32
MAE 298, Lecture 8 April 27, 2006 0 5 10 20 0 5 10 20 X Y Timescale, τ 1 = 5314 t o + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 0 5 10 20 0 5 10 20 X Y Timescale, τ 2 = 1092 t o + + + + + + + + + + + + + + + + + + o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 0 5 10 20 0 5 10 20 X Y Timescale, τ 3 = 157 t o + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o “Spectral Methods, Sensor Nets and Self-organization”

MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

MAE 298, Lecture 8April 27, 2006

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

● ●●

●●

● ●

●● ●

●● ●●

●●●

●●

●●

●●

● ●● ●

●●●

●●

●●

● ●

0 5 10 20

05

1020

X

Y

Timescale, τ1 = 5314 to

++++

+

+++++

+++

++

++

++

++

+++

+

+

+

+ +++

++

++ ++

+++

++

oo oo

o o oo oo

o

o ooo

o

ooo

o

o

o

o

o

o

o

o o

o

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

● ●●

●●

● ●

●● ●

●● ●●

●●●

●●

●●

●●

● ●● ●

●●●

●●

●●

● ●

0 5 10 20

05

1020

X

Y

Timescale, τ2 = 1092 to

+

+ ++ +++

+

++

+

+++

++

++

o

o

o oo o

o

o

o

oo

o

o

o

o

oo

o

o

o

o

o

o

o

o

o o

o

o

oo

ooo

o

o

o

o

o

o

o

oo

o

o

oo o

o

o

o

o

o

o

oo

o●

● ●

●●

●●

● ●

●●

●●

●●

●●

● ●●

●●

● ●

●● ●

●● ●●

●●●

●●

●●

●●

● ●● ●

●●●

●●

●●

● ●

0 5 10 20

05

1020

X

Y

Timescale, τ3 = 157 to

+++

++

++

++

+++

+++

++

++

+

+++

++

++

++

+

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

oooo

o

o

o

oo

o

o o

o

o

o

o

o

o

“Spectral Methods, Sensor Nets andSelf-organization”

Page 2: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Last time: spectral methods, eigen-spectrum

• If two distinct graphs have the same eigen-spectrum, they arelikely isomorphic (esp for large graphs).

• Eigenvalues: degeneracy of λ = 1 tells us how manydisconnected components in the graph.

Page 3: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Summary: spectral methods, measures

• Mixing time (time to forget where the walk started)

• Relaxation time (related to mixing time, gives bounds)

• Cover time (time to occupy each node)

• Spectral gap: the largest mixing time, tmax = −1/ ln(λ2)

– the larger tmax the longer it takes for a random walk to coverthe graph.

– the larger tmax the more accurately a graph can bepartitioned into two pieces.

Page 4: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Applications: Wireless sensor networks

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

++

++

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

+

+ +

+

+

+

+

++

0 5 10 15 20 25

05

1015

2025

• Start with isolated sensor distributed at random.

• Is there a local way to build up global connectivity?

• Locality — why?

Page 5: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Locality

1. Locality ∼ distributed

2. Adapt quickly to changing environment

3. Minimal growth in overhead with increasing system size

4. “Self-organizing”

Page 6: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

“self-organization”

• Not quantitatively defined.

• (Wikipedia:) Self-organization is a process in which the internalorganization of a system , normally an open system , increasesin complexity without being guided or managed by an outsidesource. Self-organizing systems typically (though not always)display emergent properties.

Page 7: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Beaconing

Page 8: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

A geometric graph problem

One idea — percolation

Call the graph describing connectivity of nodes: GR

Page 9: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Is this a local algorithm?

(How to determine Rc?)

Page 10: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

How to determine Rc?

●●

●●

●●

!

" #

$$$$

%

&

(

)

*+ ,,−

/

0

1

2

34

5

6

78

0 5 10 20

05

1020

R = 1.362

●●

0 5 10 20

05

1020

R = 2.724

●●

●●

●●●

●●

●●●

●●●●

●●

● ●●

●●

● ●

●●

● ●

●●

●●●

●●●●●●

●● ●●

0 5 10 20

05

1020

R = 4.904

Keep increasing until only one eigenvalue λ = 1

Page 11: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Percolation

Why is it bad?

• Farthest away node sets operating power for all

• Need to communicate this value Rc (critical operating range)

• Assumes wireless footprint a uniform disk

Why is in good?

• Guarantees full global connectivity. In the asymptotic limit(N → ∞) know how Rc scales with N . So for large N canuse theoretical estimate rather than λ = 1 construction.

• Want small range R to conserve power and also reduceinterference. Percolation is a “sweet spot” (full connectivity without too much interference).

Page 12: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Refining percolation graph GR

(also called the “unit disk graph”)

153

RNG & GGRelative Neighbor Graph (RNG)! An edge (u, v) exist if !w, d(u,v) " max(d(u, w), d(w, v)

Gabriel graph (GG)! An edge (u, v) exist, if no other

vertex w is present within the circle

2 2 2, : ( , ) ( , ) ( , )w u v d u v d u w d w v! # " $

Page 13: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

154

Planarized Graph (Cont’d)

Original Unit Disk Graph

GG RNG

• Preserve connectivity of GR, but sparser (and also planar).

• There is an R-package that computes the disk, Gabriel andrelative neighbor graph given an input set of coordinates(http://rss.acs.unt.edu/Rdoc/library/spdep/html/graphneigh.html)

Page 14: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Planar disk graphs =⇒ greedy routing

• What is greedy forward routing?

• Packets are discarded if there is no neighbor which is nearerto the destination node than the current node; otherwise,packets are forwarded to the neighbor which is nearest to thedestination node.

• Each node needs to know the locations of itself, its 1-hopneighbors and destination node.

• Pros: easy implement

• Cons: deliverability (stuck in local voids)

Page 15: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

4

Examples

uw4

v

w1 w2 w3

w5 w6w6 is a local

minimum w.r.t. v

Page 16: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Theory versus realityWireless footprints

!!

!!!"

###$%%%%&

'((()

***+

,

-----.

!k!!

!!!

! ! !i

j

Monotonicity

1

Uniform-disk model Experimental[Ganesan, et. al., 2002]

Page 17: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Adaptive Power Topology control(Local algorithms to build connectivity)

• Percolation (Common power) neglects natural clustering.– Too much power consumption and unnecessary interference.– Misses certain paths which could optimize traffic.

• How to build up a connected network using only localinformation?– Moreover, want to avoid uniform disk requirement

Page 18: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Adaptive Power Topology control

• Adaptive power topology control (APTC)[Wattenhofer, Li, Bahl, and Wang. Infocom 2001]

[D’Souza, Ramanathan, and Temple Lang. Infocom 2003]

Each node individually increases power until it has a neighbor inevery θ sector around it:

Call the graph describing connectivity of nodes: Gθ

Page 19: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Sample topology

Topology control:

o

o

o

o

o

ooo

o

o

o

o

o

o

o

o

o

o

oo o

o

o

oo

oo

o

oo

o

oo

o

o

o

oo

o

oo

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo o

o

o

o

o

oo

oo

o

oo

o

o

o

oo

0 5 10 20

05

1020

X

Yτ[min] = 118 to

o

ooo

o

o

o

o

o

o

o

oo o

oo

oo

o

o

ooo

o

o

o

o

o

o

oo

ooo

o

oo

o

o o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

ooo

oo

o

o

o

0 5 10 20

05

1020

XY

τ[med] = 335 to

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o oo

o

o

o

oo

o

oo

o

o

o

o

ooo

o

o

oo

oooo

o

oo

o

o

oo o

o

o

o oo

o

o

oo

o

ooo o

o

o

o

oo

o

o

o

0 5 10 20

05

1020

X

Y

τ[max] = 2920 to

Percolation:

0 5 10 20

05

1020

+ +

+

+

+

++

+

+

+

+

+

++

+

++

+

++

o

o

o

o

ooo

o

o

o

o

o

o

o

oo o

oo

o

o

oo

o

o

o

o

o

o

oo

oo

o

o

o

o

oo

o

o

o

o

oo o

o

o

o

o

oo

o

o

o

o

o

R = 5.164

τ[min] = 183 to

0 5 10 20

05

1020

+

++

+

+

+

++

+

+

++

+ +

+++

+

+++

+

+++

+

+

++

++

+++

+

o

o

o

o

o

oo o

oo

o

o

o

o

o

o

o

o

o oooo

o

o

oo

o

o

oo

oo

o

o

o

o

oo

o

o

R = 4.727

τ[med] = 459 to

0 5 10 200

510

20 +

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+

+

++ ++

++

+ ++

+

+

++ +

++

o

o

o

o

o

o

o

o

o

o

o oo

oo

o

o

oo

o

oo

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

R = 4.524

τ[max] = 2590 to

Page 20: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Beyond the uniform disk model

[D’Souza, Galvin, Moore, Randall, IPSN 2006 ]

• Can use a local geometric θ-constraint to ensure full networkconnectivity, independent of wireless footprint!.

• Requires constraints on boundary nodes. (Carefully deployboundary nodes so can communicate, or else have hard-wired boundary channel; then interior nodes can be scatteredhaphazardly).

Page 21: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Proof overview

Theorem 1. If Gθ satisfies the θ-constraint at every internalnode with θ < π and all of the boundary nodes are known tobe connected, then Gθ is fully connected.

Proof: We need only show every internal node v has a path inGθ to some node on the boundary.

Page 22: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Comparison to percolation scheme

0 5 10 20

05

1020

ooo

o

o

o

o

oo

o

oo

o oo

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

oo

o

oo

o

oo

o

o oo

oo

oo

oo

o

o

o

oo

o

o

o

o

o

o

o

o

oo

o

o

o

o

oo

o

R = 7.513

τ[min] = 109 to

0 5 10 20

05

1020

o

o

o

oo

o

o

o

o

oo o

ooo

oo

o

o

o oo o

o

oo

o

o

oo

o

ooo

o

oo

oo

o

oo

o

o

o

o

o

oo

oo

o

o

oo

o

oo o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o o

o

R = 4.61

τ[med] = 604 to

0 5 10 20

05

1020

o

o

o oo o

o

o

o

o

o

oo

oo

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo

o

o

o o

o

oo

o

oo

o

o

o

oo

o

o

o

o

o

o

o o

oo

o

o

o

oo o

o

o

oo

o

o

o

o o

o

o

o

oo

o

R = 5.315

τ[max] = 5314 to

ooo

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

oo

o

oo

o

oo

o

o oo

oo

o

oo

oo

o

o

o

oo

o

o

o

o

o

o

o

o

oo

o

o

o

o

oo

o

0 5 10 20

05

1020

X

Y

τ[min] = 135 to

o

o

o

oo

o

o

o

o

o

oo o

ooo

oo

o

o

o oo o

o

oo

o

o

oo

o

ooo

o

oo

oo

o

oo

o

o

o

o

o

oo

oo

o

o

oo

o

oo o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o o

o

0 5 10 20

05

1020

X

Y

τ[med] = 316 to

o

o

o oo o

o

o

o

o

o

oo

oo

o

o

o

o

o

oo

o

o

o

o

o

o

o

oo

o

o

o o

o

oo

o

oo

o

o

o

oo

o

o

o

o

o

o

o o

oo

o

o

o

oo o

o

o

o

oo

o

o

o

o o

o

o

o

oo

o

0 5 10 20

05

1020

X

Y

τ[max] = 561 to

Page 23: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

How to quantify “better”?

• Need performance metrics

• Direct measures: energy consumption

●●

●●

●●

●●

● ●●

●●

●●●

●●

● ●●

●●

●●

●●

●●

●●

●●

●●● ●

●●

●●

●●

●●●

●●

● ●●

●●●

●●

●●

●●

●● ●●

●●

●●●

●●

●●

●●●

● ●●●

●● ●

●●

●● ●

●●

●●

●●

●●

●●

●●

●●●

●● ●

●●●●

●●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●●

●●

● ●●

●●

●●

● ●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●●●

●●

●●

●●

●● ●

●●

●●●

●●●

●●

●●●●

●●●● ●

●●

●● ●

●●

●●●●

●●

●●●

●●

● ●

●● ●

●●

●●

●●●

●●●

●●●

●●

●●

●●●

●●

●●

●●

●●●●

●●

●●

●●●

●●●●

●● ●●

●●●

●●

●●● ●●●

●●

●●●

●●●● ●

●●

●● ●●●

●●

●●

●●●●

●●

● ●

●●

● ●

●●

●●

●●●●

●●

●●●●

●●

●●●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

● ●●●

●●

●●

●● ●

●●●

●●●

●●

●●

● ●

●●●

●● ●

●●

●●

●●

●●

●● ●

●●

●●

● ●●●

●● ●

● ●

●●

● ●

●●

●●

●●●●

● ●

●●

●●

●●●●

● ●●●

●●

●●●

● ●●

●●●

●●

●●

●●●

●●

●●

●●●

● ●●

●●

5000 10000 15000

5000

1000

015

000

Common power scheme, Pfixed

Ada

ptiv

e po

wer

sch

eme,

Pad

pOverall power requirements,

common versus adaptive power(assuming P falls off as R2.5)

∆Padp ∆Pfixed = 0.41

Page 24: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Power Control:Cross-Layer Design Issues

• Physical Layer– Power control affects quality of signal

• Link Layer– Power control affects number of clients sharing channel

• Network Layer– Power control affects topology/routing

• Transport Layer– Power control changes interference, which causes

congestion• Application/OS Layer

– Power control affects energy consumption

The “protocol stack”

Page 25: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

In general, networks layered

• Social networks

• → Email networks

• → Data networks

• → Protocol networks

• → Physical networks

Page 26: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Approximating interference

State transition matrix:

Mii = (ki − 1)/ki, for diagonal elements.

Mij = 1/(ki − 1)ki, if an edge exists between i and j.

Page 27: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Network self-discovery time(Using mixing time as a proxy)

τ = −1/ ln(λ2)

Page 28: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

● ●●

●●

● ●

●● ●

●● ●●

●●●

●●

●●

●●

● ●● ●

●●●

●●

●●

● ●

0 5 10 20

05

1020

X

Y

Timescale, τ1 = 5314 to

++++

+

+++++

+++

++

++

++

++

+++

+

+

+

+ +++

++

++ ++

+++

++

oo oo

o o oo oo

o

o ooo

o

ooo

o

o

o

o

o

o

o

o o

o

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

● ●●

●●

● ●

●● ●

●● ●●

●●●

●●

●●

●●

● ●● ●

●●●

●●

●●

● ●

0 5 10 20

05

1020

X

Y

Timescale, τ2 = 1092 to

+

+ ++ +++

+

++

+

+++

++

++

o

o

o oo o

o

o

o

oo

o

o

o

o

oo

o

o

o

o

o

o

o

o

o o

o

o

oo

ooo

o

o

o

o

o

o

o

oo

o

o

oo o

o

o

o

o

o

o

oo

o●

● ●

●●

●●

● ●

●●

●●

●●

●●

● ●●

●●

● ●

●● ●

●● ●●

●●●

●●

●●

●●

● ●● ●

●●●

●●

●●

● ●

0 5 10 20

05

1020

X

Y

Timescale, τ3 = 157 to

+++

++

++

++

+++

+++

++

++

+

+++

++

++

++

+

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

oooo

o

o

o

oo

o

o o

o

o

o

o

o

o

Page 29: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Comparison of timescales

− 1 ln(λ)

Den

sity

0 1000 2000 3000 4000 5000

0.00

000.

0010

0.00

200.

0030

− 1 ln(λ), compared to exponential density of Common Power Adaptive power

− 1 ln(λ)

Den

sity

0 1000 2000 3000 4000 5000

0.00

000.

0010

0.00

200.

0030

Common power− 1 ln(λ) and exponential density

Page 30: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Comparison of timescales

● ●●

●●

●●●●

●●●●

● ●●●

●●●●

●●

● ●

●●●

●●●

●●●

●● ●

●● ●●●

● ●

●●

●●●

●●

●●

● ●●●

●●●●●

●●

●●

●●●

●●●

●● ●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●●

●● ●

●●● ●

●●

●●●

●● ●

● ●●

●●●

●●

●●●

●● ● ●

●●

●●

●●● ●●

●●

●● ●

●●

●●

●●

●●●

●●● ●● ●●

●●●●

●●

●● ●●● ● ●

● ● ●●●●

●●●

●●●●●

●●●

●●

●●●

●●

●●

●●●

●● ●

●●

●●

●● ●

●●●●

●●

●● ●

●●●●● ●

● ●●

●●

●●● ●●●● ●

● ●

●●

●●● ●●

●●

●● ● ●

●●

●●

● ●

●●

●●

●●

●● ●●

●●

●●

● ●

●●

●●

●● ●●

●●

●●

●●●●

●●●

●●

●●●

●●

●●

●●●

●●●●

●●●

●●●

●●

●●

●●● ● ●

●● ●● ●

●●

●●

●●

●●

● ●● ●

●●● ●

●●

●●

●●●

●●●

●●

● ●●●

●●●

●● ●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●● ●●●

●●

●● ●

●●

●●

●● ●●●

● ●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●●

●●

●●

●●●●

●● ●

●●

●●

●●

● ●● ●

●●

●●

● ●●●●●

●●●

●●

●●

●●

●●

● ●●●●

●● ●●

●●●

●●●●●

● ●

●●●●

● ●●●

● ●●●

●●●

●●●●●

●●●

●●

●●

●●● ●●

●●●

●●●

●● ● ●● ●●●

●●

● ●●

●●●

●●

●●

●●●●

●●

● ●●●

●●

● ●● ●

● ●● ●●●

●●

●●●

●●● ●●● ●

●●

●●●

●●

●●●

●●●

● ●●●

●●●

●●

●●● ●

●●

●●

●●● ●

●●

●●

●●●

●● ●●

● ●●

●●●●● ●●●

●●

● ●

●●●●●

●●

●●●●●

●●●●

●● ●●

●●●

●●●●●

●●●●

● ●●●

●●

●●

●●●●

●●● ●

●●

●●

●● ●● ●●●

●●

● ●●

● ● ●●

●● ●●●

●●●

●●●●

●● ●●

●● ●

●●

● ●● ●

●●

●●

●●

●● ●

●●

●●●

●●

● ●

●●● ●●●

●●●

●● ●●●

●●

● ●

●●●

●●

●●

● ●● ●●

0 1000 2000 3000 4000 5000

010

0020

0030

0040

0050

00

Common power

Ada

ptiv

e po

wer

Scatterplot of timescalescommon versus adaptive power

Page 31: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Regimes for routing

Two timescales:

1. tinfo = −1/ ln(λ2)

2. tnetwork: time for network topology to change.

Routing:

• If tnetwork � tinfo, network essentially static during packetrouting, so build up routing information.

• If tnetwork � tinfo, any info on the network topology will beimmediately obsolete, so no routing strategy.

Is there a sharp threshold? Or even any way to bound thesebehaviors? (What routing protocols work best in which regimes?

Page 32: MAE 298, Lecture 8mae.engr.ucdavis.edu/faculty/dsouza/Classes/MAE298-Spr06/...MAE 298, Lecture 8 April 27, 2006 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll

Other pressing issues: Sensor networks

• Deployed networks: optimal sensor placement

• Gossip algorithms: spreading shared information quicklythrough local exchanges.