32
STUDY OF HIGH ENERGY CATHODE MATERIALS : LI-RICH MATERIALS Jean-François Colin, A. Boulineau, L. Simonin, D. Peralta, C. Bourbon, F. Fabre CEA LITEN DEHT | October 28 th , 2014

STUDY OF HIGH ENERGY CATHODE MATERIALS : LI-RICH MATERIALSmat4bat.eu/wp-content/uploads/2014/03/Study-of-high-energy-cathode... · STUDY OF HIGH ENERGY CATHODE MATERIALS : LI-RICH

Embed Size (px)

Citation preview

Pour personnaliser « nom

événement et auteur » :

« Insertion / En-tête et pied

de page »

Personnaliser la zone de

de pied de page

Cliquer sur appliquer

partout

STUDY OF HIGH ENERGY

CATHODE MATERIALS : LI-RICH

MATERIALS

Jean-François Colin, A. Boulineau, L. Simonin, D. Peralta, C. Bourbon,

F. Fabre

CEA LITEN DEHT | October 28th, 2014

2

LiFePO4

LiMn2O4

Energy Density

above 250 Wh.kg-1 (graphite negative electrode)

Market

NCA, NMC

Instability

of the

electrolyte

Li1+xM1-xO2 NCA, NMC

LiNiPO4

LiCoPO4

Li2CoPO4F

Li2CoSiO4

LiMn1.5Ni0.5 O4

Voltage

Capacity

LiCoO2

MATERIALS FOR POSITIVE ELECTRODE

Li2MnSiO4

3

Main Issues to be solved :

Structural mechanism understanding -> O2 in red-ox reactions ? 1st high irreversible specific capacity

Gaz generation issue during 1st cycles

Voltage decay upon cycling

Thermal stability & power perfs improvement

Interests :

Li1+xM1-xO2 (0<x<1/3 ; M = Mn, Ni,…)

High specific capacity > 250mAh/g (vs. 180mAh/g for NMC)

High energy applications > 250-300Wh/kg

Low cost materials

3.4

3.5

3.6

3.7

3.8

3.9

4

0

50

100

150

200

250

300

0 10 20 30

Poten

tial (V)

Cap

acit

y (m

Ah

/g)

Cycle number

Charge capacity

discharge capacity

Potential

- 4 %

- 20 %

- 4,4 %

- 0,3% / cycle

- 0,1% / cycle

STRATEGY 2 : INCREASE CAPACITY :

LI-RICH MATERIALS

4

LI-RICH MATERIALS SOLID STATE SYNTHESIS

0

50

100

150

200

250

300

0 10 20 30 40 50 60

Ca

pa

cit

é s

cif

iqu

e / m

Ah

.g-1

Nombre de cycles

300 nm

500 nm

400 nm

600 nm

Synthesis from carbonate precursors

Optimisation carried on thermal treatment

parameters :

Optimum found at 300-400nm

But still suffers from low taped density :

d=1.1 g/cm 3 Low energy density

5

Multiparameters synthesis : pH, stirring speed,

solutions flow, T° , duration

Use of a Design Of Experiment

LI-RICH MATERIALS LIQUID SYNTHESIS

6

Enhanced performances :

C : 250 mAh/g

d= 1.6g/cm 3

Spherical particles

LI-RICH MATERIALS LIQUID SYNTHESIS

7

LI-RICH MATERIALS LIQUID SYNTHESIS

Pilot scale production : 1kg batch

8

Li-rich lamellar oxides : structural study

Li1+xM1-xO2 : M : Co, Ni, Mn Li1.2Ni2+0.2Mn4+

0.6O2 = Li(Li0.2Ni2+0.2Mn4+

0.6)O2

Can also be seen as 0.5 Li2MnO3 + 0.5 LiMn0.5Ni0.5O2

Li2MnO3

LiMn0.5Ni0.5O2

Li1.2Ni2+0.2Mn4+

0.6O2

R3 m

C2/m

OR

?

9

COMPOSITE OR SOLID SOLUTION?

Li1+xM1-xO2 : M : Co, Ni, Mn Li1.2Ni2+0.2Mn4+

0.6O2 = Li(Li0.2Ni2+0.2Mn4+

0.6)O2

Can be also seen as 0.5 Li2MnO3 + 0.5 LiMn0.5Ni0.5O2

10

COMPOSITE OR SOLID SOLUTION?

HAADF-

STEM

Nanobeam electron diffraction

Succession of domains separated by

stacking faults

Same structure in all domains but 3

different orientation (±60°)

11

COMPOSITE OR SOLID SOLUTION?

HAADF-

STEM

Bragg filter

Variation of contrast variation of chemical composition :

Bright region : TM slabs, Dark region Li1/3TM2/3

Bragg filter on C2/m spots increase the contrast

45% TM / 55% Li1/3TM2/3

COMPOSITE

12

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1 1.2

Vo

lta

ge

/

V v

s.

Li+

/Li

x in LixMn

0.61Ni

0.18Mg

0.01O

2

Structural evolution of Li-rich lamellar oxides during

cycling

1.1 Li could extracted with a reversibility on 0.8Li

New electrochemical profil : a plateau at 4.6V vs Li+/Li

Classical answer

of a lamellar oxide New phenomenon

Possible concomitant oxidation of O2- and Li extraction

What impact on structure? In situ XRD and XAS study on first cycle

13

EXPERIMENTAL SETUP

Measurement in pouch cell

X-ray diffraction : First 1.5 cycle BM20 (ESRF) 25keV (0.496Å) Image plate detector Mar 345 3 min/diffractogramm

XAS : First charge BM30B (ESRF) Ni- and Mn-edge

XANES EXAFS

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1 1.2

Vo

lta

ge

/

V v

s.

Li+

/Li

x in LixMn

0.61Ni

0.18Mg

0.01O

2

14

X-RAY DIFFRACTION

Refinement of cell parameters Space group R-3m :

a and b represent layers dimensions c represents the interslab dimension

c/3 a,b

15

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1 1.2

Vo

lta

ge /

V v

s. L

i+/L

i

x in LixMn

0.61Ni

0.18Mg

0.01O

2

2.84

2.86

2.88

1st charge

a / A

ng

str

om

14.27

14.33

14.4

1st charge

c / A

ng

str

om1st charge

For x>0.9 a decreases : M oxidizes

decreasing of M-O bond

length

c increases : decrease of

screening effect of Li

Solid solution: Classical

answer of lamellar oxide

For 0.9<x<0.1 No evolution of the cell

parameters

Biphasic process?? But no

new reflexion observable

X-RAY DIFFRACTION

16

EXISTENCE OF THE SPINEL PHASE

TEM Microscopy study after 1st charge

Apparition of a spinel phase at the surface of the particle (111)s=(003)l

Li column

TM column

Li and Mn column

“additional” TM column

17 CEA | November, 6th 2012

1st discharge

a comes back to starting value c remains much higher No reversibility with 1st charge

X-RAY DIFFRACTION

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1 1.2

Vo

lta

ge /

V v

s.

Li+

/Li

x in LixMn

0.61Ni

0.18Mg

0.01O

2

2.84

2.86

2.881st discharge

1st charge

a / A

ng

str

om

14.27

14.33

14.4

1st discharge

1st charge

c / A

ng

str

om

18

1st discharge

a comes back to starting value c remains much higher No reversibility with 1st charge

2nd charge

Reversibility of the process occuring during 1st discharge

Creation of a new

structure during the first charge that is then reversibly cycled

X-RAY DIFFRACTION

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1 1.2

Vo

lta

ge /

V v

s. L

i+/L

i

x in LixMn

0.61Ni

0.18Mg

0.01O

2

2.84

2.86

2.88 2nd charge

1st discharge

1st charge

a / A

ng

str

om

14.27

14.33

14.4

2nd charge

1st discharge

1st charge

c / A

ng

str

om

19

VOLTAGE FADING : PROBLEMATIC

3.4

3.5

3.6

3.7

3.8

3.9

4

0

50

100

150

200

250

300

0 10 20 30

Po

ten

tial (V

)

Ca

pa

city

(m

Ah

/g)

Cycle number

Charge capacity

discharge capacity

Potential

- 4 %

- 20 %

- 4,4 %

- 0,3% / cycle

- 0,1% / cycle

Energy = Capacity * Potential Voltage decay = Energy fading

Battery Management System : The potential is not a reflect of the state of charge anymore : impossibility to build a efficient BMS

No possible commercialization

20

VOLTAGE FADING STUDY

2 cells are cycled following : - 50 cycles at C/10 (slow rate) - 1 cycles at C/10 + 48 cycles at C/2

(“high” rate) + 1 cycle at C/10 Voltage fading observed for both Disappearing of Li/Mn ordering Less impact for high rate (kinetically limited phenomena)

21

STEM-EELS experiments - chemical mapping

Pristine material 1 cycle @ C/10

VOLTAGE FADING STUDY

Chemical analysis with atomic column resotultion Homogeneous composition with expected Mn/Ni ratio Apparition of spinel phase without change of composition

22

50 cycles @ C/2 50 cycles @ C/10

Evolution of composition : Ni Enrichment of surface Stronger evolution for slow rate No growth of spinel domain Voltage decay seems to be linked more to cation migration than spinel growth

VOLTAGE FADING STUDY

23

CATIONIC MIGRATION

After one charge

No TM cation in interslab in the bulk

24

After 50 cycles

Disorder appears in the bulk with TM cation in the interslab

CATIONIC MIGRATION

25

VOLTAGE FADING : ELECTROCHEMISTRY

1 µm

Voltage fading : growth of a low potential electrochemical process Is there a link with the other electrochemical processes

26

CYCLES 2 - 13

CYCLE 1

-200

-100

0

100

200

Partial cycling

3.55V - 4.8 V

dq/d

V(m

A.h

.g-1

.V-1

)

-200

-100

0

100

200

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

dq/d

V(m

A.h

.g-1

.V-1

)

2.5 3.0 3.5 4.0 4.5

-200

-100

0

100

200

Voltage (V)

dq/d

V(m

A.h

.g-1

.V-1

)

Partial cycling

2.5V - 4.15 V

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

2.5 3.0 3.5 4.0 4.5

Voltage (V)

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

-200

-100

0

100

200

Partial cycling

3.55V - 4.8 V

dq/d

V(m

A.h

.g-1

.V-1

)

-200

-100

0

100

200

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

dq/d

V(m

A.h

.g-1

.V-1

)

2.5 3.0 3.5 4.0 4.5

-200

-100

0

100

200

Voltage (V)

dq/d

V(m

A.h

.g-1

.V-1

)

Partial cycling

2.5V - 4.15 V

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

2.5 3.0 3.5 4.0 4.5

Voltage (V)

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

-200

-100

0

100

200

Partial cycling

3.55V - 4.8 V

dq/d

V(m

A.h

.g-1

.V-1

)

-200

-100

0

100

200

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

dq/d

V(m

A.h

.g-1

.V-1

)

2.5 3.0 3.5 4.0 4.5

-200

-100

0

100

200

Voltage (V)

dq/d

V(m

A.h

.g-1

.V-1

)

Partial cycling

2.5V - 4.15 V

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

2.5 3.0 3.5 4.0 4.5

Voltage (V)

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

CYCLE 14

-200

-100

0

100

200

Partial cycling

3.55V - 4.8 V

dq/d

V(m

A.h

.g-1

.V-1

)

-200

-100

0

100

200

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

dq/d

V(m

A.h

.g-1

.V-1

)

2.5 3.0 3.5 4.0 4.5

-200

-100

0

100

200

Voltage (V)

dq/d

V(m

A.h

.g-1

.V-1

)

Partial cycling

2.5V - 4.15 V

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

2.5 3.0 3.5 4.0 4.5

Voltage (V)

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

-200

-100

0

100

200

Partial cycling

3.55V - 4.8 V

dq/d

V(m

A.h

.g-1

.V-1

)

-200

-100

0

100

200

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

dq/d

V(m

A.h

.g-1

.V-1

)

2.5 3.0 3.5 4.0 4.5

-200

-100

0

100

200

Voltage (V)

dq/d

V(m

A.h

.g-1

.V-1

)

Partial cycling

2.5V - 4.15 V

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

2.5 3.0 3.5 4.0 4.5

Voltage (V)

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

-200

-100

0

100

200

Partial cycling

3.55V - 4.8 V

dq/d

V(m

A.h

.g-1

.V-1

)

-200

-100

0

100

200

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

dq/d

V(m

A.h

.g-1

.V-1

)

2.5 3.0 3.5 4.0 4.5

-200

-100

0

100

200

Voltage (V)

dq/d

V(m

A.h

.g-1

.V-1

)

Partial cycling

2.5V - 4.15 V

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

2.5 3.0 3.5 4.0 4.5

Voltage (V)

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

Cycles 2 - 13

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

cycle 10

cycle 11

cycle 12

cycle 13

Full cycling

2.5 3.0 3.5 4.0 4.5

Cycles 14

Voltage (V)

Cycle 1

4.8 V – 2.5 V 4.8 V – 2.5 V 4.8 V – 2.5 V

4.8 V – 2.5 V

4.8 V – 2.5 V4.8 V – 2.5 V4.8 V – 2.5 V

4.8 V – 3.55 V 4.15 V – 2.5 V

Partial cycling 1

Partial cycling 1

Partial cycling 1

Partial cycling 2

Partial cycling 2

Partial cycling 2

Full cycling

Full cycling

Full cycling

dq

/dV

(mA

.h.g

-1.V

-1)

dq

/dV

(mA

.h.g

-1.V

-1)

dq

/dV

(mA

.h.g

-1.V

-1)

VOLTAGE FADING : ELECTROCHEMISTRY

Use of reduced voltage window to deconvolute effect of different electrochemical processes on “ageing”

27

2.5 3.0 3.5 4.0 4.5 5.0

-300

-200

-100

0

100

200

dq/d

V(m

A.h

.g-1

.V-1

)

Voltage (V)

Full cycling - cycle 2

Full cycling - cycle 14

Cycle 14 after 12 partial cycles (4.8V 3.55V)

2.5 3.0 3.5 4.0 4.5 5.0

-300

-200

-100

0

100

200

dq/d

V(m

A.h

.g-1

.V-1

)

Voltage (V)

Full cycling - cycle 2

Full cycling - cycle 14

Cycle 14 after 12 partial cycles (4.15V 2.5V)

a b

dq

/dV

(mA

.h.g

-1.V

-1)

dq

/dV

(mA

.h.g

-1.V

-1)

VOLTAGE FADING : ELECTROCHEMISTRY

Similar ageing as full

cycling No ageing

Ageing is due to the high potential electrochemical process Anionic network participation to electrochemistry destabilize the cationic network TM migration

28

2.5 3.0 3.5 4.0 4.5 5.0

-200

-100

0

100

200

dq/d

V(m

A.h

.g-1

.V-1

)

Voltage (V)

cycle 12 full cycling2.5 to 4.8 V

cycles 3 to 12 partial cycling2.5 to 4.15 V

cycles 3 to 12 partial cycling4.15 to 4.5 V

dq/d

V(m

A.h

.g-1

.V-1

)

VOLTAGE FADING : ELECTROCHEMISTRY

29

VOLTAGE FADING : OPTIMISED PROTOCOL

0 10 20 30 40 500

20

40

60

80

100

120

140

160

180

200

220

Partial cycling

Full cycling

specif

ic c

apacit

y (

mA

h/g

)

cycle index0 10 20 30 40 50

3.50

3.55

3.60

3.65

3.70

Partial cycling

Full cycling

pote

nti

al

(V)

cycle index

a b

Switch the uppervoltage limit from

4.8 V to 4.15 V

Switch the uppervoltage limit from

4.8 V to 4.15 V

Using a reduced voltage window allow to stabilize potential Few conditionning cycle in full voltage window is necessary to get capacity Still a trade-off between stability and capacity

30

PERSPECTIVES

0

50

100

150

200

250

300

0 10 20 30 40

Cap

acit

y (m

Ah

/g)

Cycle index

0

10

20

30

Irre

vers

ibile

cap

acit

y (%

) Li1,2Ni0,2Mn0,6O2

Coating A

Coating B

Coating C

Coating strategies: - Increase the capacity of material - Decrease irreversible capacity - No effect on voltage fading

Doping strategies: - Prevent cationic migration by stabilizing the structure

- Negative impact on lithium diffusion?

31

CONCLUSIONS

Production of Li-Rich materials with high capacities via 2 way of synthesis - Solid state synthesis - Coprecipitation (also at pilot scale)

Complex lithiation-delitiation of Li-Rich material have been studied

- During first charge :

- creation of a spinel phase and irreversible change of layered oxide structure (oxygen oxidation)

- During next cycles :

- If cycled at high potential : Cationic migration provoked by the destabilisation of the oxygen network : voltage decay

- If cycled at low potential : no voltage decay but limited capacity

Jean-François Colin

DEHT/LITEN

Laboratoire des Composants pour Batteries

[email protected]

04 38 78 34 91

THANK YOU!