25
H. Choukri, A.Fischer, S. Forget, S. Chénais , M.- C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) Color-control (including White) in OLEDs by shifting the position in OLEDs by shifting the position of an ultrathin yellow layer in a of an ultrathin yellow layer in a blue matrix. blue matrix. D. Adès, A. Siove, Lab. Biomateriaux et Polymères de Spécialité, Univ. Paris Nord, France N.Lemaitre, B. Geffroy Lab. Cellules et Composants, CEA Saclay, France

H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

Embed Size (px)

Citation preview

Page 1: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C.

Castex,Lab. de Physique des Lasers, Univ. Paris Nord, France

Color-control (including White) in Color-control (including White) in OLEDs by shifting the position of OLEDs by shifting the position of an ultrathin yellow layer in a blue an ultrathin yellow layer in a blue

matrix.matrix.

Color-control (including White) in Color-control (including White) in OLEDs by shifting the position of OLEDs by shifting the position of an ultrathin yellow layer in a blue an ultrathin yellow layer in a blue

matrix.matrix.

D. Adès, A. Siove, Lab. Biomateriaux et Polymères de Spécialité, Univ. Paris Nord, France

N.Lemaitre, B. GeffroyLab. Cellules et Composants, CEA Saclay, France

Page 2: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

2CLEO ’06 – Long Beach (USA)

WHITE oleds

WHITE oleds applicationsSolid-state LIGHTING : efficient and energy-saving

large areas (≠ inorganic leds) and potentially flexible devices :

new paradigm in lighting

Pixels or backlight panels for DISPLAYS

Demanding requirements to compete with fluorescent and incandescent

light bulbs : 1) 100% internal quantum efficiency (phosphorescent

materials ?)

2) Low operational voltages and power consumption ( p and n-doped

injection layers ?)

3) efficient and reliable color-mixing schemes to achieve white

Page 3: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

3CLEO ’06 – Long Beach (USA)

INTRODUCTION

Getting white from OLEDs :

Down-Conversion (Blue OLED + Phosphors) Using exciplex/excimer emission Mixing basic colors in a single layer (« doping ») Mixing colors obtained in separate regions

engineering of the recombination zone microcavity effects

Page 4: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

4CLEO ’06 – Long Beach (USA)

INTRODUCTION : underlying concepts

Mixing two complementary colors in appropriate proportions : blue + yellow

« doping strategy » = mixing a small proportion (typ. <5%) of yellow emitter in a blue matrix → accurate control of weak doping levels difficult

Alternative : Including an ultrathin yellow layer in a blue matrix : better control of the thin film deposition

Varying different parameters (thickness, position) to finely tune the color

Page 5: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

5CLEO ’06 – Long Beach (USA)

STRUCTURE of the OLEDs

+

Glass substrate

Anode ITO

HIL HTL

ETL

Cathode (Al+LiF)EL (blue) EL (yellow)

Thin film deposition by thermal evaporation under high vacuum (10-7

torr)

Anode

ITO

100-150nm

Cathode

+ + ++

+

- - - --

LUMO

HOMO

CuPc

10 nm

ET

L

NPB

50 nm

DPVBi : Rubrène

60-e : e nm

Alq3

10nm

LiF / Al

1.2 / 100nmH

IL

HT

L

Blu

e E

mit

ter

Blu

e E

mit

ter

Yel

low

Em

itte

r

+

2.4

2.8

2.8

5.4

5.9 5.9

5.7

3.0

2.9

4.7 5.3

3.6

3.2

5.4

Page 6: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

6CLEO ’06 – Long Beach (USA)

350 450 550 650 750

Wavelength

Inte

nsity

(A

.U.) absorption

Photoluminescence

Photoluminescence

CHEMISTRY

Well-known materials :

CuPcAlq3

NPB

N

N

N

N

N

N

NN

Cu

N

O

AlO

N

O

N N N

DPVBi

Rubrene

Transporting layersEmitting layers

Anode

ITO

100-150nm

Cathode

+ + ++

+

- - - --

LUMO

HOMO

CuPc

10 nm

ET

L

NPB

50 nm

DPVBi : Rubrène

60-e : e nm

Alq3

10nm

LiF / Al

1.2 / 100nm

HIL

HT

L

Blu

e E

mit

ter

Blu

e E

mit

ter

Yel

low

Em

itte

r

+

Efficient Förster energy transfer

(Blue)

(Yellow)

Page 7: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

7CLEO ’06 – Long Beach (USA)

WHITE OLEDs : principle

Anode

ITO

100-150nm

Cathode

+ + ++

+

- - - --

LUMO

HOMO

CuPc

10nm

ET

L

NPB

50 nm

DPVBi : Rubrène

60-e : e nm

Alq3

10nm

LiF / Al

1.2 / 100nm

HIL

HT

L

Blu

e E

mit

ter

Blu

e E

mit

ter

Yel

low

Em

itte

r

Exciton diffusion + Förster transferExciton formation

Yellow + Blue = White

2.4

2.8

5.4

5.9

5.4

5.7

3.0

2.9

4.7

5.3

3.6

3.6

5.3

3.2

Page 8: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

8CLEO ’06 – Long Beach (USA)

Influence of the total thickness

Design of the OLEDs - part 1Taking into account microcavity effects = locating the recombination zone at an antinode for blue and yellow eigenmodes

ITO[150] CuPc[10] NPB[45.5] Ru[1] NPB[3.5] DPVBi[x] Alq3[10] Al[100]

Balanced white Al

mirrorITO/glass interface

blueyellow

Page 9: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

9CLEO ’06 – Long Beach (USA)

Experimental determination of optimum thickness

ETFOS© software

0

0,2

0,4

0,6

0,8

1

1,2

0 50 100 150 200 250 300

DPVBi thickness (x, in nm)

Norm

aliz

ed

Lum

ina

nce (

A.U

.)

simulation

experimental data

60 nm 140 nm 230 nm

350 450 550 650 750

Wavelength (nm)

350 450 550 650 750

Wavelength (nm)

350 450 550 650 750

Wavelength (nm)

Etfos© software

Page 10: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

10CLEO ’06 – Long Beach (USA)

Influence of the rubrene thickness

Design of the OLEDs - part 2Variation of the rubrene thickness e [1-10 nm]

NPB [50 nm]

Ru [e nm]

DPVBi + Ru [60 nm]

[5 nm] [(55 – e) nm]

0

0,5

1

1,5

2

2,5

3

3,5

0 2 4 6 8 10 12

Rubrene thickness (e, in nm)

Exte

rna

l Qua

ntu

m e

fficie

ncy

ηext (%

)

Optimal Rubrene thickness :

~1 nm

→ « monolayer »

17 Å

7 Å

Rubrene molecule

14 Å

Page 11: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

11CLEO ’06 – Long Beach (USA)

Anode

ITO

100-150nm

Cathode

+ + ++

+

---

-

LUMO

HOMO

CuPc

10nm

ET

L

NPB

50 nm

DPVBi : Rubrène

60-e : e nm

Alq3

10nm

LiF / Al

1.2 / 100nm

Ene

rgy

HIL

HT

L

Blu

e E

mit

ter

Blu

e E

mit

ter

Yel

low

Em

itte

r

Possible explanations : 1) electrons are trapped when rubrene thickness e exceeds the monolayer width poor e-/holes balance at the interface

2) Concentration Quenching of excitons in neat rubrene

-

Influence of the rubrene thickness

e

Page 12: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

12CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

Design of the OLEDs - part 3Variation of the rubrene position d [-10 ► +20 Variation of the rubrene position d [-10 ► +20 nm]nm]

NPB [50 nm] DPVBi [60 nm]●d = 0 +-

Ru [1 nm]▲

Variation of the OLED color from pure yellow (Rubrene) to pure blue (DPVBi) via white

Page 13: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

13CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

NPB [50 nm]

DPVBi [60 nm]

d = 0 +-

Ru [1 nm]▲

d = -10 nm

Color Spectrum CIE x,y Performances

ηext = 3.4 %

1.2 lm/W

2275 cd/m²

@60mA/cm²

Anode

CathodeVariation of the rubrene Variation of the rubrene position d [-10 ► +20 nm]position d [-10 ► +20 nm]

Page 14: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

14CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

NPB [50 nm]

DPVBi [60 nm]

d = 0 +-

Ru [1 nm]▲

d = -5 nm

Color Spectrum CIE x,y Performances

ηext = 1.7 %

0.9 lm/W

1700 cd/m²

Anode

CathodeVariation of the rubrene Variation of the rubrene position d [-10 ► +20 nm]position d [-10 ► +20 nm]

Page 15: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

15CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

NPB [50 nm]

DPVBi [60 nm]

d = 0 +-

Ru [1 nm]▲

d = -3.5 nm

Color Spectrum CIE x,y Performances

ηext = 1.7 %

1.1 lm/W

1795 cd/A

Variation of the rubrene Variation of the rubrene position d [-10 ► +20 nm]position d [-10 ► +20 nm]

Bright white : CIE coordinates x= 0.32 ; y=0.33

Color Rendering Index = 73

Page 16: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

16CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

NPB [50 nm]

DPVBi [60 nm]

d = 0 +-

Ru [1 nm]▲

d = -3 nm

Color Spectrum CIE x,y Performances

ηext = 1.4 %

0.9 lm/W

1689 cd/m²

Variation of the rubrene Variation of the rubrene position d [-10 ► +20 nm]position d [-10 ► +20 nm]

Anode

Cathode

Page 17: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

17CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

NPB [50 nm]

DPVBi [60 nm]

d = 0 +-

Ru [1 nm]▲

d = 0 nm

Color Spectrum CIE x,y Performances

ηext = 1.25 %

1.2 lm/W

1600 cd/m²

Anode

CathodeVariation of the rubrene Variation of the rubrene position d [-10 ► +20 nm]position d [-10 ► +20 nm]

Page 18: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

18CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

NPB [50 nm]

DPVBi [60 nm]

d = 0 +-

Ru [1 nm]▲

d = 5 nm

Color Spectrum CIE x,y Performances

ηext = 2.6 %

2.5 lm/W

4067 cd/m²

Anode

CathodeVariation of the rubrene Variation of the rubrene position d [-10 ► +20 nm]position d [-10 ► +20 nm]

Page 19: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

19CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

NPB [50 nm]

DPVBi [60 nm]

d = 0 +-

Ru [1 nm]▲

d = 10 nm

Color Spectrum CIE x,y Performances

ηext = 2 %

1 lm/W

1700 cd/m²

Anode

CathodeVariation of the rubrene Variation of the rubrene position d [-10 ► +20 nm]position d [-10 ► +20 nm]

Page 20: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

20CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

NPB [50 nm]

DPVBi [60 nm]

d = 0 +-

Ru [1 nm]▲

d = 20 nm

Color Spectrum CIE x,y Performances

ηext = 2.8 %

1.1 lm/W

1900 cd/A

Anode

CathodeVariation of the rubrene Variation of the rubrene position d [-10 ► +20 nm]position d [-10 ► +20 nm]

Page 21: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

21CLEO ’06 – Long Beach (USA)

Anode

Cathode

+ + +

+

+

- -

-

-

CuPc

10nm

NPB

50 nm

DPVBi : Rubrène

60-e : e nmAlq3

10nm

LiF / Al

1.2 / 100nm

-

Rubrene into NPB is better

d = +20 nmx,y = (0.174 ;

0.151)ηext = 2.8 %

d = -10 nm

x,y = (0.172 ; 0.147)ηext = 3.4

%

Anode

Cathode

+ + +

+

+

--- -

CuPc

10nm

NPB

50 nm

DPVBi : Rubrène

60-e : e nmAlq3

10nm

LiF / Al

1.2 / 100nm

-

Rubrene in NPB : No hole

trapping

Rubrene in DPVBi : electron trapping

Comparison of two BLUE diodes with identical CIE x,y :

Page 22: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

22CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

Estimation of the exciton diffusion length

Simple exciton diffusion model :

Peak rubrene intensity exp(-d/Ld)► Width of recombination zone ~ 15 nm

Page 23: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

23CLEO ’06 – Long Beach (USA)

Influence of the rubrene position

Summary :NPB [50 nm] DPVBi [60 nm]●

d = 0 +-

Ru [1 nm]▲

Page 24: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

24CLEO ’06 – Long Beach (USA)

Conclusion

We show that we can finely control the OLED color by tuning the position and thickness of a thin layer of pure Rubrene in DPVBi

We obtain very good WHITE Oled with CIE coordinates of (0.32 ; 0.33)and CRI > 70

Same kind of design with three colors (R, G, B) could pave the way toward full color control of OLED in a given chromatic gamut.

Page 25: H. Choukri, A.Fischer, S. Forget, S. Chénais, M.-C. Castex, Lab. de Physique des Lasers, Univ. Paris Nord, France Color-control (including White) in OLEDs

25CLEO ’06 – Long Beach (USA)

Electrical characterization

YELLOW OLED

e=1nm d=0nm (DPVBi)

BLUE OLED

e=1 d=-10 (NPB)

WHITE OLED

e=1 d=-3.5 (NPB)