60
Licence de Chimie Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux de transition. Définition K 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 Ca 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 Sc [Ar] 3d 1 4s 2 Ti [Ar] 3d 2 4s 2 V [Ar] 3d 3 4s 2 Cr [Ar] 3d 5 4s 1 Mn [Ar] 3d 5 4s 2 Fe [Ar] 3d 6 4s 2 Co [Ar] 3d 7 4s 2 Ni [Ar] 3d 8 4s 2 Cu [Ar] 3d 10 4s 1 Zn [Ar] 3d 10 4s 2 Un élément (métal) de transition est un élément (respectivement métal) qui forme un ou plusieurs ions stables avec des orbitales d incomplètes. Sur la base de cette définition, le scandium et le zinc ne sont pas des métaux de transition, même s'ils font partie du bloc d. 2) Les complexes des métaux de transition Définition d'un complexe Un composé de coordination (ou un complexe) est un édifice moléculaire formé d'un centre métallique entouré de groupes donneurs d'électrons appelés ligands. Suivant la nature et la charge de chacun des composants du complexe, celui-ci peut être neutre, chargé positivement ou négativement. Le plus souvent, le métal est chargé positivement (oxydé). Les ligands qui peuvent être soit des ions, des atomes ou des molécules sont soit neutres, soit chargés négativement (ou positivement). On distingue trois zones autour de cet ion (l’exemple est donné pour un cation): • La sphère de coordination interne (ou 1ère sphère de coordination) : les molécules de solvant et, parfois, des anions, sont directement fixés sur le cation. Cette zone peut être souvent bien caractérisée (nombre et position des ligands). • La sphère de coordination externe (ou 2e sphère de coordination) : les molécules de solvant et les anions sont orientés par le champ électrique du cation, mais ne sont pas directement fixés sur lui. Ils peuvent cependant y être reliés par des ponts hydrogène. Cette zone est difficile à analyser. • Le solvant, non influencé par le cation. Des échanges se déroulent continuellement entre le solvant et les sphères de coordination, si bien qu’il faut considérer l’édifice complexe comme étant une structure moyenne. Lorsqu’un cation se déplace au sein d’une solution, il emporte avec lui ses deux sphères de coordination. Types de complexes La classification des complexes se base sur le nombre d’ions (ou d’atomes) centraux qu’ils comportent. Les complexes dont les formules sont données ci-dessus sont organisés Alcalins Alcalino-terreux Eléménts du bloc d

I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Embed Size (px)

Citation preview

Page 1: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

1

I Structure des complexes de métaux de transition

1) Les métaux de transition.

Définition

K 1s2 2s2 2p6 3s2 3p6 4s1

Ca 1s2 2s2 2p6 3s2 3p6 4s2

Sc [Ar] 3d1 4s2

Ti [Ar] 3d2 4s2

V [Ar] 3d3 4s2

Cr [Ar] 3d5 4s1

Mn [Ar] 3d5 4s2

Fe [Ar] 3d6 4s2

Co [Ar] 3d7 4s2

Ni [Ar] 3d8 4s2

Cu [Ar] 3d10 4s1

Zn [Ar] 3d10 4s2

Un élément (métal) de transition est un élément (respectivement métal) qui forme un ou

plusieurs ions stables avec des orbitales d incomplètes.

Sur la base de cette définition, le scandium et le zinc ne sont pas des métaux de

transition, même s'ils font partie du bloc d.

2) Les complexes des métaux de transition

Définition d'un complexe

Un composé de coordination (ou un complexe) est un édifice moléculaire formé d'un

centre métallique entouré de groupes donneurs d'électrons appelés ligands.

Suivant la nature et la charge de chacun des composants du complexe, celui-ci peut être

neutre, chargé positivement ou négativement. Le plus souvent, le métal est chargé

positivement (oxydé). Les ligands qui peuvent être soit des ions, des atomes ou des

molécules sont soit neutres, soit chargés négativement (ou positivement).

On distingue trois zones autour de cet ion (l’exemple est donné pour un cation):

• La sphère de coordination interne (ou 1ère sphère de coordination) : les

molécules de solvant et, parfois, des anions, sont directement fixés sur le cation.

Cette zone peut être souvent bien caractérisée (nombre et position des ligands).

• La sphère de coordination externe (ou 2e sphère de coordination) : les molécules

de solvant et les anions sont orientés par le champ électrique du cation, mais ne

sont pas directement fixés sur lui. Ils peuvent cependant y être reliés par des ponts

hydrogène. Cette zone est difficile à analyser.

• Le solvant, non influencé par le cation.

Des échanges se déroulent continuellement entre le solvant et les sphères de

coordination, si bien qu’il faut considérer l’édifice complexe comme étant une structure

moyenne. Lorsqu’un cation se déplace au sein d’une solution, il emporte avec lui ses deux

sphères de coordination.

Types de complexes

La classification des complexes se base sur le nombre d’ions (ou d’atomes) centraux qu’ils

comportent. Les complexes dont les formules sont données ci-dessus sont organisés

Alcalins

Alcalino-terreux

Eléménts du

bloc d

Page 2: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

2

autour d’un seul ion central. Ce sont des complexes monométalliques (on dit aussi

mononucléaires). Si l’entité complexe comporte deux ou plusieurs ions métalliques on la

désigne par les termes bimétallique (binucléaire), trimétallique (trinucléaire),

polymétallique (polynucléaire).

Les différents types de ligands

Les ligands sont classés selon leur structure, et le nombre d'atomes donneurs (leur

nombre d'atomes formant des liaisons avec le métal).

Ligands monodenté : H2O, OH-, NH3, CH3OH, Cl-, NCS-, CN-, CO, …

Ligands bidentés :

Ligands polydentés

Ligands macrocycliques

Les ligands liés à deux ions métalliques sont appelés pontants.

3) Interaction Métal - Ligand

Recouvrements

Les recouvrements de type sont situés sur l'axe entre les deux noyaux, généralement à

partir d'un doublet non liant du ligand.

Par exemple, NH3 :

Doublet non liant (HOMO) 2a1 :

2a1

z

x

y

z

x

y

Page 3: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

3

On a le même type de recouvrement sur dz2 et sur dx2-y2…

Ce recouvrement peut aussi impliquer une orbitale atomique, par exemple une 3p du

chlore:

et de même sur dx2-y2…

Cas particuliers:

Le recouvrement s peut être assuré par une OM ou une OM d'un ligand.

Complexes de l'hydrogène moléculaire

Complexes de l'éthylène

Ces recouvrements sont faibles, et sont renforcées par des recouvrements de type …

Recouvrement

C'est ce que l'on peut voir avec les halogénures par exemple.

Le recouvrement est maximal de part et

d'autre de l'axe entre les deux noyaux.

On a le même recouvrement dans le plan

yz, avec la dyz.

Dans le cas des halogénures, on parle de ligands -donneurs, ce sont les halogénures qui

apportent les électrons qui seront stabilisés par recouvrement .

Cl- : 3s2 3p6

3pz recouvrement (avec dz2 ou dx2-y2)

3px, 3py recouvrement (avec dxz et dyz par exemple)

Il existe des ligands qui peuvent donner des recouvrements de type avec le métal, mais

qui n'ont pas d'électrons associés à ces orbitales. On les appelle les ligands -accepteurs.

z

x

y

H H

M

CH2 CH2

Pt

z

y

Page 4: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

4

Exemple CO

CO est un ligand donneur (faible), par son doublet 3, polarisé vers le carbone.

De plus, il possède des orbitales * (2) de basse énergie, car il y a une grande différence

d'énergie entre les 2pC et 2pO.

Ces 2peuvent former des recouvrements de type avec le métal, car elles ont la bonne

symétrie, et qu'elle ne sont pas trop éloignée en énergie.

Les lobes sur C ont la même symétrie qu'une 3p du chlore.

Il n'y a pas d'électrons associés à cette 2, aussi ce seront des é du métal qui seront

stabilisés par recouvrement avec cette 2. On appelle quelquefois cela la rétrodonation.

On considère que le métal "donne" des é au métal par sa 3 (recouvrement ), et qu'il

"récupère" des é dans ses *. Modèle Dawar-Chatt-Duncanson.

Ce type de recouvrement se produit aussi dans les complexes d’alcènes, comme par

exemple le sel de Zeise. La complexation de l’éthylène est renforcée par un recouvrement

-accepteur.

* de l'éthylène

dyz du métal

C'est aussi ce qui explique la relative stabilité des complexes de l'hydrogène moléculaire.

C CO O

1

2

1

3

2

4

zC O

zC O

z

y

Page 5: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

5

* du dihydrogène

dyz du métal

On augmente la densité électronique dans la * du dihydrogène, on affaiblit la liaison entre

les deux H, ce qui va permettre de casser cette liaison, très stable autrement.

4) Nomenclature des complexes de métaux de transition

Les règles ci-dessous sont édictées par l’IUPAC (International Union of Pure and Applied

Chemistry).

1. Atome central.

Formules : l’atome central est indiqué en premier, puis, dans l’ordre, les ligands

négatifs, neutres et positifs ; la formule est placée entre parenthèses carrées [ ].

Noms : l’atome central est nommé en dernier ; les ligands apparaissent dans l’ordre

alphabétique, quelle que soit leur charge.

2. Le nombre d’oxydation de l’atome central est indiqué par un chiffre romain pour

bien accentuer son caractère formel : Fe(II) ou FeII.

3. Lorsque le complexe est anionique, le nom de l’atome central est muni du suffixe -

ate:

K3[Fe(CN)6] = hexacyanoferrate(III) de potassium.

4. Nom des ligands.

Anions : ils reçoivent le suffixe « o » : Cl-, chloro ; S2O32-, thiosulfato.

Molécules, cations : nom inchangé. Exceptions :

H2O : aqua ; NH3 : ammine ; CO : carbonyle ; NO : nitrosyle.

Les ligands pontants sont indiqués par µ- : Cl-, µ-chloro.

5. Le nombre de ligands est indiqué par les préfixes di-, tri-, tétra-, penta-, hexa-, etc.

Si le ligand a un nom composé on utilise bis-, tris-, tétrakis-, pentakis, hexakis, etc.

6. On définit l'hapticité d'un ligand :

hapticité, n.f.

Définition : Aptitude d’un ligand comportant deux ou plusieurs atomes consécutifs

reliés par un système d’électrons p à s’attacher globalement, par une seule liaison

impliquant les électrons p délocalisés, à l’atome central d’une entité de

coordination.

Note :

1. Du grec haptein, « s’attacher ».

2. Le nombre d’atomes contigus responsables de l’hapticité est appelé « indice

d’hapticité » ou, plus simplement, « hapticité ».

Équivalent étranger : hapticity.

Dans le cas où l'hapticité d'un ligand est supérieure à 1, on l'indique par la lettre éta ,

avec le nombre d'atomes du ligand impliqué :

z

y

Page 6: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

6

5) Décompte des électrons

Il existe deux modèles pour faire le décompte des électrons : le modèle covalent et le

modèle ionique. Dans le modèle covalent, on considère les ligands sous leur forme

neutre (OH, Cl, CN, CO, etc.), ainsi que le métal. Dans le modèle ionique, on considère

les ligands sous leur forme ionique, anionique (Cl-, CN-, O2-, …) ou cationique (NO+), et le

métal comme un ion portant une charge égale à son degré d'oxydation formel.

Il convient tout d'abord, et quel que soit la manière de compter les électrons dans le

complexe, de connaître deux paramètres importants pour la connaissance du complexe :

◊ La charge totale du complexe, encore appelée nombre d'EWING-BASSET.

C'est la charge portée par l'ensemble de l'édifice. On la note après le crochet

de fin, comme une charge d'un ion simple ou d'un ion complexe :

Par exemple : [Fe(CN)6]3-, [Cu(H2O)6]

2+

◊ Le degré d'oxydation formel du métal central, ou encore nombre de STOCK.

Comme en chimie organique,

molécule la de ou

ionl' de totale Charge atomes des formels oxydationd' degrés

Dans les complexes métalliques,

complexe du totale Charge métal du formel

oxydationd' degré ligands des charges

Par exemple :

[Fe(CN)6]3- Charge totale du complexe -3

Ligands CN- 6*(-1) = -6

Degré d'oxydation formel du métal d.o.M

-6 + d.o.M = -3

d.o.M = +3

Dans ce complexe, on est en présence de fer au degré d'oxydation formel +3,

noté Fe (III) ou FeIII.

[Cu(H2O)6]2+ Charge totale du complexe +2

Ligands H2O 6*(0) = 0

Degré d'oxydation formel du métal d.o.M

0 + d.o.M = +2

d.o.M = +2

Dans ce complexe, on est en présence de cuivre au degré d'oxydation formel

+2, noté Cu (II) ou CuII.

Décompte des électrons : modèle covalent

On l'appelle encore formalisme de GREEN.

Il est nécessaire de différencier les ligands selon la nature de leur configuration

électronique. Les ligands qui apportent une ou plusieurs paires d'électron au métal sont

notés L ou Ll : l est le nombre de paires d'électrons apporté au métal. D'autre part, les

ligands qui apportent un électron ou x électrons célibataires sont notés X ou Xx. Un même

ligand peut apporter à la fois l paires d'électrons et x électrons célibataires, il sera noté

LlXx.

Page 7: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

7

Ligands L à 2 électrons :

En règle générale, les ligands L sont

- les molécules porteuses d'un doublet non-liant, comme : H2O, NH3, PR3, ROH, CO, CN-

R, pyridine, …

- les donneurs d'une paire liante caractérisant une liaison comme dans la molécule

d'éthylène

- les donneurs d'une paire liante caractérisant une liaison comme dans la molécule

d'hydrogène

Dans ces deux exemples, deux atomes du ligand sont liés de façon équivalente au métal,

l'hapticité est égale à deux : C2H4

H2

Ligands L2 à 4 électrons :

Ligands bidentés comme le diméthoxyéthane (DME), disulfures, diamines, diphosphines…

butadiène

Ligands L3 à 6 électrons :

arènes

Ligands radicalaires X à 1 électron :

H, Cl, Br, I, F

OH, OR (alkoxy), SR (thiolate), NR2, PR2,

alkyle, aryle

NO (liaison coudée avec le métal), ligand nitrosyle

CN

Ligands radicalaires X2 à 2 électrons :

=CR2 carbènes, =O oxo

Ligands LX à 3 électrons :

NO liaison linéaire avec le métal

CH2=CH-CH2 allyle

Ligands pontant

Des ligands de type X peuvent aussi être pontant entre deux métaux, Cl, Br, NR2, PR2,

SR, OR. Ce sont alors des ligands de type LX, donneurs de trois électrons.

On peut aussi rencontrer des ligands de type X2 :

M

H H

M

M

Cr

COOC

OC

M

Cl

M

Cl

Ligand X

Ligand L

M

O

M

O

Ligand X

Ligand L

R

R

Page 8: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

8

Pour connaître le nombre total d'électrons autour du métal (les électrons de valence du

complexe), on fait la somme des électrons apportés par les ligands, par le métal

(considéré comme au degré d'oxydation formel 0), et on tient compte de la charge totale

du complexe (on enlève n électrons si la charge totale du complexe est n+, et on ajoute n

électrons si la charge totale du complexe est n-)…

Décompte des électrons : modèle ionique

Dans ce formalisme, on ne fait pas la différence entre les ligands neutres (molécules qui

existent seules, non complexées), et les ligands ioniques, de type Cl-, CN-, CH3COO-,

CH3-, …

Tous ces ligands sont des donneurs de 2 électrons.

Quand on a des ligands polydentes, on applique la même technique : le ligand apportera

plusieurs paires d’électrons, selon qu’il est bidente (2*2), tridente (3*2), …

Pour les ligands moins communs, on regarde le nombre d’électrons dans les Orbitales qui

feront des recouvrements avec le métal :

Pour le benzène, ce sont les 3 orbitales , contenant 6 électrons qui forment les

recouvrements avec le métal, c’est donc un ligand donneur de 6 électrons

Il en est de même pour le cyclopentadiényle = C5H5-, ce seront les orbitales qui

assureront les liaisons avec le métal. Bien qu’il n’y ait que 5 atomes de carbone, c’est un

ion moléculaire aromatique, avec 3 OM garnies de 6 électrons. Ce sera lui aussi un

ligand donneur de 6 électrons.

Pour connaître le nombre total d'électrons autour du métal (les électrons de valence du

complexe), on fait la somme des électrons apportés par les ligands, et par le métal à son

degré d’oxydation formel.

EXEMPLES

[Fe(CN)6]4-

Covalent

Ligands X, chacun apporte 1 électron

Fe configuration électronique 3d64s2, 8

électrons de valence

Charge du complexe 4-, il faut rajouter 4

électrons.

En tout, nombre d'électrons du complexe

=6*1+8+4 = 18 électrons

Ionique

Ligands 2 électrons

Fe degré d'oxydation formel +2 : d6

6 électrons de valence

En tout, nombre d'électrons du complexe

=6*2+6 = 18 électrons

Biscyclopentadiényle Fer, [Fe(C5H5)2]

M

O

M

O

Ligand X

Ligand X M

C

M

R

R

R

RR

Page 9: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

9

Covalent

Ligands L2X, à 5 électrons

Fe 3d64s2, 8 électrons de valence

Total, 10+8 = 18 électrons de valence

Ionique

Ligands 6 électrons

Fe degré d'oxydation formel +2 : d6

6 électrons de valence

En tout, nombre d'électrons du complexe

=6*2+6 = 18 électrons

Catalyseur d'époxydation

C'est le ligand acétylacétonate (acac) de type LX à trois électrons (covalent) ou 4 électrons

(ionique):

Covalent

Ligands LX, à 3 électrons

1 ligand X2 à 2 électrons

V 3d34s2, 5 électrons de valence

Total, 2*3+2+5 = 13 électrons de valence

Ionique

Ligands 4 électrons

Ligand 4 électrons

V degré d'oxydation formel +4 : d1

1 électron de valence

Total =4*2+4+1 = 13 électrons

6) Isoméries

Les complexes de coordinence 6 avec des ligands différents (formules générales MA4B2)

forment des stéréoisomères géométriques (diastéréoisomères cis-trans) :

trans cis

Les isomères géométriques fac et mer existent pour les complexes de type MA3B3. Le

terme fac signifie que les trois ligands A sont sur la même face de l'octaèdre, par contre

dans l'isomère mer les trois ligands A occupent les sites correspondant à un plan

méridien:

Fe

O

O

O

O

V

O

MA

A

A

A

B

B

MA

A

A

A

B

B

Page 10: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

10

mer fac

Si on a des ligands chélatants A-A, les complexes de type M(A-A)2B2 forment au

total 3 isomères, un isomère trans inactif et deux isomères cis qui sont des isomères

optiques (énantiomères); ils sont images l’un de l’autre comme la main gauche et la main

droite.

N

Cl

N N

ClN

N

Cl

NN

Cl N

Cl

Cl

N N

NN

II Structure électronique : le modèle du champ cristallin

1) Levée de dégénérescence des orbitales d dans un champ cristallin octaédrique

Nous allons voir l'influence d'un champ cristallin octaédrique sur l'énergie des orbitales d

d'un métal de transition. On considère les ligands du métal de transition comme des

charges ponctuelles négatives, situées à une certaine distance du noyau de l'ion

métallique, selon une géométrie octaédrique :

Un complexe selon le modèle du champ cristallin

Considérons un ion d1 au centre d'un complexe de géométrie octaédrique. Les ligands L1

à L6 sont situés aux sommets d'un octaèdre régulier. Dans l'ion libre d1, l'unique électron d

(de valence, bien que ce concept ne soit pas utilisé dans ce modèle) présente la même

probabilité de présence dans chacune des 5 orbitales d dégénérées.

Il est facile d'imaginer que l'interaction électrostatique (ici la répulsion) ne sera pas

M

B

A

AA

B

B

M

B

A

A

A

B

B

L2

L3

L6

L1

L4

L5

M

x

y

z

M

x

y

z

Page 11: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

11

forcément la même, que l'électron "occupe" une orbitale dz2, ou dxy. On peut expliquer

simplement, qualitativement, quelle sera la levée de dégénérescence des orbitales d, dans

un champ octaédrique.

Il faut tout d'abord imaginer que l'on approche les charges ponctuelles depuis l'infini,

jusqu'à leur position finale dans l'octaèdre.

On peut séparer artificiellement en deux temps, en deux parties, l'interaction entre les

charges et les électrons d.

Dans un premier temps, on considère que l'approche des ligands génère un champ

électrostatique de symétrie sphérique, isotrope :

M

x

y

z

M

x

y

z

En présence d'un champ électrostatique isotrope, les orbitales d restent dégénérées,

l'interaction électrostatique est la même pour l'électron dans une orbitale dz2, dx2-y2,

dxy, dyz ou dxz. Toutes les orbitales d vont voir leur énergie augmenter, sous l'effet du

champ sphérique.

Dans un second temps, on localise les charges entourant le centre métallique :

Quand on passe d'un champ sphérique à des charges localisées, on comprend très

vite que l'influence des charges ne sera pas la même sur toutes les orbitales d. En

effet, si l'électron occupe une orbitale dz2, son maximum de probabilité de présence

est sur l'axe z, précisément où sont localisées 2 charges négatives. Il en est de même

pour un électron occupant une dx2-y2 :

M M

x

y

z

x

y

z

Page 12: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

12

Ces deux orbitales dz2 et dx2-y2 seront donc plus déstabilisées que dans le cas du

champ sphérique. Il nous faut admettre qu’elles resteront dégénérées, ce qui n'est pas

évident dans un traitement purement qualitatif.

Par contre, un électron occupant une orbitale dyz par exemple, présente un maximum

de probabilité de présence sur les bissectrices des axes y et z, juste entre les charges

négatives. Il sera donc moins déstabilisé qu'en présence d'un champ sphérique. Il en

sera de même pour les orbitales dxy et dxz.

Au final, on peut représenter la levée de dégénérescence des orbitales d dans un champ

octaédrique en deux étapes, tout d'abord une augmentation globale de l'énergie due à

l'établissement d'un champ sphérique, puis levée de dégénérescence en deux ensembles,

les orbitales dz2 et dx2-y2 voient leurs énergie augmenter, alors que les dxy, dyz et dxz

voient leur énergie baisser.

On appellera O (delta O comme octaèdre, et non zéro) la différence d'énergie entre les

deux ensembles d'orbitales d.

De plus, on utilisera le formalisme de la symétrie moléculaire : dans le groupe ponctuel de

symétrie Oh, les O.A. dz2 et dx2-y2 servent de base à la Représentation Irréductible (R.I.)

Eg, elles seront donc nommées eg. De même, les O.A. dxy, dyz et dxz servent de base à

la R.I. T2g, elles seront nommées t2g.

Nous avons deux niveaux eg et t2g séparés par O. Si on prend comme origine des

énergies l'énergie des orbitales d après établissement d'un champ de symétrie sphérique,

x

y

z

x

y

z

z

y

Page 13: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

13

la correction due au champ octaédrique doit se faire à énergie totale constante (on a déjà

perturbé le système lors de l’établissement du champ sphérique, le passage à un champ

octaédrique est un réaménagement sans échange d’énergie avec l’extérieur). Appelons a

et b les déplacements des niveaux eg et t2g par rapport à l'origine des énergies. On

applique la règle du barycentre, pour écrire le système d'équations :

2 3 0

Oa b

a b

Cela donne :

3

5

2

5

O

O

a

b

Cela nous permet d'écrire, par rapport au niveau de référence (l'énergie des orbitales d

après établissement d'un champ de symétrie sphérique) :

2

3( )

5

2( )

5

g O

g O

E e

E t

On peut représenter graphiquement cette levée de dégénérescence selon le modèle du

champ cristallin.

Modèle du champ cristallin octaédrique

Dans de nombreuses représentations de cette levée de dégénérescence, on "oublie" la

première partie du schéma, pour donner un schéma simple, facile à retenir.

O

25

35O

O

e

t

g

2g

ion l ibre cham p

électrostatique

sphérique

cham p

électrostatique

octaédrique

Page 14: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

14

Modèle simplifié du champ cristallin octaédrique

Il ne faut tout simplement pas oublier que ce n'est qu'une partie du schéma, et que par

exemple les O.A. t2g ne sont pas stabilisées par rapport aux O.A. d de l'ion libre (à gauche,

les O.A. de l'ion soumises à un champ électrostatique sphérique).

2) Levée de dégénérescence des orbitales d dans un champ cristallin tétraédrique

Dans un premier temps, on considère les ligands du métal de transition comme des

charges ponctuelles négatives, situées à une certaine distance du noyau de l'ion

métallique, selon une géométrie tétraédrique :

On va considérer que l'approche des ligands génère tout d'abord un champ sphérique,

isotrope, qui va avoir pour effet de "repousser" vers le haut toutes les O.A. d sans levée de

dégénérescence.

Ensuite, il s'établit un champ tétraédrique, anisotrope, dont l'influence sur l'énergie des

orbitales d sera différente, selon l'orbitale considérée.

les O.A. dxy, dyz, dxz seront les plus perturbées par la présence des charges, car

ce sont les plus près de ces charges. Elles seront donc déstabilisées par

rapport à un champ isotrope moyen.

les O.A. dx

2-y

2 et dz2 quant à elles présentent un maximum de probabilité de

O

e

t

g

2g

M Na+M

z

y

x

Page 15: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

15

présence au milieu des faces du cube, soit le plus loin possible des charges.

Elles seront donc moins affectées par la présence des charges, et stabilisées

par rapport à un champ isotrope moyen.

On appellera T (delta T comme Tétraèdre) la différence d'énergie entre les deux

ensembles d'orbitales d.

On peut représenter graphiquement cette levée de dégénérescence selon le modèle du

champ cristallin.

On admet généralement que :

4

9T O

3) Effet d'une distorsion géométrique sur un complexe octaédrique

Dans le modèle du champ cristallin, on peut déterminer quelles seront les variations des

énergies des orbitales d dans le cas d'une distorsion de la géométrie idéale octaédrique.

La déformation la plus courante est une élongation des liaisons sur un axe, par exemple

l'axe z. Il s'ensuit généralement un raccourcissement des liaisons sur les axes x et y. On

passe d'un complexe de symétrie Oh à un complexe de symétrie D4h.

x

y

z

x

y

z

T

35

25 T

Te

t2

ion l ibre cham p

électrostatique

sphérique

cham p

électrostatique

tétraédrique

Page 16: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

16

Déformation d'un complexe octaédrique

La limite de la déformation est atteinte lorsque la distance du ligand au métal est telle qu'il

n'y a plus de liaison. On arrive à un complexe plan carré, ML4, lui aussi de symétrie D4h.

L'évolution des énergies des orbitales d peut être rationalisée dans le cadre du modèle du

champ cristallin.

La dégénérescence du niveau eg est levée, en effet si on éloigne les charges

portées par l'axe z l'énergie de l'orbitale dz2 va diminuer car on diminue

l'interaction électrostatique. Dans le même temps, s'il se produit un léger

raccourcissement des liaisons dans le plan xy, il y a augmentation de l'interaction

électrostatique avec les électrons de l'orbitale dx2-y

2, donc l'énergie de cette

orbitale va augmenter.

La dégénérescence du niveau t2g est partiellement levée car de la même

manière que précédemment les deux orbitales dxz et dyz vont voir leur énergie

diminuer car on diminue les interactions avec les charges portées par l'axe z, et

par contre l'orbitale dxy voit son énergie augmenter car si on rapproche les

charges dans le plan xy, on augmente les interactions.

Evolution de l'énergie des O.A. d lors de la déformation d'un complexe octaédrique

M

x

y

z

M

x

y

z

distorsion

E

eg

t2g

dx2 -y2

dxy

dz2

dxz , dyz

Page 17: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

17

L'amplitude de la levée de dégénérescence des deux ensembles eg et t2g va être fonction

de la déformation : si on déforme un peu l'octaèdre, on se situera sur la partie gauche de

la figure 17, soit avant le croisement des dxy et dz2, si on déforme jusqu'à aller vers le

complexe plan carré, on pourra arriver à un diagramme comme à droite de la figure 17

(l’ordre des OA dxy et dz2 dépend en réalité de la nature de l’ion métallique et surtout de

celle des ligands, dont on ne peut tenir compte dans ce modèle).

4) Série spectrochimique des ligands

Les chimistes de coordination qui étudiaient les complexes de métaux de transition ont

remarqué que l'ampleur de la levée de dégénérescence des orbitales d, autrement dit la

valeur de O, variait fortement avec la nature des métaux utilisés, mais aussi, et plus

surprenant, avec la nature des ligands dans les complexes. En particulier, le japonais R.

Tsuchida remarque certaines récurrences dans les spectres électroniques de séries de

complexes contenant un même métal de transition et différents ligands, comme par

exemple des complexes du cobalt(III) : [CoX(NH3)5]n+, X = I-, Br-, Cl-, H2O, NH3. Voyons

tout d'abord pourquoi et comment la spectroscopie d'absorption UV-visible (ou

spectroscopie électronique) est l'une des techniques spectroscopiques qui permet

d'accéder aux valeurs de O.

Spectroscopie d'absorption électronique

Dans les complexes de métaux de transition, certaines bandes d'absorption dans le visible

(donc responsables des couleurs des complexes) sont dues à des transitions

électroniques mettant en jeu des électrons des couches d. Nous verrons plus tard en

master ce type de spectroscopie en détail, mais un exemple simple suffira à illustrer la

relation entre cette spectroscopie et les valeurs de O.

Regardons un spectre électronique du complexe [Ti(H2O)6]3+, le cas le plus simple car TiIII,

configuration d1.

Spectre d'absorption électronique du complexe [Ti(H2O)6]

3+

Page 18: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

18

Ce complexe est de géométrie octaédrique, nous venons de voir que nous avons une

levée de dégénérescence des orbitales d en deux niveaux t2g et eg. Le complexe

absorbera une partie de la lumière incidente, celle dont la longueur d'onde correspond à

l'énergie nécessaire pour faire passer un électron de l'orbitale t2g à la eg.

La position de la bande d'absorption nous renseigne directement sur la valeur de O.

Le complexe de TiIII présente une absorption aux alentours de 20000 cm-1, ce qui

correspond à une couleur bleu-vert (figure 19). La solution du complexe devra donc avoir

une couleur rouge (voir la figure 19 ou 20). En fait, la solution même concentrée est de

couleur rose pâle, nous verrons plus tard la raison de cette très faible absorption.

Si une solution ou un solide absorbe une partie de la lumière incidente, il nous apparaîtra

de la couleur complémentaire à la couleur absorbée : figure 16 (couleur absorbée/couleur

complémentaire apparente) ou figure 17 (la couleur complémentaire d'une couleur est sa

symétrique par rapport au centre du cercle).

Couleur absorbée en fonction de la

longueur d'onde, couleur complémentaire.

e

t

g

2g

e

t

g

2g

O

h

Page 19: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

19

Cercle chromatique

Série spectrochimique des ligands

Si on observe donc des solutions de complexes de cobalt(III), on montre que l'évolution du

gap t2g/eg est toujours la même, quand on passe pour un même métal, même degré

d'oxydation formel de ligands halogéno à des ligands aqua puis ammine :

[CoCl(NH3)5]2+ [Co(H2O)(NH3)5]

3+ [Co(NH3)6]3+

Longueur d'onde

absorbée: 535 nm 500 nm 475 nm

En compilant de très nombreuses sources, un classement des ligands par ordre de O

croissant pour un même ion métallique à pu être établi, en se basant sur les complexes

octaédriques de métaux 3d.

C'est ce que l'on appelle la série spectrochimique des ligands :

Par ordre de O croissant : I-<Br-<S2-<-SCN<Cl-<N03-<F-<HO-<C2O4

2-<H2O<-NCS <CH3CN

<NH3<en<bipy<phen<NO2-<PPh3<CN-<CO

On peut utiliser comme moyen mnémotechnique pour retrouver la série spectrochimique

des ligands l'ordre suivant, pour l'atome coordinant dans les différents ligands :

X (halogène) < O < N < C

Page 20: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

20

Applications du modèle du champ cristallin

5) Energie de Stabilisation par le Champ Cristallin

Dans le cadre du modèle du champ cristallin, on peut définir l'Energie de Stabilisation par

le Champ Cristallin (ESCC, ou en anglais Ligand Field Stabilisation Energy LFSE) comme

la différence d'énergie des électrons d entre l'ion en champ électrostatique sphérique et en

champ octaédrique. Cela permet de comparer (avec beaucoup de précautions…) des

configurations électroniques entre elles, pour des complexes comportant le même nombre

de ligands.

On va considérer qu'un électron occupant une O.M. t2g dans un octaèdre est stabilisé par

rapport à l'ion métallique en champ sphérique. L'énergie gagnée en stabilisant cet électron

depuis une O.A. d vers une O.M. t2g est appelée ESCC. Elle vaut 2

5O . Dans le cas où

un électron occupe une O.M. eg, il est déstabilisé par rapport à l'ion libre de 3

5O . Il

s'ensuit qu'en fonction de la configuration électronique, l'ESCC vaudra :

Conf électronique t2gx eg

y 2 3

( . . ).5 5

OESCC x y

Configuration électronique et champ cristallin

Complexes de symétrie octaédrique à champ fort et champ faible

Pour des atomes ou ions métalliques présentant des configurations électroniques de d1 à

d3, la configuration électronique du complexe octaédrique sera sans ambiguïté t2g1 à t2g

3.

En effet, à l’état fondamental, les électrons occupent le niveau de plus basse énergie, et

suivent la règle de Hund (multiplicité de spin maximale) :

Le problème se complique au delà de trois électrons : pour ajouter un quatrième électron à

ce système, on peut soit l'associer à un orbitale t2g, soit l'associer à une orbitale eg.

e

t

g

2g

e

t

g

2g

e

t

g

2g

Page 21: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

21

En effet, quand on détermine une configuration électronique, on associe les électrons à

des O.A. (ou O.M.) en respectant des règles simples :

- On commence par associer les électrons au niveau le plus bas en énergie;

- On peut associer 2 électrons au plus par Orbitale (principe de Pauli);

- La configuration de l'état fondamental nous est alors dictée par la règle de

Hund, ce sera celle de plus grande multiplicité.

Cette dernière "règle" traduit le fait que si on veut associer deux électrons à une même

orbitale, cela "coute" une certaine énergie, l'énergie d'appariement. Pour les configurations

électroniques atomiques, l'état fondamental sera celui où on ajoutera au système le moins

d'énergie d'appariement possible, donc celui de plus grande multiplicité.

Dans notre cas, la différence d'énergie entre les niveaux t2g et eg est faible, et comparable

à l'énergie d'appariement P. On va donc se retrouver dans deux cas distincts :

O > P : L'état fondamental sera de configuration t2g4, appelé

Champ fort (ou Spin faible), car une fois que l'on a associé les trois

premiers électrons à l'orbitale t2g, pour le quatrième électron il vaut

mieux "payer" l'énergie d'appariement que la différence O.

O < P : L'état fondamental sera de configuration t2g3 eg

1, appelé

Champ faible (ou Spin fort), car il vaut mieux "payer" O que

l'énergie d'appariement.

Pour bien comprendre, il est important de retenir que la levée de dégénérescence des

orbitales d sous l'effet d'un champ cristallin octaédrique est relativement faible, la

différence d'énergie entre les niveaux eg et t2g, soit le O, est du même ordre de grandeur

que l'énergie d'appariement P (i.e. l'énergie qu'il faut ajouter au système pour associer

deux électrons à la même orbitale).

e

t

g

2g

O

e

t

g

2g

O

Page 22: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

22

Si nous reprenons notre exemple de l'ion d4 en environnement octaédrique, on peut

calculer la différence d'énergie entre les configurations Champ fort et Champ faible, en

utilisant l'Energie de Stabilisation par le Champ Cristallin (ESCC).

t2g4

24 ( . ) 1,6.

5O OESCC

t2g3 eg

1 2 3

3 ( . ) . 0,6.5 5

O O OESCC

En tenant compte de l'énergie d'appariement, on peut exprimer la différence d'énergie :

4 3 1

2 2

0 0

0

( ) ( )

1,6. ( 0,6. )

g g gE E t E t e

P

P

On voit bien alors que si O > P, cela signifie que E(t2g4) < E(t2g

3 eg1), et la configuration à

l'état fondamental sera t2g4, Champ fort.

Si O < P, cela signifie que E(t2g4) > E(t2g

3 eg1), et la configuration à l'état fondamental

sera t2g3 eg

1, Champ faible.

Par exemple, [Cr(OH2)6]2+ a une configuration électronique t2g

3 eg1 à l'état fondamental,

alors que [Cr(CN)6]4- a une configuration électronique t2g

4 à l'état fondamental.

Sur la page suivante, sont regroupées les configurations électroniques à l'état

fondamental des complexes octaédriques d1 à d9.

Page 23: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

23

d1 t2g

1

d2 t2g

2

d3 t2g

3

Champ fort Champ faible

d4 t2g

4 t2g3 eg

1

d5 t2g

5 t2g3 eg

2

d6 t2g

6 t2g4 eg

2

d7 t2g6 eg

1 t2g5 eg

2

d8 t2g6 eg

2

d9 t2g6 eg

3

e

t

g

2g

e

t

g

2g

e

t

g

2g

e

t

g

2g

e

t

g

2g

e

t

g

2g

e

t

g

2g

e

t

g

2g

e

t

g

2g

e

t

g

2g

e

t

g

2g

e

t

g

2g

e

t

g

2g

Page 24: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

24

Pour les complexes de métaux 3d, les ligands de la série spectrochimique induisant un

faible O donneront plutôt des complexes champ faible, alors que les ligands amenant un

grand O mèneront plutôt à des complexes champ fort. Cependant, l'état champ

fort/champ faible des complexes (la grandeur de O) ne dépend pas seulement des

ligands (voir plus loin), mais et surtout du métal et la prédiction de l'état de spin des

complexes peut se révéler aléatoire…

Dans le tableau ci-dessous, quelques exemples de complexes octaédriques de métaux de

transition de configuration d4 à d7, avec leurs valeurs de O et P.

ion P (cm-1) Ligands O (cm-1)

Configuration prévue (CF/Cf)

Prévu Observé

d4 Cr2+ 23500 6 H2O 13900 Champ faible Champ faible

Mn3+ 28000 6 H2O 21000 Champ faible Champ faible

d5 Mn2+ 25500 6 H2O 7800 Champ faible Champ faible

Fe3+ 30000 6 H2O 13700 Champ faible Champ faible

d6 Fe2+ 17600 6 H2O 10400 Champ faible Champ faible

6 CN- 33000 Champ Fort Champ Fort

Co3+ 21000 6 F- 13000 Champ faible Champ faible

6 NH3 23000 Champ Fort Champ Fort

d7 Co2+ 22500 6 H2O 9300 Champ faible Champ faible

Si P ≈ ∆O le champ sera dit moyen, et les états haut spin (champ faible) et bas spin

(champ fort) auront sensiblement la même énergie. On défini la bistabilité d'une molécule

comme la propriété pour une molécule de présenter deux états électroniques stables (en

général l'un est l'état fondamental et l'autre un état métastable). L'exemple le plus

spectaculaire de bistabilité moléculaire est probablement offert par le phénomène de

transition de spin.

Considérons un ion Fe2+ de configuration 3d6 soumis à l'action d'un champ octaédrique.

Dans le plus grand nombre de cas, la différence d'énergie entre les niveaux t2g et eg reste

suffisamment faible pour que la règle de Hund soit respectée, et que l'état fondamental

soit l'état haut spin (HS) de configuration électronique t2g4 eg

2. Dans quelques cas le

champ est fort, et l'état fondamental est à bas spin (BS) de configuration électronique t2g6.

Dans quelques cas plus rare encore, le système hésite quant à la nature de son état

fondamental. On dit qu'il y a croisement de spin. Il est possible de faire passer le système

Page 25: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

25

de l'état stable vers l'état métastable (la transition de spin) par simple variation de

température, de pression ou sous l'effet d'une irradiation lumineuse. On observe

généralement l'état BS à basse température et l'état HS à haute température.

Facteurs influençant la valeur de ∆O

Cas des complexes à symétrie octaédrique

Les valeurs de ∆O qui se déterminent à partir des spectres d'absorption électroniques sont

fonctions de :

la sous-couche d ou la période de M,

la charge de l’entité centrale,

la nature des ligands.

Sous-couche

Pour une même sous-couche d, les mêmes ligands et une charge identique de l’entité

centrale Mn+, ∆O est du même ordre de grandeur.

Exemple

3d [M(H2O)6]3+ de Ti3+ à Co3+ ∆O ~20 000 cm-1.

Ici ∆O varie de 13700 à 25000 cm-1.

Les valeurs de ∆O seront environ 45% plus élevées pour la série 4d et 75% plus élevées

pour la série 5d que pour la série 3d.

Exemple

d6 [M(NH3)6]3+ CoIII ∆O = 22 900 cm-1

RhIII ∆O = 34 100 cm-1

IrIII ∆O = 40 000 cm-1

Charge de l’entité centrale (degré d'oxydation formel)

Avec les ligands qui ne sont pas accepteurs, ∆O est environ 40 à 80% plus élevé pour

M3+ que pour M2+. D’une manière générale, ∆O augmente avec la charge ou le degré

d'oxydation formel du métal central.

Exemple

[M(H2O)6]2+ ∆O 10 000 cm-1

[M(H2O)6]3+ ∆O 20 000 cm-1

Avec des ligands qui sont bons accepteurs, une augmentation de la charge a peu

d’influence sur ∆O.

Exemple

Page 26: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

26

[Fe(CN)6]4− ∆O = 32 800 cm-1

et [Fe(CN)6]3− ∆O = 35 000 cm-1

Nature des ligands

Première série spectrochimique

Les ligands peuvent être ordonnés selon ∆ croissant, et cela indépendamment de l’entité

centrale, pour constituer la série spectrochimique.

Par ordre de O croissant : I- < Br- < S2- < -SCN < Cl- ~ N3- < N03

- < F- < O2− ~ HO- < C2O42-

< H2O < -NCS < CH3CN < NH3 < en ~ SO3- < bipy < o-phen < NO2

- < PPh3 < CN- < CO

Pour les éléments 3d cela correspond à une variation de O comprise entre 10000 et

25000 cm-1, d’un bout de la série à l’autre.

Cette série n’est plus valable pour les bas degrés d’oxydation du métal et pour les ligands

qui introduisent des contraintes particulières.

Seconde série spectrochimique

Comme nous venons de le voir, l’ion métallique a une influence considérable sur O. Il

était donc tentant de modéliser la valeur de O en fonction du métal, en tenant compte de

son degré d'oxydation formel, et des ligands. Aussi, C. K. Jorgensen a développé une

méthode de calcul de la valeur de O pour un complexe octaédrique, en le traitant comme

le produit de deux facteurs indépendants :

O(kK¥) = f (ligand ).g (ion central )(kK)

où f décrit l’intensité du champ d’un ligand par rapport à l’eau (on a posé f(H2O)=1). Les

valeurs de f vont de 0,7 pour les ions bromures à 1,7 pour les ions cyanures.

Le facteur g, caractéristique de l’ion métallique, varie de 8000 à 36000 cm-1.

¥ Pour des raisons historiques, l'énergie est ici exprimée en kilo-Kaiser (kK), sachant que

1kK = 1000 cm-1

.

Page 27: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

27

Table des paramètres de Jorgensen

Ligand Facteur f Ion métallique Facteur ga

Br- 0,72 Mn(II) 8,0

SCN- 0,73 Ni(II) 8,7

Cl- 0,78 Co(II) 9,0

N3- 0,83 V(II) 12,0

F- 0,9 Fe(III) 14,0

C2O42- (ox) 0,99 Cr(III) 17,4

H2O 1,00 Co(III) 18,2

NCS- 1,02 Ru(II) 20,0

NH2CH2COO- (gly-) 1,18 Mn(IV) 23,0

C5H5N (py) 1,23 Mo(III) 24,6

NH3 1,25 Rh(III) 27,0

NH2CH2CH2NH2 (en) 1,28 Tc(IV) 30,0

2,2'-bipyridine 1,33 Ir(III) 32,0

CN- 1,7 Pt(IV) 36,0

a en kK = 1000 cm-1

Tiré de Jorgensen, C.K. Modern Aspects of Ligand Field Theory,

Elsevier, New York, 1971; Chap. 26.

Les valeurs expérimentales de O permettent d’ordonner les ions Mn+, (puisque f devient

un facteur sensiblement constant pour un ligand donné). Le classement des métaux

constitue la seconde série spectrochimique.

Mn2+ < Ni2+ < Co2+ < Fe2+ < V2+ < Fe3+ < Cr3+ < V3+ < Co3+ < Mn4+ < Mo3+ < Rh3+ < Ru3+ <

Pd4+ < Ir3+ < Pt4+

On remarquera que l'on retrouve les variations de O vues plus haut :

3d 4d 5d O augmente

M2+ M3+ M4+ O augmente

Propriétés magnétiques liées à la configuration électronique

On peut accéder aux propriétés magnétiques des complexes par la mesure de la

susceptibilité magnétique.

Page 28: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

28

0

3. . . 1.

.

2,828. .

Meff

B

eff M

k T

T

Il faut maintenant trouver le rapport entre le moment magnétique eff et la configuration

électronique du complexe.

Dans un atome ou ion libre, le moment cinétique orbital et le moment cinétique intrinsèque

contribuent tous deux au paramagnétisme du système, en produisant chacun un moment

magnétique local :

- moment magnétique orbital :

( 1). B

- moment magnétique de spin :

S 2. ( 1). BS S

S étant le spin total du complexe. On peut aussi écrire

S ( 2). Bn n

avec n nombre d'électrons d non appariés dans le complexe (à l'état fondamental tous les

électrons non appariés sont de spin parallèle, donc S=½.n

Dans un complexe, le moment magnétique orbital peut-être affaibli, on dit qu'il est bloqué

par l'environnement qui n'est plus de symétrie sphérique.

En première approximation, le paramagnétisme ne dépend plus que du moment

magnétique de spin. On parle alors de moment magnétique spin-seul.

C'est une bonne approximation du eff pour les complexes de métaux 3d. C'est moins vrai

pour les métaux 4d, et plus du tout valable pour les métaux 5d.

Dans un complexe de métal de transition 3d, on assimile donc le moment magnétique total

au moment magnétique spin-seul d'expression :

S 2. ( 1). BS S

On peut donc très facilement calculer la valeur théorique du moment magnétique d'un

complexe (3d) :

N

Page 29: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

29

Nombre d'électrons

non appariés

Spin total S (B)

1 1 2 1,73

2 1 2,83

3 3 2 3,88

4 2 4,90

5 5 2 5,92

NB : Pour des électrons d, on aura au maximum 5 électrons non appariés…

Déformation de Jahn-Teller

Dans un théorème publié en 1937, Hermann Arthur Jahn et Edward Teller prévoient que

certains complexes (en fonction de leur configuration électronique) peuvent subir des

distorsions qui les écartent des géométries idéales Oh. Leur théorème stipule que "si la

configuration électronique à l'état fondamental d'une molécule non-linéaire présente une

dégénérescence orbitalaire, la molécule subira une distorsion géométrique qui lèvera cette

dégénérescence, ce qui aura pour effet de diminuer l’énergie totale de la molécule". un

niveau électronique fondamental dégénéré

dégénérescence orbitalaire : plusieurs configurations électroniques possibles pour un

même état énergétique; se produit par exemple si un nombre impair d'électrons occupent

deux orbitales dégénérées. On a alors plusieurs configurations électroniques pour la

même énergie :

On peut avoir pour cet exemple deux configurations électroniques 2 2 2

1 0

x y zd d

ou 2 2 2

0 1

x y zd d

et

on ne pourra pas les différencier car elles ont la même énergie.

Pour un complexe octaédrique qui présente une dégénérescence orbitalaire, deux

déformations lèvent partiellement la dégénérescence des orbitales eg et t2g :

- une élongation sur l'axe z : on éloigne les deux ligands situés sur l'axe z, dans le

même temps les quatre ligands dans le plan xy se rapprochent légèrement du métal car il

y a moins de contraintes stériques.

- une compression sur l'axe z : on rapproche les deux ligands situés sur l'axe z,

dans le même temps les quatre ligands dans le plan xy s'éloignent légèrement du métal

car il y a plus de contraintes stériques.

eg eg

Page 30: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

30

On a déjà vu précédemment l'effet d'une élongation des longueurs de liaison sur l'axe z,

sur l'énergie des orbitales d. Lors d'une compression sur z, les mêmes principes

s'appliquent, et permettent de prédire que l'énergie de l'orbitale 2zd va augmenter car on

rapproche la perturbation des électrons de cette orbitale, alors que l'orbitale 2 2x yd

va voir

son énergie diminuer car les charges dans le plan xy s'éloignent. De même pour les

orbitales dxz et dyz (leur énergie augmente car les charges sur l'axe z se rapprochent),

alors que l'énergie de l'orbitale dxy diminue (car les charges dans le plan xy s'éloignent).

On peut résumer par un schéma :

Dans tous les complexes, la levée de dégénérescence 1 sera supérieure à 2, car les

électrons des orbitales 2zd et 2 2x y

d

sont fortement perturbés par la présence des charges

sur les axes x, y et z, alors que les électrons des orbitales dxz, dyz et dxy sont beaucoup

moins perturbés par les charges, donc la variation de longueur de liaison aura moins

d'influence sur leur énergie.

En pratique on observe principalement des distorsions sous forme d'élongation sur l'axe z,

probablement pour des raisons stériques : il est difficile de comprimer un complexe

octaédrique dans lequel les ligands sont déjà en interaction stérique.

e

t

g

2g

11

22

dx -y2 2

dx -y2 2

dz2

dz2

dxy

dxy

dxz dyz

dxz dyz

Page 31: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

31

De même, on observe surtout cette déformation sur les complexes d9, comme ceux de

Cu2+. On a alors une élongation sur l'axe z, comme prédit par le schéma ci-dessus.

Si on fait un bilan énergétique, on va gagner 4*2/2 et perdre 2*2/2, ainsi que gagner

2*1/2 et perdre 1*1/2, soit en tout gagner 1/2+2. Comme 1>2, on considère

généralement que le gain est de 1/2.

On observera aussi cette déformation pour les complexes :

d4 champ faible, CrII, MnIII, conf. électr. t2g3eg

1, là aussi gain de 1/2

d7 champ fort, CoII, NiIII, conf. électr. t2g6eg

1, gain de 1/2

Dans les autres cas, il y a très peu ou pas du tout de distorsion, car 2 est trop faible pour

imposer une distorsion.

d1 t2g1eg

0, gain théorique de l'ordre de 2/2

d2 t2g2eg

0, gain théorique de l'ordre de 2

d4 champ fort t2g4eg

0, gain théorique de l'ordre de 2

d5 champ fort t2g5eg

0, gain théorique de l'ordre de 32/2

d6 champ faible t2g4eg

2, gain théorique de l'ordre de 2

d7 champ faible t2g5eg

2, gain théorique de l'ordre de 32/2

III Structure électronique : le modèle du champ de ligands

1) Limites du modèle de champ cristallin

Le modèle de champ cristallin permet d'expliquer simplement la structure électronique des

complexes, mais n'explique pas, par exemple, l'ordre des ligands dans la série

spectrochimique. On regarde les variations de O comme un phénomène que l'on ne peut

expliquer, on peut juste le décrire. Si on veut pouvoir expliquer ces variations en fonction

des ligands, il faut se pencher, au moins qualitativement, sur les laisons, les

recouvrements à l'œuvre entre les ligands et le métal. C'est ce que propose le modèle de

champ de ligands.

e

t

g

2g

1

2

dx -y22

dz2

dxy

dxzdyz

Page 32: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

32

2) Orbitales de valence du métal

Dans ce modèle, on va considérer les recouvrements entre les Orbitales Atomiques de

valence du métal, et les O.A. ou Orbitales Moléculaires des ligands.

En première approximation, on peut ne considérer que les orbitales d.

Pour dxz et dxy, comme dyz par symétrie.

3) Ligands donneurs :

Pour un certain nombre de ligands moléculaires, de type NH3 ou PR3 par exemple. Le

niveau qui formera des recouvrements avec le métal sera le dernier occupé:

NH3:

On considère que les autres O.M. sont soit trop basses soit trop hautes en énergie pour

donner des recouvrements efficaces avec le métal.

Ce type de ligand donne uniquement des recouvrements de type

recouvrement est maximal sur l'axe entre les deux noyaux.

Si un tel ligand est situé sur l'axe z par exemple, il ne donnera des recouvrements qu'avec

l'O.A 2zd . On voit très bien que le recouvrement avec la 2 2x y

d

est nul (on a autant de

recouvrement liant qu'antiliant), ainsi que ceux avec dxz, dyz et dxy.

x

y

z

dz2

x

y

z

dx2-y2

x

y

z

dyz

N

HHH

2a1

Page 33: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

33

On aura donc une combinaison linéaire entre la 2a1 du ligand et la 2zd , menant à un

schéma des O.M. avec une orbitale antiliante composée majoritairement de la 2zd du

métal avec une faible contribution de la 2a1 du ligand, et une O.M. liante formée

majoritairement de la 2a1 du ligand avec une faible contribution de la 2zd du métal. On

peut donc considérer que l'on a d'une part déstabilisation de la 2zd du métal, et d'autre

part stabilisation de la 2a1 du ligand.

Il en sera de même si un second ligand est porté par l'axe z, la 2zd deviendra "encore plus

antiliante" et sera encore déstabilisée, alors que cette seconde 2a1 sera elle aussi

stabilisée car liante.

Si un ligand s'approche du métal sur l'axe y, il va y avoir une forte interaction avec l'O.A.

2 2x yd

du métal, et une assez faible avec la 2z

d (la densité électronique est plus faible

x

y

z

x

y

z

x

y

z

dz2 dx2-y2 dyz

dz2

2a1 ligand

Page 34: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

34

dans le petit tore de la 2zd que dans les grands lobes centrés sur l'axe z). Il n'y aura pas là

non plus de recouvrements avec dxz, dyz et dxy.

On aura là encore une combinaison linéaire entre la 2a1 du ligand et la 2 2x yd

et la 2z

d ,

menant à un schéma des O.M. avec une orbitale antiliante composée majoritairement de

la 2 2x yd

du métal avec une faible contribution de la 2a1 du ligand, une orbitale faiblement

antiliante composée majoritairement de la 2zd du métal avec une faible contribution de la

2a1 du ligand et une O.M. liante formée majoritairement de la 2a1 du ligand avec une faible

contribution de la 2zd du métal. On peut donc considérer que l'on a d'une part

déstabilisation de la 2zd du métal, et d'autre part stabilisation de la 2a1 du ligand.

x

y

x

y

x

z

dz2dx2-y2

dyz

zz

y

dz2

2a1 ligand

dx -y2 2

Page 35: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

35

Quand il y a 6 ligands en tout, dans un complexe octaédrique, toutes ces interactions se

cumulent : on a 4 déstabilisations importantes sur la 2 2x yd

(les 4 recouvrements de type

sur les axes x et y), ainsi que 2 déstabilisations importantes (les deux recouvrements de

type sur l'axe z) et 4 déstabilisations plus faibles ((les quatre recouvrements de type

dans le plan xy) sur l'O.A. 2zd . Ce modèle ne permet pas de montrer que les orbitales à

forte contribution 2 2x yd

et 2z

d sont dégénérées. Il faut faire appel à la symétrie

moléculaire pour cela, comme nous verrons plus tard.

Dans le même temps, les O.A. dxz, dyz et dxy.sont non liantes, elles restent dégénérées et

au même niveau que dans l'ion libre.

4) Ligands donneurs donneurs :

Ce sont par exemple les ligands halogénures Cl-, Br-, F-.

Pour ces ligands monoatomiques, les orbitales de valence seront là encore les derniers

niveaux occupés :

Cl- : 3px, 3py et 3pz.

dx -y2 2

dxydxz dyz

dz2

2a1 ligand

O

6

6

x

y

z

x

y

z

x

y

z

Page 36: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

36

Ces ligands peuvent donner des recouvrements de type grâce à une de leur orbitale p

(par définition, on considère que pour chaque ligand l'orbitale qui pointe vers le métal est

la pz)

Cela nous donnera intermédiairement un schéma des O.M. comme pour les ligands NH3,

pour ce qui concerne les recouvrements de type . Ces ligands peuvent aussi former des

recouvrements de type , avec leurs O.A. qui n'ont pas servi aux recouvrements .

et de même avec la dxz. Chaque ligand va former, en plus du recouvrement deux

recouvrements avec les dxy, dyz, dxz selon leur position. Au final, on aura un diagramme

des O.M. comme suit.

x

y

z

dz2

x

y

z

dyz

Page 37: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

37

Les recouvrements de type étant moins "efficaces" que ceux de type , les liantes

(orbitales à forte contribution des ligands) sont moins stabilisées, et les antiliantes

(orbitales à forte contribution métallique) sont moins déstabilisées. Pour ce qui nous

intéresse au premier chef, on peut remarquer que les orbitales dxy, dyz, dxz (t2g) se

rapprochent des 2 2x yd

et 2z

d (eg), donnant une valeur de O plus faible que dans le cas

des ligands uniquement donneurs.

5) Ligands donneurs accepteurs :

Ce type de ligands va donner les mêmes recouvrements que les ligands précédents

donneurs : par exemple avec le ligand carbonyl CO, qui est le chef de file des ligands

donneurs accepteurs. Son diagramme des O.M. est le suivant :

et ses orbitales frontières sont schématisées ainsi :

dx -y2 2

dxydxz dyz

dz2

O

18

6

12

C CO O

1

2

1

3

2

4

Page 38: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

38

On remarquera tout de suite que sa dernière orbitale occupée, 3, est de même symétrie

qu'une orbitale p d'un halogénure, et pourra donner les mêmes recouvrements de type .

De plus, ce recouvrement se produira du côté du carbone, là où la densité électronique est

la plus importante.

De la même manière, les orbitales 2p du CO vont former des recouvrements avec les

O.A. dxy, dyz et dxy :

La seule, mais importante, différence va intervenir lors de l'établissement du diagramme

des O.M.. Pour les recouvrements , rien ne change, mais pour les recouvrements , on

2

3

C O

x

y

z

dz2

x

y

z

dyz

x

y

z

dxz

Page 39: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

39

ne part plus d'orbitales p sur des ligands halogénures, mais d'orbitales *, antiliantes, soit

de plus haute énergie que les O.A. d du métal. Pour les recouvrements , la combinaison

linéaire liante sera formée majoritairement des O.A. d du métal, alors que la combinaison

linéaire antiliante sera formée majoritairement des O.M. * des ligands :

Avec ces ligands, on aura un écart plus important entre les t2g et eg, car alors que les eg

sont la combinaison linéaire antiliante (plus hautes en énergie que les d de départ), les t2g

sont la combinaison linéaire liante (plus basses en énergie que les d de départ).

6) Retour sur la série spectrochimique des ligands

Si on se place dans un modèle de champ de ligand, on peut voir une progression dans la

valeur du O en fonction de la nature des ligands :

On retrouve l'ordre de la série spectrochimique des ligands, en se rappelant que les

halogénures sont donneurs, les ligands donneurs par l'oxygène légèrement donneurs,

les amines non aromatiques donneurs uniquement, les amines aromatiques légèrement

acceptrices et enfin les ligands accepteurs.

dx -y2 2

dxydxz dyz

dz2

O

6

6

12

3

2

12

dx -y2 2

dxydxz dyz

dz2

O

dx -y2 2

dxydxz dyz

dz2

O

dx -y2 2

dxydxz dyz

dz2

O

eg

t2g

Page 40: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

40

I- < Br- < S2- < -SCN < Cl- ~ N3- < N03

- < F- < O2− ~ HO- < C2O42- < H2O < -NCS

Ligands donneurs, donneurs Ligands donneurs, faiblement donneurs

< CH3CN < NH3 < en ~ SO3- < bipy < o-phen < NO2

- < PPh3 < CN- < CO

Ligands donneurs Ligands donneurs, accepteurs

Pour se rappeler de l'ordre de la série spectrochimique des ligands, on peut faire appel au

caractère des ligands :

Ligands donneurs, donneurs < ligands donneurs < ligands donneurs, accepteurs

ou encore se baser sur l'atome coordinant le métal :

X < N < O < C

7) Modèle du recouvrement angulaire

C'est un modèle dérivé du modèle du champ de ligands, dans lequel on va quantifier de

manière approximative les interactions M-L. Il est simple d'utilisation, et très utile pour

déterminer des diagrammes d'O.M. à forte contribution métallique pour des symétries

différentes des symétries classiques Oh, D4h ou Td. Il permettra de faire très simplement

des diagrammes d'énergie pour des complexes de basse symétrie, ou pour des

complexes intégrant des ligands différents.

Nous considérerons le recouvrement d'un ligand sur l'axe z, avec l'O.A. 2zd :

Par ce recouvrement, on aura la formation d'une O.M. liante (majoritairement composée

des O.M. du ligand), stabilisée par rapport au ligand par une grandeur e. De même,

x

y

z

dz2

e

- eLigand

d 2z

Page 41: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

41

l'orbitale antiliante (formée en grande partie par l'O.A. 2zd ) sera déstabilisée par rapport à

la 2zd de départ par une grandeur e.

On considère que la stabilisation est de la même grandeur que la déstabilisation.

On remarque très vite que la position du ligand par rapport à l'axe z (l'angle en

coordonnées polaires) va déterminer la magnitude du recouvrement, donc va moduler la

stabilisation de l'O.M. liant et la déstabilisation de l'O.M. antiliante.

Si le ligand occupe une position dans le plan xOy, le recouvrement avec la 2zd sera plus

faible, la densité électronique dans le tore étant plus faible que dans les lobes sur z.

De plus si le ligand occupe une position présentant un angle de 54,73° (54°44'), il se

trouve sur le cône nodal de la fonction 2zd . Le recouvrement sera alors nul.

x

y

z

dz2

x

y

z

dz2e

- eLigand

d 2z

e <

Page 42: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

42

On voit donc bien que la magnitude du recouvrement sera fonction de la position angulaire

du ligand, d'où le nom de ce modèle.

Il en sera de même pour les O.A. 2 2 , , ,xy xz yzx yd d d d

.

On va considérer que les O.A. d seront déstabilisées d'une grandeur pour chaque ligand

qui forme un recouvrement avec elles. On prendra comme base pour les recouvrements

e = recouvrement maximal entre 1 ligand et une O.A. d. De même pour les

recouvrements, on prendra comme base e = recouvrement maximal entre 1 ligand et

une O.A. d.

Selon la position des ligands, on aura des coefficients qui vont moduler la grandeur de la

déstabilisation due au recouvrement (voir tables).

Pour construire le diagramme des O.M. du complexe, on calculera pour chaque O.A. d la

déstabilisation par rapport aux d de l'ion libre.

- Ligands donneurs uniquement : on prendra uniquement e, e=0

- Ligands donneurs, donneurs : on considérera aussi les recouvrements , qui

donneront une déstabilisation des orbitales d, mais plus faible que pour les recouvrements

. On aura dans tous les cas e<e.

- Ligands donneurs, accepteurs : les recouvrements sont les mêmes que dans

le cas précédent, mais les O.A. d forment les orbitales moléculaires liantes du complexe,

donc sont plus basses en énergie que les d de départ. On a alors e<0.

On peut retrouver les diagrammes des O.M. à forte contribution métallique (que nous

avons déterminés grâce au modèle du champ cristallin, ou celui du champ de ligands)

pour différentes géométries de complexes. Par exemple, pour les complexes

x

y

z

dz2

Cône nodal

54,73°

Page 43: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

43

octaédriques, tétraédriques et plan carrés :

Exemple :

Détermination du diagramme des O.M. à forte contribution métallique pour un complexe

octaédrique :

Les positions occupées par les ligands sont les positions 1 à 6.

Déstabilisation des orbitales d par les ligands :

2zd :

1 1 1 11 1

4 4 4 4e e e e e e

3.e

2 2x yd

3 3 3 3

4 4 4 4e e e e

3.e

xzd : 1 1 1 1e e e e

4.e

yzd : 1 1 1 1e e e e

4.e

xyd : 1 1 1 1e e e e

4.e

Octaèdre Plan Carré Tétraèdre

Page 44: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

44

Cela va nous donner un diagramme, selon le type de ligands :

On peut vérifier immédiatement que la valeur de O est la même dans tous les cas :

3. 4.O e e

Complexe tétraédrique :

Les positions occupées par les ligands sont les positions 9 à 12.

Déstabilisation des orbitales d par les ligands :

2zd :

2 2 2 2

3 3 3 3e e e e

8.

3e

2 2x yd

2 2 2 2

3 3 3 3e e e e

8.

3e

xzd : 1 2 1 2 1 2 1 2

3 9 3 9 3 9 3 9e e e e e e e e

4 8. .

3 9e e

yzd : 1 2 1 2 1 2 1 2

3 9 3 9 3 9 3 9e e e e e e e e

4 8. .

3 9e e

xyd : 1 2 1 2 1 2 1 2

3 9 3 9 3 9 3 9e e e e e e e e

4 8. .

3 9e e

3e3e

3e

4e

4e

Ligand donneur donneur donneur

donneur accepteur

e = 0 e > 0 e < 0

Page 45: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

45

Cela donne un diagramme des orbitales à forte contribution métallique :

Nous avons une différence d'énergie entre la t2 et la e qui vaut :

4 8 8

3 9 3

4 16

3 9

4(3. 4. )

9

4.

9

T

O

e e e

e e

e e

Ligand donneur donneur

e > 0

e

t2

Page 46: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

46

Géométrie de coordination

Positions des ligands

Linéaire 1, 6

Trigonal plan 2, 7, 8

Plan carré 2-5

Tétraédre 9-12

Bipyramide trigonale 1, 2, 7, 8, 6

Pyramide à base carrée 1-5

Octaèdre 1-6

Ligands Orbitale Atomique du métal

Position du

ligand

Interaction dz2 d x2-y2 dxz dyz dxy

1 1 0 0 0 0

0 0 1 1 0

2 1/4 3/4 0 0 0

0 0 1 0 1

3 1/4 3/4 0 0 0

0 0 0 1 1

4 1/4 3/4 0 0 0

0 0 1 0 1

5 1/4 3/4 0 0 0

0 0 0 1 1

6 1 0 0 0 0

0 0 1 1 0

7 1/4 3/16 0 0 9/16

0 3/4 1/4 3/4 1/4

8 1/4 3/16 0 0 9/16

0 3/4 1/4 3/4 1/4

9 0 0 1/3 1/3 1/3

2/3 2/3 2/9 2/9 2/9

10 0 0 1/3 1/3 1/3

2/3 2/3 2/9 2/9 2/9

11 0 0 1/3 1/3 1/3

2/3 2/3 2/9 2/9 2/9

12 0 0 1/3 1/3 1/3

2/3 2/3 2/9 2/9 2/9

9 9

10

11 12

x

y

z z

7

x

y

8

z

9 1

x

y

2

3

4

5

6

Page 47: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

47

IV Les orbitales moleculaires

Pour élaborer des diagrammes d’Orbitles Moléculaires plus complets, comprenant

l’ensemble des orbitales de valence des complexes, l’ouitl de la symétrie moléculaire est

indispensable, car il permet de déterminer les recouvrements possibles entre le métal et

l’ensemble des ligands. Nous allons voir que ce modèle est en fait assez simple à mettre

en œuvre, bien qu’un peu long (à cause du nombre d’éléments de symétrie dans les

géométries usuelles, octaèdre, plan carré, …)

1) Complexe ML4 Plan carrés

Ligands donneurs

Symétrie du complexe D4h.

Orbitales de valence du métal: le métal étant invariant dans les opérations de symétrie du

groupe, on peut lire directement dans la table de caractères les Représentations

Irréductibles dont les O.A. servent de base .

2zd : A1g

2 2x yd

B1g

xzd , yzd : Eg

xyd : B2g

s : A1g

px, py Eu

pz A2u

Nous allons déterminer les Combinaisons Linéaires Adaptées de Symétrie, CLAS, pour

x

y

z

1

2

3

4

C4, C2, S4

C'2

C"2

v

d

h

Page 48: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

48

des ligands uniquement donneurs, . On applique toutes les opérations de symétrie au

fragment représenté par les 4 ligands, et on détermine chaque caractère.

D4h E 2C4 C2 2C'2 2C''2 i 2S4 h 2v 2d

4 0 0 2 0 0 0 4 2 0

On décompose ensuite cette Représentation Réductible en R.I., par exemple en utilisant

la formule de réduction:

1( ) ( ) ( )i k i k k

k

a R R n Rh

avec h nombre d'opération de symétrie dans le groupe (ordre du groupe)

( )kR caractère de l'opération Rk pour la R.R.

( )i kR caractère de l'opération Rk pour la R.I. considérée

( )kn R nombre d'opération de symétrie dans la classe

Cela nous donne :

A1g : aA1g = 1/16.(4*1*1+0*1*2+0*1*1+2*1*2+0*1*2+0*1*1+0*1*2+4*1*1+2*1*2+0*1*2)=1

On trouvera de même aB1g=1 et aEu=1. On a donc :

A1g B1g Eu

Si on veut connaître la forme des C.L.A.S. des ligands, on peut utiliser l'opérateur

projeteur. Il peut s'écrire :

èmeProjection d'un élément d'une base d'une R.R. sur la i R.I.

( )i ki k r

k

b O b

avec ki caractère de l'opérateur k de la ième R.I.

br est un élément de la base d'une R.R.

Okbr est le produit de la transformation de br par l'opérateur Ok

bi obtenu apartient à la ième R.I.

On applique l'opérateur projecteur, on commence par le composant de la en position 1,

l'orbitale du ligand 1 qui donne des recouvrements que l'on appelle On regarde ce

que devient quand on applique tous les éléments de symétrie de D4h.

Page 49: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

49

D4h E 2C4 C2 2C'2 2C''2 i 2S4 h 2v 2d

A1g 1 1 1 1 1 1 1 1 1 1

B1g 1 -1 1 1 -1 1 -1 1 1 -1

Eu 2 0 -2 0 0 -2 0 2 0 0

On trouve :

A1g : 4

En normalisant la fonction (selon Hückel, la somme du carré des coefficients doit être

égale à 1), on a :

(A1g) = 1

2()

De même, on va trouver :

(B1g) = 1

2()

(Eu) = 1

2()

(Eu) = 1

2() en projetant une autre composante de , 2.

On peut représenter les Orbitales Moléculaires dans le complexe, en considérant les

orbitales de même symétrie :

B1g

2 21 1 2 1 2 3 4(1) . .( )g x yb C d C

2 21 3 4 1 2 3 4(2) . .( )g x y

b C d C

avec C2>C1 et C3>C4

x

y

z

x

y

z

Page 50: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

50

A1g

21 5 6 1 2 3 4(1) . .( )g za C d C 21 7 8 1 2 3 4(2) . .( )g z

a C d C

avec C6>C5 et C7>C8

Eu

9 10 1 3(1) . .( )u xe C p C 11 12 1 3(1) . .( )u xe C p C

avec C9>C10 et C11>C12

9 10 2 4(3) . .( )u ye C p C 11 12 2 4(4) . .( )u ye C p C

Maintenant nous pouvons tracer le diagramme des orbitales moléculaires d'un complexe

ML4 plan carré à ligands donneurs uniquement :

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Page 51: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

51

Pour déterminer l'ordre des niveaux moléculaires, il n'y a pas de formule magique. On doit

tenir compte de l'ordre des niveaux de départ, du nombre et de la nature des

recouvrements, du nombre de plan nodaux dans l'O.M. On peut trouver des différences

dans l'ordre des niveaux selon les sources, principalement pour ceux qui sont très

stabilisés et ceux qui sont très déstabilisés. On devra se baser sur l'expérience (mesure

des niveaux d'énergie) ou sur des calculs quantiques pour avoir une idée précise de cet

ordre. Ce que l'on peut proposer pour ce type de complexes :

- les niveaux 1a1g, 1eu et 1b1g sont clairement liants. On peut considérer que

la 1a1g est un peu plus basse que les autres, car elle représente un

recouvrement majoritairement 2zd -ligands, avec une intervention se

l'orbitale s du métal (de même symétrie). On dit que l'orbitale est polarisée

par intervention (minoritaire) de l'orbitale s. Cela a pour effet de transformer

le système 1a1g liante / 2a1g antiliante en un système à trois orbitales 1a1g

liante / 2a1g non liante / 3a1g antiliante avec stabilisation supplémentaire de

la 1a1g et déstabilisation de l'antiliante.

- comme nous venons de le voir, la 2a1g est non liante

- les 3a1g, 2eu et 2b1g sont antiliantes, la plus haute sera la 2eu car elle

provient des orbitales p, les plus hautes en énergie.

M ML4 L4

A2u Eu

A1g

A1g B1g B2g Eg

A1g B1g Eu

1a1g

1eu

1b1g

1eg,1b2g

2a1g

2b1g

1a2u

3a1g

2eu

s

p

d

Page 52: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

52

Ligands donneurs donneurs

On aura les mêmes recouvrements que précédemment, avec en plus des

recouvrements de type . Il est important de bien choisir ses axes sur les ligands. On

prend par convention les axes zi portés par les liaisons M-L. Ensuite, on forme un trièdre

direct avec des axes xi et yi colinéaires à x, y et z sur le métal.

Nous allons déterminer les Combinaisons Linéaires Adaptées de Symétrie, CLAS, pour

des ligands donneurs, .

D4h E 2C4 C2 2C'2 2C''2 i 2S4 h 2v 2d

8 0 0 -4 0 0 0 0 0 0

On décompose ensuite cette Représentation Réductible en R.I., par exemple en utilisant

la formule de réduction:

2 2 2 2g g g u u uA B E A B E

On peut déterminer les orbitales de symétrie (C.L.A.S. des ligands) en utilisant la forme et

la symétrie des orbitales du métal :

b2g:

2 1 2 3 4

1( ) ( )

2g y x x yb p p p p

eg:

2 4

1 3

1( ) ( )

2

1( ) ( )

2

g y x

g x y

e p p

e p p

x

y

z

1

2

3

4

z1 z2

z3z4

x2

x3

x4

x1

y2

y3

y4

y1

x

y

z

x

y

z

Page 53: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

53

a2u:

2 1 2 3 4

1( ) ( )

2u x y y xa p p p p

eu:

1 3

2 4

1( ) ( )

2

1( ) ( )

2

u y x

u x y

e p p

e p p

Là encore, il est difficile d'établir avec précision l'ordre des niveaux d'énergie. On peut

simplement regarder le nombre de recouvrements , ainsi que le type des orbitales

impliquées.

On a le plus de recouvrement avec la 1b2g et la 1a2u (les combinaisons linéaires liantes),

mais les recouvrements seront meilleurs dans la 1b2g car le maximum de probabilité de

présence des électrons de la dxy est sur les axes bissecteurs du repère xOy, alors que

dans la 1a2u le maximum de probabilité de présence des électrons de la pz est sur l'axe z,

parallèle aux axes des orbitales p des ligands. Ensuite, on aura le même ordre pour les eg

et eu, les recouvrements seront meilleurs pour la eg que pour la eu.

Le diagramme pourra être comme suit, en considérant qu'il n'y a pas d'interactions ,

car le recouvrement est négligeable devant le et qu'il constitue juste une perturbation.

x

y

z

x

y

zz

M ML4 L4

A2u Eu

A1g

A1g B1g B2g Eg

A1g B1g Eu

1a1g

1eu

1b1g

2eg2a1g

2b1g

2a2u

3a1g

3eu

s

p

d

A2g B2g Eg A2u B2u Eu

2eu1b2u1a2g

1eg1a2u1b2g

2b2g

Page 54: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

54

2) Orbitales moléculaires dans les complexes ML6 octaédriques

Ligands donneurs

La molécule appartient au groupe Oh.

Le système d'axes de référence est représenté ci-dessous :

Les orbitales atomiques de valences de M sont 3d, 4s et 4p. M étant invariant dans les

opérations de symétrie du groupe Oh, les propriétés de symétrie des orbitales atomiques

de valence sont données directement par la table de caractères.

( dxy dyz dzx) est une base de T2g, ( dz2, dx

2-y

2) une de Eg, s de A1g et (px,py,pz) de T1u.

Les OM non liantes , doublement occupées des ligands L sont dirigées vers le métal

suivant les axes de liaison.

Les orbitales forment un sous-espace stable de Oh (elles s’échangent dans les

opérations de symétrie du groupe). Elle constituent donc la base d’une représentation

réductible dans le groupe Oh.

Nous allons déterminer les Combinaisons Linéaires Adaptées de Symétrie, CLAS, pour

des ligands uniquement donneurs, . On applique toutes les opérations de symétrie au

fragment représenté par les 6 OM , et on détermine chaque caractère.

Page 55: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

55

Oh E 8C3 3C2 6C4 6C'2 i 8S6 3h 6S4 6d

6 0 2 2 0 0 0 4 0 2

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 -1 -1 1 1 1 -1 -1

Eg 2 -1 2 0 0 2 -1 2 0 0

T1g 3 0 -1 1 -1 3 0 -1 1 -1

T2g 3 0 -1 -1 1 3 0 -1 -1 1

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2u 1 1 1 -1 -1 -1 -1 -1 1 1

Eu 2 -1 2 0 0 -2 1 -2 0 0

T1u 3 0 -1 1 -1 -3 0 1 -1 1

T2u 3 0 -1 -1 1 -3 0 1 1 -1

On décompose ensuite cette Représentation Réductible en R.I., par exemple en utilisant

la formule de réduction:

1( ) ( ) ( )i k i k k

k

a R R n Rh

avec h nombre d'opération de symétrie dans le groupe (ordre du groupe)

( )kR caractère de l'opération Rk pour la R.R.

( )i kR caractère de l'opération Rk pour la R.I. considérée

( )kn R nombre d'opération de symétrie dans la classe

Cela nous donne :

A1g : aA1g = 1/48.(6*1*1+0*1*8+2*1*3+2*1*6+0*1*1+0*1*8+4*1*3+0*1*6+2*1*6)=1

On trouvera de même aEg=1 et aT1u=1. On a donc :

A1g Eg T1u

On peut alors tracer le diagramme d’interactions, en appliquant quelques « règles »

simples :

- En général les OM antiliantes sont dans l’ordre des OA du métal de transition

qui leur a donné naissance.

- Pour les OM liantes, leur énergie dépend du nombre de surfaces nodales :

On peut représenter empiriquement les OM du complexe combinaisons linéaires de CLAS

des ligands et des OA du métal, en utilisant la « règle du recouvrement maximal » : on

fabrique une CLAS (servant de base à une RI donnée) en maximisant les recouvrements

avec l’OA qui sert de base à la même RI.

Page 56: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

56

1a1g = OA du MT = s :

Pas de plan nodal

1t1u = OA du MT = px,py,pz:

(les autres se déduisent par rotation)

Un plan nodal

1eg = OA du MT = dz2, dx

2-y

2:

2 surfaces nodales (deux cônes à g., deux plans à dr.)

Page 57: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

57

Ligands donneurs donneurs

Ce type de ligands possède plusieurs paires d’électrons associées à des orbitales de

valence. Une des orbitales intervient dans la formation d’OM et les autres vont former

des recouvrement avec le métal.

On va utiliser la base de diagramme précédent avec les interactions , et on va y ajouter

les interactions . Dans le groupe de symétrie de l’octaèdre, certaines CLAS de ces

orbitales servent de base aux mêmes RI que certaines CLAS d’orbitale . Il devrait se

produire une interaction, dite au second ordre, mais on peut la négliger sans que cela

change substantiellement le diagramme. On laissera donc ces OM comme non liantes.

Choisissons comme exemple un complexe avec des ligands halogénures. Ils possèdent

comme orbitale de valence des OA p (on négligera les OA s), on prendra par convention

les OA pz pointant vers le métal. On peut prendre comme système d’axe :

Pour les pz des ligands, on aura les mêmes CLAS que précédemment. On aura les

mêmes recouvrements avec les OA du métal.

CLAS des OA px et py des ligands.

Les 12 OA considérées s’échangent entre elles par les opérations de symétrie du groupe,

elles forment donc un sous-espace stable. Elles forment les bases d’une représentation

réductible dans le groupe Oh.

On applique toutes les opérations de symétrie au fragment représenté par les 12 OA px et

py, et on détermine chaque caractère.

Oh E 8C3 3C2 6C4 6C'2 i 8S6 3h 6S4 6d

12 0 - 4 0 0 0 0 4 0 0

Page 58: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

58

On décompose ensuite cette Représentation Réductible en R.I.

T1g T2g T1u T2u

On remarque que l’on aura des recouvrements avec les OA t2g du métal, menant à une

combinaison liante (moins stabilisée que les OM liantes par recouvrement ), et que l’on

peut avoir une interaction avec les OM t1u du complexe, formées par recouvrement . On

négligera cette interaction, et considèrera la combinaison t1u des px et py des ligands

comme non liante.

On peut proposer un diagramme d’OM comme suit.

Les OM à forte contribution métallique sont les 2t2g et 2 eg.

On peut représenter schématiquement l’OM 2t2g

Page 59: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

59

Ligands donneurs accepteurs

Un tel ligand possède une OM qui lui permet de former des recouvrements avec le

métal, ainsi que des OM vides, généralement antiliantes, lui permettant de former des

recouvrements avec le métal.

Voyons par exemple les OM de valence du CO, archétype du ligand donneur

accepteur.

Les deux cas des recouvrements et ont été traités précédemment, les symétries de

OM et des CLAS seront les mêmes. Seule varie l’énergie des OM des ligands, celles

permettant de former les recouvrements sont plus hautes en énergie, plus déstabilisées,

que les OA d du métal. Cela modifie la morphologie du diagramme.

Page 60: I Structure des complexes de métaux de transition · Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015 1 I Structure des complexes de métaux de transition 1) Les métaux

Licence de Chimie – Chimie Inorganique - B. Faure 2014-2015

60

I Structure des complexes de métaux de transition

1) Les métaux de transition.

Définition

2) Les complexes des métaux de transition

Définition d'un complexe

Types de complexes

Les différents types de ligands

3) Interaction Métal - Ligand

Recouvrements

Recouvrement

4) Nomenclature des complexes de métaux de transition

5) Décompte des électrons

6) Isoméries

II Structure électronique : le modèle du champ cristallin

1) Levée de dégénérescence des orbitales d dans un champ cristallin octaédrique

2) Levée de dégénérescence des orbitales d dans un champ cristallin tétraédrique

3) Effet d'une distorsion géométrique sur un complexe octaédrique

4) Série spectrochimique des ligands

Applications du modèle du champ cristallin

5) Energie de Stabilisation par le Champ Cristallin

Configuration électronique et champ cristallin

Facteurs influençant la valeur de ∆O

Propriétés magnétiques liées à la configuration électronique

Déformation de Jahn-Teller

III Structure électronique : le modèle du champ de ligands

1) Limites du modèle de champ cristallin

2) Orbitales de valence du métal

3) Ligands donneurs :

4) Ligands donneurs donneurs :

5) Ligands donneurs accepteurs :

6) Retour sur la série spectrochimique des ligands

7) Modèle du recouvrement angulaire

IV Les orbitales moleculaires

1) Complexe ML4 Plan carrés

Ligands donneurs

Ligands donneurs donneurs

2) Orbitales moléculaires dans les complexes ML6 octaédriques

Ligands donneurs

Ligands donneurs donneurs

Ligands donneurs accepteurs