Pulsation Course Bruemmer

Embed Size (px)

Citation preview

  • 8/21/2019 Pulsation Course Bruemmer

    1/43

    technische universitt

    dortmund

    Causes and Effects of Pulsationsin Compressor Systems

    A. Brmmer

    Chair of Fluid Technology, TU Dortmund

  • 8/21/2019 Pulsation Course Bruemmer

    2/43

    - 2 -

    technische

    universitt dortmundContents

    1. Definition of pulsations

    2. Excitation mechanisms

    3. Natural frequencies4. Effects of Pulsations

    5. Examples including measures

    6. Vision to discuss

  • 8/21/2019 Pulsation Course Bruemmer

    3/43

    - 3 -

    technische

    universitt dortmundDefinition and example of pulsations

    Pulsations are periodic variations in flow-velocity and pressureabout mean values.

    40

    50

    60

    70

    80

    bar

    80 120 160 200 240

    mstime

    pressure

    Pressure-pulsation inside reciprocating cylinder (red)

    and just outside pressure valve (black)

  • 8/21/2019 Pulsation Course Bruemmer

    4/43

    - 4 -

    technische

    universitt dortmundAcoustic Impedance

    Relationship between velocity pulsation and pressure pulsation:

    Z = p / c or c = p / Z

    Z characteristic acoustic impedance

    (Z = * a for plane waves travelling through pipes in one direction)p amplitude of pressure pulsation

    c amplitude of velocity pulsation

    mass density of gasa speed of sound

    Speed of sound

    a2 = (dp/d)s = *R*T (ideal gas)

    ratio of specific heats (cp/cv)R gas constant

    T absolute temperature

  • 8/21/2019 Pulsation Course Bruemmer

    5/43

    - 5 -

    technische

    universitt dortmundNext chapter

    2. Excitation mechanisms

  • 8/21/2019 Pulsation Course Bruemmer

    6/43

    - 6 -

    technische

    universitt dortmundExcitation mechanisms

    Main sources of pulsation

    positive displacement compressors

    (pocket passing frequency and harmonics)

    centrifugal compressors

    (blade-pass frequency and harmonics)

    vortex shedding(flow around a obstruction)

    high flow turbulence

    (e. g. close to control valves) thermo-acoustic instability

    (heat exchanger, combustion chamber)

    reference: NEA Group

  • 8/21/2019 Pulsation Course Bruemmer

    7/43

    - 7 -

    technische

    universitt dortmundPulsation frequency

    compressors (e. g. centrifugal-, screw-, roots-)

    f = i*n*rpm

    f pulsation frequency

    i ith harmonic of pulsation (1,2,3,)

    n number of blades or lobes (driven male rotor) or active chambers

    rpm compressor speed

    vortex shedding

    f = St*c / d

    f pulsation frequencySt Strouhal number (typical values for obstructions St=0.20.5)

    c mean flow velocity

    d effective diameter of obstructions

  • 8/21/2019 Pulsation Course Bruemmer

    8/43

    - 8 -

    technische

    universitt dortmundExplanation of thermo-acoustic instability

    +

    =

    Tt

    t

    dt(t)q'(t)p)T/(I 1

    If heat be given to the air at the moment of greatest condensation,

    or be taken from it at the moment of greatest rarefaction,

    the vibration is encouraged.(Rayleigh`s criterion, by 1878)

    I Rayleigh integral (index)

    I>0 => amplification of a disturbanceI damping of a disturbance

    p(t) pressure pulsation

    q(t) time-varying component of heat transfer

  • 8/21/2019 Pulsation Course Bruemmer

    9/43

    - 9 -

    technische

    universitt dortmundStrength of excitation

    In most cases the strength of pulsation excitation is

    proportional to the flow-velocity fluctuations of the source!

    Examples:- flow velocity fluctuations at pistons or valves of recips

    - flow velocity fluctuations at the inlet or outlet of screws

    - flow velocity fluctuations at the internal passages of turbo-compressors

  • 8/21/2019 Pulsation Course Bruemmer

    10/43

    - 1 0 -

    technische

    universitt dortmundNext chapter

    3. Natural frequencies

  • 8/21/2019 Pulsation Course Bruemmer

    11/43

    - 1 1 -

    technische

    universitt dortmundNatural frequencies

    Acoustic natural frequencies

    - plane waves (low frequencies)

    - cross-wall modes

    - three dimensional modes

    Structural natural frequencies

    - bending modes (low frequencies)

    - shell wall natural frequencies- three dimensional modes

  • 8/21/2019 Pulsation Course Bruemmer

    12/43

    - 1 2 -

    technische

    universitt dortmundPlane pulse propagation

    pressure

    pipe length

    pipe

    Pulse reflection at closed end:

    - closed valve or blind flange

    - control valve with high pressure drop

    - valves of compressors

  • 8/21/2019 Pulsation Course Bruemmer

    13/43

    - 1 3 -

    technische

    universitt dortmundPlane pulse propagation

    pressure

    pipe length

    pipe

    vessel

    Pulse reflection at open end:

    - pipes connected to vessels or pulsation dampers

    - open valves without significant pressure drop- huge cross-sectional jumps

  • 8/21/2019 Pulsation Course Bruemmer

    14/43

    - 1 4 -

    technische

    universitt dortmund

    Pulse reflection and transmission

    at a cross-sectional jump

    pressure

    pipe length

    pipe

    Cross-sectional jump (m=0.5)

  • 8/21/2019 Pulsation Course Bruemmer

    15/43

    - 1 5 -

    technische

    universitt dortmundSuperposition of left- and right-going waves

    pipe

    right-going wave

    left-going wave

    standing wave

    fixed point maximum

    pipe section

  • 8/21/2019 Pulsation Course Bruemmer

    16/43

    - 1 6 -

    technische

    universitt dortmundPlane wave natural frequencies

    closed closed open open

    Half wave length mode (standing wave)

    fi= i * a / (2 * L)

    fi natural frequency of ith multiple of fundamental mode (half wave)a speed of sound

    L L

    pressure amplitude pressure amplitude

    i=1

    i=2

    i=3

  • 8/21/2019 Pulsation Course Bruemmer

    17/43

    - 1 7 -

    technische

    universitt dortmundPlane wave natural frequencies

    closedopen

    L

    Quarter wave length mode

    (standing wave)

    fi= (2i-1) * a / (4 * L)

    fi natural frequency

    of ith multiple of

    fundamental mode

    a speed of sound

    L length of pipe section

    pressure amplitude

    i=1

    i=2

    i=3

  • 8/21/2019 Pulsation Course Bruemmer

    18/43

    - 1 8 -

    technische

    universitt dortmundThermo-acoustically induced standing wave

    blower

    open end open end

    movable heat source

    reference: Dr. Lenz, KTTER Consulting Engineers KG

  • 8/21/2019 Pulsation Course Bruemmer

    19/43

    - 1 9 -

    technische

    universitt dortmundCross-wall acoustic natural frequency

  • 8/21/2019 Pulsation Course Bruemmer

    20/43

    - 2 0 -

    technische

    universitt dortmundCross-wall acoustic natural frequency

    ( )( )

    d

    af

    nm,

    nm,

    =

    f(m,n) cross-wall acoustic natural frequency

    a speed of sound

    d pipe diameter

    (m,n)

    zeros of Bessel function

  • 8/21/2019 Pulsation Course Bruemmer

    21/43

    - 2 1 -

    technische

    universitt dortmundLateral vibration mode of beams (bending mode)

    ,...3,2,12

    1 2

    =

    = kEI

    lf kk

    fk natural frequency of kth bending mode

    k frequency-factor (next slice)E modulus of elasticity

    I moment of inertia mass of beam per unit length

  • 8/21/2019 Pulsation Course Bruemmer

    22/43

    - 2 2 -

    technische

    universitt dortmundLateral vibration mode of beams (bending mode)

    k -valuesboundary conditions

  • 8/21/2019 Pulsation Course Bruemmer

    23/43

    - 2 3 -

    technische

    universitt dortmundShall wall natural frequencies

    21

    21

    /

    k)(

    E

    =

    df k

    21211

    12

    12

    1//

    k

    )k(

    )k(k

    d

    s

    +

    =

    fk natural frequency of kth mode

    k frequency-factord mean diameter of pipe wall

    s pipe wall thickness

    E modulus of elasticity

    Poissons ratioI moment of inertia

    mass of beam per unit lengthk mode number (2,3,4)

  • 8/21/2019 Pulsation Course Bruemmer

    24/43

    - 2 4 -

    technische

    universitt dortmundMaster rule to avoid vibration problems

    Avoid coincidences of main excitation frequencies and natural

    frequencies (acoustic and structure) of the compressor system !

    e. g. reciprocating compressors design according to API 618 (new 5th edition):

    - lowest mechanical natural frequency is 2.4 times above the highest

    compressor speed

    - higher mechanical natural frequencies must have a separation margin of20% to significant acoustic excitation frequencies

  • 8/21/2019 Pulsation Course Bruemmer

    25/43

    - 2 5 -

    technische

    universitt dortmundNext chapter

    4. Effects of pulsations

  • 8/21/2019 Pulsation Course Bruemmer

    26/43

    - 2 6 -

    technische

    universitt dortmundEffects of pulsations

    Pulsations may cause the following problems:

    - compressor and system vibrations

    - increased system maintenance

    - efficiency losses of the compressor

    - flow metering faults

    - high noise radiation

  • 8/21/2019 Pulsation Course Bruemmer

    27/43

    - 2 7 -

    technische

    universitt dortmundNext chapter

    5. Examples including measures

  • 8/21/2019 Pulsation Course Bruemmer

    28/43

    - 2 8 -

    technische

    universitt dortmund

    SKD33x

    0

    20

    40

    60mm/s eff

    0 25 50 75 100 125 150 175 200

    Hz

    56 mm/s RMS SKD33x

    Avoid heavy valves at thin stubs

    RMS vibration spectrum at

    measuring location SKD33x

    measure

  • 8/21/2019 Pulsation Course Bruemmer

    29/43

    - 2 9 -

    technische

    universitt dortmund

    SKS13x

    0

    10

    20

    30

    40

    50mm/s eff

    0 25 50 75 100 125 150 175 200

    Hz

    High vibrations at a reciprocating compressor

    41 mm/s RMS

    SKS13x

    RMS vibration spectrum at

    measuring location SKS13x

  • 8/21/2019 Pulsation Course Bruemmer

    30/43

    - 3 0 -

    technische

    universitt dortmund

    Kreisgas_KraftPD_x_058.b

    0

    5

    10

    15kN

    0 50 100 150 200Hz

    RMS spectrum of the

    acoustic shaking forces

    Root cause analysis for high vibrations

    p 35.000 N (100 Hz)

  • 8/21/2019 Pulsation Course Bruemmer

    31/43

    - 3 1 -

    technische

    universitt dortmund

    elastomer supportPulsation damping plate

    Remedial measures

  • 8/21/2019 Pulsation Course Bruemmer

    32/43

    - 3 2 -

    technische

    universitt dortmundHigh frequency vibrations at a screw compressor

    PD3_0, PD3_120

    PD2_45, PD2_270

    PD1_0, PD1_120

    PD4abs

    PS1abs

    PS1abs

    Pressure measuring locations

  • 8/21/2019 Pulsation Course Bruemmer

    33/43

    - 3 3 -

    technische

    universitt dortmund

    0

    120

    240

    360

    480

    600s

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    kHz

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0bar

    0

    120

    240

    360

    480

    600s

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    kHz

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0bar

    0

    1

    2

    3

    4bar

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    kHz

    0

    1

    2

    3

    4bar

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    kHz

    PD1_120 PD2_270

    Measured pressure pulsations at discharge side

  • 8/21/2019 Pulsation Course Bruemmer

    34/43

    - 3 4 -

    technische

    universitt dortmund

    plane wave mode i 1 2 3 4 5 6

    open end - closed end fi 52 157 262 367 472 577 Hz

    pocket passing frequency: 285 to 585 Hz (variable-speed drive)

    speed of sound a= 310 m/s

    L = 1462 mm

    Root cause analysis (plane wave modes)

  • 8/21/2019 Pulsation Course Bruemmer

    35/43

    - 3 5 -

    technische

    universitt dortmundRoot cause analysis (cross-wall modes)

    m= n= 0 1

    0 0 2372

    1 1140 3302

    2 1889 4156

    3 2602 4968

    inner pipe diameter d = 168.3 mm and wall thickness s = 4.5 mm

    Hz

    C

  • 8/21/2019 Pulsation Course Bruemmer

    36/43

    - 3 6 -

    technische

    universitt dortmund

    0

    500

    1000

    1500

    2000

    2500

    1500 2000 2500 3000

    motor rotation speed [1/min]

    frequency

    [Hz]

    1x Drehzahl

    1. Pulsation

    2. Harm. Pu

    3. Harm. Pu

    4. Harm. Pu

    5. Harm. Pu

    6. Harm. PuQuermode (

    Quermode (

    Quermode (

    Quermode (

    1. zyl. Scha2. zyl. Scha

    3. zyl. Scha

    ith pocket passing frequencykth acoustic and structural mode

    Coincidence chart

    (excitation and cross wall natural frequencies)

    1140 Hz

  • 8/21/2019 Pulsation Course Bruemmer

    37/43

    - 3 7 -

    technische

    universitt dortmund

    0

    120

    240

    360

    480

    600s

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    kHz

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0bar

    0

    120

    240

    360

    480

    600s

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    kHz

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0bar

    0

    1

    2

    3

    4bar

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    kHz

    0

    1

    2

    3

    4bar

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    kHz

    PD1_120 PD2_270

    plane wave resonances cross wall mode

    Root cause analysis

    h i h

  • 8/21/2019 Pulsation Course Bruemmer

    38/43

    - 3 8 -

    technische

    universitt dortmundRemedial measures

    cross wall mode

    breaker

    t h i h

  • 8/21/2019 Pulsation Course Bruemmer

    39/43

    - 3 9 -

    technische

    universitt dortmundDisadvantage of both remedial measures

    Additional energy costs due to the power loss of orifice plates!

    0

    20

    40

    60

    80

    100

    0 2000 4000 6000 8000 10000

    Volume flow [m/h]

    powerloss[kW]

    1 MPa

    5 MPa

    p=10 MPa

    Power loss calculated for a pressure drop of 0.5% of static pressure p.

    technische

  • 8/21/2019 Pulsation Course Bruemmer

    40/43

    - 4 0 -

    technische

    universitt dortmundNext chapter

    6. Vision to discuss

    technischeVi i

  • 8/21/2019 Pulsation Course Bruemmer

    41/43

    - 4 1 -

    technische

    universitt dortmundVision

    Design compressor systems without orifice plates as damping device!

    Approach:

    1. Design pulsation bottles to residual pulsations of 0.5% (1%) ptp.

    2. Use Helmholtz resonators (virtual orifice) to attenuate cylinder

    nozzle resonances.

    technischeH l h lt t ( i t l ifi VO)

  • 8/21/2019 Pulsation Course Bruemmer

    42/43

    - 4 2 -

    technische

    universitt dortmundHelmholtz resonator (virtual orifice VO)

    reference: Broerman et al., SwRI at GMRC 2008

    technischeVi i

  • 8/21/2019 Pulsation Course Bruemmer

    43/43

    - 4 3 -

    technische

    universitt dortmundVision

    Design compressor systems without orifice plates as damping device!

    Approach:

    1. Design pulsation bottles to residual pulsations of 0.5% (1%) ptp.

    2. Use Helmholtz resonators (virtual orifice) to attenuate cylinder

    nozzle resonances.

    3. For trouble shooting think about a side branch resonator or

    control valve instead of an orifice plate.