp16/lectures/EE232...Avalanche"Photodiode"(APD) 2 EE232 Lecture 21-3 Prof. Ming Wu Typical"APD"Structure: Separate"Absorption"and"Multiplication"(SAM)"APD

2

EE232 Lecture 21-3 Prof. Ming Wu

Typical  APD  Structure:Separate  Absorption  and  Multiplication  (SAM)  APD

EE232 Lecture 21-4 Prof. Ming Wu

Ideal  APD:  Injection  Impact  Ionization  Only

1

( ) ( )

: electron ionization coefficient [cm ]

Electron current distribution along the field:( ) (0)

Multiplication factor:( )(0)

n

n

nn n

n

xn n

Wnn

n

dJ x J xdx

J x J e

J WM eJ

α

α

α

α −

=

=

= =

Page 3: EE232-21-Avalanche Photodiode (APD)ee232/sp16/lectures/EE232...Avalanche"Photodiode"(APD) 2 EE232 Lecture 21-3 Prof. Ming Wu Typical"APD"Structure: Separate"Absorption"and"Multiplication"(SAM)"APD

3

EE232 Lecture 21-5 Prof. Ming Wu

( )nJ x

Practical  APD:  Both  Electron  and  Hole  produce  Impact  Ionizations

( )

( )

1

1

( ) ( ) ( )

( )( ) ( )

: electron ionization coefficient [cm ]

: hole ionization coefficient [cm ]

( ) ( ) 0

( ) ( ) constant

( ) ( )

nn n p p

pn n p p

n

p

n p

n p

nn p n p

dJ x J x J xdxdJ x

J x J xdx

d J x J xdxJ x J x JdJ x J x Jdx

α β

α β

αβ

α β β

⎧ = +⎪⎪⎨⎪− = +⎪⎩

+ =

+ = =

− − =

EE232 Lecture 21-6 Prof. Ming Wu

Multiplication  Factor

( )

( )( )( )

'

0

(1 )

Multiplication factor:1

(0)1 '

1

1 1

Define

1

n p

n p

n p

n

n Wxn

n

nWn

n p

n pW

n p

p

n

n k W

JMJ

dx e

Me

e

k

kMe k

α β

α β

α β

α

α

αα β

α β

α ββα

− −

− −

− −

− −

= =−

=− −

−=

=

−=−

0 1 2 3 4 51

10

100

1 103×

1 104×

Mn 0 x, ( )

Mn 0.2 x, ( )

Mn 0.9 x, ( )

x

nM

nWα

0k =

0.2k =

0.9k =

Page 4: EE232-21-Avalanche Photodiode (APD)ee232/sp16/lectures/EE232...Avalanche"Photodiode"(APD) 2 EE232 Lecture 21-3 Prof. Ming Wu Typical"APD"Structure: Separate"Absorption"and"Multiplication"(SAM)"APD

4

EE232 Lecture 21-7 Prof. Ming Wu

Response  Time

Response time = transit time in absorption region + multiplication time

Usually

t m

n nm

e h e

abst

h

m t m

M kW M kWWv v v

Wv

τ τ τ

τ

τ

τ τ τ τ

= +

⎧ = + ≈⎪⎪⎨⎪ =⎪⎩

→ ≈?

Gain-Bandwidth Product:

1 12 2

constant2

en n

m n

e

vG BW M MM kW

vG BWkW

πτ π

π

× = ⋅ = ⋅

× = =

EE232 Lecture 21-8 Prof. Ming Wu

Noise  Figure

2

2

Excess noise factor (due to fluctuation in gain) :

1(1 ) 2

Noise Figure:10log

Small has small under high gain Minimum noise figure = 3 dB occurs when 0

nn

n

F

MF k M k

MM

NF F

k F Mk

⎛ ⎞= = + − −⎜ ⎟⎜ ⎟⎝ ⎠

=

=

Page 5: EE232-21-Avalanche Photodiode (APD)ee232/sp16/lectures/EE232...Avalanche"Photodiode"(APD) 2 EE232 Lecture 21-3 Prof. Ming Wu Typical"APD"Structure: Separate"Absorption"and"Multiplication"(SAM)"APD

5

EE232 Lecture 21-9 Prof. Ming Wu

APD  Noises

( )( )

222

2

2 2

2

2

Signal is amplified by the average gain :

12

Shot noise is amplified by :

2

2

: photocurrent;

: background photocurrent: dark current

4

p opt

S p B D

p B D

p

B

D

BT

M

qi P M

M

i e I I I M dv

e I I I F M dv

III

k T vi

ηω

⎛ ⎞= ⎜ ⎟⎝ ⎠

= + +

= + +

Δ=

h

( )

22

2

12

42

opt

Bp B D

RqP M

SNR k T ve I I I F M dvR

ηω

⎛ ⎞⎜ ⎟⎝ ⎠= Δ+ + +

h

1 10 6−× 1 10 5−× 1 10 4−× 1 10 3−× 0.01 0.1 11 104×

1 105×

1 106×

1 107×

1 108×

1 109×

1 1010×

1 1011×

1 1012×

SNR ip 100, 0.4, ( )

ip

Slope=2at  low  Ip

Slope=1at  high  Ip

Photocurrent,   ipSNR

EE232 Lecture 21-10 Prof. Ming Wu

( )

( )

22

2

2

12APD: 42

p-i-n: set 1, 1

12

42

opt

Bp B D

opt

Bp B D

qP MSNR k T ve I I I F M dv

RM F

qPSNR k T ve I I I dv

R

ηω

ηω

⎛ ⎞⎜ ⎟⎝ ⎠= Δ+ + +

= =

⎛ ⎞⎜ ⎟⎝ ⎠= Δ+ + +

h

h

1 10 9−× 1 10 7−× 1 10 5−× 1 10 3−× 0.11 10 3−×

0.1

10

1 103×

1 105×

1 107×

1 109×

SNR ip 40, 0.4, ( )

ip

1 10 9−× 1 10 7−× 1 10 5−× 1 10 3−× 0.11

10

100

1 103×

1 104×

1 105×

1 106×

1 107×

1 108×

1 109×

1 1010×

SNR ip 40, 0.4, ( )

SNR ip 1, 0.4, ( )

ip

SNR  Comparison  of  p-­i-­n  and  APD

Photocurrent,   ip

SNR

APD

p-­i-­n