106
Modélisation Modélisation Modélisation Modélisation mathématique mathématique mathématique mathématique en en en en écologie écologie écologie écologie : : : de de de de l’individu l’individu l’individu l’individu à la population et à la à la population et à la à la population et à la à la population et à la communauté communauté communauté communauté Pierre Auger IRD, UR Geodes et MOMISCO Centre de recherche IRD de l’Ile de France, Bondy E-mail: [email protected] Université de Rennes 1, 26 mars 2008

Modélisationmathématique Modélisation ... · ModélisationmathématiqueModélisation mathématiquemathématiqueen en en écologieécologieécologie: ::: de l ... Y. IwasaY., S

  • Upload
    ngoque

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

  • ModlisationModlisationModlisationModlisation mathmatiquemathmatiquemathmatiquemathmatique en en en en cologiecologiecologiecologie ::::

    de de de de lindividulindividulindividulindividu la population et la la population et la la population et la la population et la

    communautcommunautcommunautcommunaut

    Pierre Auger

    IRD, UR Geodes et MOMISCO

    Centre de recherche IRD de lIle de France, Bondy

    E-mail: [email protected]

    Universit de Rennes 1, 26 mars 2008

  • Outline of the presentation

    Predator-prey model in a patchy environment

    Effects of density dependent migrations

    Aggregation methods in time discrete models

    Aggregation methods for ODEs : emergence

  • Ecological levels of organization

    Individual level

    Population level

    Community level

  • Time scales and levels of organization

    Individual level : Day

    Population level : Year

    Community level : Evolutionary time scales

  • Take advantage of time scales to aggregate :

    Build an aggregated (reduced) model governinga few global variables at a slow time scale.

    Aggregation of variables

    More realistic models, i.e. structured population models : behaviour, age, species

  • Predator-prey model in a two patch

    environment with fast migration

  • A patchy environment

    Two patches

  • R. R. MchichMchich, P. Auger and N. , P. Auger and N. RaRassissi, 2000. , 2000. The dynamics of a fish stock exploited on two fishing zonesThe dynamics of a fish stock exploited on two fishing zones . . ActaActa BiotheoreticaBiotheoretica. Vol. 48, N. . Vol. 48, N. , pp. 207, pp. 207--218. 218.

    Fast dispersal

    ( )

    ( )

    1 12 1 1 1 1 1 1

    1

    2 21 2 2 2 2 2 2

    2

    12 1 1 1 1 1 1

    21 2 2 2 2 2 2

    ' 1

    ' 1

    '

    '

    dx xkx k x r x a x p

    d K

    dx xk x kx r x a x p

    d K

    dpmp m p b x p d p

    ddp

    m p mp b x p d pd

    = +

    = +

    = +

    = +

  • The fast model

    1 2

    1 2

    x x x

    p p p

    = += +Total prey and predator densities are constant at fast time scale:

    12 1

    21 2

    12 1

    21 2

    '

    '

    '

    '

    dxkx k x

    ddx

    k x kxddp

    mp m pddp

    m p mpd

    =

    =

    =

    =

  • Fast and stable equilibrium

    1 1

    1 1

    ( ) ' 0

    ( ) ' 0

    k x x k x

    m p p m p

    = =

    *1 1

    *2 2

    ''

    '

    kxx x

    k kk x

    x xk k

    = =+

    = =+

    *1 1

    *2 2

    ''

    '

    mpp p

    m mm p

    p pm m

    = =+

    = =+

  • The aggregated model

    1dx x

    rx axpdt K

    dpbxp dp

    dt

    =

    = ( ) ( )

    1 1 2 2

    1 1 1 2 2 2

    1 1 1 2 2 2

    1 1 2 2

    2 2

    1 1 2 2

    1 2

    r r r

    a a a

    b b b

    d d d

    rK

    r r

    K K

    = += += += +

    =

    +

    with

  • Condition for predator persistence

    bK d> bK d

  • AggregatedAggregated model model similarsimilar to to completecomplete modelmodel

    Complete model Aggregated model

    ( )

    ( )

    1 12 1 1 1 1 1 1

    1

    2 21 2 2 2 2 2 2

    2

    12 1 1 1 1 1 1

    21 2 2 2 2 2 2

    ' 1

    ' 1

    '

    '

    dx xkx k x r x a x p

    d K

    dx xk x kx r x a x p

    d K

    dpmp m p b x p d p

    ddp

    m p mp b x p d pd

    = +

    = +

    = +

    = +

    1dx x

    rx axpdt K

    dpbxp dp

    dt

    =

    =

  • When the fast derivation

    method fails

  • 1 2

    ( )

    ( )

    =

    +=

    +=

    11

    222121212

    1111212121

    NebPd

    dP

    NrNmNmd

    dN

    ParNNmNmd

    dN

  • =

    =

    PeaNPdt

    dP

    aNPrNdt

    dN

    N

    Nr

    N

    Nrr

    *2

    2

    *1

    1 += NN

    aa*

    11=

    2112

    21*2

    2112

    12*1 mm

    NmN

    mm

    NmN

    +=

    +=

    Reduction of the model

  • ( )

    ( )

    =

    =

    =

    0

    ;;

    ;;

    d

    d

    yxgd

    dy

    yxfd

    dx

    ( );yhx =

    ( )( )( ) ( ) ( )

    +=

    =

    OyGyG

    yyhgdt

    dy

    0;;

    ;;;

    Thorme de Fnichel (1971)

  • ( ) ( )( )21122

    121*

    2*

    11 ;

    mmN

    ParrNNPN

    +=

    =

    =

    PeaNPdt

    dP

    aNPrNdt

    dN

    ( )( )

    ( )

    +=

    +=

    PNNPeaPeaNPdt

    dP

    ParrPNNaNPrNdt

    dN

    ;

    ;

    11

    1211

    Fenichel center manifold theorem

  • The fast derivation method is valid :

    If the aggregated model is structurally stable

    If

  • References on aggregation methods

    PDEs et DDEs :

    ODEs, JC Poggiale, PhD thesis (1994) :

    Time discrete systems : L. Sanz, PhD thesis (1998) and A. Blasco, PhD thesis (2000) :

    Perfect and approximate aggregation :

    Y. Iwasa, V. Andreasen, S.A. Levin. Aggregation in model ecosystems I. Perfect aggregation. Ecol Model. 37 (1987) 287.

    Y. Iwasa Y., S.A. Levin, V. Andreasen. Aggregation in model ecosystems II. Approximate aggregation. IMA. J. Math. Appl. Med. Bio. 6 (1989) 1.

    P. Auger et R. Roussarie, Complex ecological models with simple dynamics : From individuals to populations, Acta Biotheoretica, 42 (1994) 111.P. Auger & J.C. Poggiale. Aggregation and Emergence in Systems of Ordinary Differential Equations. Math. Computer Modelling. Special issue "Aggregation and Emergence in Population Dynamics". P. Antonelli & P. Auger guest-Editors. 27 (1998) 1.P. Auger and R. Bravo de la Parra. Methods of aggregation of variables in population dynamics. Comptes-Rendus de lAcadmie des Sciences, Sciences de la Vie, 323 (2000) 665.P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sanchez, L. Sanz, T. Nguyen Huu, Chapter in a book, Le Havre Conference, Lecture notes in Mathematics, Mathematical Biosciences sub-series, Springer, to appear.

    O. Arino, E. Sanchez, R. Bravo de la Parra and P. Auger. A model of an age-structured population with two time scales. SIAM J Appl. Math., 60, 408-436, 1999.

    Sanchez E., Bravo de la Parra R., Auger P. and Gomez-Mourelo P. Time scales in linear delayed differential equations. Journal of Mathematical Analysis and Applications, 323, pp. 680-699, 2006.

    R. Bravo de la Parra, P. Auger & E. Sanchez, Aggregation methods in discrete models, Journal of Biological Systems, (1995), 3(2), 603-612.E. Sanchez, R. Bravo de la Parra & P. Auger. Linear Discrete Models with Different Time Scales. Acta Biotheoretica, 43, pp. 465-479, 1995.R. Bravo de la Parra, E. Sanchez, O. Arino and P. Auger. A discrete model with density dependent fast migration.Mathematical Biosciences, 157, 91-109, 1999.

  • D-D dispersal in a patchy environment

    P. Amarasekare. Interactions between Local Dynamics and Dispersal: Insights from Single Species Models. Theoretical Population Biology, 53 (1998) 44.

    P. Amarasekare. Spatial variation and density-dependent dispersal in competitive coexistence. Proc. R. Soc. Lond. B 271 (2004) 1497.

    P. Amarasekare. The role of density-dependent dispersal in sourcesink dynamics. Journal of Theoretical Biology, 226 (2004) 159.

  • DensityDensity dependentdependent migration of migration of predatorspredators

    R. Mchich, P. Auger, R. Bravo de la Parra and N. Rassi, 2002. Ecological Modelling.

    11 0

    1'( )m x

    x =

    +

    22 0

    1( )m x

    x =

    +

    ( )

    ( )

    1 12 1 1 1 1 1 1

    1

    2 21 2 2 2 2 2 2

    2

    12 2 1 1 1 1 1 1 1

    21 1 2 2 2 2 2 2 2

    ' 1

    ' 1

    ( ) '( )

    '( ) ( )

    dx xkx k x r x a x p

    d K

    dx xk x kx r x a x p

    d K

    dpm x p m x p b x p d p

    ddp

    m x p m x p b x p d pd

    = +

    = +

    = +

    = +

  • Fast and stable equilibrium

    *1 1

    *2 2

    ''

    '

    kxx x

    k kk x

    x xk k

    = =+

    = =+

    ( )( )

    ( )( )

    1 0*1 1

    1 2 0

    2 0*2 2

    1 2 0

    ( )2

    ( )2

    x pp x p

    x x

    x pp x p

    x x

    += =

    + +

    += =

    + +

  • 1 ( )

    ( ) ( )

    dx xrx a x xp

    dt K

    dpb x xp d x p

    dt

    =

    = ( ) ( )

    1 1 2 2

    1 1 1 2 2 2

    1 1 1 2 2 2

    1 1 2 2

    2 2

    1 1 2 2

    1 2

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    r r r

    a x a x a x

    b x b x b x

    d x d x d x

    rK

    r r

    K K

    = +

    = +

    = +

    = +

    =

    +

    Aggregated model

  • EmergenceEmergence

    The complete model The aggregated model

    1 ( )

    ( ) ( )

    dx xrx a x xp

    dt K

    dpb x xp d x p

    dt

    =

    = ( )

    ( )

    1 12 1 1 1 1 1 1

    1

    2 21 2 2 2 2 2 2

    2

    12 2 1 1 1 1 1 1 1

    21 1 2 2 2 2 2 2 2

    ' 1

    ' 1

    ( ) '( )

    '( ) ( )

    dx xkx k x r x a x p

    d K

    dx xk x kx r x a x p

    d K

    dpm x p m x p b x p d p

    ddp

    m x p m x p b x p d pd

    = +

    = +

    = +

    = +

  • EmergenceEmergence

    Functional emergence : The mathematical functions of the aggregated and local models are different

    Dynamical emergence : The dynamics of the aggregated model isqualitatively different from the dynamics of the local model

  • The predator-prey model with prey D-D predator dispersal and predator D-D prey dispersal

    1 12 2 0 2 1 1 0 1 1 1 1 1 1

    1

    2 21 1 0 1 2 2 0 2 2 2 2 2 2

    2

    1 2 11 1 1 1 1

    2 2 0 1 1 0

    2 1 2

    1 1 0 2 2 0

    ( ) ( ) 1

    ( ) ( ) 1

    [ ]

    dn np n p n rn a n p

    d K

    dn np n p n r n a n p

    d K

    dp p pp b n p

    d n n

    dp p p

    d n n

    = + + +

    = + + +

    = + + + +

    = + + + 2 2 2 2 2[ ]p b n p

    +

    ELABDELLAOUI A., AUGER P., BRAVO DE LA PARRA R., KOOI B. & MCHICH R. Mathematical Biosciences, (2007).

  • Fast equilibrium

    2 2 0 2 1 1 0 1

    2 1

    2 2 0 1 1 0

    ( ) ( )p n p n

    p p

    n n

    + = + = + +

    2 1 0 1 1 1 0 1

    1 1 1 0 1 2 1 0

    ( ( ) )( ) ( )

    ( )( ) ( ( ) )

    p p n n p n

    p p n p n n

    + = + + = +

  • Fast equilibrium

    1 1 2 1 2 1

    AD B CD En p n n n p p p

    + += , = , = , = ,

    2 2 1 0 2 2 1

    0 2 0 2 0 2

    0 2 1 2 1 2 1

    0 0 2 1 0 2

    ( ) (2 )( )

    (2 )( )

    (2 )( ) ( )

    (2 ) ( )

    A n n

    B np n p n

    C p p

    E p p np p

    = +

    = + +

    = +

    = + +

    with

    0 2 0 2 2 1(2 )(2 )p n np = + +

  • The aggregated model

    1 11 1 2 1 1 1 1 2 1 1

    1 2

    1 1 2 1 1 1 1 2 1 1

    1 ( ) 1 ( ( )( ))

    ( ( )) ( )( )

    n n ndnrn r n n a n p a n n p p

    dt K K

    dpp p p bn p b n n p p

    dt

    = + + = + + +

  • Bifurcation analysis (aggregated)

  • Bifurcation analysis (complete model)

    = 0.01

  • Bifurcation analysis (aggregated)

  • Systme hte-parasitode

    Edelstein-Keshet, 1989

    Population dhtes linstant t : NtPopulation de parasitodes linstant t : Pt

  • Modle de Nicholson

    Bailey classique

    Modle( )exp ta P 1t tN N+ =

    Un point dquilibre positif

    ( )( )

    ( )

    ln*

    1

    ln*

    Na c

    Pa

    =

    =1> instable !

    ( )( )1 1 expt t tP c N a P+ =

  • Time Series

    0 5 10 15 20 250

    160

    320

    480

    640

    800

    a = 0.15, c = 1, = 2

    Nt Pt

    Simulations numriques

  • Modle spatialis

    Grille de dimension A x A:

    Dynamique locale

    Phase de dplacement:

    k vnements de dispersion

  • k=1

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

    k=3

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

    k=7

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

    k=15

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

    Effet du paramtre k

    = 0.5

  • Dynamique locale de Nicholson-Bailey

    ( )( )( )

    1 exp

    1 exp

    t t t

    t t t

    N N aP

    P cN aP

    + =

    =

    H

    PMobilit des htes

    Mobilit des parasites

    ( )

    ( )

    1voisins

    1voisins

    18

    18

    Ht H t t

    Pt P t t

    N N N

    P P P

    +

    +

    = +

    = +

    Migration

  • Dynamique spatiale

    Spirales

    H=1, P=0.89, a=1, =2, c=1

    H=0.2, P=0.89, a=1, =2, c=1

    Chaos spatial Structures cristallines

    H=0.05, P=1, a=1, =2, c=1

  • k >> 1: agrgation spatiale

    2

    2

    1

    1 (1 )

    t

    t

    Pa

    At t

    Pa

    At t

    N N e

    P cN e

    +

    +

    =

    =

    * * 1

    i i A = =

    Modle agrg: rpartition spatiale uniforme chaque gnration:

    Modle obtenu: mme forme, paramtres diffrents

  • Simulations numriques

    0

    50000

    100000

    150000

    200000

    250000

    300000

    350000

    400000

    0 200 400 600 800 1000

    t

    den

    sity

    NP

    k=1, A=50

    k faible : persistence

    0

    200000

    400000

    600000

    800000

    1000000

    1200000

    1400000

    1600000

    0 20 40 60 80

    td

    ensi

    ty

    NP

    k=4, A=50

    k fort : instabilit

    Le modle agrg est valide pour de faibles valeurs de k

  • Modle de Nicholson Bailey

    avec quation logistique

    ( )( )1 exp 1 /t tN r N K+ = ( )exp taP( )( )1 1 expt t tP cN aP+ =

    Population dhtes linstant t : NtPopulation de parasitodes linstant t : Pt

  • Iteration Map

    5 7 9 11 13 152

    3,6

    5,2

    6,8

    8,4

    10

    y

    Pt

    Nt

    Point dquilibre stable

    a=0.15, r=2, K=20, c=1

    Types de dynamique

    Iteration Map

    0 12 24 36 48 60

    x

    0

    3

    6

    9

    12

    15

    Courbe invariante

    a=0.2, r=2.6, K=50, c=0.4

    Nt

    PtIteration Map

    0 20 40 60 80 1000

    10

    20

    30

    40

    50

    Nt

    Pt

    a=0.15, r=2.5, K=50, c=1

    Attracteur chaotique

  • Dynamique locale: modle de Nicholson-Bailey avec croissance logistique des htes

    ( )

    ( )

    1voisins

    1voisins

    18

    18

    Ht H t t

    Pt P t t

    N N N

    P P P

    +

    +

    = +

    = +

    PH Mobilit des htes

    Mobilit des parasitodes

    Migration (rpte k fois)

    ( )

    ( )( )1

    1

    exp 1 exp

    1 exp

    tt t t

    t t t

    NN N r aP

    K

    P cN aP

    +

    +

    =

    =

  • k=1 k=2

    k=3 k=4

    Modle complet. La densit des htes estreprsente en bleu.

    a = 0.2, r = 2.6, K = 50,

    c = 0.4,

    n= p= 1 et A = 200.

  • k >> 1: agrgation spatiale

    1 2 2

    2

    exp 1 exp

    1 exp

    t tt t

    tt t

    N aPN N r

    KA A

    aPP cN

    A

    + =

    =

    * * 1

    i i A = =

    Modle agrg: rpartition spatiale uniforme chaque gnration:

    Modle obtenu: mme forme, paramtres diffrents

  • a=0.2, r=2.6, K=50, c=0.4, n=p=1 et A=50. (b)-(c)-(d) Modle agreg (a) en rouge, et le modle

    complet pour k=1 en bleu pour 0

  • Modle agrg (rouge) avec k=1, A=100 (a) pour 1000

  • Sensibilit aux conditions

    initiales

    (a) (b) (c)

  • ++----CI(c)

    +++++-CI(b)

    +++++-CI(a)

    987421k

    a=0.2, r=2.6, K=50, c=0.4, A=100 and n=p=1, +(resp. -) : la distribution des hteset des parasitodes tend (resp. ne tend pas) vers luniformit spatiale

    Effet du paramtre k : A=100

    Valeur seuil de k

    k 10832

    2001005030A

  • Rsultats

    Le modle agrg est utilisable pour de faibles valeurs de k mthodes dagrgation des variables utilisables sur des modles appliqus

    Pas dmergence

    Le synchronisme spatial peut tre d la dispersion des individus (alternative effet Moran)

  • Un modle de dynamique dune

    population de carabe forestier

    en milieu fragment

    Pierre Auger*, Franoise Burel**,

    Jean-Baptiste Pichancourt**

    *IRD UR Geodes, Centre dle de France

    **UMR CNRS Ecobio, Universit de Rennes

  • B Bois, Fort, bosquets

    M Matrice agricole : Mas

    H Haies de bords de champs1 . . ttN L M N+ =

    A.ModleA.ModleA.ModleA.Modle de Leslie spatialisde Leslie spatialisde Leslie spatialisde Leslie spatialis

    Matrice de diffusion (stepping stone)

    Fuit M B, CC ou H

    Quitte peu B

    Ne distingue pas B et CC

    Fcondit (f) : f(B) et f(CC)

    Survie (s): s(B)=s(CC) > s(H) > s(M)

    Matrice dmographique de Leslie

    L A1 A2

    S21 S32S33

    F13

    CC chemin creux bord de haies

  • paysage en grille

    B. Modle de paysage & modle de mouvement

    0.2

    1

    0.5

    0.5

    H

    0.20.50.5H

    111M

    0.110.5CC

    0.050.51B

    MCCBElments

    transitions entre lments (qij)

    mij = pj . qij

    Martin (2001); Pichancourt et al. Ecological Modelling (2006)

    Paysage en diagramme

    %%B

    M

    H CC

    Simplification du modle de mouvement

  • 1k

    t tN LM N+ =

    k augmente

    Fragmentation = diminution de la quantit dhabitat favorable (exemple : bois) + volution des grandes taches vers des taches plus petites et loignes

  • Agrgation de variables Agrgation de variables Agrgation de variables Agrgation de variables

    (10% CC)(10% CC)(10% CC)(10% CC)

    95% 100%agrgcomplet

    < qui lui est diffomorphe et qui est localement invariante sous laction

    du flot dfini par le systme diffrentiel.

    .est alors ,est Si kk CMCf

  • Bifurcation diagram

    Cost window for stability

    Stability for models I and II

    Domain with two limit cycles

  • Prey-predator model with predator density

    dependent migration of prey

    MCHICH R., AUGER P. and POGGIALE J-C. Effect of predator density dependent dispersal of prey on stability of a predator-prey system. Mathematical Biosciences. 206(2), pp. 343-356, 2007.

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( )

    ( )222222121111112

    1

    222222021012

    111111012021

    '

    '

    pnbnmppmd

    dp

    pnbnpmmpd

    dp

    pnanrnpnpd

    dn

    pnanrnpnpd

    dn

    ++=

    ++=

    +++=

    +++=

  • The aggregated model :

    ( )

    ( )

    2

    0

    2

    0

    1

    2

    1

    2

    dnrn anp bnp

    dt p

    dpMp bnp cnp

    dt p

    = + +

    = + ++

    1 2 = +

    Prey-predator model with predator density

    dependent migration of prey

  • 02 c b

    Similar Patches : Coexistence = 1 2

    Prey-predator model with predator density

    dependent migration of prey

  • Fast equilibrium : adding S, D and F

    ( )

    ( )

    =

    =

    AuuAucpd

    dp

    AuuAucpddp

    T

    DDDD

    T

    HDHH

    )(

    )(

    Replicator equations

  • Game dynamics and time scales

    Game dynamics : evolutionary time scales

    Behavioural plasticity : fast time scale

    Domestic cats

    P. AUGER & D. PONTIER. Mathematical Biosciences, 1998.

    D. PONTIER, P. AUGER, R. BRAVO DE LA PARRA, E. SANCHEZ. Ecological Modelling, 2000.

  • Hierarchical structure

    Fast intra-group dynamics

    Slow inter-group dynamics

  • Complete model

    A groups and N sub-groups

    Fast part

    ( )

    Nii xxxf

    d

    dx,...,,

    21=

    1

  • Which global variables ?A groups and N sub-groups

    Conservative fast dynamics

    Aggregated variables

    ( )

    Nii xxxf

    d

    dx,...,, 21=

    t=

    Y

    Fast time

    First integral

    =i

    ixY

    0=

  • Building an aggregated model

    Fast stable equilibrium

    ( ) 0,...,, 21 ==

    Nii xxxf

    d

    dx

    ( ) ( ) ( ) ( )( )

    =

    i NNiYxYxYxYxf

    dt

    dY **1

    **

    1,...,,,...,

    ( ) Yxi *

    Substitution of the fast equilibrium

    The dynamics of the aggregated model is an approximation of the dynamics of the complete model

  • Two models

    ( ) ( ) ( ) ( )( )

    =

    iNNi

    YxYxYxYxfdt

    dY **1

    **

    1,...,,...,,..., )(O+

    Aggregated model

    ( )

    Nii xxxf

    d

    dx,...,,

    21= ( )

    +

    NNi

    xxxxxxf ,...,,,,...,,2121

    Complete model

  • : paramtre positif dcrivant la rapidit de lajustement du prix sur le march

    A : capacit limite du march >0

    Equilibre rapide:

    R. Mchich, P. Auger, N. Rassi & B. Koii, 2008. Stability of a fishery bio-economic model with price equation. Theoretical Population Biology. Submitted.

    Effet du prix variable : contexte pcherieEffet du prix variable : contexte pcherie

  • Points dquilibre:

    (0,0): E0 point selle

    (K,0): EK stable si K(3A/K)

    Modle agrgModle agrg

  • Changement de variablesChangement de variablesChangement de variablesChangement de variablesChangement de variablesChangement de variablesChangement de variablesChangement de variables

  • LOCBIF & DsTool

  • Surexploitation: (n1,E1)

    Pcherie durable: (n3,E3)

    Comparaison des prix des deux quilibresComparaison des prix des deux quilibresComparaison des prix des deux quilibresComparaison des prix des deux quilibresComparaison des prix des deux quilibresComparaison des prix des deux quilibresComparaison des prix des deux quilibresComparaison des prix des deux quilibres

  • Two fisheries

    An over exploited fishery : The fishery allows a large fishing effort at a satisfyingmarket price but the fish density is maintained at a low level with extinction risk.

    A traditional fishery : The fishery maintains the fish stock at a desirable levelfar from extinction but with small fishing effort and market price.

  • Zone

    2 (C

    )

    Zone

    1 (C

    entr

    ale)

    Cap Boujdor

    Cap Juby

    Cap Ghir

    Cap Cantin

    Cap Blanc

    Zones des pcheries de la sardine en atlantique marocain

  • Deux flottes de pche

    Classe 2 (e)Classe 1 (E)

    396284Puissance Moyenne

    (CV)

    [70-120][25-70]T.J.B

  • ( )

    ( )

    ( ) ( )

    ( ) ( )

    1 11 1 1 1 1 1 1 1

    1

    2 22 2 2 2 2 2 2 2

    2

    11 1 1 1 1

    22 2 2 2 2

    12 1 1 1 1 1 1

    21 2 2 2 2 2 2

    1

    1

    dn nr n a n e a n E

    d K

    dn nr n a n e a n E

    d K

    dEc E pa n E

    ddE

    c E pa n Edde

    me me c e pa n edde

    me me c e pa n ed

    =

    =

    = +

    = +

    = + +

    = + +

    Un modle avec deux flottes sur deux zones

    E1, E2 : efforts de pche des petits vaisseaux

    n1, n2 : densit de poissons sur les deux zones

    e1, e2 : efforts de pche des petits vaisseaux

  • Paramtres estimer :

    Paramtres relatifs la dynamique et lexploitation du stock :

    0.00350.025Coefficient de capturabilitq

    57231703Capacit de charge K

    1.141.53Taux de croissance r

    Zone CZone

    (Centrale)

    Informations utilises pour lestimation :

    Sries de biomasses de la sardines de 1995 2005(Rapports de campagnes acoustiques Dr Fridtjof Nansen)

    Sries de captures de la sardine dans les ports de 1995 2005(Statistiques de lOffice National de Pche)

    Sries des efforts de pche de 1995 2005(Donnes de la FAO)

  • Paramtres relatifs lexploitation et la commercialisation de la sardine:

    Classe 2Classe 1

    1.08Prix moyen (Dh/Kg)

    110147237Cot par unit deffort

    29%Conserve+Conglation

    2%Appts

    22%Consommation locale

    47%Sous produits

    Proportion annuelleDestination

    Destinations de la sardine pche:

    Source: Daprs A. Kamili (2006); Mmoire de master intilul: BIO-ECONOMIE ET GESTION DE LA PECHERIE DES PETITS PELAGIQUES: Cas de lAtlantique Centre Marocain

    Prix par unit de poisson (Kg) et cot par unit deffort (Jours de pche) :