40
INTRODUCTION AUX TRANSFERTS THERMIQUES

INTRODUCTION AUX TRANSFERTS THERMIQUES

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: INTRODUCTION AUX TRANSFERTS THERMIQUES

INTRODUCTIONAUX TRANSFERTS THERMIQUES

Page 2: INTRODUCTION AUX TRANSFERTS THERMIQUES

© École des mines de Paris, 200860, boulevard Saint-Michel - 75272 Paris Cedex 06 - Franceemail : [email protected]://www.ensmp.fr/Presses

ISBN : 978291176293

Dépôt légal : 2008

Achevé d’imprimer en 2008 (Paris)Tous droits de reproduction, de traduction, d’adaptation et d’exécution réservés pour tous lespays.

Page 3: INTRODUCTION AUX TRANSFERTS THERMIQUES

Dominique Marchio et Paul Reboux

INTRODUCTIONAUX TRANSFERTS THERMIQUES

Collection Les cours de l’école des mines

Page 4: INTRODUCTION AUX TRANSFERTS THERMIQUES

Dans la même collection

Aide-mémoire de géostatistique linéaire,Pierre Chauvet

Introduction au génie atomique,Jacques Bouchard, Jean-Paul Deffain, Alain Gouchet

Matériaux pour l’ingénieur,Anne-Françoise Gourgues-Lorenzon, Jean-Marc Haudin,,

Jacques Besson, Noëlle Billon, Sabine Cantournet, Yvan Chastel,Bernard Monasse, Loeiz Nazé

Abrégé de thermodynamique,Daniel Fargue

Introduction au traitement de l’énergie électrique,Georges Pierron

Systèmes énergétiques,Renaud Gicquel

Introduction à la physique quantique,Bernard Degrange

Cours d’automatique,Brigitte d’Andréa-Novel, Michel Cohen de Lara

Les imperfections des marchés,Daniel Fixari

Introduction à la métallurgie générale,Jacques Lévy

Comment maîtriser sa productivité industrielle,Hugues Molet

Géostatistique linéaire – applications,Margaret Armstrong, Jacques Carignan

Page 5: INTRODUCTION AUX TRANSFERTS THERMIQUES

SOMMAIRE

NOTIONS FONDAMENTALES 1

OBJECTIFS POURSUIVIS 1 NOTION DE TEMPERATURE 2 NOTION DE CHALEUR 3

DÉFINITIONS 3

ECHANGE DE CHALEUR À TRAVERS UNE SURFACE 3

UNITÉS SI ET UNITÉS PRATIQUES 4

EXEMPLES DE RELATIONS TEMPERATURE-CHALEUR 5 CHAUFFAGE D'UN CORPS HOMOGÈNE 5

INTERACTION ENTRE DEUX CORPS 5

MODES DE TRANSFERT DE CHALEUR 6 CONDUCTION 6

RAYONNEMENT 6

CONVECTION 6

EXEMPLE FAMILIER 7

EXEMPLES CONCRETS DE PROBLEMES THERMIQUES 9

TRANSFERT DE CHALEUR PAR CONDUCTION 11

FORMULATION GENERALE 11 ETABLISSEMENT DE L’ÉQUATION DE LA CHALEUR 11

HYPOTHÈSE FONDAMENTALE DE FOURIER 14

LIGNES DE FLUX DANS UN MATÉRIAU ISOTROPE 17

EQUATION GÉNÉRALE DE LA CONDUCTION 17

CONDITIONS AUX LIMITES 19

SIMILITUDE DES PROBLÈMES DE CONDUCTION 22

CONDUCTION EN REGIME PERMANENT 23 DÉFINITION 23

ECOULEMENT UNIDIRECTIONNEL 24

ANALOGIE ÉLECTRIQUE 25

PROBLÈME DU TUBE - TUBE COMPOSÉ 28

ETUDE D' AILETTE - BILAN THERMIQUE 31

DIFFÉRENCES FINIES - PROBLÈME BIDIRECTIONNEL 34

TD CONDUCTION EN RÉGIME PERMANENT 37

Page 6: INTRODUCTION AUX TRANSFERTS THERMIQUES

ii Introduction aux transferts thermiques

CONDUCTION EN REGIME VARIABLE 41 PROBLÈME GÉNÉRAL 41

PROBLÈME UNIDIRECTIONNEL 42

MÉTHODES DE RÉSOLUTION DU PROBLÈME 44

MILIEU À TEMPÉRATURE UNIFORME 48

MASSIF SEMI INFINI 49

MASSIF SEMI INFINI EN RÉGIME PÉRIODIQUE 54

MUR PLAN INFINI 56

CYLINDRE PLEIN INFINI 59

SPHÈRE PLEINE 61

TD CONDUCTION EN RÉGIME VARIABLE 63

TRANSFERT DE CHALEUR PAR RAYONNEMENT 65

LOIS PHYSIQUES DU RAYONNEMENT 65

EMISSION D'ÉNERGIE PAR RAYONNEMENT 65

RÉCEPTION D'ÉNERGIE PAR RAYONNEMENT 67

DÉFINITIONS RELATIVES AUX CORPS OPAQUES 68

CORPS À ÉMISSION DIFFUSE ISOTROPE 72

LOIS DE RAYONNEMENT DU CORPS NOIR 75

CORPS GRIS À DIFFUSION ISOTROPE 83

CORPS COLORÉS ET QUELQUES DONNÉES 85

TD RAYONNEMENT 89

RAYONNEMENT MUTUEL DE SURFACES OPAQUES 92

PROBLÈME GÉNÉRAL 92

PLANS PARALLÈLES INFINIS 92

PROBLÈME DE L'ÉCRAN 94

SPHÈRES CONCENTRIQUES 95

SURFACES NOIRES FACTEURS DE FORME 98

EVALUATION DES FACTEURS DE FORME 103

SURFACES GRISES - MÉTHODE DES RADIOSITÉS 105

TD RAYONNEMENT ENTRE SURFACES 108

Page 7: INTRODUCTION AUX TRANSFERTS THERMIQUES

Sommaire iii

TRANSFERTS DE CHALEUR PAR CONVECTION 111

ETUDE PHYSIQUE ET DÉFINITIONS 111 COEFFICIENT LOCAL DE CONVECTION 111

GÉOMÉTRIE FERMÉE OU OUVERTE 111

RÉGIMES D’ÉCOULEMENT LAMINAIRE OU TURBULENT 113

CONVECTION NATURELLE ET CONVECTION FORCÉE 114

EQUATIONS GÉNÉRALES - SIMILITUDES 115

CONDITIONS AUX LIMITES 120

RÉCAPITULATIF DES NOMBRES SANS DIMENSION 122

INTERPRÉTATION CORPUSCULAIRE 123

RÉSULTATS CONCERNANT LA CONVECTION FORCÉE 127 LE LONG D’UNE PLAQUE EN RÉGIME LAMINAIRE 127

LE LONG D’UNE PLAQUE EN RÉGIME TURBULENT 131

ECOULEMENT PERPENDICULAIRE À UN TUBE 131

GÉOMÉTRIE OUVERTE – RÉCAPITULATIF 133

DANS LES CONDUITES EN RÉGIME LAMINAIRE 134

DANS LES CONDUITES EN RÉGIME TURBULENT 140

DANS LES CONDUITES – RÉCAPITULATIF 146

AUTOUR DE PLUSIEURS TUBES PARALLÈLES 147

ORDRE DE GRANDEUR EN CONVECTION FORCÉE 150

RÉSULTATS CONCERNANT LA CONVECTION NATURELLE 151 PLAQUE PLANE VERTICALE 151

CYLINDRE VERTICAL 156

PLAQUE HORIZONTALE 158

CYLINDRE HORIZONTAL 161

CONVECTION EN ESPACE CONFINÉ 162

ORDRE DE GRANDEUR EN CONVECTION NATURELLE 166

CONVECTION NATURELLE – RÉCAPITULATIF 167

CONVECTION EN ÉCOULEMENT DIPHASIQUE 168 MÉCANISME LOCAL DE L'ÉCOULEMENT DIPHASIQUE 168

EBULLITION DANS UN TUBE VERTICAL 174

LA CONDENSATION 180

ORDRE DE GRANDEUR 181

APPLICATION PRATIQUE : LE CALODUC 181

TD CONVECTION 183

Page 8: INTRODUCTION AUX TRANSFERTS THERMIQUES

iv Introduction aux transferts thermiques

INTRODUCTION AUX ECHANGEURS DE CHALEUR 185

GENERALITES ET HYPOTHESES PRINCIPALES 185 GÉNÉRALITÉS 185

HYPOTHÈSES ET NOTATIONS 184

RELATIONS FONDAMENTALES - TYPES D'ECHANGEUR 186 RELATIONS FONDAMENTALES 186

ECART MOYEN LOGARITHMIQUE 189

EFFICACITÉ / NUT ECHANGEUR CONTRE COURANT 190

ALLURE DES TEMPÉRATURES - CONTRE COURANT 190

EFFICACITÉ / NUT - ECHANGEUR CO COURANT 194

ALLURE DES TEMPÉRATURES - CO COURANT 194

ECHANGEURS QUELCONQUES 195

TD ECHANGEURS 198

INDEX 200

BIBLIOGRAPHIE 203

ANNEXE Propriétés thermo-physiques des matériaux 205

Page 9: INTRODUCTION AUX TRANSFERTS THERMIQUES

Nomenclature v

NOTATIONS PRINCIPALES

Symboles latins Symboles grecs

A - surface [m2] α - absorptivité a - diffusivité thermique [m2s-1] β - coef. dilatation volumique [K-

1] b - effusivité thermique [J.m-2K-1s-1/2] δ - épaisseur de couche limite

[m] c - capacité thermique [J.kg-1K-1] δ - épaisseur de pénétration [m] cp - capacité thermique à p cste [J.kg-1K-1] ∆ - direction cv - capacité thermique à v cst [J.kg-1K-1] ∆TLM - écart moyen logarithmique

[K] C - débit de capacité thermique massique [W.K-1] ε - émissivité

D - diamètre [m] Φ - flux thermique [W] Eλ∆ - éclairement monochromatique directionnel [W.µm-1m-

2sr-1] ϕ - densité de flux [W.m-2]

E - efficacité d'un échangeur λ - conductivité [W.m-1K-1] Fij - facteur de forme λ - longueur d’onde [µm] G - débit massique unitaire [kg.m-2s-1] µ - viscosité dynamique [kg.m-1s-

1] H - hauteur [m] ν - viscosité cinématique [m2s-1] h - coefficient de transfert superficiel [W.m-2K-1] ν - fréquence [Hz] h - enthalpie massique [J.kg-1] ρ - masse volumique [kg.m-3] i - angle d’incidence [rad] τ - transmitivité Iλ∆ - intensité monochromatique directionnelle [W.µm-1sr-1] Ω - angle solide [sr] K - énergie cinétique [J] Ω - dissipation visqueuse [W.m-3] K - matrice des conductivités [W.m-1K-1] π -puissance volumique [W.m-3] llll - longueur caractéristique [m] Σ - aire de section droite [m2] Lλ∆ - luminance monochromatique directionnelle [W.µm-1m-

2sr-1] θllll - température de mélange [K]

Mλ - émittance monochromatique [W.µm-1m-2] M – masse molaire [kg.mole-1] m - masse [kg] m& - débit massique [kg.s-1] nr

- vecteur normal à une surface Indices P - périmètre [m]

Q - quantité de chaleur [J] λ - relatif à une longueur d'onde

Q& - puissance thermique [W] ∆ - relatif à une direction

R - résistance thermique [K.W-1] e - entrée échangeur S - section droite [m2] s - sortie échangeur t - temps [s] t - température du fluide froid ( échangeur) [K] Exposant

T - température [K]

Page 10: INTRODUCTION AUX TRANSFERTS THERMIQUES

vi Introduction aux transferts thermiques

U - énergie interne [J] 0 - relatif au corps noir V - volume [m3]

- puissance mécanique [W]

Nombres sans dimension Constantes Bi - nombre de Biot c0 - vitesse de la lumière dans le vide - 299 792 458 m.s-1 Ec - nombre de Eckert h - constante de Planck - 6,626176.10-34 J.s Fo - Nombre de Fourier k - constante de Boltzmann - 1,380662.10-23 J.K-1 Gr - nombre de Grashof σ - constante de Stefan Boltzmann - 5,67032.10-8 W.m-

2.K-4 Gz - nombre de Graetz Nu - nombre de Nusselt NUT- nombre d'unités de transfert Pe - nombre de Péclet (Re.Pr) Pr - nombre de Prandtl Ra - nombre de Rayleigh (Gr.Pr) Re - nombre de Reynolds Ri - nombre de Richardson St - nombre de Stanton Ja - nombre de Jakob

Page 11: INTRODUCTION AUX TRANSFERTS THERMIQUES

NOTIONS FONDAMENTALES

OBJECTIFS POURSUIVIS

Les transferts thermiques font partie des Sciences de base de l’ingénieur, tant il est vrai qu’il est peu de domaines industriels où la thermique ne joue un rôle petit ou grand. Au minimum, l’ingénieur doit donc :

en connaître les principes fondamentaux,

être capable d’évaluer leur importance dans un problème particulier,

dégager les ordres de grandeur par une modélisation simple.

Ce cours d’introduction vise donc l’acquisition des notions minimales, il ne peut suffire à la formation d’un ingénieur thermicien. Les références bibliographiques sont là pour approfondir.

Il a été privilégié un mode de présentation qui met en relief les éléments absolument indispensables à retenir. Ils sont marqués par l’encadrement :

A retenir absolument

Les deux notions fondamentales en transferts thermiques sont la température et la chaleur. Le langage courant introduit souvent une confusion entre elles. Nos réactions physiologiques en sont en partie responsables : toucher du bout des doigts une porte en bois ou sa poignée métallique ne procure pas la même sensation ; la seconde paraît plus froide alors que toutes deux sont à la même température. Ceci parce que nos organes du toucher enregistrent le flux thermique qu’ils reçoivent ou cèdent. La poignée semble plus froide parce que son métal est plus émissif que le bois.

De même, on entend opposer : température à l’ombre et température au soleil. En réalité, la mesure d'une température d’air ne peut se faire qu’en protégeant la sonde de mesure des effets du rayonnement donc « à l’ombre ». S’intéresser à la température au

soleil sous-entend qu’on souhaite intégrer en une seule mesure les effets de la température et la chaleur reçue du soleil par rayonnement.

De même, on parle au Canada de température « avec facteur vent » (– 20°C annoncés comme – 30°C avec facteur vent). Là encore, on effectue, sans le dire explicitement, un bilan de chaleur tenant compte d’échanges convectifs accrus du fait de la vitesse du vent.

La température caractérise l’état d’un corps ; la chaleur exprime une énergie échangée. Les notions de température et de chaleur constituent l'objet de ce cours.

Page 12: INTRODUCTION AUX TRANSFERTS THERMIQUES

2 Introduction aux transferts thermiques

NOTION DE TEMPERATURE

C’est une variable d’état qui, du point de vue de la structure de la matière, caractérise le degré d’agitation de ses particules. Elle résulte donc de la détermination d’une moyenne et, de ce fait, il est impossible en toute rigueur de définir la température en un point géométrique. Les moyens d’observation explorent un domaine fini (de l’ordre du mm

3 ou

même moins). Ce domaine très restreint contient encore un nombre de particules suffisant pour que les considérations statistiques aient un sens. C’est donc toujours la température d’une boule au voisinage d'un point que l’on mesure, et que l’on désigne par "température en ce point".

On dit qu’à l'instant t la température d’un corps est uniforme si, en cet instant, tous les appareils de mesure indiquent la même valeur T quelle que soit leur position. Nous dirons en outre qu’elle est constante si T est indépendante de l’instant d'observation. Si ces deux conditions ne sont pas réalisées, nous dirons que la température est une fonction T(x,y,z,t) des coordonnées du repère d’espace-temps. A l’intérieur d’un corps homogène, on peut donc définir à chaque instant t des surfaces isothermes caractérisées par T(x,y,z,t)

= cste.

L’unité de température est définie officiellement comme suit (J.O. 23/12/75) : "Le Kelvin

(K) est la fraction 1/273,16 de la température thermodynamique du point triple de

l'eau". On utilise fréquemment la température Celsius1 définie par la différence T-T0 entre deux températures thermodynamiques T et T0 avec T0 = 273,15 K. Une différence de température peut s'exprimer soit en Kelvins, soit en degrés Celsius.

Gradient thermique

La dérivabilité de la fonction T permet de définir en chaque point M et à chaque instant t

un vecteur gradient de température T∇r

, normal en M à la surface isotherme2, et dont les

composantes sont en coordonnées cartésiennes : )z

T,

y

T,

x

T(

∂.

On définit également le gradient de

température dans une direction ∆∆∆∆,,,, comme le produit scalaire :

θcos.T=∆nT. ∇∇rrr

. En l'absence de

précision, le terme gradient désigne celui

dans la direction normale à une surface.

1 Ander Celsius établit en 1742 une échelle à 2 points fixes. Il posa 100 degrés pour le point de

congélation de l’eau et 0 degré pour l’ébullition. Après sa mort en 1744, on inversa l’échelle (0

pour le point de congélation et 100 pour l’ébullition). La division en 100 donna le nom de degré

centigrade ; l’échelle ne prit le nom de degré Celsius qu’en 1948. Depuis 1954, l’échelle Celsius

est définie différemment : par un seul point fixe (point triple de l’eau) et une gradation déduite du

Kelvin. Le point triple de l’eau est posé à 0,01°C.

2 Ceci n'est vrai que pour un corps isotrope, voir définition page 14

M

T’

θ

TT ’

∆nr

isothermes

T∇r

M

T’

θ

TT ’

∆nr

isothermes

T∇r

Page 13: INTRODUCTION AUX TRANSFERTS THERMIQUES

Notions fondamentales 3

NOTION DE CHALEUR

DEFINITIONS

C’est une forme d’énergie au même titre que le travail d'un système de forces au cours d’un déplacement. On ne peut donc pas parler de la "chaleur d'un corps", ni même de la "chaleur contenue dans un corps", car la prise en compte d'une quantité de chaleur Q implique une situation évolutive. Il s’agit forcément d’un échange d’énergie entre plusieurs corps (ou entre plusieurs domaines d’un même corps) au cours d’un laps de temps déterminé. L’unité est le Joule [J]. Sa valeur est petite, ce qui fait qu’on a communément recours au kilo Joule [kJ].

Si, entre deux instants t et t', l'interaction étudiée s’accompagne d'un échange de chaleur δQ, on appelle flux thermique moyen la quantité δQ/(t-t') et, par un passage à la limite, on peut définir :

Un flux3 thermique (c’est une puissance – heat transfer rate) instantanée en Watts [W],

ramenée à l'unité de surface on parle de densité de flux thermique [W/m2]. On nomme flux-mètre l'appareil de mesure correspondant.

ECHANGE DE CHALEUR A TRAVERS UNE SURFACE

Considérons deux domaines D et D’ séparés par une surface S et supposons que D cède (algébriquement) à D’, un flux thermique Φ (pas forcément constant dans le temps).

La nature des corps D et D’, peut être absolument quelconque ;

par exemple, D peut être un solide et D’ un fluide ; ou bien D et

D’ peuvent être deux parties d'un même milieu et S une surface

fictive tracée dans ce milieu. On définit la densité de flux

thermique à travers S comme SΦ=ϕ . Au niveau corpusculaire,

dire que D et D’, échangent un flux Φ signifie ceci : les

corpuscules de D proches de S traversent cette surface et

communiquent à ceux de D’, des impulsions qui modifient leur

vitesse d'agitation, et vice-versa. Le bilan net de ces échanges est

ressenti au plan macroscopique comme une puissance thermique.

La Thermodynamique Statistique permet effectivement le calcul

dans un certain nombre de cas.

UNITES SI ET UNITES PRATIQUES

Avant l'obligation d'utiliser les unités SI, les thermiciens avaient généralisé l'emploi d'unités dans lesquelles la chaleur s'exprimait en kilocalories (kcal) ou en thermies (1 th = 1000 kcal), et les intervalles de temps en heures. De plus, on est souvent confronté

3. Dans le cours de Thermodynamique, on réserve le mot "flux" à ce qui est transféré par unité de

surface.

D

D’

SdS

D

D’

SdS

Page 14: INTRODUCTION AUX TRANSFERTS THERMIQUES

4 Introduction aux transferts thermiques

aux unités anglo-saxonnes. Il est donc indispensable de mentionner les formules de passage :

Energie4 1 kcal = 4,18 kJ

1 thermie = 1000 kcal = 4180 kJ

1 BTU = 1,055 kJ

1 kWh = 3600 kJ

Puissance 1 kcal/h = 1,16 W

(Heat transfer rate) 1 BTU/h = 0,2929 W

1 cheval vapeur (horse power) = 0,746 kW

1 BTU.ft-2

h-1

= 3,1525 W.m-2

Chaleur spécifique 1 BTU.lb-1

°F-1

= 4,184 kJ.kg-1

K-1

(Specific heat) 1 cal.g-1

°C-1

= 4,184 kJ.kg-1

K-1

Conductivité 1 BTUft-1

h-1

°F-1

= 1,73 W.m-1

K-1

Conductance 1 BTU.ft-2

h-1

°F-1

= 5,6745 W.m-2

.K-1

Température le Kelvin K est l’échelle thermodynamique de référence

Fahrenheit5 : x °F correspond à (x - 32)/1,8 °C

Celsius : x °C = (x - 273,15) K

Rankine : x °R = (x/1,8) K (même graduation que °F)

C’est une échelle absolue 0 K = 0 °R

Viscosité dynamique 1 Poiseuille = 1 Pa.s = 1 kg.m-1

s-1

1 centipoise = 0,001 Pa.s

soit encore 10 centipoise = 0,01 Pa.s = un centième de Poiseuille

Viscosité cinématique 1 centistockes = 1.10-6

m2s

-1

4 Cette formule de conversion bien connue doit rappeler qu'en 1847 James Joule établit

l’équivalence entre le travail et la chaleur en enfermant un moteur dans une enceinte calorifugée

emplie d’eau et en mesurant l’élévation de température.

5 100 °F correspondent à la température intérieure du corps humain : 37,7°C.

Page 15: INTRODUCTION AUX TRANSFERTS THERMIQUES

Notions fondamentales 5

EXEMPLES DE RELATIONS TEMPERATURE-CHALEUR

CHAUFFAGE D'UN CORPS HOMOGENE

Si l'on fournit une quantité de chaleur δQ à un corps monophasique homogène de masse m [kg], on sait que, toute autre grandeur d'état restant constante, sa température s'élève. Si le corps se trouve initialement à une température uniforme T0 et si on attend que la température redevienne uniforme, soit Tf = T0 + dT , on peut poser : δQ = mc.dT

c la chaleur massique [J.kg-1

K-1

] qui dépend de l’état du milieu (température, pression,

etc. ...) et de la nature de la transformation (volume constant, pression constante, etc.).

Pour les solides et les liquides, la nature de la transformation a peu d'influence. Pour les

gaz, c'est la capacité thermique à pression constante (cp) qui intervient6. Simplification

supplémentaire, la gamme de variation de température est souvent suffisamment faible

pour que les variations correspondantes de c soient négligées, en adoptant au besoin la

valeur correspondant à une température moyenne.

Q = mc.(Tf - T0) pour un fluide ou un liquide

Q = mcp.(Tf - T0) pour un gaz (à pression constante)

Ordres de grandeur

Le produit de cp par la masse molaire M

pour un solide : Mcp ≈ 25 J.mole-1

K-1

pour un liquide : Mcp ≈ 30 J.mole-1

K-1

pour un gaz mono-atomique : Mcp ≈ 20,5 J.mole-1

K-1

pour un gaz di-atomique : Mcp ≈ 30 J.mole-1

K-1

pour un gaz tri-atomique : Mcp ≈ 37 J.mole-1

K-1

Pour des composés organiques : cp varie entre 1000 et 2500 J.kg-1

K-1

Pour un mélange, la première approximation est en fonction des fractions massiques xi

∑=i

ii cpxcp ∑=i

iix ρρ

6 Dans le cas d’une phase simple, on peut écrire δQ = Cv.dT + l.dV ou δQ = Cp.dT +η.dp

Cp est la capacité thermique à pression constante et Cv la capacité thermique à volume constant

[J.mole-1.K-1]

Page 16: INTRODUCTION AUX TRANSFERTS THERMIQUES

6 Introduction aux transferts thermiques

INTERACTION ENTRE DEUX CORPS

Si l'on met en présence deux corps à des températures uniformes T1 et T2 sans frottement entre eux, on constate que leur température7 s’établit au bout d'un temps plus ou moins long à une valeur commune T, intermédiaire entre T1 et T2.

Ceci signifie que le corps le plus chaud s'est refroidi ; il a donc cédé de la chaleur. Le corps le plus froid s'est réchauffé ; il en a reçu ; la chaleur passe du corps chaud au corps froid en l'absence d’intervention extérieure. Ceci est une conséquence du deuxième principe de la Thermodynamique. En effet, si l’on imagine un système isolé constitué des deux corps, l’entropie de ce système (somme des entropies des deux corps) ne peut qu’augmenter :

0T

dQ

T

dQ dS dSdS

2

2

1

121 ≥+=+=

Or, selon le premier principe de la Thermodynamique, le système étant isolé :

dQ dQdQ 211 +=

On en déduit donc que : 0)T.(TdQ 121 ≥−

Si le corps 2 a une température supérieure au corps 1 (T2 > T1), alors dQ1 est positif ce qui veut dire que le corps 1 reçoit de la chaleur. En l'absence d’intervention extérieure, la chaleur passe toujours du corps chaud au corps froid.

MODES DE TRANSFERT DE CHALEUR

On distingue trois mécanismes d'échange de chaleur entre milieux matériels :

CONDUCTION

C'est une transmission de chaleur dans la masse d’un milieu matériel, les zones chaudes cédant de la chaleur à celles qui le sont moins. C'est le cas lorsqu'on chauffe l'extrémité d'une barre.

Au plan corpusculaire, l’interprétation est la suivante : une zone chaude est occupée par des particules à vitesse élevée, par définition même de la température. Le mouvement brownien fait constamment passer des particules d'une zone à l'autre ; mais entre zones à températures inégales, les particules ont des énergies cinétiques différentes ; le brassage a pour effet de transférer de l'énergie cinétique d'agitation, des zones chaudes vers celles qui le sont moins. La manifestation macroscopique en est un transfert de chaleur. C'est donc un mécanisme de chocs qui intervient.

7 La température est une grandeur d'état intensive

Page 17: INTRODUCTION AUX TRANSFERTS THERMIQUES

Notions fondamentales 7

RAYONNEMENT

C'est une transmission d'énergie à distance, entre deux corps séparés ou non par un milieu matériel (transformation d'énergie thermique d'un émetteur en énergie électromagnétique, propagation, transformation partielle en énergie thermique sur un corps récepteur). C'est le cas de l'énergie qui nous vient du soleil. L'interprétation physique est la suivante : tout corps émet des particules désignées par "photons"; ceux-ci se déplacent à la vitesse de la lumière et transportent une énergie fonction de leur "longueur d'onde".

Un corps C émettant des photons dans toutes les directions possibles, certains d'entre eux sont reçus par l'autre corps C' et éventuellement absorbés, en tout ou partie. Bien entendu, le corps C' émet aussi des photons dont certains seront reçus et absorbés par C. Le bilan net se traduit par un échange d'énergie entre C et C'.

CONVECTION

C'est le phénomène observé entre un fluide en mouvement et une paroi, phénomène principal dans la plupart des échangeurs de chaleur.

La cause profonde est encore une agitation des particules fluides, mais à une échelle beaucoup moins microscopique. Les parcelles de matière au contact de la paroi (chaude par exemple) s'échauffent par conduction ; le mouvement du fluide reporte ces parcelles dans la masse où elles cèdent par mélange une partie de la chaleur reçue ; d'autres les remplacent à la paroi et ainsi de suite.

Quant au mouvement du fluide, il peut avoir deux causes. Ou bien il est imposé de l'extérieur par une machine (pompe, ventilateur, compresseur) ; c’est la convection forcée. Ou bien le contact du fluide avec la paroi plus chaude ou plus froide crée des différences de masse volumique, génératrices de mouvement au sein du fluide ; c'est la convection naturelle.

Rigoureusement, même en convection forcée, les différences de densité créent un écoulement parasite, en général insignifiant par rapport à l’écoulement principal. On parle de convection mixte quand les 2 phénomènes ont de l'importance.

Les trois mécanismes de transfert de la chaleur sont :

La conduction : transfert dans la masse.

Le rayonnement : transfert à distance d’autant plus important que la température est élevée.

La convection : transfert par transport.

A cela, il faut ajouter le changement d’état qui dissipe ou absorbe de la chaleur

EXEMPLE FAMILIER DES MECANISMES DE TRANSFERT DE CHALEUR

Les mécanismes précédents nous sont familiers puisqu’ils sont tous les trois mis en œuvre dans la thermique du corps humain.

Page 18: INTRODUCTION AUX TRANSFERTS THERMIQUES

8 Introduction aux transferts thermiques

L’homme est un "homéotherme" ; son système de régulation thermique cherche à maintenir la température interne à 37,7°C. Les ressources d’énergie proviennent de la nourriture absorbée ; cette énergie étant utilisée pour différentes tâches :

• Travail chimique d’élaboration de molécules • Travail osmotique pour l’oxygénation du sang • Travail mécanique

Le métabolisme total M& [W] est dissipé en puissance mécanique W& et en chaleur Q& :

QWMdt

dU &&& +== . Le rendement mécanique est de l’ordre de 25%. Soit Q

W&

& = 0,25.

L’ordre de grandeur de Q& est 150 W (pour un individu de 80 kg), mais cette puissance

dissipée augmente naturellement avec le travail mécanique, le rendement restant

sensiblement constant. Comment cette chaleur est-elle évacuée ? Par les trois modes de

transfert : conduction ( K ), convection ( C ) et rayonnement ( R ) et par des

changements d’état : évaporation d’eau ( E ).

La conduction K intervient là où le corps est en contact avec un autre solide, au niveau

des pieds par exemple. C’est donc un terme faible (vue la surface en contact), en général

de l’ordre de 5 W (évidemment plus important chez un sujet couché).

La convection naturelle C provoque une élévation de température de l’air qui s’élève à proximité d’un individu. Elle intervient pour 50 W environ.

Le rayonnement R est du même ordre de grandeur : 50 W. Le rayonnement net (chaleur émise - chaleur absorbée) est donc important bien que la température du corps soit basse, du fait que la surface d’échange est d’environ 1,85 m

2.

Un individu est donc autant sensible à la température de l’air (convection) qu’aux échanges par rayonnement. On ressent donc fortement la proximité de surfaces froides (fenêtres en hiver) ou chaudes (paroi d'un four). En première approximation, on considère que le corps est sensible à la moyenne arithmétique de la température d’air et de la température moyenne des surfaces environnantes.

Pour se protéger du froid ou du chaud, on limite les échanges convectifs (grâce à des vêtements isolants) ou les échanges radiatifs (couverture de survie métallisée, combinaison de vulcanologue).

K (conduction)

5 W

C (convection)

50 W

R (rayonnement)

50 W

Ev

(perpiration)

30 W

Er (respiration)

10 à 30 W

Es

(sudation)

K (conduction)

5 W

C (convection)

50 W

R (rayonnement)

50 W

Ev

(perpiration)

30 W

Er (respiration)

10 à 30 W

Es

(sudation)

Page 19: INTRODUCTION AUX TRANSFERTS THERMIQUES

Notions fondamentales 9

L’évaporation d’eau est un moyen d’évacuer la chaleur supplémentaire. Un individu évacue environ 2,5 kg d’eau par jour. Ces échanges se font par :

• la respiration (Er) transfert par transport avec variation de l'enthalpie de l'air humide entre inspiration et expiration ; elle combine de la convection forcée et de l’évaporation, environ 10 à 30 W ;

• l’évaporation par la peau ou perspiration (Ev), environ 30 W ;

• la sudation (Es) qui intervient en ultime recours, c’est-à-dire quand les autres mécanismes ne suffisent plus pour maintenir la température de 37,7 °C. Elle peut permettre de dissiper une chaleur de 1100 W. La mouillure traduit l’insuffisance de la surface d’échange à assurer une évaporation complète.

Le bilan thermique du corps s’écrit donc :

Q& = M& - W& = K + C + R + Er + Ev + Es

En cas de grand froid, le corps peut même générer de la chaleur par influx électriques : mécanisme du frisson.

EXEMPLES CONCRETS DE PROBLEMES THERMIQUES

Les transferts thermiques ont des applications dans tout le champ des activités industrielles, dès que de l’énergie est mise en jeu, sous quelque forme que ce soit : thermique bien sûr, mais aussi mécanique, électromagnétique ou radiative, nucléaire, électronique ou chimique ... L’objet de la discipline est l’étude et la maîtrise des transferts de toutes ces formes d’énergie, qui se dégradent en grande partie en énergie thermique. Il est fréquent que les transferts thermiques ne soient pas l'objectif de la conception d'un appareillage mais qu'ils interviennent comme contrainte à respecter : éviter des points chauds ou froids, limiter des dilatations, contrôler des transformations... Citons quelques domaines :

Transports terrestres et aéronautiques

Véhicule thermique - refroidissement des principaux organes du moteur, contrôle thermique de la catalyse (un pot catalytique n’est efficace qu’à partir de 350°C environ), refroidissement des freins, contrôle de température du carburant.

Freinage : le problème consiste à s'assurer que les organes de freinage conservent des températures modérées, faute de quoi les surfaces frottantes perdraient leurs qualités, et les pièces magnétiques, dépassant le "point de Curie", perdraient leurs propriétés d’aimantation.

Véhicule électrique - contrôle thermique du moteur, de l’électronique, de la batterie, intégration des boucles fluides (le chauffage de l’habitacle d’une voiture électrique pose un problème particulier).

Thermique de l’habitacle automobile: vitrages performants (limitant les surchauffes d’été), propriétés radiatives des revêtements de siège, climatisation et confort thermique.

Page 20: INTRODUCTION AUX TRANSFERTS THERMIQUES

10 Introduction aux transferts thermiques

Turbo – réacteur : Les moteurs d’avion ont un rendement d’autant plus élevé que les gaz de combustion entrent chauds dans le corps de la turbine. On pourrait donc imaginer augmenter encore leur température. La limitation provient des contraintes acceptables par les matériaux constituant les aubages. Ceci impose un refroidissement local des aubages réalisé en soufflant un film d'air froid sur leur surface.

Le collage de matériaux composites impose des vitesses de montée en température bien contrôlée.

Industries électroniques

La miniaturisation des composants se traduit par un accroissement de la densité de puissance dissipée dans les puces électroniques. Il faut donc reconsidérer les technologies de refroidissement à utiliser. Le recours à des matériaux et dispositifs propres à évacuer la chaleur (ailettes en particulier) génèrent d'autres problèmes thermiques : conduction thermique lors du brasage des composants sur les supports ; la température ne devant pas dépasser 320°C.

Chimie et agroalimentaire - maintien en température des réacteurs

Réaction chimique

Si la réaction est endothermique (fours à chaux, fours à ciment), il faut fournir de la chaleur aux minerais entrant en réaction. Si N est le nombre de moles transformées par unité de temps, et L la chaleur molaire de réaction, le flux thermique minimal pour maintenir la température constante vaut N.L. Si la réaction est exothermique (synthèse de l'ammoniac) ou si la température doit être contrôlée (gazéification du charbon), il s'agit au contraire d'évacuer la chaleur produite, de telle sorte que la température ne s'élève pas à l'intérieur du réacteur.

Energie

Production d’énergie thermique (brûleurs, foyers, chaudières...). La thermique influence non seulement le rendement de ces appareils mais aussi les émissions de polluants (exemple température de flamme et production de NOx). Dans une chaudière, on veut vaporiser un certain débit massique &m d’eau à une température donnée T. La puissance à fournir au liquide est par conséquent Φ = m& L. L désignant la chaleur latente [J/kg] de vaporisation à la température T. La conception du générateur de vapeur consiste à produire le débit de vapeur imposé avec l'installation la plus économique possible, en prenant garde toutefois de limiter en tout point la température à un niveau admissible par le métal.

La production décentralisée d'énergie électrique par des petites unités conduit à rechercher des échangeurs de chaleur compacts. D'autre part, le rendement des turbines à combustion s'améliorant en aspirant de l'air le plus froid possible, on a recours dans les pays chauds à des stockages de "froid".

Les quelques exemples précédents illustrent que l'ingénieur doit concevoir des surfaces d'échange, arbitrer entre consommations d'énergie et coûts d'investissement, prendre en compte les contraintes thermiques, contrôler des températures et des puissances échangées.

Page 21: INTRODUCTION AUX TRANSFERTS THERMIQUES

TRANSFERT DE CHALEUR PAR CONDUCTION

FORMULATION GENERALE

ETABLISSEMENT DE L’EQUATION DE LA CHALEUR

On se reportera à l’Abrégé de Thermodynamique de Daniel Fargue, chez le même

éditeur, (premier principe pour les systèmes ouverts) dont les notations ont été en grande

partie adoptées dans ce paragraphe. En particulier, on raisonne sur un domaine D de

volume V et de surface externe S animé d'une vitesse barycentrique1 wr

. D/Dt désigne la

dérivée de transport : ∇+=rr

.wtDt

D∂∂ .

Le principe d’établissement de l’équation de la chaleur consiste à écrire le premier principe de la Thermodynamique, puis à utiliser l’équation de la dynamique pour faire disparaître le terme de variation de l’énergie cinétique. On isole alors la variation d’énergie interne, ou la variation d’enthalpie (c’est l’expression la plus utilisée pour les systèmes ouverts).

Premier principe de la thermodynamique pour les systèmes ouverts :

Le premier principe pour les systèmes ouverts traduit que la variation d'énergie totale

(interne + cinétique) est égale à la somme de la puissance des forces externes W& et de la

puissance thermique absorbée Q& : QWDt

DK

Dt

DU && +=+ . La puissance des forces externes

peut être détaillée : dSn..wdS+w.npdV-F.wρW

SV S

rrrrrr& ∫∫ ∫= ν

Fr

[N.kg-1

] est la résultante des forces externes massiques2, p la pression [N.m-2

].

ν est la notation simplifiée du tenseur de viscosité βαν [N.m

-2]. L'expression n..w

rr ν

s'écrit plus complètement ∑αβ

βα n..w ν βαrr

La puissance thermique absorbée Q& résulte de la densité de flux thermique r

ϕ qui sort

du système (d'où le signe -) et de l'éventuelle production de chaleur interne au système π

[W.m-3

]. Ce dernier terme permet de caractériser très globalement des mécanismes sans

avoir à les modéliser en détail.

1 Si le système est composé de plusieurs ( c ) constituants : ∑

=

=c

i

iiwρwρ1

rr

2 S'il y a plusieurs constituants Fρ

rest remplacé par ∑

=

c

i

ii Fρ

1

r

Page 22: INTRODUCTION AUX TRANSFERTS THERMIQUES

12 Introduction aux transferts thermiques

La production de chaleur π peut provenir d’une

source électrique (fondamentalement une

génération d'entropie), d’une réaction nucléaire

(analogue à une réaction chimique). Nous

verrons à la fin de ce développement que la

production de chaleur due aux frottements est

déjà prise en compte par le biais du tenseur de

viscosité. De même, s’il y a une réaction

chimique, la quantité de chaleur associée doit

apparaître naturellement dans la variation

d’enthalpie ; et non dans π.

dSn.πdV-Q

V S

∫ ∫=rr& ϕ

rϕ sort du volume V

dS

V

n

S

.πdV-dSn

S

..wdS+w.

V

n

S

p.dV-F.wρDt

DK

Dt

DU∫ ∫+∫∫ ∫=+

rrrrrrrrϕν [Eq 2.1]

Equation de la mécanique d'un fluide visqueux

La variation d’énergie cinétique est égale à la somme de la puissance des efforts externes et de la puissance des efforts internes (pression p, tenseur de viscosité ν) :

dV)..wp.w

V

F.w(ρV

dVDt

wDwρDtDK ν∇+∇−∫=∫=

rrrrrrrr [Eq 2.2]

Pour faire apparaître la seule variation d'énergie interne dans [Eq 2.1], on soustrait [Eq 2.1]-[Eq 2.2] : énergie totale - énergie cinétique. D’où l’[Eq 2.3]:

)dV.wp.w

V

(dS-

V

n

S

..πdV-dV

V

..wdV

V

w.dV+

V

p.wdVw.

V

pDt

DU ννν ∇+∇−∫∫ ∫+∫ ∇+∫ ∇∫ ∇+∫ ∇=rrrrrrrrrrrrrr

ϕ

Si l'on note dV

V

ΩdV

V

w..ν ∫=∫ ∇rr

puissance de dissipation visqueuse3 : Ω en [W.m-3

], on

obtient : ∫−Ω+∫+∫ ∇=∫S

dSn.dV

V

(πV

dVw.-pdVDtDu

V

ρrrrr

ϕ) [Eq 2.4]

On remarque que la dissipation visqueuse apparaît directement, elle n’est pas incluse dans le terme de génération de chaleur ππππ.

On choisit en général l’enthalpie4 h = u + p/ρ comme grandeur d'état ce qui va faire

disparaître le terme ∫ ∇V

dVw.-prr

. La conservation de la masse s'écrit :

3 précisément : ∑αβ

βα

x

β

α

π

V

nr

ϕr

Page 23: INTRODUCTION AUX TRANSFERTS THERMIQUES

Transfert de chaleur par conduction 13

w.ρDt

Dρw.ρρ.w

t

ρ0w.ρ

t

ρ rrrrrrrr∇+=∇+∇+

∂==∇+

Donc l'équation [Eq 2.4] devient : ∫−∫ ++∫ ∇=∇−−∫SVVV

dSn.dVΩ).(πdVw.-p)dVw.pDt

Dp

DtDhρ(

rrrrrrϕ

∫−+∫+∫=∫S

dSn.Ω)dV

V

(πV

dVDt

DpdV

DtDh

V

ρrr

ϕ [Eq 2.5]

Dans bien des cas, on néglige le terme Dt

Dp, d’où une première expression de l’équation

de la chaleur :

∫−∫ +=∫S

dSn.

V

Ω)dV(πdVDtDh

V

ρrr

ϕ

Dans le cas où l'on peut exprimer l’enthalpie à partir de la température, on obtient :

dS

S

n.dV

V

Ω)(πdVDtDT

pc

V

ρ ∫−∫ +=∫rr

ϕ [Eq 2.6]

Cas particulier : milieu immobile

La dérivée de transport devient une dérivée simple et il n’y a plus de dissipation

visqueuse Ω : dS

S

n.dV

V

πdVtTc

V

ρ p ∫−∫=∂∂

∫rr

ϕ [Eq 2.7]

Si le milieu peut être considéré à température uniforme5 et le terme source uniformément

réparti ( Q& sur tout le volume), on obtient la forme simple du bilan de chaleur :

Bilan de chaleur pour un milieu considéré à température uniforme

dS

S

n.QdtdT

pmc ∫−=rr& ϕ

La variation de température est due aux sources de chaleur internes moins les flux sortant du volume. Ces termes de flux sortant sont le plus souvent évalués sur les diverses frontières du volume V. Ils peuvent être conductifs, radiatifs ou convectifs.

4 ρ

phu −= soit

Dt

ρ

p

Dt

Dp

ρDtDh

DtDu

21 +−=

5 Cette approximation est parfois admissible, voir page 48

Page 24: INTRODUCTION AUX TRANSFERTS THERMIQUES

14 Introduction aux transferts thermiques

HYPOTHESE FONDAMENTALE DE FOURIER

Elle relie le transfert de chaleur entre zones voisines et le gradient thermique local, en admettant la proportionnalité de l'effet à la cause6.

Une surface dS d'un milieu continu sépare deux zones 1 et 2. Orientons la normale à dS dans le sens 1 → 2 , et désignons par dΦ la puissance cédée (algébriquement) par la zone 1 à la zone 2, à travers dS. La densité de flux vaut ϕ = dΦ/dS. Désignons par T∇

r le gradient thermique ; l’hypothèse

de Fourier consiste à admettre que la puissance sortant de dS est proportionnelle au gradient (dans la direction normale) et à poser :

Loi de Fourier7

.dSnT.KdΦrr

∇−= [Eq 2.9]

Le signe moins traduit le fait que la chaleur ne peut être cédée que par la zone chaude au profit de celle plus froide.

K est la matrice de conductivité. Elle dépend de la température. Si le matériau est non isotrope ses composantes sont variables (exemple dans du bois, la conductivité n'est pas la même dans le sens des fibres et transversalement où l'on traverse de minuscules couches d'air8 ; il en va de même d'autres fibres comme fibres de carbone ou de Bore ; dans les cristaux la structure influence la conductivité dans certaines directions9). Les valeurs varient au sein du milieu, en particulier, elles sont très sensibles à la température.

Si le matériau est isotrope, ce que nous considérons dans toute la suite, la matrice se simplifie :

λλλλ est le "coefficient de conductivité thermique" ou, par raccourci, "conductivité". Dans de nombreux cas, λ peut être considéré comme constant (pour un milieu donné) dans un large intervalle de température. λ s'exprime en W.m

-1K

-1.

6 voir chapitre « Relations phénoménologiques Flux-Forces » dans le cours de Thermodynamique

publié aux Presses de l’EMP. L’écriture de la génération d’entropie d’un système ouvert fait

apparaître la puissance thermique et le gradient de température.

7 Jean Baptiste Joseph Fourier (1768-1830) a publié en 1822 sa Théorie Analytique de la Chaleur.

8 Dans ce cas la conductivité dépend aussi de l'humidité de l'air.

9 Voir Carslaw et Jaeger donné en bibliographie

dS

1

2

rn

r

∇ T

dS

1

2

rn

r

∇ T

=

λλ

λ

000000

K

=

zzyzxz

yzyyxx

xzxyxx

kkkkkkkkk

K

Page 25: INTRODUCTION AUX TRANSFERTS THERMIQUES

Transfert de chaleur par conduction 15

Loi de Fourier pour un milieu isotrope

.dSnT.λdΦrr

∇−= [Eq 2.10]

On trouvera en Annexe (tableaux A.1.1 à A.1.9), pour quelques corps usuels, les valeurs numériques de λ et des indications sur sa variation avec la température.

Figure 2.1.1 : Quelques valeurs de la conductivité λ en fonction de la température

On remarque que :

Les métaux sont les matériaux ayant la plus forte conductivité thermique. La conductivité thermique et la conductivité électrique sont très liées. La conductivité thermique λ résulte de 2 mécanismes : le mouvement des électrons et les interactions dans le réseau cristallin λp. Le premier terme noté λe est relié à la conductivité électrique σe : λ = λe + λp

Dans les métaux (conducteurs électriques) le terme λe est prépondérant10 et λ ≈ λe.

La conductivité dépend de la température et pour l'essentiel des métaux, c'est une fonction décroissante. En première approximation, on écrit que

10 A température supérieure à l'ambiance, λe est lié à σe par la loi de Wiedemann Franz :

λe = L0σeT ; L0 désignant le nombre de Lorentz - L0 = 2,45 10-8 WΩ -1 K-2

Conductivité thermique fonction de la température

Aluminium

Cuivre

0,01

0,1

1

10

100

1000

10000

0 200 400 600 800 1000T [K]

λ [W.m -1 .K -1 ]

ArgentOr

Acier CrNi

Eau

Air

Hydrogène

Diamant IIa

Page 26: INTRODUCTION AUX TRANSFERTS THERMIQUES

16 Introduction aux transferts thermiques

λ = λ0 (1 + βT)

Dans le cas fréquent d'alliages, l'addition d'un élément modifie notablement le réseau cristallin et donc la conductivité. Ainsi, seulement 0,4 % d'Arsenic dans le cuivre fait baisser la valeur de λ de 40 %.

Pour les non métaux, le terme prépondérant est λp. Les matériaux les plus conducteurs sont donc ceux qui sont les plus cristallisés (ainsi une vitro-céramique est un verre pourvu d’une structure cristalline ; sa conductivité est plus élevée que celle du verre amorphe). On notera à ce propos la conductivité du diamant : 2300 W.m

-1K

-1 à 300 K.

La porosité fait diminuer la conductivité (milieu poreux équivalent). Pour les composés organiques, la présence d’halogène fait baisser λ.

Pour les liquides, la conductivité est nettement plus faible que pour les solides (à l'exception du Mercure qui est métallique). Ainsi, à la température de solidification le rapport des conductivités solides sur liquide est de l'ordre de 1,3. L'eau a une conductivité voisine de 1 W.m-1K-1.

Pour les gaz, la conductivité est très faible (à même température et basse pression, 10 à 100 fois plus faible que celle du liquide). Ce sont donc de très bons isolants (le vide étant l'isolant absolu). C'est pourquoi beaucoup d'isolants sont constitués de gaz enfermé dans des alvéoles. C'est le cas des mousses isolantes (polyuréthanne, polystyrène expansé). Il faut que les alvéoles ou compartiments soient de faible dimension, sinon il se crée des mouvements de convection qui "conduisent" la chaleur.

La conductivité des gaz croit avec la température (agitation moléculaire plus importante).

Elle ne dépend quasiment pas de la pression. Ceci est établi par la théorie cinétique des

gaz :

n

00 T

T

=

λ

λ ; n de l’ordre de 0,7. Elle est inversement proportionnelle à la masse

molaire M. En première approximation, la conductivité s'écrit : 3n.C.vλ vl=

v désignant la vitesse moyenne des molécules [m/s]

l le libre parcours moyen11 [m]

Cv la chaleur molaire à volume constant [J.mole-1

K-1

]

n le nombre de molécules dans un m3 [mole.m

-3]

On trouve des corrélations faisant intervenir la viscosité µ, la masse molaire M et la chaleur Cv. Exemple : corrélation modifiée de Eucker :

52,3C32,1µλM

v +=

11 l vaut 5,7.10-6 cm pour l’air dans les conditions normales.

Page 27: INTRODUCTION AUX TRANSFERTS THERMIQUES

Transfert de chaleur par conduction 17

LIGNES DE FLUX THERMIQUE DANS UN MATERIAU ISOTROPE

Le flux Φ [W], est un scalaire, de même que la densité de flux ϕ [W/m2]. On peut en

chaque point M considérer le vecteur : T=-λ∇rr

ϕ

Le champ ainsi défini admet des lignes de flux orthogonales aux isothermes.

Combinée avec l'équation [Eq 2.9], on obtient : dΦ = dSn.rr

ϕ

Cette relation est très analogue à celle permettant de calculer le débit volumique à travers

une surface dS. L'identité du formalisme amène ainsi à parler d’écoulement de la

chaleur, et de lignes d’écoulement (ou de flux). Il est essentiel de se souvenir qu'il s'agit

d'une simple analogie, les deux phénomènes physiques étant foncièrement différents :

dans un fluide en mouvement, le vecteur wr

correspond bel et bien à la vitesse d’une

parcelle de matière ; il n’en est rien pour rϕ .

EQUATION GENERALE DE LA CONDUCTION

Dans un milieu fixe homogène de conductivité λ et de chaleur massique c, on peut écrire l’équation de la chaleur [2.7] en spécifiant l’expression de la densité de flux ϕ grâce à la loi de Fourier (Eq 2.10). Ceci donne en utilisant la formule d’Ostrogradski :

tTρcπT)div(λ

∂∂=+∇

r [Eq 2.11]

π est la production de chaleur dans la masse [W.m-3

] (exemple : réaction nucléaire, induction...).

Dans beaucoup d'applications courantes, on considère λλλλ, ρ,ρ,ρ,ρ, c indépendants de la température (au besoin en adoptant une valeur moyenne), si bien que λ sort du signe divergence. Alors, les caractéristiques du milieu - conductivité, masse volumique et chaleur massique - n'interviennent que par le groupement λ/ρλ/ρλ/ρλ/ρc = a, dénommé diffusivité, qui s'exprime en [m

2s

-1]. On trouve sur la figure 2.1.2 les valeurs de la diffusivité pour

quelques corps et des valeurs dans les tableaux en Annexe.

La diffusivité a = λλλλ/ρρρρc est de l'ordre de :

10-5 m2s-1 pour les gaz,

10-7 m2s-1 pour les liquides,

10-5 m2s-1 pour les solides.

Contrairement à la conductivité, les valeurs sont relativement proches ; en particulier quand on compare les gaz et les métaux. Ceci est du au fait que de fortes valeurs de λλλλ

s'accompagnent de fortes valeurs de ρρρρ et inversement.

On en déduit la forme simplifiée de l'équation générale de la conduction en l'absence de production de chaleur.

Page 28: INTRODUCTION AUX TRANSFERTS THERMIQUES

18 Introduction aux transferts thermiques

Equation simplifiée de la conduction

tT

a1T

∂∂∆ = [Eq 2.12]

Rappel : expressions du Laplacien

Coordonnées cartésiennes : 2

2

2

2

2

2

z

T

y

T

x

T

∂+

∂+

Coordonnées cylindriques : 2

2

2

2

z

Τ

r1

r

Τ

∂+

∂∂+

∂ (en annulant le terme de variation en θ)

Coordonnées sphériques : rT

r2

r

T

2

2

∂∂+

∂ (en annulant les termes de variation en θ et ϕ)

Figure 2.1.2 : Valeurs de la conductivité λ [Wm-1

K-1

] et de la diffusivité a [m2s

-1] pour

des classes de matériaux

Ordre de grandeur de la conductivité à température ambiante

Métaux solides : de 10 à 400 W.m-1

K-1

Solides non métalliques : de 1 à 10 W.m

-1K

-1

Liquides : de 0,1 à 1 W.m-1

K-1

Gaz : de 0,01 à 0,03 W.m

-1K

-1

Isolants : de 0,01 à 0,05 W.m-1

K-1

Diffusivité et conductivité à 20°C

1,E-08

1,E-07

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

0,01 0,1 1 10 100 1000

métaux

Gaz

liquides

construction

a [m 2 s -1 ]

λ [W.m -1 K -1 ]

Page 29: INTRODUCTION AUX TRANSFERTS THERMIQUES

Transfert de chaleur par conduction 19

CONDITIONS AUX LIMITES

Résoudre un problème de conduction consiste à trouver, parmi les solutions de [Eq 2.3], celle qui satisfait à une distribution initiale T0(x,y,z,0) et à certaines conditions à la frontière Σ. Sur cette frontière, le milieu échange de la chaleur par conduction, convection, rayonnement et changement d'état, et il serait donc nécessaire de connaître les lois correspondantes pour expliciter les conditions aux limites.

Condition de température (ou condition de Dirichlet)

on connaît T en chaque point de Σ et a tout instant : TΣ = g(MΣ,t)

Cas particulier : TΣ = cste (ne dépend pas de M, la température est la même sur toute la surface) ; c'est le cas s'il y a contact parfait entre le milieu et l'extérieur. La frontière Σ est alors une surface isotherme. C'est pratiquement ce qui se passe quand un solide est immergé dans un liquide très agité à température constante ou en changement de phase.

Condition de flux (ou condition de Neumann)

On connaît la densité de flux en chaque point de Σ : ,t)F(Mn.Tλ ΣΣ =∇−rr

Cas particulier : ,t)F(MΣ = 0 ; on dit que la frontière est parfaitement calorifugée.

Alors Σ est normale à toutes les isothermes.

Relation flux-température

En chaque point de Σ, la densité de flux ϕ est une fonction connue de la température.

Un cas particulier important celui dit de Newton : la densité de flux est proportionnelle

à (TΣ - Te), différence entre la température superficielle du milieu TΣ et la température Te

de l’extérieur : )Th(Tn.Tλ e−=∇− ΣΣ

rr

h est le coefficient de transfert superficiel, il s'exprime en [W.m-2

K-1

]

La condition de Newton est à peu près réalisée lorsque le corps étudié est baigné par un fluide dont la température moyenne est égale à Te. L’étude de la convection a pour objet de déterminer h en fonction des caractéristiques du fluide et de son mouvement. A noter que h peut lui même dépendre de la température.

Il arrive qu'une condition limite d'échange par rayonnement soit écrite sous cette même forme. C'est le cas lorsqu'on arrive à écrire les échanges superficiels entre la surface Σ et une surface émettrice Σ' à température T' sous la forme : ϕ = A.σ.(T

4 - T'

4) où σ est la

constante de Stefan Boltzmann (voir chapitre 3). Cette expression est alors linéarisée de façon approchée sous la forme :

ϕ = 4A.σ. T'3(T - T') = hr.(T - T')

hr = 4AσT'3 est appelé coefficient d'échange par rayonnement [W.m

-2K

-1].

Page 30: INTRODUCTION AUX TRANSFERTS THERMIQUES

20 Introduction aux transferts thermiques

Mise en contact de deux solides

Contact parfait : il y a égalité des températures et égalité des flux

2211 TλTλ ∇=∇rr

21 TT =

Contact imparfait

Les deux surfaces ne sont pas strictement en contact, il existe une "résistance" de

contact12 due à l'air présent entre les deux milieux13. On caractérise cette résistance

thermique de contact par la valeur Rc [m2K.W

-1]. Les températures ne sont plus égales.

2211 TλTλ ∇=∇rr

)T(TR1= 21c

−ϕ

111 n.Tλrr

∇−=ϕ

Une résistance de contact dépend des deux matériaux en contact (les points de contact

sont en nombre limité et induisent une constriction des lignes de flux) mais aussi de la

pression exercée pour assurer un meilleur contact. Cette résistance peut être dominante

surtout dans le cas de grande conductivité comme des métaux. Pour donner un ordre de

grandeur14, on peut retenir Rc = 10-4

m2K.W

-1, pour deux plaques d’aluminium. La

surface de référence est celle apparente des deux solides en contact. L’état de contact

peut être amélioré en insérant une pâte conductrice ou un métal plus tendre à l’interface.

12 On introduira l'analogie électrique page 25 qui justifiera l'expression "résistance"

13 Un état de surface est défini par sa rugosité, hauteur moyenne des aspérités.

14 On trouvera des valeurs dans Çengel et Turner – chapitre 17 et un développement complet dans

Rosenhow.

Page 31: INTRODUCTION AUX TRANSFERTS THERMIQUES

Transfert de chaleur par conduction 21

RECAPITULATIF DES CONDITIONS LIMITES DANS LE CAS UNIDIRECTIONNEL

Condition de température T(0,t)=Ts

Condition de flux s

x=xTλ ϕ

∂∂ =−

0

Condition de Newton

Te température de mélange du

fluide (voir chapitre 4)

,t))T(h.(TxTλ e

x=

00

−=−∂∂

Flux nul

Cette condition est utilisée si

la paroi est calorifugée

ou quand il y a des symétries

qui imposent un flux nul.

Dans ce cas, la continuité des

températures est

une condition redondante.

0xTλ

0x=

=−∂∂

x0

T(x,t)

Te

h

x0

T(x,t)

Te

h

x0

T(x,t)

ϕs

x0

T(x,t)

ϕs

x0

T(x,t)

ϕs = 0

x0

T(x,t)

ϕs = 0

x0

T(0,t)

T(x,t)

x0

T(0,t)

T(x,t)

Page 32: INTRODUCTION AUX TRANSFERTS THERMIQUES

22 Introduction aux transferts thermiques

Contact parfait

00

22

11

===

xx xTλ

xTλ

∂∂

∂∂

21 TT =

Contact imparfait

00

22

11

===

xx xTλ

xTλ

∂∂

∂∂

)-T(TR1

xTλ 21c0x

11 =−

=∂∂

SIMILITUDE DES PROBLEMES DE CONDUCTION

Les cas d’intégration d'une équation aux dérivées partielles, par voie littérale, sont rares. Il faut recourir en général, soit à une intégration numérique, soit à l’expérimentation. Quel que soit l'intérêt d'un résultat particulier, il est précieux de pouvoir en généraliser les éléments à des cas voisins, et notamment à des problèmes présentant une similitude15

géométrique.

Soit donc une classe (C) de domaines matériels, tous semblables géométriquement ; à l’intérieur de cette classe, un domaine est parfaitement particularisé par une longueur caractéristique (l). (s'il s'agit d'une plaque plane indéfinie, l est l'épaisseur de la plaque ; pour une sphère, c'est le rayon, etc...).

La nature du matériau et l'environnement extérieur font intervenir d'autres paramètres. Ce sont ceux figurant dans l'équation générale de la conduction, complétée par ses conditions initiales et aux limites. Repartons de l'[Eq 2.11] en mono - dimensionnel, avec λ constant sur le domaine d'étude, associé à une condition limite de Newton en x = 0

et x = l, et la condition initiale T = T0.

tT

a1

λπ

x

T

2

2

∂∂=+

∂ avec : T)h.(T

xTλ e

x=−=−

0∂∂ et T)h.(T

xTλ e

x=

−=l∂

15

On distingue analyse dimensionnelle (on raisonne sur les dimensions fondamentales) et

similitude (on travaille directement sur les équations régissant le phénomène en faisant apparaître

des groupements sans dimension).

x0

T2(x,t)

T1(x,t)

T1(0,t) T2(0,t)

x0

T2(x,t)

T1(x,t)

T1(0,t) T2(0,t)

x0

T2(x,t)

T1(x,t)

Rc

x0

T2(x,t)

T1(x,t)

Rc

Page 33: INTRODUCTION AUX TRANSFERTS THERMIQUES

Transfert de chaleur par conduction 23

Posons lx/x =+ , 0

0

TTTTT

e−−=+ (condition initiale T

+ = 0)

t

T

a)Tλ.(T

π.

x

T 2

0e

2

2

2

∂ +

+

+=

−+

∂ ll

avec )1.(Tλ

h

x

T

0=x

−= ++

+

+

l

∂ et )1.(T

λh

x

T

1=x

−=− ++

+

+

l

Ceci fait apparaître : Fo = at/ l l l l 2, nombre de Fourier16

et Bi = hllll /λλλλ, nombre de Biot17.

En posant )Tλ.(T

π.π

0e

2

−=+

l

, les équations deviennent finalement :

Fo

x

T

2

2

∂ ++

+=+

+ avec )1Bi.(T

x

T

0=x

−= ++

+

+∂

∂ et - )1Bi.(T

x

T

1=x

−= ++

+

+∂

Remarque

T donnée sur la paroi signifie h infini ; une puissance échangée nulle signifie h = 0. Seule subsiste alors la condition de Fourier. Le nombre de Biot intervient dès que les conditions limites sont de type Newton.

CONDUCTION EN REGIME PERMANENT

DEFINITION

On dit que le régime est permanent si, en tout point, la température est indépendante du temps. C'est la limite vers laquelle tend toute distribution de température lorsque les conditions extérieures sont elles mêmes indépendantes du temps. En théorie, l'établissement du régime permanent exige un délai infini. Dans la pratique, compte tenu de l'imperfection des moyens de mesure, les écarts avec le régime permanent cessent d'être observables après un certain délai, très variable suivant les cas. En faisant l'hypothèse que λ est indépendant de la température, l'[Eq 2.12] se réduit à :

0∆T= [Eq 2.13]

16

Voir signification physique p 52 17

Voir signification physique p 52

Page 34: INTRODUCTION AUX TRANSFERTS THERMIQUES

24 Introduction aux transferts thermiques

ECOULEMENT UNIDIRECTIONNEL

Dans une plaque plane infinie d'épaisseur llll, les isothermes sont des plans parallèles aux plans frontières P1, P2 et, avec des axes convenables, la température est fonction d'une seule variable T(x).

02

2

=dx

Td soit encore cste

dxdT =

La densité de flux ϕ(x) à travers une surface S parallèle aux frontières est indépendante de x. Le profil de température est linéaire.

Examinons maintenant deux types de conditions aux limites : celle où les températures extrêmes sont connues, celle où elles satisfont à la condition de Newton :

• on connaît TP1 et TP2 sur les plans P1 et P2.

En prenant l’origine des abscisses sur P1, on a : T = TP1 + (x/ l).(TP2 - TP1)

ϕ = (λ/l).(TP1 - TP2)

• on connaît T1 et T2, températures des milieux ambiants, ainsi que h1 et h2

coefficients d'échange superficiels.

Alors, la conservation de ϕ s’écrit : ϕ = h1.(T1 - TP1) = (λ/llll).(TP1 - TP2) = h2.(TP2 - T2)

L' élimination des températures superficielles TP1 et TP2 donne : ϕ [ ]21 h

1λh

1 ++ l = T1 - T2

On calcule ensuite les températures de paroi grâce aux équations de départ.

Le mur "infini" est évidemment une fiction, mais les résultats du calcul sont encore valables en toute rigueur si les surfaces latérales du mur sont parfaitement calorifugées (pas d’effet de bord). Ils s'appliquent aussi, avec une bonne approximation, si la surface S de chacun des plans P1 et P2 est suffisamment grande vis-à-vis de la surface latérale.

• Surface courbée

Les résultats précédents s'appliquent à une plaque courbe d'épaisseur constante l, pourvu que le rayon de courbure soit en tout point très supérieur à l. On fait intervenir l'aire S de la surface équidistante des deux surfaces frontières S1 et S2, et on écrit :

Φ [ ]2211 Sh

1λSSh

1 ++ l = T1 - T2

P1 P2S

T1

TP1

TP2T2

x0

P1 P2S

T1

TP1

TP2T2

x0

Page 35: INTRODUCTION AUX TRANSFERTS THERMIQUES

Transfert de chaleur par conduction 25

ANALOGIE ELECTRIQUE

Un conducteur électrique de longueur l , de section σ, et de résistivité électrique ρe, a une résistance R = ρe l /σ. Soumis à une différence de potentiel U1 - U2, il laisse passer une intensité I donnée par : I. (ρe l/σ).= U1 - U2

formule analogue à celle donnant le flux Φ traversant un mur : Φ (llll/λS).=.(TP1 - TP2)

ce qui conduit à établir une correspondance entre :

• les tensions électriques et les températures,

• les intensités et les flux thermiques,

• les conductivités électriques (1/ρρρρ) et thermiques (λλλλ).

Mur composé - Résistances en série

Un mur soumis aux conditions de Newton se comporte comme un ensemble de résistances en série, à condition d’appeler :

résistances superficielles R1s et R2

s les quantités 1/h1S et 1/h2S ,

résistance du milieu Rm la quantité l/λS.

La résistance thermique R est la somme des résistances en série Rm , R1

s et R2

s

On peut donc mener un calcul de mur plan (ou de problème s'y ramenant) par la méthode utilisée en électricité pour calculer : d'une part l'intensité parcourant une série de résistances, d'autre part le potentiel entre deux résistances consécutives. On appelle mur composé la juxtaposition de n plaques d'épaisseur li. et de conductivité λi. supposées parfaitement en contact (ce qui exclut entre elles tout vide, film d'air, traces d'huiles, etc...) ; la température de deux surfaces en contact est alors la même. Supposons ce mur composé baigné par deux fluides, à températures respectives Te1 et Te2, et désignons par Ti (i = 1 , .. , n+1 ) les températures intermédiaires.

L'analogie électrique amène à considérer :

deux résistances superficielles : R1s = 1/he1S et R2

s = 1/he2S

et n résistances de milieu : Rim = λλλλi/λiS

Le flux Φ est donné par : Φ [R1s + R2

s + Σ Ri

m ] = (Te1 - Te2)

et connaissant le flux, le calcul des températures intermédiaires s'effectue sans difficulté de proche en proche (s’il est nécessaire de les calculer), l’analogie électrique est particulièrement intéressante si l’on veut évaluer globalement le transfert de chaleur et que les températures à l’intérieur de la paroi ne sont pas recherchées.

Page 36: INTRODUCTION AUX TRANSFERTS THERMIQUES

26 Introduction aux transferts thermiques

Résistances en série – les résistances s’ajoutent

∑=i

ieq RR

Φ Req = T1 - T2

Mur à épaisseur variable - Résistances en parallèle

On peut assimiler une plaque quelconque, dont les faces sont soumises à des températures uniformes Te1 et Te2, à un ensemble de résistances en parallèle, si l’on connaît le tracé des lignes de flux. Considérons une plaque d'épaisseur peu variable (pour considérer le problème unidirectionnel), limitée par deux surfaces S1 et S2, et désignons par S une surface "moyenne".

Soit l(x) l'épaisseur correspondant à la tranche dS d’un mur de section trapézoïdale (la hauteur du mur est L). La résistance thermique entre 1 et 2 de la tranche de section dS et d'épaisseur l vaut l/λdS. En composant les résistances en parallèle, la résistance totale entre S1 et S2 est donnée par :

∫∫=S

m (x)λdS

R l

1 = ∫H

(x)dxλ.L

0l

H est la hauteur du trapèze. l varie linéairement avec x : lll

l +−= xH'(x)

Te1

T1

Te2

T2

Tn+1

l1

l2

ln

λ1

λ2

λn

Te1

T1

Te2

T2

Tn+1

l1

l2

ln

λ1

λ2

λn

Page 37: INTRODUCTION AUX TRANSFERTS THERMIQUES

Transfert de chaleur par conduction 27

Si la plaque est soumise aux conditions de Newton, les frontières ne sont plus des isothermes; il faut ajouter à la résistance R

m deux résistances superficielles R1

s et R2

sen

série. On vérifiera que pour le cas cité, le flux Φ traversant entre S1 et S2 est donné approximativement (le problème est bi dimensionnel dans ce cas) par :

Φ

++

22

m

11 Sh

1λ.LHSh

1 l= T1 - T2 avec lm = (l' - l)/ln(l'/l)

Les résistances en parallèle sont également très utiles pour caractériser globalement des matériaux hétérogènes (briques par exemple). On peut associer en parallèle des tranches types qui se répètent en calculant la résistance de chacune de ces tranches.

Résistances en parallèle

Ce sont les inverses des résistances qui s’additionnent.

∑=i

ieq RR11

ΦΦΦΦ Req = T1 - T2

S 1

S 2

x

0 H

l l’

Φ

S 1

S 2

x

0 H

l l’

Φ

S 1

S 2

L

S 1

S 2

L

R1

R2

R3

etc...R1

R2

R3

etc...

Page 38: INTRODUCTION AUX TRANSFERTS THERMIQUES

28 Introduction aux transferts thermiques

On récapitule dans le tableau ci après les correspondances entre grandeurs électriques et thermiques.

Grandeur électrique Grandeur thermique

Tension [V] Température [K]

Intensité [A] Flux thermique [W]

Conductivité [Ω-1.m

-1] Conductivité [W.m

-1K

-1]

Résistance [Ω] Résistance superficielle 1/hS [K.W-1

]

Résistance du milieu l/λS [K.W-1

]

PROBLEME DU TUBE - TUBE COMPOSE

Soit un tube cylindrique à bases circulaires de rayons r1 et r2, et de longueur L suffisante pour que l'on puisse négliger les effets d’extrémité (ou, ce qui revient au même, calorifugé à ses deux extrémités). Désignons par r, θ, z les coordonnées cylindriques d'un point M quelconque ; si les conditions aux limites sont uniformes sur chacune des deux parois ( interne et externe) , la température est une fonction T(r) par raison de symétrie.

En l'absence de dégagement de chaleur au sein du matériau, le flux traversant un cylindre d' axe Oz et de rayon r est indépendant de r, comme on s'en aperçoit en écrivant le bilan thermique d'un petit domaine compris entre deux cylindres de rayons r et r + dr. La loi de Fourier donne alors :

cste)drdTπrH.(-λ2Φ= = , donc : cste

drdT =

L'intégration est immédiate et donne, en désignant par TP1 et

TP2 les températures des deux faces :

−+

−=

1

2

12P21P

1

2

2P1P

r

rln

)(rlnT)(rlnT(r)ln

r

rln

TTT

Résistance thermique d'une couronne cylindrique

)r

r(ln

TTπHλ2Φ

1

2

2P1P −= soit

πHλ2

)r

r(ln

R 1

2

m=

r1r2

z

H

M

r1r2

z

H

M

Page 39: INTRODUCTION AUX TRANSFERTS THERMIQUES

Transfert de chaleur par conduction 29

Ceci peut aussi être obtenu en utilisant des résistances en série18. Pour les tubes peu épais, c'est-à-dire la plupart des tubes industriels, le calcul mené avec la moyenne arithmétique des rayons constitue une bonne approximation (l'erreur est inférieure à 1,5 % pour un rapport r2/r1 de 1,5).

Si les conditions portent sur les températures extérieures avec des relations de Newton, on introduit encore les résistances superficielles : R1

s = 1/(he1.S1) et R2

s = 1/(he2.S2) et

la résistance totale est la somme des 3 résistances

R = R1s + R2

s + Rm. Une fois connu le flux, le calcul des températures s’effectue sans

difficulté.

De la même manière, pour une enceinte sphérique comprise entre deux rayons r1 et r2,

on obtiendrait la résistance par ∫=2

1

r

r2

mπr4

drλ1R . Soit :

λπ 21

12m

rr4

rrR

−=

Exemple : Rayon critique

Considérons une canalisation cylindrique rectiligne, dont les rayons de la section droite r1 et r2 sont fixés. On connaît la conductivité λ du matériau et les coefficients de transfert superficiel h (interne) et h' (externe). Le flux Φ échangé avec l'extérieur se détermine grâce aux résultats de la page 28. On cherche à minimiser ces pertes en enveloppant le tube d'un matériau isolant, de conductivité λiso ; on suppose parfait le contact entre le tube et l'isolant, et on admet que le coefficient de transfert externe h' ne change pas (c'est le cas notamment en convection naturelle, peu influencée par le diamètre).

On remarque qu’augmenter l'épaisseur de calorifuge (donc riso) accroît le troisième terme, mais diminue le quatrième. Il n'est donc pas certain qu'on ait toujours intérêt à calorifuger largement.

18 Désignons par e l’épaisseur (r2 - r1) du tube, et définissons un rayon moyen par

=

1

2

m r

rln

r

e .

Alors : )2P

T1P

(TmSeλ)=

2PT

1P(T

eλHmπ.r2Φ −−= et on retrouve la formule du mur plan, à

condition de considérer comme surface d’échange une surface moyenne égale à 2π rmH. On

obtient directement cette expression (résistances en série) en intégrant ∫=2

1

r

rπrH2dr

λ1mR

Page 40: INTRODUCTION AUX TRANSFERTS THERMIQUES

30 Introduction aux transferts thermiques

Pour choisir l'épaisseur du calorifuge (son rayon riso), des considérations économiques interviennent pour mettre en balance le coût de l'isolant et l'économie sur les pertes de chaleur. En ajoutant les résistances thermiques en série, on peut calculer la résistance thermique R de l'ensemble par :

iso2

iso

iso1

2

1 h'r

1

r

rln

λ

1

r

rlnλ1

hr

1πH.R2 ++=

Les deux premiers termes étant constants, on a : 2

isoisoisoisoh'r

1-rλ

1

r

RπH.2 =∂

∂ et cette

quantité s'annule pour riso = λiso/h'. C'est le rayon critique rc = λλλλiso/h’ .

Notion de rayon critique

Il existe donc une valeur rc de riso qui minimise la résistance globale R. Au delà, la résistance thermique globale augmente du fait de la sur-isolation.

Ordre de grandeur

Les isolants courants ont des conductivités de l'ordre de 0,03 à 0,3 W.m-1

K-1

. Si le tube est en relation avec l'atmosphère par la seule convection naturelle, h' est de l'ordre de 10 W.m

-2K

-1. Les rayons critiques s'échelonnent donc entre 10 et 30 mm. Deux cas peuvent se produire :

• si le rayon extérieur r2 de la conduite est supérieur au rayon critique rc, la courbe de la résistance en fonction de riso est constamment croissante. En effet seule la partie à droite du rayon critique est à prendre en considération puisque riso est forcément supérieur à r2. L'isolation est donc intéressante, et le flux est d'autant plus réduit que l'épaisseur est plus grande.

λλλλiso

r1

r2

riso

h’

h

λλλλλiso

r1

r2

riso

h’

h

λ

4,7

4,9

5,1

5,3

5,5

5,7

5,9

6,1

6,3

0 10 20 30 40 50 60 70 80 90 100

r iso [mm]

R [m 2 K.W -1 ]

r c