41
L’interféren L’interféren ce et la ce et la diffraction diffraction Chapitres 6 et 7 Chapitres 6 et 7 Tiré de Claude Shields Tiré de Claude Shields 1

Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Embed Size (px)

Citation preview

Page 1: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

L’interférence L’interférence et la et la

diffractiondiffractionChapitres 6 et 7Chapitres 6 et 7

Tiré de Claude ShieldsTiré de Claude Shields

1

Page 2: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Points essentiels Retour sur la notion d’interférence (section

6.1)

Diffraction de Fresnel (section 7.1)

Diffraction de Fraunhofer (section 7.2)

L’expérience de Young (section 6.3)

2

Page 3: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

3

Différence de phase et cohérence

Rappel

Deux ondes de même fréquence et de même longueur d’onde mais déphasées (l’une p/r à l’autre) se combinent. Le résultat est une fonction harmonique dont l’amplitude dépend de cette différence de phase .

Si T = 0, 2, 4, … -> Interférence constructive (AT = 2A)

Si T = , 3, 5, … -> Interférence destructive (AT = 0)

Page 4: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

4

Vidéo interférence et diffraction (source inconnue)

Page 5: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

5

Causes de cette différence de phase entre 2 ondes

a) Différence de marche (différence de parcours )

Interférence Constructive (Intensité maximale)

Interférence Destructive (Intensité minimale)

= m (m = 0, ±1, ±2, …) = (m + ½) (m = 0, ±1, ±2, …)

2

Page 6: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

6

Exemple 6.1 p. 195 de Ondes, optique et physique moderne de Harris Benson

Page 7: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

7

Causes de cette différence de phase entre 2 ondes harmoniques (suite)

b) Conditions initiales entre les deux sources

S --» Bien souvent les sources sont en phases --» S = 0

c) Réflexion

Un rayon de lumière réfléchi par un milieu d’indice de réfraction supérieur à celui du milieu incident (n1 < n2) subit un déphasage de (R = ).

La réflexion par un milieu d’indice de réfraction inférieur à celui du milieu incident (n1 > n2) ne subit aucun déphase (R = ).

Il faut donc considérer ces 3 possibilités !

Page 8: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

8

Figure de diffraction

La nature ondulatoire de la lumière révélée par une simple

lame de rasoir.

Page 9: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1
Page 10: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

10

- La diffraction permet, par exemple, d’entendre parler une personne qui se trouve de l’autre côté d’un obstacle

Vidéo diffraction petits objets (source inconnue)

Page 11: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

11

Diffraction de FresnelSi la source ou l’écran se

trouve près de l’ouverture ou de l’obstacle, les fronts d’onde sont sphériques et la figure est assez complexe. C’est ce que l’on appelle la diffraction de

Fresnel. Une partie de la lumière pénètre dans la région d’ombre géométrique et l’on observe des franges près des

bords de l’obstacle.

Page 12: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Encore une controverse au

sujet de la nature de la lumière

En 1819, l'Académie des sciences de Paris mettait au concours la question de la diffraction de la lumière.

Augustin Fresnel, un jeune provincial, proposa dans son

mémoire une solution qui nous est aujourd'hui familière, fondée sur

l'hypothèse d'une lumière constituée d'ondes qui interfèrent entre elles.

12

Page 13: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Poisson vs FresnelLa commission était

malheureusement constituée de partisans de la théorie corpusculaire

et non pas ondulatoire de la lumière, théorie qui dominait en France autour de Pierre Simon

Laplace et qui était placée sous l'ombre tutélaire du grand Isaac Newton. Lors de l'examen des

propositions, Siméon Denis Poisson, mathématicien et membre de la

commission, développa un argument dévastateur pour Fresnel

13

Page 14: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

L’argument de Poisson

Il déduisit en effet de la théorie de Fresnel que, si l'on plaçait un disque opaque derrière un petit trou à travers lequel émergeait

de la lumière, le centre de l'ombre créée par le disque

devrait être aussi brillant que s'il n'y avait pas de disque. Or le

sens commun, auquel se rangeait Poisson, savait que

l'ombre créée par le disque était homogène, et en tout cas sans point lumineux en son centre.

14

Page 15: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Arago tenta l’expérience

Curieux du résultat, François Arago, lui

aussi membre de la commission, tenta

néanmoins l'expérience... et

15

Page 16: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

16

Le résultat !… et découvrit le point lumineux au centre de

l'ombre ! Prise au dépourvu par cette preuve inattendue, la commission attribua le prix au jeune

Fresnel, et la théorie corpusculaire de la lumière fut abandonnée pour près

d'un siècle.

Page 17: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

17

La diffraction

de Fraunhofer

Si la source et l’écran sont tous deux éloignés de l’ouverture

ou de l’obstacle, la figure obtenue est plus simple à

analyser. La lumière incidente a la forme d’une onde plane et

les rayons sortant de l’ouverture sont parallèles.

C’est ce qu’on appelle diffraction de Fraunhofer

(ou diffraction à l’infini).

Page 18: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Le montage

18

ÉcranÉcran

Sin θ (rad)

Intensité

On s’intéresse à la position θ et/ou y des minimums et des maximums

Page 19: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Le montage

19

ÉcranÉcran

Page 20: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Le montage

20

Écran

Pour des petits angles:

tan

y

L

tan sin

Page 21: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Vidéo fente unique21

Page 22: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Observation

22

Intensité

Fente …

Page 23: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Observation

23

Intensité

Fente verticale

a

Page 24: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Observation

24

Intensité

Fente horizontale

a

Page 25: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Observation

25

Intensité

1. La majeure partie de la lumière est concentrée dans le maximum central, où sin varie de –/a à + /a.

2. Le premier minimum apparaît lorsque sin = /a .

3. La largeur du maximum central décroît si a augmente.

Page 26: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

26

La diffraction et le principe d’Huygens

Le premier minimum apparaît lorsque l’onde lumineuse émise par le haut de la fente et celle émise par un point situé juste en dessous du milieu de la fente sont déphasées de .

En utilisant le principe d’Huygens, on divise la largeur de la fente en 100 sources secondaires. Le premier minimum apparaît lorsque la première source et la 51ième sont déphasées de . Ainsi la 2ièmeet la 52ième sont également déphasées de . On peut parler d’interférence destructive si :

a sin = M (M = ±1, ±2, ±3…)

Page 27: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

La position du premier minimum sur l’écran

27

Écran

Pour des petits angles:

La position du premier minimum:

Ainsi, le premier minimum se retrouve à une distance y du centre de l’écran:

tan

y

L

tan sin

sin

a

y

La

Page 28: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Exemple

28

Un faisceau laser = 700 nm traverse une fente étroite de 0,2 mm de largeur et frappe un écran situé à 6 m de cette fente.

a)Calculez la largeur du maximum central, c’est-à-dire, la distance entre le premier minimum à droite du centre de l’écran et celui à gauche du centre de l’écran. Représentez cette situation avec un schéma.

b)À quel angle se situe le second maxima d’interférence?

c)Pour quelle largeur a de la fente est-il impossible d’observer tous les minimums?

Page 29: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Exemple

29

Un faisceau laser = 700 nm traverse une fente étroite de 0,2 mm de largeur et frappe un écran situé à 6 m de cette fente.

a)Calculez la largeur du maximum central, c’est-à-dire, la distance entre le premier minimum à droite du centre de l’écran et celui à gauche du centre de l’écran. Représentez cette situation avec un schéma.Solution

Position du premier minimum:

La largeur du maximum central:

2 y 4,2 cm

y

La

6 m 700 nm

0,0002 m2,1 cm

Page 30: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Exemple

30

Un faisceau laser = 700 nm traverse une fente étroite de 0,2 mm de largeur et frappe un écran situé à 6 m de cette fente.

a)Calculez la largeur du maximum central, c’est-à-dire, la distance entre le premier minimum à droite du centre de l’écran et celui à gauche du centre de l’écran. Représentez cette situation avec un schéma.

b)À quel angle se situe le second maxima d’interférence?

sin Mam

Page 31: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Exemple

31

Un faisceau laser = 700 nm traverse une fente étroite de 0,2 mm de largeur et frappe un écran situé à 6 m de cette fente.

c) Pour quelle largeur a de la fente est-il impossible d’observer des minimums?

Premier minimim à = 90o (donc l’écran est éclairé uniformément)

=π/2 => sin = 1 => a = = 700 nm

C’est cette situation que nous étudierons dans le chapitre 6 avec l’expérience de Young.

Page 32: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

32

Sur une plage de Tel Aviv, (Israël), on peut très bien voir le phénomène de diffraction.

Page 33: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

33

Interférence

Lorsque deux ondes de propagation se superposent, elles interfèrent entre elles, en formant alors une onde résultante dont la valeur, en chaque point de l’espace, égale la somme des valeurs prises par chaque onde individuelle.

Page 34: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

34

L’expérience de Young

Un dispositif à deux fentes (dispositif de Young), éclairé par un faisceau de lumière cohérente, produira une figure d'interférence formée de franges brillantes et sombres.

Page 35: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

35

L’expérience de Young

Page 36: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

36

Franges sombres et brillantes

Frange brillanteFrange brillante Frange sombre

Page 37: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

37

Différence de parcours

r

2 - r

1d sin

Page 38: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

38

Figure d’interférence à deux fentes (si on modifie la distance d

entre les deux fentes)

Page 39: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

39

Figure d’interférence à deux fentes (si on modifie la largeur

a des fentes)

Page 40: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

40

Écran d’observation

Position des maxima:

Position des minima:

(où m = 0, 1, 2, 3, …)

(où m = 0, 1, 2, 3, …)

Distance entre deux maxima consécutifs sur l’écran

(pour des petits angles)

animation

Ly

d

sind m

sin ( 1/ 2)d m

Page 41: Linterférence et la diffraction Chapitres 6 et 7 Tiré de Claude Shields 1

Exemple 6.2 p. 199 de Ondes, optique et physique moderne de Harris Benson

Résumé schématique au tableau, selon les questions des étudiants

41