117
UNIVERSITÀ DEGLI STUDI DI TRIESTE XXIX CICLO DEL DOTTORATO DI RICERCA IN NANOTECNOLOGIE STRUCTURAL AND ELECTRONIC COUPLING OF ORGANIC HETEROAROMATIC MOLECULES ON INORGANIC SURFACES OF OXIDES settore scientifico-disciplinare: FIS/03 – Fisica della Materia DOTTORANDO Marcos Domínguez Rivera COORDINATOR Prof.ssa Lucia Pasquato SUPERVISORE Prof. Alberto Morgante TUTORE Dr. Luca Floreano ANNO ACCADEMICO 2015/2016

STRUCTURAL AND ELECTRONIC COUPLING OF ORGANIC ... › retrieve › handle › 11368 › ...7 where the decaying 8='((

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

  • UNIVERSITÀ DEGLI STUDI DI TRIESTE XXIX CICLO DEL DOTTORATO DI RICERCA IN

    NANOTECNOLOGIE

    STRUCTURAL AND ELECTRONIC COUPLING OF ORGANIC

    HETEROAROMATIC MOLECULES ON INORGANIC SURFACES OF OXIDES

    settore scientifico-disciplinare: FIS/03 – Fisica della Materia

    DOTTORANDO

    Marcos Domínguez Rivera

    COORDINATOR

    Prof.ssa Lucia Pasquato

    SUPERVISORE

    Prof. Alberto Morgante

    TUTORE

    Dr. Luca Floreano

    ANNO ACCADEMICO 2015/2016

  • CONTENTS

    1. INTRODUCTION...................................................................................................................1

    2. EXPERIMENTALTECHNIQUES...............................................................................................3

    2.1. THEULTRA-HIGHVACUUM........................................................................................................3

    2.2. SCANNINGTUNNELINGMICROSCOPY.........................................................................................4

    2.3. ELECTRONSPECTROSCOPIES....................................................................................................10

    2.3.1. Photoemission:XPSandUPS....................................................................................10

    2.3.2. Absorption:NEXAFS..................................................................................................13

    2.4. ELECTRONDIFFRACTION.........................................................................................................16

    2.4.1. ReflectionHighEnergyElectronDiffraction.............................................................18

    3. EXPERIMENTALAPPARATUS..............................................................................................21

    3.1. THEALOISABEAMLINE.........................................................................................................21

    3.1.1. ALOISAexperimentalchamber.................................................................................23

    3.1.2. HASPESexperimentalchamber................................................................................27

    3.2. CFMEXPERIMENTALCHAMBER...............................................................................................29

    3.3. SUPPORTODISUPERFICIEXPERIMENTALCHAMBER......................................................................31

    4. HYBRIDINTERFACESOFHETEROAROMATICMOLECULESONTIO2......................................35

    4.1. INTRODUCTION................................................................................................................35

    4.2. THERUTILETITANIUMDIOXIDESURFACE...................................................................................36

    4.2.1. Surfacepreparationandcharacterization................................................................39

    4.3. TETRAPYRROLEMACROCYCLES:PORPHYRINS.............................................................................45

    4.3.1. 2H-TPPSpectroscopycharacterization:XPS.............................................................47

    4.3.2. 2H-TPPNear-edgeX-rayphotoemissionspectroscopy.............................................534.3.2.1. COMPARISONWITH2H-OEPand2H-tbTPP.......................................................................................57

    4.3.3. 2H-TPPfilmstructuredetermination:STMandRHEED............................................604.3.3.1. COMPARISONWITH2H-tbTPP...........................................................................................................67

    4.3.4. 2H-TPPtheoreticalapproach....................................................................................694.3.4.1. Lowcoveragefilms.............................................................................................................................694.3.4.2. Highcoveragefilms............................................................................................................................75

  • 4.4. PHTHALOCYANINES:2H-PCANDTIO-PC..................................................................................81

    4.4.1. Spectroscopycharacterization:XPSandNEXAFS.....................................................82

    4.4.2. Filmstructuredetermination:STM...........................................................................86

    4.4.3. 2H-Pctheoreticalapproach......................................................................................88

    5. INTERMOLECULARCOUPLING.DONOR/ACCEPTORSTACKINGONTIO2..............................90

    5.1. FULLERENE:C60...................................................................................................................90

    5.2. TIO-PC,2H-TBTPPANDC60INTERACTION..............................................................................92

    6. CONCLUSIONS.................................................................................................................100

  • 1. INTRODUCTION

    Organicheteroaromatic compoundspresentnicecapabilities thatareattractive fromthe

    scientificandtechnologicalpointsofview.Thetransportingchargeandthephotoabsorption

    propertiesinthesolarradiationspectrummaketheminterestingfororganicelectronicsand

    photovoltaicsapplications.Severaladvantagesovertheinorganiccompetitorsmustbetaken

    in count: i) device fabrication is less complex due to the low vacuum and temperature

    deposition or solution processing, with direct benefits into production costs and

    environmental impact, ii) functionalitywouldbeenhancedduetotheirchemical tailoring

    potential,throwmolecularfunctionalization,iii)theweakintermolecularinteractiondueto

    vanderWaals forcesmakesorganic films flexibleandcompatiblewithplastic substrates,

    openingthewaytowardsthefabricationofsoft,large-areabio-sensors.

    The studyof the structural, electronicandchemicalpropertiesof adsorbedorganic films

    becomesanopenissue,wheremostmodernsurfacestudiestriedtounderstandandcontrol

    thesepropertiesmainlyfocusingontheinteractionoforganicswithsinglecrystalsurfacesof

    coinagemetals (Au,Ag,Cu),sincetheycanbeeasilyobtainedandprepared inultrahigh

    vacuum(UHV).

    A limitedamountofpublicationsdealwith the interfacebetweenorganicsanddielectric

    single crystals, in confrontation with its relevance for organic devices: i) thanks to the

    photoexcitationbehaviourofdyemoleculesknownassensitizers,attachedtoananoporous

    ornanospheresof titaniumdioxide,organicdye-sensitizedsolarcells collect sunlightand

    convert it into electricity, ii) the reversible switching of conformational or electronic

    configurationsoninsulatinglayers,liketheisomerization[1]inmoleculesorthechargingof

    individualatoms[2],arenicebasetoperformnanomemorieswithhighinformationstorage

    capabilities,iii)thearchitectureoffieldeffecttransistors[3],thatarethepillarofamplifiers

    and logic circuits, consists of a charge transportingmaterial in contactwith an insulator

    wherethevoltagetoswitchonthecurrentflowisapplied.

  • Theultra-highvacuum

    2

    From the basic surface science point of view, semiconductors and insulators presents a

    depletedelectronicdensityregionbetweenvalencebandsandconductionbandsallowing

    themolecularstatestoremainunperturbedbytheinteractionwithelectronspopulatingthe

    half-filledbandsofmetalsattheFermiedge.Scanningprobetechniquesonthesesystems

    produced images ofmolecular orbitals with sub-molecular resolution, and details of the

    intramolecular distribution of charge [4]. In addition, the nanomanipulation with the

    scanning probe tip, enabled the observation of orbital hybridizationwhenmetal-organic

    bondisformed[5],openingtheinsitureal-timestudyofon-surfacechemistrycatalysedby

    activesubstrate.

    Despitetheevolutiononthefield,alotofdifficultieslikepoorself-assemblypropertiesfor

    bi-dimensionalandthree-dimensionalstructures,andtheimpuritiesonthesurface,mustbe

    overhaultotherealtechnologicalapplicationinthedesignandproductionofsystematicand

    reliablenanodevices.

    Thepresentworkisfocusedintheself-assemblyandelectronicandchemicalpropertiesof

    differentorganicunits,andtheinfluenceandinteractionwiththerutile-TiO2surfacealong

    the(110)plane,thatisoneofthemostfamoustransitionmetaloxides.Theworkisdivided

    intwoparts:i)thestudyofchemicalandstructuralpropertiesofheteroaromaticmolecules:

    phtalocyanine (2H-Pc), tetraphenyl porphyrin (2H-TPP), tert-butyl tetraphenyl porphyrin

    (2H-tbTPP) and octaethyl porphyrin (2H-OEP) through microscopic and spectroscopic

    characterizationandtheoreticsimulations,anchoringtheirmainchemicalreactionsunder

    therutile-TiO2(110)presenceassourceofatomsandascatalyticsurface,focusinginto2H-

    TPP that has demonstrated an exceptionally high thermal stability for itmonolayer that

    presentphasetransitions,keepingthecoordinationofthemacrocyclecentralpockettothe

    oxygenatomsbeneaththroughouttheself-metalationandflatteningreactionsandii)the

    interfacestudyofsomeofthem(i.e.2H-tbTPPandTiO-Pc)takingadvantageoftheirdonor

    behaviourwithacceptorunits(fullereneC60),bymeansofvalencebandmeasurementsto

    understandtheinfluenceofthemolecule-moleculeandmolecule-substrateinteractionsin

    the molecular HOMOs and their capabilities as another way to tune the energy levels

    alignment.

  • 2. EXPERIMENTALTECHNIQUES2.1. THEULTRA-HIGHVACUUM

    Theultra-highvacuum(UHV)isdefinedasthevacuumregionbelow10-9mbar,anditisthe

    only that allow to prepare and keep atomically clean surfaces long enough to carry out

    experimentsonthem.

    Fig. 2.1. Relationship between gas pressure, surface contamination and mean free path

    lengths. In the rightdowncorner is shown the legend for time contamination (tm), using

    stickingfactor0.1and1,whereλXisthemeanfreepathofthestandardXmolecules[6].

  • ScanningTunnelingMicroscopy

    4

    The experiments and techniques performed during this thesis were done under UHV

    conditions. Techniques basedonparticle beams, requireUHV that allows them to travel

    undisturbedtointeractwiththesamplesurface,orthedetector[6].

    Thekinetictheoryofgasesgivesusanestimatecontaminationtime,dependingonmolecular

    weight,temperature,pressureandstickingcoefficient(probabilitythatonemoleculearrived

    onthesurfaceremainsonit,0≤s≤1).Assimplifiedrule,attypicalUHVpressure10-10mbar

    ifeverygasmoleculehittingthesurfacesticksonit,thecompletecoveragewilltakeplacein

    105secs,enoughtimetoperformanexperimentincleanconditions.IntheFig2.1.isshown

    the relationship between gas pressure, surface contamination time andmean free path

    length.

    Thechamberisconstructedmainlywithaμ-metalshieldedstainlesssteel,glassandceramic

    forelectricalcontactandinsulation.Itneedstoremainleakfree,forthisreasontheflanges

    presentsteelknifeedgesinbothsides(chamberandflange)thatcompresssoftercopper

    gaskets,creatingaleakproofseal[6].

    TheUHVregimeisreachedbymultistagepumpingsystems.Firstascrollpumpgivesusa

    backgroundpressureof10-2mbarinsidethechamber,thenaturbomolecularpumpgivesus

    10-6mbarpressure.Atthispressure,theairandwateradsorbedonthewallsofthechamber

    actasvirtualleak,slowlydesorbing.Toimprovethevacuumtoreach10-10mbarandsoon,

    thechamberisheatedto150ºCforatleast24hours,removingtheadsorbatesoverthewalls

    thatcanbeatthispointeasilypumpedout.Oncecooleddownthechamberreaches10-10

    mbarandstillneedstobepumpedtokeepUHVconditions.Theresidualgasremainingas

    thispointisbasicallycomposedbyH2O,N2,CO.

    2.2. SCANNINGTUNNELINGMICROSCOPY

    TheScanningprobemethods’principleofoperationisconceptuallysimple:ametallicsharp

  • EXPERIMENTALTECHNIQUES

    5

    tipisplacedintheproximityofasamplesurface,closeenoughtogenerateafinitetunneling

    conductance.Ifavoltage!isapplied,anelectrontunnelingcurrent"isgeneratedandonce

    amplified can be easily measured. This current depends exponentially on the distance

    betweensampleandtip.Thetipisatthispointmadetoscanthesurface,applyingafeedback

    looptokeeptunnelingcurrentorheightconstant.

    The Scanning Tunneling Microscope (STM) samples in real space the atomic geometry

    throughthelocaldensityofstates.Fig.2.2.showstheschematicSTM’soperationprinciple.

    Fig.2.2.SchematicdiagramofanSTM,showingthefeedbackcontrolledpiezoscanning

    thetipoverthesurface,andthe#valuesobtainedasatopographicalimageonthecomputer

    [7].

    Since the development ascribed to Binnig et al. [8], it has become a well-established

    technique,improvingthevibrationisolationoftheprobeandthesample,fromtheprimitive

    versionofsuperconductinglevitationsystemtotheactualsuspensionspringsanddamping

    mechanisms using eddy currents; the scan speed with an appropriate sinusoidal signal

    appliedtothetipmovement,canachievetherangeofhundredsofframespersecond.

    TheSTMisaquantummechanicsempiricaldemonstrationbyitself:anincidentparticleupon

  • ScanningTunnelingMicroscopy

    6

    a potential barrier higher than the particle’s kinetic energy has no zero-probability of

    traversing the forbidden region and reappearing on the other barrier side. This is the

    phenomenonoftunnelingandisaconsequenceofthewavelikepropertiesofelectrons,and

    itswavefunction$ # satisfiestheSchrödingerequation

    −ħ

    '(

    )*

    )+*$ # + - # $ # = /$ # (2.1)

    where0istheelectronmass,#and/areitspositionandenergy.Consideringthecaseofa

    piecewise-constant potential- in the classical allowed region/ > - , generates a plane

    wavesolution

    $ # = $ 0 4±67+(2.2)

    where8isthewavevector

    8 ='((:;+ = ħ8 = 20(/ − -)Howeverthereis

    asolutiontoeq.2.2.inthe/ < -region

    $ # = $ 0 4;7+(2.4)

  • EXPERIMENTALTECHNIQUES

    7

    wherethedecaying

    8 ='((

  • ScanningTunnelingMicroscopy

    8

    thatdependsonthematerialsandthecrystallographicorientationofthesurface.Whena

    voltage!isapplied,theelectronsinthesamplelyingbetween/Cand/C − 4!haveafinite

    probability totunnelingthetip. If thevoltage issmaller4! ≪ A, theenergy levelsof the

    tunnelingelectronsareverycloseto/C,andtheprobabilityFofanelectroninthestate$G

    occupyingthenthsamplestatetotunneltothetipsurface # = B is

    F ∝ $G 0'4;'7I(2.6)

    considering$G 0 thewavefunctiongoesthenthsamplestateatthesurface(# = 0)and�

    thedecayconstantofasamplestateneartheFermilevelinthebarrierregion

    8 ='(J

    ħ(2.7)

    Aslongastheconditionofthetipisstableintime,theelectronflowisstationary.Thenthe

    tunnelingcurrentisproportionaltothesampledensityofelectronicstatesinsidetheenergy

    interval4!belowtheFermienergy.Wecanwrite

    " ∝ $G 0'4;'7I

    :K:LM:K;NO

    (2.8)

    Ifthevoltageissmallenough,thenwecanrepresenteq.2.8.intermsofthelocaldensityof

    states(LDOS),correspondingtothenumberofelectronsperunitvolumeperunitenergyat

    agivenpointinspaceandatagivenenergy,attheFermilevelofthesamplesurface

  • EXPERIMENTALTECHNIQUES

    9

    " ∝ !PQ 0, /C 4;'7I(2.9)

    andthatvalueofthesurfaceLDOSneartheFermiisanindicatorofthesurfaceconductivity

    (metallicorinsulating).

    AmoreaccuratetreatmentoftunnelingjunctionwasgivenbyBardeenin1961[9],starting

    fromtwofreesubsystems(tipandsample)andcalculatingthetunnelingcurrentfromthe

    overlapoftheirwavefunctionsusingtime-dependentfirst-orderperturbationtheory[10].

    Onthisway,thetunnelingcurrentcanbeobtainedbysummingallthestatesintheinterval

    e!involvedintheprocess

    " =4T4

    ħU /C +

    1

    24! + W − U /C −

    1

    24! + W

    XY

    ;Y×

    PQ /C +[

    '4! + W P\ /C −

    [

    '4! + W ] W '^W(2.10)

    at low temperature, i.e. when limit _`a ≪ 4! , the Fermi distribution U / can be

    approximatedbyastepfunction

    " =bcN

    ħPQ /C +

    [

    '4! + W P\ /C −

    [

    '4! + W ] W '^W

    Xd*NO

    ;d*NO

    (2.11)

    demonstrating that an STM image is a convolution of sample and tip DOS, and as

    consequenceofBardeen’stheorythereciprocityprinciple:iftheelectronicstateofthetip

    andthesampleareinterchanged,theimageshouldremainthesame.

  • Electronspectroscopies

    10

    2.3. ELECTRONSPECTROSCOPIES

    Thephenomenainwhichanenergeticenough,incidentlightejectselectronsfrommatteris

    known as the photoelectric effect andwas discovered byHertz (1887) and theorized by

    Einstein(1905):anelectroninastatewithbindingenergy/`absorbsaphotonwithenergy

    ℎfandcangetsoverthematerial’sworkfunctionA,escapingwithakineticenergy/g6G

    /g6G = ℎf −/` − A(2.12)

    Due to the attractiveness of the electrons as experimental probes (i.e.with electrostatic

    fields,theelectrons’energyandmomentumcanbeeasilyfocusedandanalysed;electrons

    areeasytocountandvanishafterbeingdetected;asshownintheFig.2.4.,theescapedepth

    of electrons is small enough to keep the surface sensitivity of the techniques; electrons

    providedirectinformationontheelectronicstructureofthematter,etc.),thiseffectisthe

    baseofmanyspectroscopictechniques,inparticularforthisthesis:x-ray(XPS)andultraviolet

    (UPS) photoemission spectroscopy to study occupied electronic states by direct

    photoionization [11] and near-edge x-ray absorption fine structure (NEXAFS) that gives

    informationonunoccupiedstatesinthepresenceofacorehole[12].

    2.3.1. PHOTOEMISSION:XPSANDUPS

    Dependingonwherearetheelectronsintheatomtheycandisplaycore-(i.e.closedtothe

    atomcores)orvalence-(i.e.delocalizedtoparticipatetointeratomicbounds)likecharacter.

  • EXPERIMENTALTECHNIQUES

    11

    Fig2.4.Meanfreepathofelectronsinsolidsasafunctionoftheirenergyanditstheoretical

    approach.[12]

    InXPS,usuallysoftx-rayphotons(ℎf = 100eV − 1keV)areusedtoprobethesample.This

    energyisenoughtoejecttheelectronsmosttightlyboundfromthecore-levels,showingin

    the energy vs. photoemission intensity spectra sharp peaks at well define energies

    corresponding with the electron binding energies that are characteristic of each atomic

    species,givingusanXPSfingerprinttoidentifytheelementspresentinthesample.Several

    factorsinfluencetheexactlocationofcorelevelpeaks,thatareusuallyclassifiedasinitial

    stateeffects,originatingfromtheenvironmentbeforetheexcitation,i.e.thechangesinthe

    chemical environment can lead to variations in the position of the core level, known as

    chemicalshifts. Itsorigincouldbeduetoeithertheformationofchemicalbondsthatare

    involvedintheelectrontransferandchangethechargedensityoftheatomortheelectron

    charge transfer to a given atom that enhances the electron screening of the nucleus,

    decreasingtheelectronbindingenergy,ortheelectronchargetransferfromagivenatom

    thatweakensthescreening,thusincreasingtheelectronbindingenergies[12].Finalstate

  • Electronspectroscopies

    12

    effects take place after the creation of a core hole, (i.e. core-hole screening effects in

    conductorsandpolarizationofdielectrics).

    Thepeaksshapealsogivesusinformationaboutthelifetimeofthecoreholestatecreated

    inthephotoemissionprocess.ItsLorentzianwidthisintrinsicanditsGaussianbroadeningis

    due to the resolution limit of the analyser.Moreover, the integrated peak area gives us

    informationabouttheamountofdepositedmaterialorthesurfacereactions’rate.

    Fig.2.5.Diagramofaphotonabsorptionprocessresultinginaphotoelectronandacore-hole.

    Theholeisfilledbyanelectronradiativelybytheemissionofafluorescentphotonornon-

    radiativelybyemissionofanAugerelectron[13].

    In UPS, ultraviolet light (ℎf = 10eV − 100eV) is used to probe states near the Fermi

    energy,asthesubstrates’valenceband,surfacestatesandlowenergyoccupiedmolecular

    orbitals(HOMO)ofadsorbates.

  • EXPERIMENTALTECHNIQUES

    13

    2.3.2. ABSORPTION:NEXAFS

    In the previous techniques, we described the photoemission by direct excitation of the

    photo-emitted electrons from the occupied states ofmatter to the vacuum level, but a

    photo-emittedelectronencounters empty statesbefore the continuum states above the

    vacuumlevel.Thenear-edgeX-rayabsorptionfinestructure(NEXAFS),isusedtoprobethese

    unoccupiedstates.Inthistwo-stagesprocess,whenthephotonenergymatchestheenergy

    betweenacorestateandanemptystate,theelectronisexcitedtothisunoccupiedstate,

    generation a hole, and the consequent decay would be by the emission of a photon

    (florescence)ortheemissionofanAugerelectron(Fig.2.5.).So,ifthesampleisirradiated

    withmonochromaticx-raysofvariableenergyaroundan ionizationedge,thesubsequent

    relaxationofthesystemeitherbyAugerorflorescencechannelsisgoingtobeameasureof

    theabsorptioncross-section.Thedetectionofelectronsismorecommonfororganicthin

    filmsdueto its largersurfacesensitivity,andthestrongpredominanceofAugeremission

    overflorescenceforlightelements(Z

  • Electronspectroscopies

    14

    InFig.2.6.fordiatomicmolecules,thereareinadditiontotheemptyatomicstates,empty

    molecular orbitals (MOs) that are named as σ and π symmetries andwith * if they are

    unfilled.Inπ-conjugatedmoleculesthelowerunoccupiedmolecularorbitalisusuallyaπ*-

    orbital,withtheσ*-orbitalsathigherenergies.Thesestatesareusuallyabovethevacuum

    level in neutralmolecules but pulled below by electron-hole Coulomb interaction in the

    ionizedmolecules.TheNEXAFSdoesn’tionizetheatomormolecule,butcreatesaholeand

    excitesanelectronthatwillthereforeinteract.

    The natural linewidth of the resonances (as dictated by the corresponding lifetime) is

    broadened by the instrumental resolution which eventually swears the splitting of

    resonancesduetothemolecularvibrationalstates.Sinceσ*orbitalsarefoundabovethe

    vacuum level and at higher photon energies they can overlap with the continuum that

    providesalargernumberofdecaychannels,sonoresonancesareexpectedandtheyhave

    lowerlife-timeandappearsignificantlybroader.

    NEXAFSspectracangiveusinformationaboutthestructuralorganizationofanoverlayer,its

    magneticpropertiesandbonding.Bondlengthsinamoleculecanbeestimatedanalysingthe

    energypositionofσ*resonances,andsincethislengthissensitivewiththeoxidationstate

    ofanatom,chemicalreactioncanbemonitored.Moreover,thechemisorptionofamolecule

    isoftenaccompaniedbyachargetransferbetweenmoleculeandsubstrate,thatquenches

    the NEXAFS peak associated with the lowest unoccupied molecular orbital (LUMO) or

    generatesanewstateclosetoit.

    Theintensityofanabsorptionisproportionaltotheprobabilitythatanelectroninaninitial

    state,occupiesahigherenergyfinalstatewhenthesampleisilluminatedbyaphotonbeam.

    This transition probability is described by the Fermi’s golden rule [14] that links the

    resonanceintensityItothematrixelement

    " ∝ < U 4 ∙ > l > '(2.13)

  • EXPERIMENTALTECHNIQUES

    15

    where4istheelectricfielddirectionand>themomentumoperator.Forlinearlypolarized

    light(astheproducedinasynchrotron)anda1sinitialstate,wecanobtainthesimpleform

    " ∝ 4 U > l ' ∝ cos' p(2.14)

    withptheanglebetweentheelectricfieldvectorandthedirectionofthefinalstateorbital,

    thatpresentsamaximumwhen theelectric fielddirection is alignedalongadirectionof

    maximumelectrondensity.Thispolarizationdependenceoftheresonancesintensityallows

    the molecular orientation determination. Because of the spatial localization of the 1s

    electrons,onlyp-likefinalstatesfromtheatomswhoseabsorptionisprobedbytheselected

    photonenergywillappearinthespectrum.Thisisknownasthedipoleselectionrule.

    Consideringafinalπ*-planemolecularorbital,linearlypolarizedphotonbeamandthetwo-

    foldsymmetryofthe(110)faceofrutile-TiO2theratiobetweentheintensityofa1s→π*

    transitioninS-andP-polarizedlightbecomes

    "q "r = 1 − cos' s cos' t − sin' s sin' t(2.15)

    andduetothesmallincidentangleθabout4º

    "q "r = tan' t(2.16)

    The resonances seen at the NEXAFS spectra for large molecules belongs to different

    submolecularunitsasthebuildingblockprincipleapproaches.Ifthesesubunitsmayadapt

  • Electrondiffraction

    16

    different azimuthal orientations respect to the molecular plane, the tilt angle must be

    calculatedwithaformulaforthreefoldorhighersubstratesymmetry

    "q "r = 3 2 tan' t(2.17)

    2.4. ELECTRONDIFFRACTION

    As shown in Fig. 2.7.when any incident beam (i.e. photons, ions, electrons, neutrons or

    protons)withawavelengthcomparabletotheperiodicalspacingbetweenthestructuresof

    interest is scattered from these structure planes it produces an interference. This

    interferencewillbeconstructiveifthepathdifferencebetweentwowavesisequaltothe

    multipleoftheirwavelength,soiftheplanesdistanceisd,andthebeamcollideswithan

    angleθtheinterferencewillbeconstructiveif

    z{= 2dsin s(2.18)

    thisequationisknownastheBragg’slaw.

    Fig.2.7.Wavesreflectingfromtwoparallellatticeplanes.

  • EXPERIMENTALTECHNIQUES

    17

    Ifwedescribethewavesbytheincident(ki)anddiffracted(ko)vectors,assumingtheprocess

    iselastic,thelengthsofthewavevectorsarethesameduringalltheprocess

    _6 = _} ='c

    ~(2.19)

    Bytakinginaccountthetrigonometricrelationbetweenthesevectors,wecanfinallyobtain,

    thatforaconstructiveinterferencethedifferencebetweenthewavevectorsoftheincident

    anddiffractedwavesmustbeequaltothevectorfromthereciprocallattice|G|

    ='c

    )(2.20)

    orinvectorformasLaueinterpretedit

    _6 − _} = (2.21)

    It’samoregeneralinterpretationthatdoesn’trequirestheBraggassumptionsthatreflection

    ismirror-likeandcomingfromtheparallelplanesofatoms.

    InageometricapproachtheEwaldsphereshowninFig.2.8.isaconstructionthatcombines

    thewavelength of the incident and diffractedwaves, the diffraction angle for a specific

    reflectionandthereciprocallatticeofthesample.Consideringthesphereradius

    Ä ='c

    ~= _ (2.22)

  • Electrondiffraction

    18

    whenthesphere interceptswithareciprocal latticepoint, theLauecondition issatisfied,

    givingaconstructiveinterferenceofthediffractedwaves.

    Fig.2.8.EwaldspherewherethedarkspotsarethereciprocallatticepointsthatfulfiltheLaue

    condition.

    2.4.1. REFLECTIONHIGHENERGYELECTRONDIFFRACTION

    Ifwedoreflectionwithhighenergyelectronsbeam(5–100keV)(i.e.providelargeelastic

    scatteringcross-sectionforforward-scatteredelectrons),weneedtokeepthepenetration

    depthofthetechniquesmallusingareflectiongeometryinwhichthebeamisincidentat

    verygrazingangle(1-4º)asseenonFig.2.9.,thusremainingasurfacesensitivetechnique.

    Only the electrons which interact with the most superficial layers experiment elastic

    collisions originating a diffraction pattern. Other electrons suffer inelastic scattering

    transformingtheparallelandmonocineticbeaminadivergent,quasi-monocineticbeamand

  • EXPERIMENTALTECHNIQUES

    19

    increasingtheprobeddepth.ThescatteringoftheseelectronsgiverisetothelinesofKikuchi

    ifthematerialiswell-crystallized(i.e.singlecrystal).

    InthecaseofLEED,therelationbetweenadiffractionpatternandthereciprocallatticeis

    easilyunderstood,butRHEEDpatternsarenotsointuitive.Thistechniqueenableustoknow

    the intensity distributions along the reciprocal lattice rods only changing the crystal

    orientation. In the LEED, the acceleration voltage is changed to record the intensity

    distributionsalongthem,butthischangeinthewavelengthgiveschangeinthemagnitude

    ofthestrongdynamicaleffectessentiallyaccompaniedwithLEED,makingdifficulttoanalyse

    thesurfacestructure.

    Fig.2.93DviewoftheEwaldsphereforreflectionhighenergyelectrondiffraction[15].

    Theoretically, the intersection of streaks with the Ewald Sphere should form points.

    However, the radius of this one is too large for the energy considered during RHEED

    measurements comparedwith the reverseof the interatomicdistances,doing theEwald

    spheretocrossalongmanylatticerodsbutonlyfewneargrazingexitangles,andlookingthe

    surfaceasacontinuousalongtheincidencedirection(withoutdiffraction),thusdetecting

    onlytheperpendicularperiodicities(i.e.usuallyweonlysee(00)and(10)components)that

    combinedwiththedispersionangleandenergyof theelectronsbeamandthe imperfect

  • Electrondiffraction

    20

    crystallinequalityofthesurface,makethediffractionpatterntoappearalsointheformof

    streaks.

    This peculiar geometry allows to performmeasurements during growth of surface films,

    been possible to monitor the layer-by-layer growth of epitaxial films by monitoring the

    oscillations in intensity of the diffracted beams in the RHEED pattern, doing possible to

    controlthegrowthrateinMolecularBeamEpitaxy(MBE)[16].

    TheRHEEDpatternalsocanbeusedtomeasureperiodicitiestransversetothe incidence

    planemeasuringtheseparationbetweenstreaks[17,18],andcomparingtheheightsofthe

    peaks(i.e.Intensity)intherockingcurvestoextractdetailedatomicspacingbyquantitative

    analysis[19],thatdoesn’tconcerntothisthesis.

  • 3. EXPERIMENTALAPPARATUS

    3.1. THEALOISABEAMLINE

    ALOISA(AdvancedLineforOverlayer,InterfaceandSurfaceAnalysis)isamultitaskbeamline

    forsurfacescienceexperiments,itisdesignedtoworkinawidespectralrange(100-8000eV)

    and hosts three experimental chambers; the main setup ALOISA dedicated to X-Ray

    diffraction and spectroscopy experiments, the end-station ANCHOR (AmiNo –Carboxyl

    Hetero-OrganicaRchitectures)equippedwithanindependentmonochromaticX-raysource

    andaheliumlamptoperformoff-lineexperimentsandtheend-stationHASPESforhelium

    atomscatteringthatcanperformrealtimeHediffractionandXPS.

    ELETTRASynchrotronisa3rdgenerationlightsource,operatingastorageringenergyof2or

    2.4GeVintop-upmode,andprovidingphotonbeamsintherangeof10-30000eVwithhigh

    spectralbrilliance.

    TheALOISAphotonbeamisproducedbyaU7.2wiggler/undulatorinsertiondevice(ID)of

    theELETTRASynchrotron,thatconsistsinaspatiallyperiodicmagneticfieldproducedbytwo

    alternativeorientedmagnetssuperimposedinaface-to-faceconfigurationandseparatedby

    auser-tuneablegapthatallowstwooperationmodes.Whenthegapislargeincomparison

    withthedistanceoftwomagnetseries( 40-80mm)withlowcriticalbeamenergies(130-

    2000eV)theIDoperatesintheundulatorregime.Whenthegapislower( 20mm),i.e.the

    magneticfieldisstronger,theamplitudeofthesinusoidalpathincreasesandtheIDoperates

    in thewiggler regime. In the Fig. 3.1.we can see the intensityof thephotonbeamas a

    functionofthephotonenergyfordifferentIDgapvalues.

    Theplanarundulatoriscomposebyanarrayof19periodsofpermanentmagnets80.36mm

    long,withatotallengthof1527mm.Thelightonceproduceisselectedinanglebyapinhole

  • TheALOISAbeamline

    22

    andcollimatedbyaparaboloidalmirrorinsagittalconfiguration.Thisparallellightbeamcan

    impinge on two different dispersion devices; a Plane Mirror/Grating Monochromator

    (PMGM),forthe120-2000EVrange,andaSi(111)channel-cutcrystalforthe2.8-8keVrange

    withaphotonfluxatthesubstrateofabout1x1012inthelowenergyrangeand1-2x1011

    inthehigherrange.Thespotsizeinthecentreoftheexperimentalchamberisabout40x200

    μm2withanenergyresolvingpower(/ ∆/)between2000and7500.Thelightislinearly

    polarizedintheplaneoftheelectronbeamorbit.

    Fig.3.1. Intensityof thephotonbeamattheexitof theALOISAwiggler/undulator IDasa

    functionofthegap.[20]

    AsshownintheFig.3.2.thelightiscollectedfromtheentrypinholebyaparaboloidalmirror

    (Parabol-1)andcollimatedtothedispersingsystem.Themonochromaticbeamisfocusedat

    theexit slits (ES)byasecondparaboloidalmirror (Parabol-2).Thisexitdivergentbeam is

  • EXPERIMENTALAPPARATUS

    23

    finallyfocusedonthesampleatthecentreofthechamberbyatoroidalmirror(cylindrical).

    Even if the system hasn’t an entrance slit, the optics are used in the sagittal focusing

    configurationtominimizetheaberrationsinthedispersiveplane.Alltheopticshaveagold

    coatingto increasethereflectivityofX-raysthanksto its largecriticalangle,andtheyare

    operatedgrazingincidencewithadeflectionangleof1º.

    Fig.3.2.OpticalsystemoftheALOISAbeamlineandHASPESbranchline.

    ThebeamisswitchedtotheHASPESbranchlinebyathirdmirror(Toroidalshape)anddue

    tothelargedistanceofthechamber(14m),noadditionalrefocusingmirrorsareused.

    Theopticalelementsmovement isautomatizedviaTCP-IPconnectionasa serviceof the

    BeamlineControlSystem(BCS),developedbyELETTRAtechnicalteam.

    3.1.1. ALOISAEXPERIMENTALCHAMBER

    TheALOISAexperimentalchamber,shownintheFig.3.3.,iscomposedbytwodifferentiated

    parts: ahemispherical chamber,dedicated to the samplepreparation (calledpreparation

  • TheALOISAbeamline

    24

    chamber)andacylindrical chamberhosting theelectronanalysersandphotondetectors

    (calledmainchamber).

    Fig. 3.3. Cross-section of the ALOISA chamber. The main experimental apparatus are

    highlighted.

    ThepreparationandmainchamberarecoupledwithlargebronzeballbearingandslidingO-

    rings’ system that allows the complete rotation of the main chamber (including the

    detectors)aroundthesynchrotronradiation(SR)beamaxis.

    Thesystemispumpedbytwopumpingstagesthatmaintainaconstantbasepressureof10-

    11mbarinsidethemainchamber.

    Thepreparationchamberisequippedwithamolecularbeamepitaxy(MBE)cryopanelthat

    hostsfourevaporationcells,usuallyKnudsencellsorelectronbombardmentevaporators,

    andcancalibratethedepositionfluxwithtwomicrobalances.Therearealsogaslinesthat

    allowshighpuritygasestobebledintothechamber.TheiongunfortheAr+bombardment

    allowsanionenergyof3keVandanemissioncurrentover25μA.AReflectionHighEnergy

    ElectronDiffraction(RHEED)apparatuswithelectronenergyof15keVandabletoimpinge

    on the surface at grazing angle is available for checking the surface in-situ during the

    deposition. Inthepreparationchamber,there isalsothesampletransfersystemandfast

  • EXPERIMENTALAPPARATUS

    25

    entry-lockallowingquicksampleexchange.Thereisalsoaquadrupolemassspectrometer

    (QMS)tochecktheevaporationandthecleanlinessofourvacuumandforleaktestporpoise.

    Rotatingelement Rotationaxis Extension Resolution

    Experimental

    chamber

    SRbeam ±120º 0.00015º

    Axialframe SRbeam ±120º 0.0002º

    Bi-modalframe PerpendiculartoSR

    beam

    ±100º 0.0002º

    SampleHolder SRbeam -90º;+185º 0.001º

    SampleHolder Grazingangle -2º;+15º 0.001º

    SampleHolder Surfacenormal ±95º 0.001º

    Table.3.1.RotationsoftheALOISAmainchamberandmanipulatorholder.

    Insidethemainchamberthedetectorsaremountedintwoindependentframes.Theaxial

    one is hosted at the end of the main chamber and rotates around the SR beam axis

    independentlywiththechamberandthesample.Ithostsfive35mmelectronanalyserswith

    lowresolutionof500meVandacceptanceangleof5º.TheyaremainlydedicatedtoAuger

    PhotoelectronCoincidenceSpectroscopy(APECS).Thebimodalframeismountedontheside

    ofthecylindricalmainchamberandrotatesperpendiculartotheSRbeamandaroundthe

    SRbeamtogetherwiththemainchamber.Ithostsa66mmhemisphericalelectronanalyser

    with2ºofangularacceptanceforX-rayPhotoemission(XPS)andphotoelectrondiffraction

    (PED).ThereisalsooneenergyresolvedphotodiodeformeasuringthetotalcurrentforX-

    raydiffraction(XRD)andreflectivity(XRR).Thebimodalframeadditionalhoststwoenergy

    resolved(Peltier-cooled)photodiodesoperating insingle-photoncountingmodeforX-ray

    diffraction.ThereisalsoaphosphorousplatewithaCCDcameramountedontheaxialframe

  • TheALOISAbeamline

    26

    for 2D X-ray reflectivity measurements that allows the alignment of the beam and the

    sample.

    Fig. 3.4. ALOISAmanipulator armwithout sample holder. The light flux arrives from the

    cylindricalhoseontheleftsideoverthesamplethatfacesupinsidethecircularholder.

    Awide-angleacceptancechanneltronismountedontheaxisofthebimodalframe,usedto

    measurethepartialelectronyieldinNEXAFSexperiments.Thischanneltronismountedin

    frontofitsapexwithanadditionalgridtorepelthelow-energymultiple-scatteredelectrons,

    acting as a high-pass filter, where only higher-energy Auger electrons contribute to the

    partial-yieldsignal.

    ThemanipulatorshowninFig.3.4.thathoststhesamplehassix-degreeoffreedomandis

    mountedhorizontallyintothepreparationchamberandcantranslatethesamplebetween

    preparationandmainchamber.SincetheSRbeampassesthroughthewholemanipulator

    armandimpingesatgrazingincidenceintothesamplesurface,threerotationswithsome

    limitationsasshowninFig3.5.areallowed;aroundthesynchrotronbeam(R1)toselectthe

    surfaceorientationwithrespecttothepolarization,thegrazingangle(R3)andtheazimuthal

    orientationforthesurfacesymmetryaxis(R2).Also,thedisplacementinthethreeaxes(X,

    Y,Z)areallowed.TheirlimitsareexhibitintheTable3.1.

  • EXPERIMENTALAPPARATUS

    27

    Thesampleholderisavariabletemperaturesystemequippedwithtwotungstenfilaments

    andelectrical insulation,whichenables applyinghigh voltage theelectronbombardment

    heatingofthesampleover1100K,andagaspipelinewithacold-fingercontactonthesample

    holderwhichenablesthecoolingdownwithliquidNitrogenuntil150K.

    Fig. 3.5. Sketch of the angular movements available by the manipulator (left) and the

    experimentalchamber(right).

    ThedataacquisitionandmovementsareautomatizedwithaLabVIEWhomemadeprogram

    developedbytheALOISAteam.

    3.1.2. HASPESEXPERIMENTALCHAMBER

    The Helium Atom Scattering and Photoelectron Spectroscopy (HASPES) chamber is

    composed,as seen inFig.3.6.,byamainupstandingcylindrical vacuumchamber,apre-

    chamberwithaheliumatomsourceandachamberforheliumdetectionwithaQMS.

  • TheALOISAbeamline

    28

    HASPEStakeadvantageofthelow-energymonochromaticSRbeamthatentersthrowthe

    HedetectionsystemcoincidentwiththeHescatteredbeambutintheoppositedirection.

    The sample holder compatible with ALOISA chamber is mounted in a vertical VG CTPO

    manipulatorwithsixdegreesoffreedomandahigh-precisionmovementsetbyharmonic

    drives.Thesystemisalsoequippedwithathermallinktoacryostatforliquidnitrogenor

    liquidheliumcoolingandtungstenfilaments,thatallowsavariabletemperaturebetween

    100-1100Krange.

    Thedetectorsangleisfixedat110ºforHASand55ºforXPS.Therearethreepossiblesample

    rotations; changing the incident angle of helium atoms and SR beam (R1), changing the

    surfacesymmetryaxisrespecttothescatteringplane(R2)andtiltrotation(R3).

    Fig.3.6.HASPESchamberanditsequipment.

    ThechamberdisplaysapumpingsystemthatcontrolsthesmoothtransitionfortheHeto

    passfromcontinuumtofree-molecularflowinsideanozzlewhichpressureratiobetween

    thestagnationpressureandthebackgroundpressureinthebeamchamberisabout107,so

  • EXPERIMENTALAPPARATUS

    29

    noshockstructuresappearsintheexpansionregion,allowingaHepressureinthestagnation

    chamberof10-100barrangetotunethefluxandmonochromaticityoftheHebeam.

    Thisnozzlehasaskimmerthatdefinestheangulardivergenceofthebeamandachopper

    thatselectthepulsesforinelasticscatteringmeasurements,andanothercollimatortoenter

    intheexperimentalchamberwithacrosssectionofabout0.7mm.Thebeamenergycanbe

    setbetween18.6and100meVwiththetemperatureinsidethestagnationchamber.

    At this point the neutral atoms are ionized by an electronic beam (the electrons have a

    /g6G = 100eVthat is themaximumcross-section to ionizeHeatoms)and filteredwitha

    QMSwithachargetomassratioaccuracyof0.05e.m.u.

    Thesupplementaryequipmentincludesaheliumlampthatprovidesultravioletradiation,a

    150mmhighresolutionhemisphericalelectronanalyser,anelectronguninthescattering

    planethatoffersangularlywellresolvedelectrondetection,achanneltronatanangleof50º

    forthepartialelectronyielddetectioninNEXAFSexperiments,aniongunforAr+sputtering,

    a cryopanelwith three Knudsen evaporation cells and a fast entry lock for quick sample

    exchange.

    3.2. CFMEXPERIMENTALCHAMBER

    ThemainSTMexperimentalchambershownintheFig.3.7.usedduringthisthesisbelongs

    totheNanoPhysicsLabatthe“CentrodeFísicadeMateriales”inSanSebastián,Spain,and

    ishandledbyDr.CeliaRogero.

    This chamber is composed by two parts: a cylindrical chamber dedicated to the sample

    preparationandthespectroscopicanalysis(chamber1),andasphericalchamberhostingthe

    STMheadandwithsample’spreparationcapabilities(chamber2).

  • CFMexperimentalchamber

    30

    Fig.3.7.ExperimentalsetupforpreparationandSTMmeasurements(courtesyofC.Rogero,

    NanophysicsLab,CentrodeFísicadeMateriales,Donostia/SanSebastián,Spain).

    Bothchambersarecommunicating invacuumbya transferarmandseparatedwithgate

    valvestopreservethevacuumcleanlinessandisolationduringtheexperiments.Thevacuum

    reaches10-10mbarinbothchambersthankstothescrollandturbopumpingsystems,and

    the ionpumpof the chamber 1 and the getter pumpof the chamber 2 during the STM

    operationtoavoidtothemaximumthemechanicalnoises.

    Thechamber1 isequippedwith:anhorizontalfourdegreesoffreedommanipulatorthat

    hoststhesample,allowingitsmovementinx,y,zcoordinatesandtheaxialrotationinthe

    sample’s plane, R1, and hosts a filament that allows the sample heating by electron

    bombardmentupto1100K;oneX-raysourceofAlK-αradiation,withanenergyof1486.6

    eVandoneHeIUVlamp(21.2eV)associatedwithasphericalelectronenergyanalyserfor

    photoemissionspectroscopy;afastentrysystemthatallowsthesampleexchangeinafew

    hours;oneiongunforsputteringthesample;aquartzmicrobalancetotunethemolecules

  • EXPERIMENTALAPPARATUS

    31

    depositionandasetofcommercialfilament-heatedevaporatorspointingtothecentreof

    thechamber.

    Thechamber2hoststhecommercialvariabletemperatureSTMhead(SPM150Aarhusfrom

    SPECSSurfaceNanoAnalysisGmbH),thatincludesaLiquidNitrogencoolingsystemanda

    Zenerdiodesheatingsystem,allowingtoexperimentintherangeof150K-400K.TheSPM

    150 Aarhus performs scanning tunnel microscopy in both modes constant height and

    constantcurrent,andatomicforcemicroscopy(AFM)thankstothepatentedKolibriSensor®.

    ItsnoiseisolationisduetoaspringsandVitonsystemthatallowsdifferentlevelsofdamping

    andworkingwithoutdisconnectingtheturbopumpingsystem.

    On this chamber there is also an Ion gun for tip cleaning and normal incidence sample

    sputtering;amanipulatorwithafilamentforthesampleelectronbombardment;aparking

    systemtokeepsamplesunderUHVconditionsforalongperiod;afastentrywithagatevalve

    thatallowsthe installationofanadditionalevaporationcellpointing to thecentreof the

    sampleduringthescanning,toperformin-situexperiments;alongtransferarmtotranslate

    thesamplefromchamber1tochamber2andawobble-sticktomanipulatethesampleplate

    insidethechamber.

    3.3. SUPPORTODISUPERFICIEXPERIMENTALCHAMBER

    DuetothegoodSTMresultsobtainedatthe“CentrodeFísicadeMateriales”, thegroup

    decidedtobuyanewSTMheadfromSPECSincollaborationwiththegroupofthemicro-

    nano-carbonlaboratory(MNC-lab)managedbyDr.AndreaGoldoni.

    AfteritscommissioningtheexperimentalchamberiscomposedbythreepartsasseeninFig.

    3.8.: a spherical chamber dedicated to the preparation and alignment of the sample

    (preparation chamber), a spherical chamber hosting mainly the STM and availability for

  • CFMexperimentalchamber

    32

    samplepreparationin-situ(STMchamber)andalargeverticalcylindricalchamberhostinga

    completeARPESsystemforspectroscopyexperiments(ARPESchamber).

    Fig.3.8.Experimentalsetupforpreparation,STMandARPESmeasurements.

    Thepreparationchamberiscomposedbyafastentrytoinsertandextractnewsamplesina

    fewhoursthatincludesalongtransferarmtoshiftthesamplefromthepreparationchamber

    to the ARPES chamber, a wobble stick tomanipulate the sample inside the preparation

    chamber,afourdegreesoffreedommanipulatorthatholdstwofilamentsforheatingand

    electron bombardment, a LEED (light energy electron diffraction) for alignment and

    detectionofthesymmetryofthesurfacewithandwithoutadsorbates,aniongunforAr+

    sputtering,twoevaporator’sentriesthatpointdirectlytothecentreofthechamberandthe

    samplewhenit’sinthemanipulator,aquartzmicrobalancetotunethedepositionmounted

    directlyonthemanipulatoronthebackofthesampleholder.

    TheSTMchamberholdstheSTMhead(SPM150Aarhus)describedinthepreviouschapter,

    aniongunforAr+sputteringtocleanthetipandthesampleinnormalincidenceifnecessary,

    amanipulatorthatholdsaheatercomposedbytwofilamentsandelectronbombardment

    capabilities,onewobblesticktotransferandmanipulatethesampleinsidethechamber,one

  • EXPERIMENTALAPPARATUS

    33

    transferarmtomovethesamplefromtheSTMchambertothepreparationchamberthat,

    likewisetheothertransferarm,includesahomemadesampleholdershownintheFig.3.9.

    Thissampleholdersmartlysolvestheproblemwiththeangularlimitationstotransferthe

    samplebetweenchambersduetothe“L”configurationofthechambers.

    Fig.3.9.SampleholderforSPECSandOmicronsymmetriessampleplatesthatallowsthe

    sampleplanetranslationinsevencircularpositions(from-135ºto135ºby45º).

    TheARPESchamberissupplybyaVUV5kseriesUVsourcefromGAMMADATA.Thisphoton

    sourceisbasedonaHeplasmageneratedbyelectroncyclotronresonance(ECR)technique.

    Amicrowavegeneratoriscoupledtoadischargecavityinsideamagneticfieldtunedtothe

    microwavefrequencytofoundtheECRcondition,providingconcentratedradiationat21,23

    eV(HeI)and41eV(HeII).Thefluxdensityiscomparablewiththeobtainedfromabeamline

    undulatorandabout500timeshigherthantheonefromotherconventionaldischargeVUV

    sources.Itsstabilityandbandwidth(1meV)makeitexcellentforstudiesandmeasurements

    thatrequirehighintensity,longmeasurementtimesandhighresolution(i.e.gasphase).It’s

    supply with amonochromator that achieved complete separation of Heα and Heβ. The

    manipulatorthatholdsthesampleisaJohnsenUltravacmodel3000,withanXYstage,aZ

    driveof0.01mmofprecisionandapolarrotationof360degreesattachedtoacryostatfrom

    AdvancedResearchSystems(ARS)withabasetemperaturelowerthan9Kandincredible

    coolingpower(10W@77K).TheelectronspectrometerisaSCIENTAR3000thatprovides

    fastbandmapping,alensacceptanceangleof±15ºandangularresolvedrangeof±10ºand

    variabledispersion.Theenergyresolutionis3.0meV,theangularresolutionisof0.1ºfora

  • CFMexperimentalchamber

    34

    0.1mmemissionspotandthekineticenergyrangeisfrom0.5to1500eVwithapassenergy

    between2and200eV.AQMScompletesthechamber.

    Theentiresystemispumpedinseveralstagesmainlybyscroll,anddiaphragmpumpforthe

    pre-pumpingandturbopumpstoreachandpreservetheUHVinthe10-10mbarrange.

  • 4. HYBRIDINTERFACESOFHETEROAROMATICMOLECULESONTIO2

    4.1. INTRODUCTION

    Tetrapyrrole macrocycles, specifically the porphyrins, are very stable and versatile

    molecules.Duetotheircapabilities,theyareinvolvedinthemainlifeprocessesandpresent

    largenumberoftechnologicalapplications[21]fromphotocatalysistodye-sensitizedsolar

    cells[22].Basically,theirrigidcorebecomesabuildingblockunitthatallowsthemolecular

    assemblingincomplexarchitectures,bytuningthestrengthandnatureoftheadsorption

    interactionandmolecule-moleculeinteractionbyfunctionalizationwithperipheralligands.

    Free base porphyrins or metalloporphyrins can be used, where the optical, electronic,

    magnetic and catalytic properties depend on the specificmetallic nucleus. This tuneable

    assembling over solid surfaces allows the designing and fabrication of hybrid surfaces

    engineeredatthenanoscale[23].Byassemblingporphyrinsatsolidsurfaces,it’spossibleto

    designandfabricatehydridsystemswithpropertiesengineeredatthenanoscale.Onsurface

    modificationofmetal-freeporphyrins,isaviableroutetoachievechemicalandstructural

    controlofmolecularoverlayers.

    ThankstotheRutile-TiO2(110)characteristics,adsorbedonsuchasitslargeandanisotropic

    surface corrugation, where molecular films are expected to grow with the macrocycle

    paralleltothesubstrate,[24]andthepossibilityofchargeinjectionintotheoxide,[25]this

    substratebecomesasuitableplaygroundforthecharacterizationofarchetypalorganicdye

    molecules.

  • Therutiletitaniumdioxidesurface

    36

    4.2. THERUTILETITANIUMDIOXIDESURFACE

    Theinterestonsurfacescienceofmetaloxideshasbeenrapidlyincreasinginthelastyears,

    since oxide surfaces have a lot of applications and are present inmostmetals that are

    oxidizedimmediatelyunderambientconditions.Duetoitsproperties,titaniumdioxide,TiO2,

    hasalotoftechnologicalapplicationsasaphotocatalyst,asgassensor,aswhitepigment,as

    acorrosion-protectivecoating,inceramics,invaristors,asopticalcoating,andinsolarcells

    toproducehydrogenandelectricenergy.

    Innature,thetitaniumdioxideisapolymorphandpresentsthreecrystalstructures:Anatase,

    RutileandBrookite,beingfromthescientificandtechnologicalpointofviewtheAnatase

    andRutilestructuresthemostinterestingones.Theyaresemiconductorswithenergygap

    ~3eV[26],thatmatchesthegapofmanylight-harvestingcompounds.Applyingsynthetic

    chemistry these compounds known as organic dyes that are photosensitive can be

    functionalizedwithanchoringgroupstoattachtoTiO2surfaces,thataddedtothecapabilities

    ofTiO2aselectronacceptortobegrowthintransparentnanostructureswithlargesurface

    tovolume ratio, is fundamental inoneof themostextendedapplications,dye-sensitized

    solar cells [27]. Theseprototypaldye-sensitized solar cells are composedbyamixtureof

    mostlyAnatasethatfavourstheefficiencyandminorityRutilecrystals.Theaveragesurface

    energyofanequilibrium-shapecrystal forAnatase is less than for rutile [28], that iswhy

    nanoscopicparticlesarelessstableinrutilephase.Inotherhand,thephotocatalystactivity

    of the chemically active faces as Anatase-(101) or Rutile-(110) could be induced with

    ultravioletlight,convertingtoxiccompoundsandmoleculesintobasicconstituents[29].In

    itsstoichiometricformthetitaniumdioxidecanbeuseasgatelayerintransistorsduetoits

    highdielectricconstant.Atthenanoscale,thehighsurfacecorrugationofRutile-(110)could

    beexploitedasa template for thegrowthof theorganicmolecule layers inanorganized

    structureincreasingtheirelectronmobility.

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    37

    Sincelargeandpurerutilecrystalsarecommerciallyavailablewiththedesiredfacet,andthe

    (110)surfaceisthemoststableface,therutile-(110)canbeconsideredanarchetypalmetal

    oxidesurfacetomodeltheabsorptionoforganicmolecules.

    Bulkrutile-TiO2asshownintheFig4.1.hasabody-centredtetragonalunitcellwiththeTi

    atomsatthebody-centreandcornerpositionsineachone.EachTiatom,withformalcharge

    +4, is coordinated to six O ions with formal charge -2 at the vertices of a distorted

    octahedron.Atthesametime,eachOatomiscoordinatedwiththreeTiatomswithallthe

    O-Tibondslyinginoneplane.

    Fig.4.1.BulkstructureofRutile.ThetetragonalbulkunitcellofRutilehasthedimensionsÉ =

    Ñ = 4.587Å, ä = 2.953Å.Slightlydistortedoctahedraarethebasicbuildingunits.Thebond

    lengthsandanglesoftheoctahedrallycoordinatedTiatomsareindicatedandthestacking

    oftheoctahedralinbothstructuresisshownontherightimage[30].

    Theunreconstructed(110)surfaceisasimpletruncationacrossthe(110)planeasshownin

    Fig4.2.andtheonewithlowestformationenergy[30].TwokindsofTiatomsarepresenton

    the surface along the[110]where six-fold coordinated Ti atoms alternatewith five-fold

    coordinated atomswith one dangling bond perpendicular to the surface. Two kind ofO

    atomsarecreatedaswell.Theso-called“bridgingOatoms” formingrowsparallel to the

  • Therutiletitaniumdioxidesurface

    38

    [001]directionofOatomstwo-foldcoordinatedprotrudingapproximately1.2Åandrowsof

    three-foldcoordinatedatomslyingintheplaneoftheTiatomsandconnectingthesix-fold

    and five-fold coordinated Ti atoms’ rows. The dangling bonds of the bridgingO ions are

    compensatedbythefive-foldTiones,thataccordingwiththeautocompensationcriterion

    explainsthesurfacestability[31].

    Fig. 4.2. a) Ball-and-stickmodel of the Rutile crystal structure emphasizing two distorted

    octahedronsthatcomposetheunitcell.AandBlinessurroundachargeneutralrepeatunit

    withoutdipolemomentumperpendiculartothe[001]direction.b)Thecrystal istruncated

    alonglineAandtheresulting(110)surfacesarestableandtheexperimentalevidenceforthe

    (1x1)surfacereconstruction.[30]

    Only minor relaxations occur mainly perpendicular to the surface [32] with an outward

    relaxation relative to the bulk position of the bridging O rows ( 0.2 Å) and an inward

    displacementof the five-fold Ti ( 0.1Å) in thehollows. The resultant surfaceunit cell is

    characterizedbyarectangularunitcellmeasuring2.959x6.495Åalongthehigh-symmetry

    directions[001]and[110]respectively.

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    39

    4.2.1. SURFACEPREPARATIONANDCHARACTERIZATION

    Inourexperiments,wehaveusedseveral samplesof rutileTiO2(110) fromMateckwitch

    thicknessrangingabout1mm.ThepreparationproceduretogetacleansurfaceunderUHV

    conditionsiscomposedbytwostepsthatcanberepeateduntilgettingthedesiredsurface;

    20minutesofgrazingangleAr+sputteringattypically1.0keVionenergyand10-6mbarAr

    pressuredependingonthechambergeometryandthedistanceandfocusbetweentheion

    gunandthesamplesurfaceandanannealingcyclebyelectronbombardmenttorestorethe

    (1x1)structure,applyingavoltageof800Vtothesampleandstabilizingtheemissioncurrent

    at10mAfor4min,20mAfor2minand40mAfor1min,notexceeding10-8mbarofpressure

    insidethechamber.

    Since the annealing temperature during the last step reachesmore than 750ºC, the lost

    oxygenmakes the sample conductiveenough tobeprobedwithSTMandphotoelectron

    spectroscopiesavoidingchargingeffects,butitalsoincreasesthedefectsdensitythatmay

    conditionthemolecules’adsorption.Particularlytheoxygenvacanciesandevenaperfect

    surface[33]undergoodvacuumconditionswouldbeexposedtoresidualwatermolecules,

    takingplaceawater-splittingreactionandconvertingthemintohydroxylgroupsduetotheir

    dissociation.

  • Therutiletitaniumdioxidesurface

    40

    Fig. 4.3. STM constant current image of clean rutile-TiO2(110) surface with a (1x1)

    reconstruction. The different defects aremarked by blue arrows (i.e. vacancies, hydroxyl-

    groupsandwater).

    AsexplainedwiththeSTMwecaneasilyprobefilledandemptysurfacestatesdependingif

    the applied bias voltage to the sample is negative or positive respectively. For TiO2(110)

    surfacetheoptimalbiasvoltagetosampleemptystatesareusuallyintherangeof1.0-1.5V,

    and low tunneling current values (80-100 pA). This empty states electronic picture of a

    stoichiometricsurfacewithaTi-Oinaperfect1:2ratioshowstwofeatures:darkandbright

    rows. The consensus is that thedark rowsare thebridgingO ionswhile thebright rows

    correspondtothefive-foldTi ions[34],consideringthatthe largedensityofstates inthe

    unfilledbandspatiallyconfinedonthefive-foldTiionsprevailoverthesurfacetopography

    anddefects,oxygenvacanciesandhydroxylgroupsareeasilyrecognizableinanempty-state

    STMimage,asshowninFig4.3.Theoxygenvacanciesappearasscatteredbright“bridges”,

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    41

    occupyingonebridgingOsiteandconnectingtwofive-foldTirows;OHgroupsinsteadshare

    thesameappearanceandpositionbuttherelativeheightisapproximatelydouble.

    ) b) c)

    Fig.4.4.Colourcentresassociatedwithbulkdefectsformeduponreductionofthetitanium

    dioxidesinglecrystalscauseachangeincolour.a)Singlecrystalreoxidizedinairat1450K,

    b)1h10minat1350Kandc)4h55minat1450K.[30]

    AsseenintheFig.4.4.pristineTiO2crystaldisplayafainttransparentyellowcolourwhich

    exchangestodarktransparentblueandfinallyintoareflective,metallic-likeappearance,the

    morethecrystalisheatedinUHVconditions.Thereasonistheprogressivereductionofthe

    material,duethelowerenergybarrierfortheirthermaldesorptionofthebridgingOions.

    EachbridgingOlostgeneratestwoexcesselectronsthatmustgointotheconductionband,

    thebottomofwhichisformedbyTi3dstatesthatareratherlocalized[35],changingthe

    formaloxidationstatefromTi+4toTi+3withtwoconsequencesshowninFig4.5.;ashiftin

    the2pcorelevelbindingenergyoftheTiatoms,andthepresenceofanewelectronicstate

    slightlybelowtheconductionbandminimum,inthebandgapregion.Infact,sincetheexcess

    chargeinRutileformpolarons,theTiionsreducedbythisexcessofelectronsriseanextra

    2pcorelevelpeakatlowerbindingenergy.

  • Therutiletitaniumdioxidesurface

    42

    Fig4.5.ExperimentalevidenceofthechangeinoxidationstateofTiO2uponremovalofO

    atoms.(Right)Ti2p3/2corelevelphotoemissionshowsashouldercorrespondingtoTi3+.(Left)

    Bandgapregionwherenewelectronicstateat 0.9eVbelowtheFermilevelisseen.

    Fig.4.6.XPSvalencebandspectraofrutile-TiO2(110)1x1.Twofeaturesassociatedwiththe

    hydroxylpresence(11eV)andtheoxygenvacancies(0.9eV)arehighlighted.Thespectrais

    alignedaccordingwithTi3pbindingenergy.

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    43

    TheOH defects can be easily recognized in the STM images, butmore important in the

    spectroscopyspectres.Thevalencebandspectrumpresenttwoelectronicfeaturesthatcan

    helptodiscriminatebetweenoxygenvacanciesandhydroxylgroups.Thefirstpeakcloseto

    theFermilevelisassociatedwithdefectelectrons.AsseenintheFig.4.6.,ifsomechargeis

    staticallytransfertothesurfacebyanoxygenvacancycreationortheadsorptionofelectron-

    donatingmolecules,theexcessofelectronsfillthistrapstate.Thereplacementofoxygen

    vacancieswithhydroxylgroupstakeplacenaturallyinabout10-20minutesassoonasthe

    surfaceiscoolingdown.Thisprocessdoesn’tquenchthisdefectpeak[36],butnewfeature

    isobservedathigherbindingenergies.Thispeakcanatthispointbeeasilyquenchedbya

    calibrateexposuretoO2atroomtemperature,avoidingthedissociationofO2moleculeson

    theTi5-foldrowsthatwouldchangethesurfaceproperties.

    Athermaltreatmentinairfordryingthesilverpasteusedtoattachthesamples,mightfavour

    eithernativehydrogendiffusionfromthebulktothesubsurfacelayersorTiO2hydrogenation

    inambientconditions(especiallyatdefectsandsampleedges)[37].

    Fig.4.7.TheTiO2(110)-(1x2)surface“added-rowmodel”[25].

    TheTiO2crystalcanbestronglyreducebyalongannealing,untilthesamplebecomesdark

    blueandtheoxygenvacanciesdensityovertakesthelimitof10%.Thissituationcauseanew

  • Therutiletitaniumdioxidesurface

    44

    surfacereconstruction(1x2),wheretheperiodicityofthepristineTiO2(110)doublesacross

    thesurfacerows.Thisreconstructionisformedbytheoxygen-deficientstrandsthatgrow

    overtheTifive-foldrowsuntiltheyformacomplete(1x2)terrace[21].Thesurfacegeometry

    forasimple,defect-freeTiO2(110)-(1x2)reconstructionispredictedbyOnishiandIwasawa

    [33]:Ti2O3rowsmadeofthreeOandtwoTiionsperunitcelllengthalongthe[001]direction

    addedontopofaTifive-foldroweachtwobridgingOrowsinFig4.7..

    TheTi5frowsareeasilyidentifiedonthe(1x1)surfaceasbrightrowsasexplained.IntheFig.

    4.8. one can appreciate the 1x2 reconstruction, and the Ti5f rows of the (1x1) surface

    correspondingalternativelytothemiddleofthe(1x2)darkrowsandbrightpairedrows,that

    becomesawaytodistinguishthemolecularalignmentwhenmoleculesdoesn’tadsorbon

    the(1x2)reconstruction.Thesurfacealsopresentsdefectsthattendtoaggregateintolinear

    chainsassingleorcross linksthatarecommonlyobservedinexcessivelyreducedcrystals

    [38].

    Fig. 4.8. STM detail imagen from clean rutile-TiO2(110) surface with (1x1) and (1x2)

    reconstructions.TheextrapolationoftheTi5frowsfromthe(1x1)regiontothe(1x2)region

    isshown.

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    45

    4.3. TETRAPYRROLEMACROCYCLES:PORPHYRINS

    Onemoleculehasbeenselectedasrepresentativeofporphyrins:tetraphenyl-porphyrin,2H-

    TPP.Othertwounits,octaethyl-porphyrin,2H-OEPandtert-butyltetraphenyl-porphyrin,2H-

    tbTPP, have been probed along the experiments, to contrast results and obtain a larger

    picturewhennecessaryaboutthemolecule-substrateinteractionsunderneath.Allofthem,

    illustratedintheFig.4.9,areconstitutedbycentralsp2hybridizedtetra-pyrrolicstructure

    withdifferentperipheralfunctionalization.Theirmacrocyclescanincorporatealmostevery

    elementof theperiodic table for tuning themoleculeopticalproperties.Their functional

    groups represent a nice playground with different anchoring possibilities between the

    moleculesandtheoxidesurfacethateventuallycanfavouredthechargeinjection,themain

    bottleneckinthelightharvestingprocessindye-sensitizedsolarcells[39].The2H-TPPand

    2H-tbTPPpresentfourphenylringsthatarenotco-planarwiththemacrocycleduetothe

    interactionwith the hydrogen atoms in the ortho- positions of the phenyl rings and the

    adjacentatomsattheporphyrincore.Inaddition,2H-tbTPPcarriesadditionaltertiarybutyl

    groupsatthetwometa-positionsofeachphenylleg.The2H-OEPpresentsveryflexibleethyl

    substituents attached to the β- positions of the pyrrole moieties that doesn’t induce

    significantadsorption-induceddeformations.

    Fromthechemicalpointofview,aninterestingpointisthatporphyrinscanbemetalated,in

    situbyallowingtoreactwithdepositedmetalatoms(i.e.alreadyonthesurfaceordirectly

    evaporating over themolecular layer, or predepositedmetal clusters) [38] but also self-

    metalatedby incorporationofsubstratemetalatomsunderthermaltreatment[40]. This

    impliesas thirdchannel, thepossibilityof trans-metalation,where themetalloporphyrins

    exchangeitscoremetalatombyamorereactivesubstrateatom.Self-metalationhasbeen

    successfully achieved onmetal substrates as Cu,Ni or Fe butmuch less is known about

    metalation reactions of tetrapyrrole macrocycles at metal oxide surfaces. Despite the

    expectedlowerflexibilityofcovalentbondingcomparedtometalbonding,thereisevidence

    suggestingthatmetalationonmetaloxidesurfacescouldbeevenfasterthanthatonmetal

  • Tetrapyrrolemacrocycles:Porphyrins

    46

    surfaces. First, the kinetics of metalation on metal surfaces is strongly influenced by

    porphyrin-surfaceHexchange [41]where ithasbeendemonstrated thatporphyrinswith

    variousfunctionalterminationsareabletopickupHatomsfromthesurfacealreadyatroom

    temperature[42].Second,self-metalationatmetalsurfacesarefavouredinthepresenceof

    oxygen[43,44].Schneideretal.demonstratedthat2H-TPPisconvertedintoMg-TPPwhen

    adsorbedonMgOsubstrates.Anotherinterestingpointisthathydrogenbyitselfcanalsobe

    exploited in freebaseporphyrins tomodify the localmolecular conductanceby selective

    cleavage of one pyrrolic NH bond [45], onmetal surfaces to influence in the kinetics of

    metalation[46]aswellasinmetalloporphyrinstotunethechiralitybyselectiveabsorption

    [47].

    Fig. 4.9. Ball-and-Stick molecular structure of free-base octaethyl porphyrin (2H-OEP),

    tetraphenyl porphyrin (2H-TPP) and tert-butyl tetraphenyl porphyrin (2H-tbTPP). These

    moleculesarecharacterizedby theircentral ringofatomsknownasmacrocyclewith two

    typesofNatoms,iminicandpyrrolic.Gray=carbon,blue=Nitrogen,white=hydrogen.

    Afewinvestigationshavebeenperformedtostudythemetalationoftetrapyrrolemolecules

    atmetaloxidesurfaces,liketheinvestigationabouttheconversionof2H-TPPtoNiTPPatthe

    TiO2(110)surface[38]thatwasreportedtotakeplaceatroomtemperaturewhen2H-TPPis

    depositedfirst,whereasatemperatureof550KisrequiredwhenNiispredeposited,orthe

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    47

    2H-TPPmetalationtoMgTPPadsorbedonMgOnanocubeswherethedrivingforceofthe

    process hasbeen attributed to thehigh affinity of step and corneroxygens at theoxide

    surfacewith the hydrogens of themolecule, indicating the importance of themolecule-

    surfacehydrogenexchange[49].

    4.3.1. 2H-TPPSPECTROSCOPYCHARACTERIZATION:XPS

    Asstartingpointforthecharacterizationoftheinsituevaporated2H-TPPmoleculeslayer

    on a surface at room temperature, the ligand state of nitrogen was probed by X-ray

    photoemissionoftheN1scorelevel.Althoughmetal-freeporphyrinsarecharacterizedby

    twowell definedN1s peaks of equal intensity (separation of ~2 eV) stemming from the

    molecules’ pair of hydrogenated (pyrrolic) nitrogen atoms and the pair of aza- (iminic)

    nitrogenatoms[50],thefirstlayerofmoleculesalwaysdisplaysadominantcomponentin

    theN1sphotoemissionspectracorrespondingtoanenergyof 400.2–400.5eVasshown

    in the Fig. 4.10. 2H-OEP and 2H-tbTPP (Fig. 4.10) were also evaporated in the same

    experimentalconditionsonrutile-TiO2(110)-(1x1)obtainingthesamebehavior.

    This binding energy corresponds to the expected one for pyrrolic nitrogen. This

    “pyrrolization” has been reported in free-base phtalocyanine on rutile-TiO2(110) with

    contradictoryexplanations[51].Increasingthedepositionbeyondthemonolayertothethick

    film formation, a new peak grows at 398 eV binding energy, that corresponds to the

    expectediminicnitrogencomponent,thatreachesandpreservestheintensityparitywith

    thepyrroliconeafter4-5layers.ThecomparisonofN1sXPSbetweenthemonolayerand

    multilayerisalsoshownforallthethreespeciesasreference.

    Takingintoaccountthatthesethreemoleculesareessentiallydifferentintotheirmacrocycle

    heightwithrespecttothesubstrate(thatisincreased 0.5Åfromonevarietytothenext

    duetosimplestericargumentswithoutconsideringminorrelaxationeffects),theabsenceof

    theiminiccomponentcannotbesimplyattributedtoastrongcorelevelshiftofaza-nitrogen

    originatedbylocalscreening.

  • Tetrapyrrolemacrocycles:Porphyrins

    48

    Fig.4.10.XPSfromN1scomparisonbetweenmonolayerandmultilayerformbydeposition

    for2H-OEP,2H-TPPand2H-tbTPP.Theabsenceofiminic(rightpeak)componentisclearly

    observedinthemonolayerregime.

    The2H-TPPmonolayerpresentsalsoalargerbindingenergy(shiftof0.2-0.3eV)withrespect

    tothe2H-OEPand2H-tbTPP,whichwetentativelyassigntothelocalrelaxationofthephenyl

    ringsthatfitthesubstratecorrugation,thankstotheirangularflexibility(i.e.dihedralangle

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    49

    betweenthephenylplaneandthemacrocycleplane).Wheningroundstateconformation

    ofcrystalline2H-TPP,thephenylsremaintiltedby60ºoutofplaneforstericrepulsioneffects

    betweenthephenylandpyrroleC-Hterminationsfacingoneeachother,whereasNEXAFS

    dataindicatea 30˚tiltoffthesurfaceforthefirstlayer2H-TPP.Therefore,theonlyplausible

    remaininghypothesisisthehydrogenuptake.

    Thehydrogenmaybepresent intwomaincoordination,asmolecularhydrogenfromthe

    residualgas insidethevacuumorasatomichydrogenfromthesample.Accordingtothe

    literature,thehydrogendissolutionintheTiO2bulkwouldbefavouredbythermaltreatment,

    metalcontaminants(acceptornature)orelectronirradiation.[52]

    XPSbyitselfdemonstratesnottobeaconvenientprobetechniqueforbulk-dilutedspecies

    due to its surface sensitivity (i.e. the escape depth of photoelectrons is about 5-10 Å),

    whereas it is a suitable probe of the small concentration of hydrogen confined into the

    surfacebywaterdissociationatreducedTiO2(110)surfaces[53]Thesehydrogenatomsare

    presentintheformofhydroxylspeciesandtheycanbemonitoredbyphotoemissioninthe

    valencebandenergyrangewhereanewcharacteristicsatelliteoftheO2pbandsurgesat

    11eV.[54]

    In the Fig. 4.11.we show the valence band spectra of a clean but slightly hydrogenated

    surface with an estimated OH concentration of 4-5%), and the same surface after the

    depositionofamonolayerof2H-TPPanditsanalogousfor2H-OEP,correspondingwiththe

    twomoleculeswiththemacrocycleclosetothesurface.

    Ascanbeseen,thepeakassociatedwiththeOHcontributionisquenchedinagreementwith

    the hypothesis of the hydrogen uptake. We must take into account that the complete

    hydrogenationofthenitrogenpresentinthefirstmoleculeslayercannotbeobtainedonly

    with the hydrogen present in the surface, and more important if possible, that the

    hydrogenationisaccomplishedevenonsurfaceswithoutOHcontribution(i.e.freeofdefects

    surface). We are then left with the hypothesis that additional hydrogen atoms may be

    extractedfromthesubsurfacelayers.

  • Tetrapyrrolemacrocycles:Porphyrins

    50

    Fig.4.11.(left)Valencebandspectratakeat140eVphotonenergy.TheOHpeakat11eVis

    quenchedupondepositionofamoleculesmonolayerof(upleft)2H-TPPand(downleft)2H-

    OEP.(Right)Detailfromthedefectstates(x20)thatremainsinvariableinbothdepositions.

    Isexpectedthattheannealingofthemonolayeratsomepointshouldpresentsomechemical

    andconformationalchangesbeforethermaldesorptionormolecularfragmentation.TheN1s

    photoemissionspectrameasuredduringatemperaturerampisshowninFig.4.12.Themain

    issueisthegradualswitchofthepyrroliccomponenttoanewenergyslightlyhigherthanthe

    iminic one, that starts below 100ºC for 2H-TPP as referencemolecule for the porphyrin

    repertory.

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    51

    Thisnewenergycorrespondstotheonefoundinfilmsofmetalporphyrins,andiscoincident

    inB.E.withtheN1speakobtainedbyevaporationofTiatomsoveraporphyrinlayer,with

    theadvantagethatthefullyconversionofthepyrroliccomponentintothemetalliconecan

    beachievedbyannealingatabout200ºC,whereasthemetalatomsdepositioncannotfully

    convertacompactlayerduetothelimitedmetaldiffusionwhenthesurfaceiscompletely

    coveredandTiatomsaggregateintoclusters.

    It’simportanttoremarkthatthelowonsettemperatureofthechemicalreactioncaneasily

    be reach by Dye-sensitized solar cells operative, and due to this low self-metalation

    temperatureandthehighTiatomsreactivity,thetrans-metalationcantakeplaceinthedye

    metalloporphyrins.

    Fig.4.12(Left)2DrepresentationoftheintensityoftheN1speakduringacontinuousscan

    undercontrolledannealingofa2H-TPPmonolayer.Thebindingenergyandthetemperature

    areshownintheXandYaxisrespectively.(Right)twocutsatRTand80ºCrespectivelyfrom

    the left panel, and a last scan taken at the maximum temperature reached during the

    experimentwheretheNitrogenpermutesintoitsmetalatedenergy.

  • Tetrapyrrolemacrocycles:Porphyrins

    52

    ComparingtheC1sanN1sintensitynormalizingtotheTi2pintensityofthespectrasunder

    further annealing beyond 400ºC, a decrease about 20% is noticed, corresponding to a

    decreaseofthemoleculardensity(Fig.4.13).

    TheperfectoverlapoftheTi2pspectra(inparticular,thelowenergytail)seeninFig.4.13,

    with andwithoutmolecular overlayer, and before and after annealing, indicates that no

    change of the amount of Ti3+ and Ti2+ ions is observed upon self metalation.We can

    concludethatTiatomincorporatedinthemacrocyclemusthavethesameoxidationstateof

    thesubstrateatoms.

    Fig.4.13 (Left)PhotoemissionofN1sandC1speaks from room temperature toannealed

    moleculesmonolayermeasuredwithphotonenergyof650eVandnormalizedinintensityto

    the Ti2p peak. (Right) Photoemission of Ti2p peaks from clean substrate to annealed

    moleculesmonolayermeasuredwithphotonenergyof650eVandnormalizedinintensity.

    Performingtheannealingfortheothertwospecies(2H-OEPand2H-tbTPP),theresultsare

    consistentwiththeself-metalationofthemolecule,withaminordifferencewithrespectto

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    53

    theperipheralsubstituents,reachingthecompleteswitchofthepyrroliccomponentintothe

    metalliconeat200ºCforthe2H-tbTPPandat250ºCforthe2H-OEPasseeninFig4.14.

    Fig.4.14. (Left)N1sXPSspectrafrom0.8monolayerof2H-tbTPPasdeposited,andunder

    thermal treatment.Themetalationof themolecule is reachedand theN1speak shifts to

    398.8eV.(Right)XPSforN1sduringthemetalationbythermaltreatmentof0.5monolayer

    of 2H-OEP. The behaviour is similar to the other porphyrins, andwhen themetalation is

    completedtheN1siscompletelyshiftedtoabindingenergyabout398.8eV.

    4.3.2. 2H-TPPNEAR-EDGEX-RAYPHOTOEMISSIONSPECTROSCOPY

    Theproximityofthemacrocycletothesubstrategovernstheconformationofthemolecule,

    mainlytheconcavityorconvexityofthefourpyrrolemoietiesthatcanbestronglydistorted

    by the incorporation of ametal atom, and the tilt angle and rotations of the peripheral

    substituents.

  • Tetrapyrrolemacrocycles:Porphyrins

    54

    Tostudythecorrelationofthedifferentmolecularconformationsandthedifferentthermal

    treatmentswhichundergothechemicalreaction(i.e.metalationofthemacrocycle)near-

    edgeX-rayabsorptionspectroscopy(NEXAFS)isoneofthebestcomplementarytechniques.

    NEXAFS probes the unoccupied electronic states upon adsorption, providing also an

    estimation of the charge transfer in the bonding between adsorbate and substrate. The

    molecularorientationwith respect to thesurfacecanalsobeestimatedbyanalysing the

    dichroism in the spectra when using linearly polarized photon source [55]. To this aim

    measurementsattheC1sK-edgeforthethreeporphyrins,atroomtemperatureandafter

    annealingarepresentedinthischapter,withspecialconsiderationinthe2H-TPPstudy.All

    themeasurementshavebeenperformedwithlinearlypolarizedX-rayswithitselectricfield

    orthogonal(Ppolarization)orparallel(Spolarization)tothesurfaceplane,andthescattering

    planealongthe[001]symmetrydirection.

    IntheFig.4.15.the2H-TPPcarbonK-edgeNEXAFSspectradisplaysanearedgestructure

    withapeakassignedtoaLUMOdominatedby1s→π*transitionsintothemacrocycleand

    anintenseresonancecorrespondingtotransitionslocalizedmainlyonthephenylrings[56].

    Followingtheprocedurediscussedin[57]andexposedin2.3.2.themacrocycleandphenyl

    contributionscanbeseparatedtoextractthetiltanglewithrespecttothesurface.Thepeaks

    were fitted with low accuracy applying a Fermi step and a Gaussian/Lorentzian fit

    approximationusingXPSmania.

    Thephenylstiltanglevalueis33.98ºforthemoleculesintheas-grownmonolayeratroom

    temperature,presentinga rotationmuch lower thanthe2H-TPPcondensedcrystal’sone

    [58].Thisphenyltiltingisaccompaniedbyasmallout-of-planedistortionofthemacrocycle,

    asrevealedbythedichroisminthemacrocyclepeak,withacalculatedangleof14.29ºwhich

    isconsistentwiththesaddle-shapedistortionofthepristinepyrrolicmoiety.Afterannealing

    to themetalation (250ºC), thedichroismof themacrocyclepeak isonly slightlyaffected,

    whilethephenylpeakdichroismdecreases,givingacalculatedtiltangleof42.2º,asdueto

    an increased rigidity acquired by the entire macrocycle. Further annealing below the

    decompositionlimit(400ºC)exhibitsanalmostcompletedichroismofboth,macrocycleand

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    55

    phenyl peaks, corresponding to a strong planarity of the molecule usually seen in the

    aromatizationofcarboncompounds,withatiltanglecalculatedforthemacrocyclepyrroles

    of11.9ºandatiltangle for thephenylsabout10.4º, thatwouldbeadscribedtoacyclo-

    dehydrogenationofthemetalated-porphyrin.

    Fig.4.15.2H-TPPmonolayeroverrutile-TiO2(110)1x1CarbonK-edgepolarizedNEXAFS.The

    spectrahavebeennormalizedtotheabsorptionmeasuredonthecleanTiO2(110)surface.

    Displaying(up)1MLatRTand(middle)formationofmetalatedmonolayerafterannealingat

    250ºC and (down) the strong dichroism after annealing over 400ºC. The two black bars

    indicatetheLUMOandLUMO+11s→π*transitionsascribedto(1)C-macrocycleand(2)C-

    phenyl.

  • Tetrapyrrolemacrocycles:Porphyrins

    56

    NEXAFS fromNitrogenK-edge at RT shown in the Fig. 4.16. insteadpresent threepeaks

    correspondingtotheπ-symmetryunoccupiedstateslocalizedontheiminic(LUMO)at397.7

    eVandthepyrrolic(LUMO+1)nitrogenat400.1eVandanotherresonanceat402.0eV.The

    residualiminiccontributioncanbeassociatedwiththeresidualiminicintensityobservedin

    thephotoemissionspectra,sincethesurfaceismostlycoveredbyacidic4H-TPPmolecules

    atRT,andthethirdonewouldbeascribedtothemetalloporphyrinphase.Both,theiminic

    andthepyrrolicpeaksdisplayastrongdichroism,wheretheresidualintensityofthepyrrolic

    peakinSpolarizationmaybeequallycontributedbyabendingofthemacrocycleandbythe

    rehybridizationofMOfollowingtheNHbondingtotheObratoms.Adipwouldbeseendue

    tothenormalization.

    Fig.4.16.2H-TPPmonolayeroverrutile-TiO2(110)(1x1)NitrogenK-edgepolarizedNEXAFS.

    ThespectrahavebeennormalizedtotheabsorptionmeasuredonthecleanTiO2(110)surface.

    FromlefttorightwecanfollowtheevolutionoftheLUMOsafterandbeforemetalation,and

    theirstrongdichroism.

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    57

    Underannealingbothcomponents,iminicandpyrrolic,convergeintoasingleπ*symmetry

    LUMO corresponding to the metalated macrocycle (NTi). This peak presents a large

    dichroism,inagreementwiththemetalationofthemacrocycleunits.

    4.3.2.1. COMPARISONWITH2H-OEPAND2H-TBTPP

    NEXAFSfromCarbonK-edgeofthe2H-OEParereportedintheFig.4.17.thereisstillpresent

    themacrocycleLUMO(284.3eV)withahighdichroismatroomtemperatureandattheself-

    metalatedmonolayerandasecondcomponentthatcanbeattributedtotheLUMO+1(285.1

    eV)ofthepyrrolicringspresentingadichroismfollowingthatfromLUMOcounterparts.The

    tiltangleofthepyrroleunitsinthemacrocycleisabout8.3º.

    Fig.4.17.2H-OEP1.3monolayeroverrutile-TiO2(110)1x1CarbonK-edgepolarizedNEXAFS.

    ThespectrahavebeennormalizedtotheabsorptionmeasuredonthecleanTiO2(110)surface.

    (up)1MLatRTand(down)formationofmetalatedmonolayerannealingat200ºC.

  • Tetrapyrrolemacrocycles:Porphyrins

    58

    Afterannealingonlyminorchangesinthepeaksratioaredetectedduetothemetalation

    relaxationoftheporphyrinswithanincrementofthemacrocycletiltangleto12.4º.

    Fig 4.18. 2H-OEP 1.3 monolayer over rutile-TiO2(110) 1x1 N K-edge polarized spectra

    normalizedtotheabsorptionmeasuredonacleanrutile-TiO2(110)surface.Displaying(up)

    1MLatRTand(down)formationofmetalatedmonolayerannealingat200ºC.Theiminicand

    pyrrolicNcontributioncanbeeasilyascribedtotheLUMOandLUMO+1.

    NEXAFS from Nitrongen K-edge shown in the Fig. 4.18. instead presents two peaks

    correspondingtotheπ-symmetryunoccupiedstateslocalizedontheiminic(LUMO)at397.8

    eVandthepyrrolic(LUMO+1)nitrogenat399.9eV.Theresidualiminiccontributioncanbe

    againoriginatedbytheresidualiminicintensityobservedinthephotoemissionspectraand

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    59

    thefact that themeasurement isperformedforathicknessof1.3monolayer.The iminic

    componentpresentsalargerdichroismwithrespecttothepyrrolicone,suggestingthatthe

    macrocycle of the doubly hydrogenated 4H-OEP porphyrin has a larger saddle-shape

    distortionwithrespecttothe2H-OEPbareporphyrin.Afterannealing,theresonancesfrom

    theinequivalentNitrogenconvergeintoasinglepeakat398.6eVthatisingoodagreement

    with that reported formetalloporphyrins (i.e.primarily Fe-OEP) [59]. Thispeakpresenta

    largedichroismandthereisnocontributionfromthepristinenitrogenresonances,according

    withacompletemetalationofthelayer.

    Fig. 4.19. 2H-tbTPP monolayer over rutile-TiO2(110) (1x1), C k-edge polarized NEXAFS

    normalizedtotheabsorptionmeasuredonacleanrutile-TiO2(110)surface.Displaying(up)

    1ML at RT and (down) formation of metalated monolayer by 2 layers’ desorption after

    annealingat200ºC.

    FortheCarbonK-edgeof2H-tbTPP,againthetwomainresonancesLUMO(284.1eV)and

    LUMO+1(285.3eV)stemfromthemacrocycleandthephenylringsasseenonFig.4.19.The

  • Tetrapyrrolemacrocycles:Porphyrins

    60

    dichroismatroomtemperaturegiveusatiltangle22ºforthephenylrings,and16.9ºforthe

    macrocycle,indicatinganevenlargerflexibilityandrelaxationthanforTPP.Afterannealing

    thephenylringsLUMO+1presentasmallerdichroismthatcanbeassignedtoanincreased

    tiltingoffthesurfaceby31˚ofthephenylsaftermetalation,inqualitativeagreementwith

    thecaseofTPP.

    Therotationofthepyrroleandthephenylcomponentsfromeachspeciesaresummarized

    intheTable4.1.

    MOLECULE/TEMPERATURE PYRROLE PHENYL

    2H-TPP/RT 14.29º 33.98˚

    2H-TPP/250ºC 13.6º 42.2º

    2H-TPP/400ºC 11.9º 10.4º

    2H-TBTPP/RT 16.9º 22.0º

    2H-TBTPP/200ºC 17.1º 31.1º

    2H-OEP/RT 8.3º(1stpeak) ***

    2H-OEP/200ºC 12.4º(1stpeak) ***

    Table4.1.Calculatedtiltangleswithrespecttothesubstrateplanebyfittingthepeaksfrom

    the C K-edge polarized NEXAFS associated with excitations localized in the macrocycle

    pyrrolesorinthephenylrings,afterdifferentthermaltreatments.

    4.3.3. 2H-TPPFILMSTRUCTUREDETERMINATION:STMANDRHEED

    Atroomtemperature,individual2H-TPPmolecules,asshownintheFig.4.20.appearasan

    isolatedmonomer displaying six lobes, with the typical saddle-shape observed onmetal

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    61

    surfaces[60].ThetwomainlobesareascribedtothepristinepyrrolesovertheO(2c)rows

    thatpointdown,whiletheotherfourlobescorrespondtothetiltedphenylrings.

    Fig. 4.20. (left) STM image 24.7x24.7nm froma 2H-TPP sub-monolayer as deposited and

    (right)acutshowingthesinglemoleculeprofileandrelativeheightrespecttothesubstrate.

    (Bias=-1.4VTunnelingCurrent=6pA)

    Allthemoleculesarealignedalongthe[001]directionabovetheoxygenrows.Theobserved

    presence of spikes and scratches in the scan direction in correspondence of isolated

    moleculesisindicativeofrelativelyhighmobilityalongtherowsatroomtemperature.

    Afterthermaltreatmentabovethecompletemetalationtemperature>100ºC,thesituation

    ismorecomplexwithseveralnewspecies.IntheFig.4.21.wecandistinguishatleastfour

    kindofmonomers:i)mostofthemdisplaythesamesaddle-shapestructurealignedtothe

    O(2c)rows,likethoseobservedatroomtemperature,ii)someofthemstillhaveadominant

    saddle-shape,butdisplayanuniaxialasymmetryalongtherowdirection,iii)afewofthem

    displayarectangularstructure,centredonTi(5c)rowsandanazimuthalrotationby60º,and

    iv)thelastone.

  • Tetrapyrrolemacrocycles:Porphyrins

    62

    Fig. 4.21. Different molecular conformation of 2H-TPP after thermal treatment over

    metalationtemperature.(Upleft)Imageshowingmoleculeswithsaddle-shapealignedover

    O(2c)rows,andmoleculeswithuniaxialasymmetryalongtherowsdirectionanditsprofiles.

    Bias=1.2VTunnelingCurrent=5pA15x15nm.(Upright)Moleculeswithsaddle-shapealigned

    overtheO(2c)rowsandmoleculesrotatedby45ºalignedovertheTi(5f)rows.Bias=1.48V

    tunnelingcurrent=4.5pA13x13nm. (Down left)Moleculewithcharacteristic saddleshape

    overO(2c) rowand itsprofile,andrectangularshapemoleculeoverTi(5f) rowand(down

    right) its profile along the short axis, the 60º rotated axis is marked in blue. Bias=1.4V

    Tunnelingcurrent=5pA7x7nm.

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    63

    Raising the temperature to 400ºC, where the NEXAFS presents the larger dichroism the

    monomersagainadoptapredominantconfiguration,withaflatrectangularshapecentred

    onTi(5c)rowsandmajorityrotatedby30ºwithrespecttothe[001]directionasseeninFig.

    4.22.Thiscanbeascribedtoacyclodehydrogenationreaction[61]liketheoneseeninthe

    Fig.4.23,wherethemoleculeloseseightHydrogenscorrespondingtotheortho-positions

    ofthephenylringsandtheadjacenthydrogensattheporphyrincore.

    Fig. 4.22. (Left) STM image from self-metalated sub-monolayer of 2H-TPP over rutile-

    TiO2(110)withpredominanceofrectangularshapemolecules.Bias=1.4V,Tunnelingcurrent=

    4pA,35x35nm.(Right)SamephaseSTMimageatnegativebiasshowingsimilarbehaviour.

    Bias=-1.6V, tunneling current=4pA, 60x60nm. (Down right) STM image with (down left)

    detailed molecule topography where its characteristic DOS distribution is recognizable.

    Bias=0.6V,tunnelingcurrent=4pA.

  • Tetrapyrrolemacrocycles:Porphyrins

    64

    Fig.4.23.Cyclodehydrogenationsketchedinball-and-stickmodel.Green=Carbon,Purple=

    Nitrogen,White=Hydrogen.Metalatedmoleculewithagreencoreatom.

    The high coverage range presents a different behaviour due to the molecule-molecule

    interaction.Initiallythemoleculesdon’taggregateintoislandsduetosmallvanderWaal’s

    intermolecularinteraction.AsthecoverageincreasesandmoleculesalongO(2c)rowsenter

    in contact, their phenyl rings start to arrange the molecules into an ordered scheme

    correspondingtoacommensurateoblique-(2x4)phasedisplayingslantingrowsofmolecules

    with respect to the [001]directionas seen in theFig. 4.24. Thisphase is recognizable in

    RHEEDpatternstakenalongthe[111]tohighlightthefractionalspotsalongthisdirection,

    asseeninFig4.25.

    Fig. 4.24. (Left) Growing of the high density phase at RT. Bias= -1.299V, Tunneling

    Current=4pA, 30x30 nm. (Right) STM image from high coverage 2H-TPP obtained by

    multilayerdesorptionwitha thermal treatmentover themetalationtemperature (300ºC).

    Bias=2.5V,tunnelingcurrent=10pA.

  • HybridinterfacesofheteroaromaticmoleculesonTiO2

    65

    Fig.4.25.TheRHEEDimagesaretakenfroma0.9MLinthe[1-11]directiontohighlightthe

    characteristicfive-folddiffractionpattern,underdifferenttemperatures(upleft)RT,(upright)

    140ºC and (down left) 300ºC, for thermal treatment. (Down right) The calculated LEED

    patternoftheoblique-(2x4)phasewithasingledomainisshownforcomparison.

    Underthermal treatmentthephaseremainsunchangedasseen intheuntil reachingthe

    cyclodehydrogenation temperature (about 400ºC), when a new phase r-(2x6) is seen

    accordingwithRHEEDpatternandtheimageanalysisasseenonFig.4.26.Infact,further

    annealingto350ºCyieldsthecoexistenceofextendeddomainswithoblique-(2x4)andrect-

    (2x6)symmetry.Thisnewphasestartsinthemiddleoftheo-(2x4)domainsbyformationof

    molecularrowsalongthe[001]direction,beingfullyconvertedatabout400ºC,wherethe

    molecules line up in perfectly parallel linear rowswith a rectangular superlattice that is

    collinear to the substrateprimitive lattice (Fig.4.26).Upon furtherheating to450ºCand

    higher, themolecular rows still preserve their sharp straightness, but local domains are

  • Tetrapyrrolemacrocycles:Porphyrins

    66

    formedwith 1 26 0

    symmetry,hereaftercalledoblique-(2x6),togetherwiththerect-(2x6)

    (Fig.4.27).

    Fig. 4.26. (Left) Annealing above 400ºC. Bias= -1.5V Tunneling Current = 8pA, 80x80nm.

    (Right)TheRHEEDwas taken ina0.9MLannealedat450ºCalong the [001]direction, to

    highlightther-(2x6)phase.

    Themoleculespreserveaclearnodalplanetransversetothemolecularrows,suggestingthat

    the macrocycle is no significantly changed (Fig. 4.27). Finding the exact registry of the

    moleculeswiththesubstratealongtherows,theyarestilladsorbedatopthesubstrateObr

    rows, like 2HTPP, 4HTPP and TiO2-TPP. Fullmolecular desorptionwould be observedon

    terraceswherethesubstratedisplaysthecharacteristic(2x1)reconstruction,asoriginated

    byveryhighoxygenreduction.ThecorrespondenceofthemolecularrowswiththeObrrows

    canbedeterminedaposteriori from thecomparisonwith imagesobtained for the clean

    surfaceonadjacentterracesdisplayingeith