63
Quale futuro per i LNF M.Calvetti INFN-LNF Università di Firenze

Quale futuro per i LNF M.Calvetti INFN-LNF Università di Firenze

Embed Size (px)

Citation preview

Quale futuro per i LNF

M.CalvettiINFN-LNF

Università di Firenze

2006 2007 2008 2009 2010

FINUDA SIDDHARTA

FEL – SPARC

HILL – FLAME Accelerazione Laser

CNAO: protosincrotrone a Pavia

FINE DELLA PRESA DATI DI KLOE

SPARCX- A TORVERGATA……..lavori in corso….. : LNF2

Linea d’0rizzonte per i LNF-INFN

Luce di Sincrotrone

LINAC BTF

KLOE

LHC-Experiments

Basic particle physics:

Symmetries – QM – PT – Lepton Universality - Precision Physics

Synchrotron Light source Cutting edge accelerator technologyNew generation of machine experts

Relatively cheapMade in ItalyINFN flagship

15 years of LNF-Future

International Laboratory- European InfrastructureExternal users

External funding

Le domande sono state : Quale Fisica vogliamo e possiamo fare ai LNF Come e quando ? Quanto costa ?

Cosa vorremmo………….

DANAEPrecision physics

atLow energy

LHC

CTF3

FisicaMedica

CNAO

LdS

SPARCSPARC-X

FLAMEFisicaSanitaria

Frontier physics

Linear accelerators

Plasma acceleration

Medical application

hadrontheraphy

Synchrotron light

Radiation metrology

lasers

R&D detectorsLNF-INFN

AMADEUS

KLOE

KLOE

DANTE

DANAE

DAFNENuova conAlta Energia

March 2006

ABBIAMO RICEVUTO 5 LETTERE D’INTENTI AUTORI ISTITUTI IST-ESTERI1) KLOE 70 12 72) DANTE 72 22 113) AMADEUS 111 30 245) DANAE-L 7 LNF6) DANAE 49 4 3

TOTALE 309 68 45

Four main physics issues in the letter of intents:

1) factory physics: kaons ’

2)“High energy” physics 2.4 GeV c.m.

3) Time like nucleon Form Factors

4) Nuclear physics (QCD) with Strange Nuclei

Standard Model Precision physics:

Tests of fundamental symmetries (CP, CPT)

Tests of prediction of Chiral Perturbation Theory

Test of Quantum Mechanics

Scalar spectroscopy 0.5-2.5 GeV

e+e- total cross section for em at .5%

physics

Not only but also:

Accelerator physics

Synchrotron light

•Require ʃLdt 50 fb-1 in a 34 years running period at the peak

5 x 1010 KSKL events and 7.5 x1010 K+K- events

•Energy scan with average L∼1032cm-2s-1 .

• Expect to start experimental program before 2009

• Plan to use the KLOE detector with some important upgrades

Lattice QCD hadronic corrections to the matrix elements of the weak current operator between hadrons

measuring |Vus|2 / |Vud|2 from

using |Vud| from b-decay --> |Vus|

To follow the progress of lattice QCD we need to measure rates and lifetime to 1%° accuracy.

UNITARITY OF CKM MATRIX From 1% to

PER MIL LEVELPRECISION E/0 DISCOVERY PHYSICS (50 ft-1)

1) CKM Unitarity measurements

2) Lepton universality

R = (K± e± ) / (K± ± ) and new physics

This ratio is a sensitive probe for new physics effects

Standard Model Prediction: R = (2.472 ±0.001) x 105

NA48/2 Preliminary 05: R = (2.416 ±0.049) x 105

NA48/2 can reach ~ 1% precision with present data

Scaling from measured efficiencies for Ke3 decays KLOE can aim at ~ 0.5% @ 20 fb1

3) KS e decays and the S = Q rule

The relevant parameter here is:

Re (x+) ~<e+ | Hwk | K0 >

<e+ | Hwk | K0 > ~ 106 S.M.

1 + 4 Re(x+) = S

L

BR(KS e) L

BR(KL e) S

=

6 103

1 103 4 103

=

These are KLOE measurements

Present Uncertainties 20 103

@ 20 fb1 one can reach ~ 2 103 in BR(KS e)

4) CPT Violation in Kaon decays

A different Charge Asymmetry in semileptonic KL and KS decays is predicted due to CP and (possibly) CPT violation

L = 2Re(K )

S = 2Re(K ) + CPT is violated if

S ≠ L

The most recent measurement are:

S = (1.5 ± 10 ± 3) x 103 KLOE, ~400 pb1 (now)

L = (3322 ± 58 ± 47) x 106 KTeV, 2002

S = (1.5 ± 1) x 103 KLOE-2, ~ 50 ft1

PRECISION E/0 DISCOVERY PHYSICS (50 ft-1)

5) CPT and Quantum Mechanics

quantum gravity

could modify the standard QM

decoherence effects with CPT violation

deviation of the behaviour of entagled systems

(like KSKL from decays)

from the one predicted by standard QM

CPTV :Quantum interference

KL,S

KS,L

t1

t2

t=t1- t2 f2

f1

2112

2/21

2

2

2

1122211

cos2

,;,

21

2121

ttme

eeCtftfItt

tttt

LS

LSSL

• interference pattern for different final states f1,f2 give access to different parameters

• a good vtx resolution is required: tS

quest for an improvement of inner tracking!

• several QG models predict CPTV terms in the interference time evolution

tS

f1,f2 = l∓

a

cK

a

dK

Semileptonic decays give access toK

small t:

large t:

CPT and Bose statistics: the BMP modelBernabeu, Mavromatos and Pavassiliou argued that in presence of

CPT violation induced by quantum gravity the concept of antiparticle has to be modified.

In this case the KSKL state from decays does not strictly obey Bose statistics,

thus modifying the final state wave function

І i > = C {( І KS(+)> І KL()> І KL(+)>І KS()>) + ( І KS(+)> І KS()> І KL(+)>І KL()>)}

The complex parameter quantifies the departure from Bose statistics, in a formalism in which the time evolution of the state is still described by the equations of standard QM

Naively, ІІ ~ O(MK2 / MPlank )1/2 ~ 10-3 104

Measuring the parameter

The parameter can be measured by a fit to the decay time distribution of the KSKL pair to 4

Arg() = 0,

ІІ = 1,2,3 x 103

t (S units)

fb1

• Present KLOE• KLOE + VDET

A. Di Domenico

A. Di Domenico

Final state

Se) is still the limiting factor in the test of S=Q rule

by 3 error reduction on Re(x+) provided systematics scales with stat S) same as the above, but more difficult. Expected error at 0.4%.

BR(KS) test of PT at o(p4). NA48 measurement 30% apart from calculations Current error is 2.7%. KLOE2 can go below 1%

BR(KS) another test of PT. KLOE2 expected precision around 15%. Would benefit from B field reduction.

BR(KS0) CP and CPT test. KLOE2 can aim to observe the signal.

BR(KSl+l-) very important to evaluate the CPV via mixing contribution to the rare analogous decay of KL Present NA48 measurement based on 7+6 events With conservative efficiency estimate KLOE2 expects to perform a measurement at the same level.

Rare KS decays

Esempio KS 0 00 : perspectives

Background mostly due to photon clusters double splittings

Preliminary studies show that there is room for “algorithmic” improvements in background rejection without losses in

signal efficiency

Study of the entire KLOE data set crucial for a better assessment of the real potentialities of the analysis but…

…there are hints that @ 20 fb1 one can reach ~ 5 x 109

With KLOE as it is now.

With 50 ft-1 it will be possible to observe this rare but expected decays in the SM

1) Total cross section measurement : below 1 GeV anomalous magnetic moment of the between 1 e 2.5 GeV limits the calculation of the hadronic correction to em

2) Meson spectroscopy 1 e 2.5 GeV: many observed states , hybrids and glueball ?

3) Radiative decays of the : very high statistics of e ’ scalar mesons a0(980) e f0(980), two K decays accessible

4) interactions : widths of scalar mesons and search of the meson

5) Measurements of the K-nucleon cross section: sistematic study of the K-N processes, with final state identification, on many

gaseous targets

“HIGH ENERGY PHYSICS”

, ’ physics: extensive PT tests, very sensitive to hadron structure, light quark masses and couplings: (’)3 , ’Radiative decays’), eeC,CP violation: l+l-’l+l-

More physics goals at the peak

’ factory

Total e+ e- cross section

Scan

a = (116592080 ± 50stat ± 40sys) × 10-11

had(5) (Mz

2) =

0.02800 (70) Eidelman, Jegerlehner’95

0.02761 (36) Burkhardt, Pietrzyk 2001

0.02755 (23) Hagivara et al., 2004

0.02758 (35) Burkhardt, Pietrzyk 6-05

R a

R (5)had

Precision ( and discovery?) physics, should be done by different labs !!

CERN strategy group

In the limit in which u,d,s are massless the QCD lagrangian is invariant under SUL(3)xSUR(3). The left-handed world is separate

from the right-handed one: this is chiral symmetry.

The dynamical breaking of this (approximate) symmetry produces 8 massless Goldstone bosons to be identified with the , K,

the most general lagrangian consistent with the chiral symmetry, it in terms of the momentum of the involved particles.

If momenta are low enough, then:

M(p2) > M(p4) > M(p6) …

basic idea of Chiral Perturbation Theory

…and one can perform calculations perturbatively at low momentum

ChPT: the pros and the cons

The effective ChPT lagrangian leaves a number of free parameters to be determined experimentally, that increase

with the order to which the lagrangian is computed

the higher you go with the power of momenta , the higher is the number of parameters and hence the number measurement you

need to fix the theory

2 at orderd p2, 12 at order p4…

NA48/1 has measured BR(KS ) = (2.78 ±0.06±0.04)x106

This result differs from predictions of ChPT at O(p4) by 30%

A preliminary analysis shows that KLOE can reach a statistical accuracy of ~ 4% with the present data sample.

A projection to 20 fb1 would give an accuracy better than 1%

Esempio KS : a test for ChPT

KS + 0 : another test for ChPT

ChPT predicts: B(Ks +0) = (2.4 ± 0.7)x107

The present experimental value (3.3 +1.1 0.9 ) x107 is the average of three different measurement each individually precise at ~ 40%

A preliminary KLOE analysis obtains sig ~ 1.3%, S/B ~ 2

AssumingError on BR @ 2 fb1 (%)

Error on BR @ 20 fb1 (%)

No further effort made to reduce background ~ 60% ~ 20%

Further efforts completely remove background

~ 40% ~ 12%

Actually, at present KLOE has the largest statistics in the world

The world is largely complementary with the K one in that it addresses most of the same physics issues.

Tests of C, CP, CPT Tests of ChPT

0l+l

0 3

physicsDAFNE Physics Handbook: P [’] (P) (S) / predizioni ChPT

’, f0(980)a0(980)

Novita’: at threshold DAFNE2 alto √s di f0 e a0

FFs are fundamental quantities describing the internal structure of the nucleon

Wavelength of the probe can be tuned by selecting momentum transfer Q2

< 0.1 GeV2 integral quantities (charge radius,…)

0.1-10 GeV2 internal structure of nucleon

> 20 GeV2 pQCD scaling

•Early interpretation based on Vector-Meson Dominance•Good description with phenomenological dipole form factor

THE DANTE COLLABORATION

Measurement of the Nucleon Form Factors in the Time-Like region at DANAE

TIME-LIKE nucleon e.m. Form Factors

s=4M2 |GM|=|GE| s>>4M2 |GM|>>|GE|

Moduli: extraction from , d/d meas. in e+e- NN and pp e+e-

d

d

2C

4 sGM

21 cos

2

2

sin

2

4

2C

3sGM

21

2

2

| G

E|

| GM

|

s

4M 2

Time like FFs are complex functions moduli & phases

Py 1

sin 2 sin E M D

Pz Pe

2 cos D

Px Pe

1

2 sin cos E M D

D 0[1 cos2

sin2 ]

Phases: extraction from polarization measurements

SPACE-LIKE nucleon e.m. Form Factors

Thought well known…BUT…

• Different charge and magnetization distributions

• Quark angular momentum contribution?

Rosenbluth

polarization

Linear deviationfrom dipole

GE≠GM

Babar p only - No polarization Thr.<s<10 GeV

2006

Belle p only - No polarization Thr.<s<10 GeV

2006 + SuperB

CLEO p only - No polarization s=3.7 GeV 2005

BES p only (very low statisctics) - No pol

2<s<3 GeV 2005

BESIII L=1033 p only - No polarization 2.4<s<4.1 GeV

≥ 2007

VEPP-2000

L = 1032 p and n, no polarization Thr.<s<2 GeV ≥ 2007

PANDA L=2 ×1032 p only - Polarization Thr.<s<25 GeV

2013

PAX P only - Double polarization Thr.<s<25 GeV

2013

Nucleon e.m. FFs measurements in the world

TIME-LIKE

SPACE-LIKEJlab @ 6 GeV (in progress) and 12 GeV, Mainz, Bates,Novosibirsk

• Phases of time-like FFs never measured

• Only one measurement for neutron magnetic FF

• Inconsistencies between data and pQCD expectations

Nucleon Time-like FFS are basically unknown• no independent extraction of both TL FFs has been performed

• FF measurements are based on total cross section, under some theoretical assumption on their ratio

DANAE

Next steps and Conclusion

Wait for the INFN decision about the DANE energy upgrade to undertake further study

PROTON: modulus and phase measurement feasible NEUTRON: modulus measurement feasible if the test of the KLOE calorimeter on the neutron beam gives a positive answer

What do we have to do next?• 1st tracking system : is it possible to use the KAIT detector?• Neutron polarization measurement

With DANTE and DANAE one will produce

The FIRST accurate measurement of the proton time-like form factors |GpE |

and | Gp

M|

The FIRST measurement of the outgoing proton polarization, to get the relative phase between |Gp

E| and | GpM|

The FIRST measurement of the two photon contribution from the proton angular distributions asymmetry

The FIRST accurate measurement of the e+e n-nbar cross section

The FIRST measurement of the neutron time-like form factors |GnE | and | Gn

M|

The FIRST measurement of the strange baryon form factors

An accurate measurement of the cross section of the e+ e hadrons, that provide information on possible narrow structures close to the N-Nbar threshold.

Letter of Intent

Study of deeply bound kaonic nuclear states

at DANE2AMADEUS Collaboration

March 2006

111 scientists from 33 Institutes of 13 Countries signed the Letter of Intent

FISICA DEI NUCLEI

=> Explore dense nuclear states with K- bound states

Cold and dense microscopic nuclear systems a New Paradigm - so far untouched

AMADEUS HIGH PRECISION - HIGH STATISTICS STUDY

OF COLD DENSE NUCLEAR STRUCTURES

A BROAD BAND NUCLEAR PHYSICS PROGRAM ON A UNIQUE FACILITY

IN THE WORLD

The case of AMADEUSThe case of AMADEUS Problem

How the spontaneous and explicit chiral symmetry breaking pattern of low energy QCD changes in the nuclear environment

Approach

New type of in-medium hadron mass spectroscopy

Method

Producing deeply bound states from which to deduce the hadron-nucleus potential and the in-medium hadron mass

How the hadron masses and interactions changes in the nuclear medium

Deeply bound kaonic nuclear statesDeeply bound kaonic nuclear states Deeply bound kaonic nuclear states in presence of a strong KN attractive potential were firstly suggested by Wycech

S. Wycech, Nucl. Phys. A450 (1986) 399c

A “new paradigm” in strangeness nuclear physics can be considered the work “Nuclear bound states in light nuclei” by Y. Akaishi and T. Yamazaki

Phys. Rev. C65 (2002) 044005

Strong attractive I=0 KN interaction favors discrete nuclear states bound100-200 MeV and narrow 20-30 MeV

shrinkage effect of a K on core nuclei

AMADEUS philosophy/ strategyAMADEUS philosophy/ strategy

The only way to confirm, or deny, the exotic states is to perform a good measurement using a high performance detector on the most suitable accelerator

a measurement NOT performed until now

complete determination of all formation and decay channels

binding energies, partial and total widths, angular momenta, isospin, sizes, densities, etc

Detection of charged particles, neutrons and photons up to about 800 MeV/c in 4 geometry

Requirements satisfied by the performance of the KLOE detector

K- + 4He (ppnK-) + n

The (pnnK-) kaonic cluster may decay through the following channels:

 (ppnK-) + d + np + pp + d

+ np with the and ’s decaying according to PDG.

Strange tribaryon formation

KLOE – EMC

KLOE –Drift Chamber

Possible setupfor AMADEUSwithin KLOE:

Cryogenic targetInner trackerKaon trigger

AMADEUS setup within KLOEAMADEUS setup within KLOE

Inner tracker detector

kaon trigger made of2+3 scintillating fibers layers,inside a vacuum chamber

half-toroidal cryogenictarget cell

vacuum chamber

thin-walledbeam pipe

AMADEUS setupAMADEUS setupsecond versionsecond version

Cryogenic toroidal target cell:

working temperature: 5 -10 Kworking pressure: < 2 bar

thin-walled design: 75µm Kapton, with aluminum grid reinforcement (grid transmission > 85 %)

inner diameter: 110 mm outer diameter: 210 mm inner length: 120 mm

outer length: 200 mm

production rate for charged kaon pairsR = L b = 1500 s-1

peak

lum

inos

ity

3 ×

10-3

0 cm

2

prod

uctio

n cr

oss

sect

ion

10

33 c

m-2 s

-1

produced K± per month: 31 × 108 (80% duty cycle assumed)

40% are stopped in the cryogenic He gas target (15% liq. He density, ~ 5 cm thick) 12.5 × 108 K- 4He atoms per month

for 10-3 cluster formation yield: 12.5 × 105 kaonic clusters formed in one month

Efficiency of tracking & identification K± & detection of decay products ~ 105 events per month (~ 1000 pb-1)

0.49

bra

nchi

ng ra

tio fo

r K±

Results of preliminary MonteCarlo simulations for Results of preliminary MonteCarlo simulations for AMADEUS setup with optimized degrader and cryotargetAMADEUS setup with optimized degrader and cryotarget

The LNF Scientific Committee

LNF – Scientific Committee

CERN strategy group

15 Settembre 2006

Pantaleo Raimondi è il nuovo direttore scientifico della Divisione AcceleratoriClaudio Sanelli resta il Direttore Tecnico.

Dobbiamo ringraziare Miro Preger per la direzione della DA negli ultimi due anni….e ringraziamo anche Pantaleo per aver deciso di stare con noi.

Programma di DAFNE nel 2006-7

1) Presa dati di FINUDA: Settembre 2006 - Aprile 2007

2) Tre mesi di fermata DAFNE per modificare la sezione d’interazione

3) Presa dati di SIDDHARTA: Settembre2007 – Marzo 2008

2008? 2009? 2010? ecc. ecc.

Do we need short bunches?

With large crossing angle X and Z

quantities are swapped: Very important!!!Sz

Sx

Both cases have the same luminosity,(2) has longer bunch and smaller x

1) Standardshort bunches

2) Crossing angle

Overlapping region

Sx

Sz

Overlapping region

Luminosity considerationsIneffectiveness of collisions with large crossing angle is illusive!!!Loss due to short collision zone (say l=σz/40) is fully compensated by denser target beam (due to much smaller vertical beam size!).

cross2 2 cross x

z

lN N l 2 /

Number of particles in collision zone:

1 2 0

x y

N N fL

4

e 2 y

1yy x y

r N

2 ( )

1y 1 0 y 1y34 36 2 1

e y x y

N f E(GeV) I(A)L 1 2.167 10 1.2 10 cm s

2r (cm)

No dependence on crossing angle! Universal expression: valid for both - head-on and crossing angle collisions!

I. Koop, Novosibirsk

Tune shiftsRaimondi-Shatilov-Zobov formulae:(Beam Dynamics Newsletter, 37, August 2005)

2 2 2x z xtan ( / 2)

e xx

2 2 2 2 2 2z x z x y

yey

2 2 2y z x y

r N

2 tan ( / 2) tan ( / 2)

r N

2 tan ( / 2)

Super-B:

e xx 2 2

z

yey

y z

2r N0.002

r N0.072

2 2 2z x xtan ( / 2) 100 m 2.67 m

2 2 2z x

y

tan ( / 2)8000!!!

One dimensional case for βy >>σx/θ. For βy <σx/θ also, but with crabbed waist! I. Koop, Novosibirsk

Vertical waist has to be a function of x:

Z=0 for particles at –x (- x/2 at low current)

Z= x/ for particles at + x (x/2 at low current) Crabbed waist realized with a sextupole in phase with the IP in

X and at /2 in Y

2Sz

2Sx

z

x

2Sx/

2Sz*

e-e+Y

Crabbed waist removes bb betratron couplingIntroduced by the crossing angle

Synchrotron modulation of ξy (Qualitative picture)

ξy(z-z0)

Relative displacementfrom a bunch center

z-z0

Head-on collision.Flat beams. Tune shiftincreases for halo particles.

Head-on collision.Round beams. ξy=const.

Crossing angle collision.Tune shiftdecreases for halo particles.

Conclusion: one can expect improvement for lifetime of halo-particles!

IR layout

New beam line

IP

QD0sQF1s

M.Biagini

0

2

4

6

8

10

12

14

0 10 20 30 40 50

200um,20mm200um,15mm100um,15mm

I [mA]

L [10^33]

With the present achieved beam parameters (currents, emittances, bunchlenghts etc)

a luminosity in excess of 1033 is predicted

With 2Amps/2Amps more than 2*1033 is possible

M. Zobov

Present achieved currents

Modifica della zona d’interazione per avere 10**33 cm-2s-1 a fine 2007

È in corso il progetto e sarà presto scritta una nota interna dei LNF

Se la DA ci riesce sarà un grande successo! Di Pantaleo ma anche dei LNF!

In questo caso la nuova collaborazione KAD ( KLOE-AMADEUS-DANTE) potrebbe entrare in macchina con un apparato migliorato nel 2008-10 per lavorare sulla e raccogliere > 40 ft-1

Modifica DAFNE nel 2011 per andare in alta energia mantenendo l’alta luminosità sulla

PROGRAMMA DI RICERCA PER DAFNE

1) FINUDA 1 ft-1 NEL 2007 2) fermata di tre mesi PER MODIFICARE DAFNE3) SIDDHARTA a fine 20074) completamento SIDDHARTA prima metà del 2008

NON SAPPIAMO COSA FARE NEL 2008 CON DAFNE

E’ IMPORTANTE PROGRAMMARE QUALE ESPERIMENTO

Secondo P.Raimondi avremo 1033 cm-2s-1 tra 12 mesi

Cruciale per il futuro del laboratorio

….questo programma ha la massima priorità!

Vi ricordo che :

Il progetto SPARC è in corso di completamento e dovrebbe entrare in funzione entro un anno

Il LASER da 2 TW del progetto FLAME è stato ordinato e arriverà entro 18 mesi

Il protosincrotrone del CNAO sarà assemblato e messo in funzione nei prossimi due anni

Il progetto CTF3 al CERN è in corso di completamento per entrare in funzione nei prossimi due-tre anni

Studi sul futuro Linear Collider

Studi sulla futura possibile SuperB-factory

Il progetto SPARX a Torvergata- presto la decisione

La luce di Sincrotrone in espansione

Sviluppo di Radiofrequenze in banda X nei LNF. (SPARC e DANAE)

Dobbiamo avere un piano per il dopo 2008 nel caso il metodo Pantaleo funzionasse come previsto:

1) Alta luminosità in DAFNE nel 2008-9 : alta energia con DANAE - 20112) FEL nei raggi X : SPARCX, inizio nel 2008

3) La super B-factory? (a Roma ovviamente) appena possibile………

Secondo me dobbiamo disegnare DANAE con il metodo Pantaleo.Minimi cambiamenti, alta energia nel 2011

CONCLUSIONI

Il Laboratorio è molto attivo

Come direttore vorrei che l’INFN avesse DANAE nel suo programma dandogli priorità a breve scadenza, una volta stabiliti i costi.

In questo modo ritengo probabile avere nuovi collaboratori stranieri, perché sarebbe un “long range program”, in un laboratorio europeo

New DANAE preliminary design report In summer 2007 to go to the EU