54
Olivier GRANIER (O.Granier) Potentiels et champs électrostatiques

Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

(O.Granier)

Potentiels et champs

électrostatiques

Page 2: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

INTRODUCTION

Électromagnétisme(Équations de Maxwell,

fin XIXème siècle)

Électrostatique

Magnétostatique

Phénomènes d’induction

Ondes électromagnétiques

L’électrostatique est l’étude des interactions entre particules chargées immobiles (dans le référentiel du laboratoire). Les notions importantes abordées sont les notions de champs et de potentiels.

Page 3: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

I – CHARGES ELECTRIQUES ET LOI DE COULOMB

1 – Charges électriques :

Il existe deux sortes de charges électriques, appelées, par convention, positives et négatives.

Deux charges de même signe se repoussent

Deux charges de signe contraire s’attirent

Toutes les charges rencontrées dans la nature (à l’état libre, contrairement aux quarks emprisonnés dans les particules microscopiques) sont des multiples de la charge élémentaire de l’électron (la charge est quantifiée) :

Principe général de conservation de la charge électrique (réactions chimiques ou réactions nucléaires).

)10.6,1,(19

CeZnneQ−=∈=

Page 4: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

212

21

04

1→= u

r

qqf

rr

πε

M1 (q1)

M2 (q2)

r=M1M2

21→fr

12→fr

21→ur

1221 →→ −== fffrrr

εεεε0 : permittivité du vide

(1/4πεπεπεπε0 = 9.109 USI)

021

>qq

2 – Loi de Coulomb :

La force d’interaction entre deux charges ponctuelles placées dans le vide est donnée par la loi de Coulomb (1785) :

Cette loi est également valable dans l’air (εεεεr = 1,00058).

Page 5: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

3 – Répartitions continues de charges :

La charge élémentaire e étant très faible, la quantification de la charge ne se remarque pas à l’échelle macroscopique. On va pouvoir décrire la charge d’un corps chargé par une variable continue (analogue de la masse volumique pour un solide, par exemple).

Soit un corps chargé en volume :

On note Q sa charge électrique totale et V son volume total.

On peut définir une densité volumique de charge moyenne (équivalente de la masse volumique moyenne d’un solide) :

Corps (C)

(Q,V)

V

Qmoy =ρ

Page 6: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

On considère un volume dττττ (autour de M), petit vis-à-vis du volume occupé par tout le corps chargé, mais grand par rapport à la taille d’une molécule (échelle mésoscopique)

On note dq la charge de ce volume élémentaire. La densité volumique de charges électriques au point M est définie par :

La charge totale portée par le corps est alors :

M

).()(3−= mCen

d

dqM ρ

τρ

Volume dττττ

Charge dq

∫∫∫==)(

)()(V

dMQsoitdMdq τρτρ

Page 7: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Expression du volume élémentaire dττττ :

• Coordonnées cartésiennes :

• Coordonnées cylindriques :

• Coordonnées sphériques :

dzdydxd =τ

dzddrrdzrddrd θθτ == ))()((

ϕθθϕθθτ dddrrdrrddrd sin)sin()()(2==

Exemple : exercice n°1

Page 8: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

S

Q=σ

Soit un corps chargé en surface :

On note Q sa charge électrique totale et S sa surface totale.

On peut définir une densité de charge surfacique moyenne (équivalente de la masse surfacique moyenne d’une feuille de papier d’aluminium, par exemple) :

Surface dS

Charge dq

M

Surface chargée (S,Q)

On note dq la charge portée par la surface élémentaire dS. La densité surfacique de charges électriques au point M est définie par :

La charge totale portée par le corps est alors :

).()(2−= mCen

dS

dqM ρσ

∫∫==)(

)()(S

dSMQsoitdSMdq σσ

Page 9: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

L

Qmoy =λ

Soit un corps chargé de manière linéique :

On note Q sa charge électrique totale et L sa longueur totale.

On peut définir une densité de charge linéique moyenne (équivalente de la masse linéique moyenne d’un fil de fer, par exemple) :

Longueur dL

Charge dqM

Fil chargé (L,Q)

On note dq la charge portée par la longueur élémentaire dL. La densité linéique de charges électriques au point M est définie par :

La charge totale portée par le corps est alors :

).()(1−= mCen

dL

dqM ρλ

∫==)(

)()(L

dLMQsoitdLMdq λλ

Page 10: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

II – LE CHAMP ELECTROSTATIQUE

1 – Cas d’une charge ponctuelle :

On considère une charge ponctuelle q immobile placée à l’origine O d’un repère galiléen.

Soit q’ une charge test placée en un point M qui peut varier dans l’espace.

La charge test q’ est soumise à la force de Coulomb :

rur

qqMf

rr

20

'

4

1)(

πε=

M(q’)

O(q) y

z

rur

r = OMru

r

qqMf

rr

20

'

4

1)(

πε=

x

Le champ électrique créé par la charge q placée en O au point M est, par définition :

'

)()(

q

MfME

rr

=

Page 11: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Soit :

rur

qME

rr

204

1)(

πε=

Ce champ est défini partout (sauf en O), même en l’absence

de charge test.

Charge positive en O

« Lignes » de champs

divergentes

Page 12: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Charge négative en O

« Lignes » de champs

convergentes

Lignes de champs : c’est une ligne de l’espace telle qu’en tout point M de cette ligne, la tangente et le champ E en ce point sont parallèles. Cette ligne est orientée dans le sens du champ.

Une introduction à la notion de champ

(doc pdf)

Page 13: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

2 – Cas d’un ensemble de charges ponctuelles :

On considère un ensemble (Oi,qi) de charges ponctuelles :

∑∑==

==n

i

ir

i

in

i

i ur

qMEME

1

,201

4

1)()(

rrr

πε

(Oi,qi)

(On,qn)

(O2,q2)(O1,q1)

M )(MEi

r

)(MEr

iru ,

rMOr ii =

(Principe de superposition)

Page 14: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Deux charges ponctuelles

(+ q et – q)

(Dipôle électrostatique)

+ q - q

Page 15: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Trois charges ponctuelles

(+ 2q, – q et - q)

(Quadripôle électrostatique)

+ 2q - q- q

Page 16: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Quatre charges ponctuelles

identiques (+ q) au sommet d’un carré

Page 17: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

3 – Cas de répartitions continues de charges :

a - Répartition volumique :

PVolume dττττ

Charge dq

M )(MEd P

r

)(MEr

MPu →

r

PMr =

Volume total V

MPMPP ur

dPu

PM

dqMEd →→ ==

rrr

20

20

)(

4

1

4

1)(

τρ

πεπε

Le champ élémentaire créé par la charge élémentaire dq centrée autour de P au point M vaut :

Page 18: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

PVolume dττττ

Charge dq

M )(MEd P

r

)(MEr

MPu →

r

PMr =

Volume total V

∑= )()( MEdME P

rr

Le principe de superposition permet d’en déduire le champ global créé par tout le corps chargé au point M :

∫∫∫ →=)( 2

0

)(

4

1)(

VMPu

r

dPME

rr τρ

πε

Intégrale vectorielle, soit 3 intégrales triples

scalaires !

Page 19: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

3 – Cas de répartitions continues de charges :

b - Répartition surfacique :

M )(MEd P

r

)(MEr

PMr =

Surface totale S

MPMPP ur

dSPu

PM

dqMEd →→ ==

rrr

20

20

)(

4

1

4

1)(

σ

πεπε

Le champ élémentaire créé par la charge élémentaire dq centrée autour de P au point M vaut :

Surface dS

Charge dqP

Page 20: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

∑= )()( MEdME P

rr

Le principe de superposition permet d’en déduire le champ global créé par tout le corps chargé au point M :

∫∫ →=)( 2

0

)(

4

1)(

SMPu

r

dSPME

rr σ

πε

Intégrale vectorielle, soit 3 intégrales doubles scalaires !

M )(MEd P

r

)(MEr

PMr =

Surface totale S

Surface dS

Charge dqP

Page 21: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

3 – Cas de répartitions continues de charges :

c - Répartition linéique :

MPMPP ur

dLPu

PM

dqMEd →→ ==

rrr

20

20

)(

4

1

4

1)(

λ

πεπε

Le champ élémentaire créé par la charge élémentaire dq centrée autour de P au point M vaut :

Longueur dL

Charge dq

Fil chargé (L,Q)

M )(MEd P

r

)(MEr

PMr =P

Page 22: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Le principe de superposition permet d’en déduire le champ global créé par tout le corps chargé au point M :

∫ →=)( 2

0

)(

4

1)(

LMPu

r

dLPME

rr λ

πε

Longueur dL

Charge dq

Fil chargé (L,Q)

M )(MEd P

r

)(MEr

PMr =P

Page 23: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

4 – Exemples de calculs directs de champs électrostatiques :

a – Champ créé par un segment uniformément chargé : (ex n°2)

Page 24: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

4 – Exemples de calculs directs de champs électrostatiques :

b – Champ créé par disque uniformément chargé : (ex n°3)

c – Champ créé par une sphère chargée en surface : (ex n°4)

Page 25: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

II – LE POTENTIEL ELECTROSTATIQUE

1 – Cas de charges ponctuelles :

On considère une charge ponctuelle q immobile placée à l’origine O d’un repère galiléen.

Soit q’ une charge test placée en un point M qui peut varier dans l’espace.

M(q’)

O(q) y

z

rur

r = OMru

r

qqMf

rr

20

'

4

1)(

πε=

x

L’énergie potentielle de la particule « test » vaut (voir cours de mécanique) :

Elle est reliée à la force coulombienne par (voir cours de mécanique) :

r

qqrE p

'

4

1)(

0πε=

r

pu

dr

dEMf

rr−=)(

Page 26: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

On définit le potentiel électrostatique U(r) par :

On a la même relation entre la force et le champ et entre l’énergie potentielle et le potentiel, à savoir :

Comme , on déduit que :

Soit encore :

r

qrUsoit

q

rErU

p

04

1)(

'

)()(

πε==

EqfetrUqrE p

rr')(')( ==

r

pu

dr

dEMf

rr−=)(

rudr

dUME

rr−=)(

dUrdME −=rr

).(

Page 27: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

On considère maintenant un ensemble (Oi,qi) de charges ponctuelles.

(Oi,qi)

(On,qn)

(O2,q2)(O1,q1)

M )(MEi

r

)(MEr

iru ,

rMOr ii =

Le principe de superposition permet d’en déduire le potentiel créé par l’ensemble des charges ponctuelles :

∑∑==

==n

i i

in

i

ir

qMUMU

1 014

1)()(

πε

Page 28: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

On peut écrire la relation entre le champ et le potentiel créé par la charge ponctuelle (i) :

Par conséquent, en sommant :

D’où :

On obtient ainsi pour le champ global une relation similaire à celle valable pour chaque champ Ei. Nous verrons que cette propriété caractérise un champ de gradient.

ii dUrdME −=rr

).(

−=

−= ∑∑∑∑

====

n

i

i

n

i

i

n

i

i

n

i

i UdrdMEsoitdUrdME

1111

.)()).((rrrr

dUrdME −=rr

).(

Page 29: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

2 – Cas de distributions continues :

PVolume dττττ

Charge dq

M

MPu →

r

PMr =

Volume total V

r

dP

PM

dqMdU P

τρ

πεπε

)(

4

1

4

1)(

00

==

Le potentiel élémentaire créé par la charge élémentaire dq centrée autour de P au point M vaut :

∫∫∫=)(

0

)(

4

1)(

V r

dPMU

τρ

πε

Le potentiel total s’en déduit (« simple intégrale » scalaire) :

a - Répartition volumique :

Page 30: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

2 – Cas de répartitions continues de charges :

b - Répartition surfacique :

MPMr =

Surface totale S

Surface dS

Charge dqP Le potentiel élémentaire créé par la charge

élémentaire dq centrée autour de P au point M vaut :

r

dSP

PM

dqMdU P

)(

4

1

4

1)(

00

σ

πεπε==

∫∫=)(

0

)(

4

1)(

S r

dSPMU

σ

πε

Le potentiel total s’en déduit (« simple intégrale » scalaire) :

Page 31: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

2 – Cas de répartitions continues de charges :

c - Répartition linéique :

∫=)(

0

)(

4

1)(

L r

dLPMU

λ

πε

Le potentiel élémentaire créé par la charge élémentaire dq centrée autour de P au point M vaut :

Longueur dL

Charge dq

Fil chargé (L,Q)

M

PMr =P

r

dLP

PM

dqMdU P

)(

4

1

4

1)(

00

λ

πεπε==

D’où :

Page 32: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

3 – Relation intrinsèque entre le champ et le potentiel :

La relation démontrée dans le cas d’une répartition discrète de charges ponctuelles reste valable dans le cas d’une distribution continue :

dUrdME −=rr

).(

Cette relation caractérise un champ de gradient.

On se place en coordonnées cartésiennes :

zzyyxx uEuEuEMErrrr

++=)(*

zyx udzudyudxrdrrrr

++=*

dzz

Udy

y

Udx

x

UdU

∂+

∂+

∂=*

Page 33: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

On calcule le produit scalaire :

Par identification avec – dU :

Il vient :

Soit :

dzEdyEdxErdME zyx ++=rr

).(

∂+

∂+

∂−= dz

z

Udy

y

Udx

x

U

rdMErr

).(

dzEdyEdxE zyx ++

z

UE

y

UE

x

UE zyx

∂−=

∂−=

∂−= ;;

UgradE −=r

Page 34: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Expressions de l’opérateur gradient en :

Coordonnées polaires (r,θ,θ,θ,θ) ::::

Coordonnées cylindriques (r,θ,θ,θ,θ,z) ::::

Coordonnées sphériques (r,θ,ϕ),θ,ϕ),θ,ϕ),θ,ϕ) ::::

θθ

∂−=

∂−=

U

rE

r

UEr

1;

z

UE

U

rE

r

UE zr

∂−=

∂−=

∂−= ;

1;

θθ

ϕθθϕθ

∂−=

∂−=

∂−=

U

rE

U

rE

r

UEr

sin

1;

1;

Page 35: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

4 – Exemples de calculs de potentiels :

Exemple : exercice n°3

On calcule directement le potentiel puis on en déduit le champ par la relation :

UgradE −=r

Page 36: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

1 – Distribution de charges possédant un plan de symétrie :

On considère la répartition volumique suivante de charges :

III – LES SYMETRIES DU CHAMP ELECTROSTATIQUE

P PS

(V)

Plan de symétrie ΠΠΠΠ+

Le corps chargé possède une forme géométrique symétrique par rapport au plan (ΠΠΠΠ+) et, par ailleurs :

)()( PPS ρρ =

Page 37: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

P PS

(V)Plan de symétrie ΠΠΠΠ+

M est un point quelconque de l’espace et MS son symétrique par rapport au plan (ΠΠΠΠ+) : )(MsymM S +Π

=

M MS

)(MEd P

r

dττττ dττττ

)( SP MEdS

r

SS MPu →

r

MPu →

r

SSS MP

SS

SSPMPP u

MP

dPMEdu

PM

dPMEd →→ ==

rrrr

20

20

)(

4

1)(;

)(

4

1)(

τρ

πε

τρ

πε

Page 38: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

P PS

(V)Plan de symétrie ΠΠΠΠ+

Avec :

M MS

)(MEd P

r

dττττ dττττ

)( SP MEdS

r

SS MPu →

rMPu →

r

))(()( MEdSymMEd PSPS

rr

+Π=

)(;;)()( MPMPSSS uSymuMPPMPPSS →Π→ +===

rrρρ

Il vient :

Par intégration, on déduit : ))(()( MESymME S

rr

+Π=

)(MEr

)( SMEr

Page 39: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

P PS

(V)

Plan de symétrie ΠΠΠΠ+

M

dττττ dττττ

Si M appartient au plan (ΠΠΠΠ+), M et MS sont confondus.

Par conséquent :

)()())(()(+

ΠΠ∈= + MEsoitMESymME

rrr

)(MEr

)()()(++ Π∈⇒Π∈ MEM

r

Page 40: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

M(z)

Le plan (Oxy) est un plan de symétrie (ΠΠΠΠ+) pour la répartition de charges.

(Ici, les points P et PS sont confondus).

Par conséquent :

Exemple : disque circulaire chargé uniformément en surface

)(zEr

z

O

MS(-z)

σσσσ

x

y

)( zE −r

)()())(()( )( zEzEsoitzEsymzE Oxy −=−=−rrr

Tous les plans contenant l’axe (Oz) sont des plans de symétrie (ΠΠΠΠ+) pour la répartition de charges.

Par conséquent, pour un point M(z) de l’axe (Oz) :

zuzEzErr

)()( =

zur

Page 41: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

M(r,θθθθ,ϕϕϕϕ)

Exemple : sphère chargée uniformément en volume

rurEMErr

)()( =O

Exemple : cylindre infini chargé uniformément en volume∞

M(r,θθθθ,z)

rurEMErr

)()( =r

rcste=ρ

cste=ρ

Symétrie sphérique

Symétrie cylindrique

Page 42: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

2 – Distribution de charges possédant un plan d’anti-symétrie :

On considère désormais la répartition volumique suivante :

P PS

(V)

Plan d’anti-symétrie ΠΠΠΠ-

Le corps chargé possède une forme géométrique symétrique par rapport au plan (ΠΠΠΠ-) et, par ailleurs :

)()( PPS ρρ −=

Page 43: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

P PS

(V)Plan d’anti-symétrie ΠΠΠΠ-

M est un point quelconque de l’espace et MS son symétrique par rapport au plan (ΠΠΠΠ-) : )(MsymM S −Π

=

M MS

)(MEd P

r

dττττ dττττ

)( SP MEdS

r

SS MPu →

rMPu →

r

SSS MP

SS

SSPMPP u

MP

dPMEdu

PM

dPMEd →→ ==

rrrr

20

20

)(

4

1)(;

)(

4

1)(

τρ

πε

τρ

πε

Page 44: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

P PS

(V)Plan d’anti-symétrie ΠΠΠΠ-

Avec :

MMS

)(MEd P

r

dττττ dττττ

)( SP MEdS

r

SS MPu →

rMPu →

r

))(()( MEdSymMEd PSPS

rr

−Π−=

)(;;)()( MPMPSSS uSymuMPPMPPSS →Π→ +==−=

rrρρ

Il vient :

Par intégration, on déduit : ))(()( MESymME S

rr

−Π−=

)(MEr

)( SMEr

Page 45: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

P PS

(V)

Plan d’anti-symétrie ΠΠΠΠ-

dττττ dττττ

Si M appartient au plan (ΠΠΠΠ-), M et MS sont confondus.

Par conséquent :

)()())(()(−

ΠΠ⊥−= − MEsoitMESymME

rrr

)(MEr

)()()(−− Π⊥⇒Π∈ MEM

r

M

Page 46: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Exemple : deux hémisphères chargés + ρ ρ ρ ρ et - ρρρρ

Le plan (Oxz) est un plan (ΠΠΠΠ-).

En tout point de ce plan :

yuMEMErr

)()( =

M

O

ρ+

x

y

z

ρ+

ρ+

ρ−

ρ−

ρ−

ρ−ρ+

yuMEMErr

)()( =

Page 47: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

4 – Topographie du champ électrostatique ; lignes de champs et lignes équipotentielles :

Lignes de champs : c’est une ligne de l’espace telle qu’en tout point M de cette ligne, la tangente et le champ E en ce point sont parallèles. Cette ligne est orientée dans le sens du champ.

Le long d’une ligne de champ, un déplacement est parallèle au champ :

Surfaces équipotentielles : on appelle surface équipotentielle une surface (ΣΣΣΣ) sur laquelle le potentiel électrostatique est une constante U0 :

)()( 0 Σ∈= MpourUMU

rdr

rdr

)(MEr

M

Ligne de champ

rdMErr

//)(

0)(rrr

=∧ rdME

Page 48: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Propriétés des lignes de champs :

* En tout point M d’un domaine où existe une champ électrostatique, la ligne de champ et la surface équipotentielle passant par ce point sont perpendiculaires :

Ligne de champ

M rdr

)(MEr

Surface équipotentielle

(ΣΣΣΣ0)

Soit un déplacement sur la surface équipotentielle (ΣΣΣΣ0) :

Par conséquent :

rdr

)(0).( 0UcsteUdUrdME ===−=rr

MenMEsoitrdME )()()( 0Σ⊥⊥rrr

Page 49: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Propriétés des lignes de champs :

* Les lignes de champs sont orientées selon les potentiels décroissants :

Soit un déplacement sur la ligne de champ dans le sens positif (donné par le sens du champ) :

Or, E(M).dr > 0, par conséquent :

rdr

dUdrMErdME −== ).().(rr

rdr

)(MEr

M

Ligne de champ

0<dU

Une animation java qui permet de tracer des lignes de champs.

Page 50: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Quelques remarques générales :

• Au voisinage d’une charge ponctuelle, la carte de champ correspond à celle d’une seule charge ponctuelle isolée.

• Les lignes de champs sont toutes issues d’une charge positive et se dirigent soit vers l’infini soit vers une charge négative.

• Aucune ligne de champ n’est une ligne fermée.

Cartes de champs électrostatiques :

On représente dans le plan de la figure (P) les lignes de champs par des courbes fléchées en traits pleins et les sections par le plan (P) des surfaces équipotentielles par des pointillés (lignes équipotentielles).

• Les lignes de champs ne se coupent jamais (sinon le champ aurait 2 directions différentes en un même point).

• Le nombre de lignes qui partent d’une charge ou qui se dirigent vers elle est proportionnel à la grandeur de la charge.

Page 51: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Page 52: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Ensemble neutre de quatre charges

Page 53: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

Exercice : dessiner les lignes du champ créé par deux charges ponctuelles + 2q et – q (avec q > 0).

� Symétrie : les lignes de champs sont symétriques par rapport à la droitejoignant les deux charges.

� Champ au voisinage immédiat : au voisinage immédiat d’une charge, les lignes de champs sont radiales et de symétrie sphérique.

� Champ en un point éloigné : très loin des deux charges, la carte de champ doit correspondre à celle d’une charge unique + q ; les lignes de champs sont donc radiales et divergentes très loin des charges.

� Nombre de lignes : les lignes partant de + 2q sont deux fois plus nombreuses que celles qui arrivent en – q.

Page 54: Potentiels et champs électrostatiquesressources.unisciel.fr/sillages/physique/electro_magneto_1a_pcsi/res… · 2 – Loi de Coulomb : La force d’interaction entre deux charges

Olivier GRANIER

2q - q