67
Thermodynamics of histories an application to systems with glassy dynamics Vivien Lecomte 1,2 , Cécile Appert-Rolland 1 , Estelle Pitard 3 , Kristina van Duijvendijk 1,2 , Frédéric van Wijland 1,2 Juan P. Garrahan 4 , Robert L. Jack 5,6 1 Laboratoire de Physique Théorique, Université d’Orsay 2 Laboratoire Matière et Systèmes Complexes, Université Paris 7 3 Laboratoire Colloïdes, Verres et Nanomatériaux, Université Montpellier 2 4 School of physics and astronomy, University of Nottingham 5 Rudolf Peierls Centre for Theoretical Physics, University of Oxford 6 Department of Chemistry, University of California ISC Roma 17th May 2007 V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 1 / 21

Thermodynamics of histories an application to systems with … · 2016. 9. 2. · Thermodynamics of histories an application to systems with glassy dynamics Vivien Lecomte1;2, CØcile

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Thermodynamics of historiesan application to systems with glassy dynamics

    Vivien Lecomte1,2, Cécile Appert-Rolland1, Estelle Pitard3,

    Kristina van Duijvendijk1,2, Frédéric van Wijland1,2

    Juan P. Garrahan4, Robert L. Jack5,6

    1Laboratoire de Physique Théorique, Université d’Orsay2Laboratoire Matière et Systèmes Complexes, Université Paris 7

    3Laboratoire Colloïdes, Verres et Nanomatériaux, Université Montpellier 24School of physics and astronomy, University of Nottingham

    5Rudolf Peierls Centre for Theoretical Physics, University of Oxford6Department of Chemistry, University of California

    ISC – Roma – 17th May 2007V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 1 / 21

  • Introduction Motivations

    Motivations

    Boltzmann-Gibbs thermodynamics

    P(C) = e−βH(C)

    Before reaching equilibriumtransient regime“glassy” dynamics

    Non-equilibrium phenomenasystems with a current (of particles, energy)dissipative dynamics (granular media)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 2 / 21

  • Introduction Motivations

    Motivations

    Boltzmann-Gibbs thermodynamics

    P(C) = e−βH(C)

    Can’t be used in any situation!

    Before reaching equilibriumtransient regime“glassy” dynamics

    Non-equilibrium phenomenasystems with a current (of particles, energy)dissipative dynamics (granular media)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 2 / 21

  • Introduction Motivations

    Motivations

    Boltzmann-Gibbs thermodynamics

    P(C) = e−βH(C)

    Can’t be used in any situation!

    Before reaching equilibriumtransient regime“glassy” dynamics

    Non-equilibrium phenomenasystems with a current (of particles, energy)dissipative dynamics (granular media)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 2 / 21

  • Introduction Motivations

    Motivations

    Boltzmann-Gibbs thermodynamics

    P(C) = e−βH(C)

    Can’t be used in any situation!

    Before reaching equilibriumtransient regime“glassy” dynamics

    Non-equilibrium phenomenasystems with a current (of particles, energy)dissipative dynamics (granular media)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 2 / 21

  • Introduction Motivations

    Motivations

    Boltzmann-Gibbs thermodynamics

    P(C) = e−βH(C)

    Can’t be used in any situation!

    Before reaching equilibriumtransient regime“glassy” dynamics

    Non-equilibrium phenomenasystems with a current (of particles, energy)dissipative dynamics (granular media)

    → Need for a dynamical description

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 2 / 21

  • Introduction Outline

    Outline

    1 Motivationsstatics vs dynamics

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 3 / 21

  • Introduction Outline

    Outline

    1 Motivationsstatics vs dynamics

    2 Models of glass formersexamplethermodynamics of historiesresultsdynamical phase coexistence

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 3 / 21

  • Introduction Outline

    Outline

    1 Motivationsstatics vs dynamics

    2 Models of glass formersexamplethermodynamics of historiesresultsdynamical phase coexistence

    3 Perspective

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 3 / 21

  • Models of glass formers

    Glasses

    T

    E

    Tm

    superc

    ooled

    liquid

    liquid

    crystal

    glass

    Fig.1 in Ritort and Sollich, Adv. in Phys. 52 219 (2003)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 4 / 21

  • Models of glass formers Thermodynamics of histories

    From configurations to histories

    fluctuations of configurations

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 5 / 21

  • Models of glass formers Thermodynamics of histories

    From configurations to histories

    fluctuations of configurations

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 5 / 21

  • Models of glass formers Thermodynamics of histories

    From configurations to histories

    fluctuations of configurations

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 5 / 21

  • Models of glass formers Thermodynamics of histories

    From configurations to histories

    �����������

    ����� ���

    � � ���

    fluctuations of histories

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 5 / 21

  • Models of glass formers Thermodynamics of histories

    From configurations to histories

    ������������������ ���

    � !�"

    fluctuations of histories

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 5 / 21

  • Models of glass formers Thermodynamics of histories

    From configurations to histories

    #�$�%�&�'�(�)*�+�, $�%

    - , .�/

    fluctuations of histories

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 5 / 21

  • Models of glass formers Example

    Example

    0 1 2

    Independent particles

    L sites n = {ni} with

    {

    ni = 0 inactive siteni = 1 active site

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 6 / 21

  • Models of glass formers Example

    Example

    3 4 5

    Independent particles

    L sites n = {ni} with

    {

    ni = 0 inactive siteni = 1 active site

    Transition rates in each site:activation with rate W (0i → 1i) = cinactivation with rate W (1i → 0i ) = 1− c

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 6 / 21

  • Models of glass formers Example

    Example

    6 7 8

    Independent particles

    L sites n = {ni} with

    {

    ni = 0 inactive siteni = 1 active site

    Transition rates in each site:activation with rate W (0i → 1i) = cinactivation with rate W (1i → 0i ) = 1− c

    Equilibrium distribution: Peq(n) =∏

    i

    cni (1− c)1−ni

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 6 / 21

  • Models of glass formers Example

    Example

    9 : ;

    Independent particles

    L sites n = {ni} with

    {

    ni = 0 inactive siteni = 1 active site

    Transition rates in each site:activation with rate W (0i → 1i) = cinactivation with rate W (1i → 0i ) = 1− c

    Equilibrium distribution: Peq(n) =∏

    i

    cni (1− c)1−ni

    Mean density of active sites: 〈n〉 =1L

    i

    〈ni〉 = c

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 6 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Kinetically constrained models (KCM)

    Constrained dynamics: changes occur only around active sites.

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 7 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Kinetically constrained models (KCM)

    Constrained dynamics: changes occur only around active sites.

    Fredrickson Andersen model in 1Dat least one neighbor of i must be active to allow i to change

    inactivation: < = >1− c 1− c

    activation: ? @ AB C D Ec c c c

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 7 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Kinetically constrained models (KCM)

    Constrained dynamics: changes occur only around active sites.

    Fredrickson Andersen model in 1Dat least one neighbor of i must be active to allow i to change

    inactivation: F G H1− c 1− c

    activation: I J KL M N Oc c c c

    same equilibrium distribution Peq(n)same mean density 〈n〉 = c

    BUT:

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 7 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Kinetically constrained models (KCM)

    Constrained dynamics: changes occur only around active sites.

    Fredrickson Andersen model in 1Dat least one neighbor of i must be active to allow i to change

    inactivation: P Q R1− c 1− c

    activation: S T UV W X Yc c c c

    same equilibrium distribution Peq(n)same mean density 〈n〉 = c

    BUT:AGING

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 7 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Trajectories

    Peq(n) insufficient→ analysis of histories

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 8 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Trajectories

    Peq(n) insufficient→ analysis of histories

    n(t)

    t0t1 t2 t3

    n(1)

    n(2)

    n(3)n(t)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 8 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Trajectories

    Peq(n) insufficient→ analysis of histories

    n(t)

    t0t1 t2 t3

    n(1)

    n(2)

    n(3)n(t)

    activity K = number of configuration changes

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 8 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Statistics over histories

    Classification of histories according to a time extensive parameter

    activity K = number of configuration changeson average:

    〈K 〉 = 2c2(1− c) L t (large t)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 9 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Statistics over histories

    Classification of histories according to a time extensive parameter

    activity K = number of configuration changeson average:

    〈K 〉 = 2c2(1− c) L t (large t)

    K is fluctuating

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 9 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Statistics over histories

    Classification of histories according to a time extensive parameter

    activity K = number of configuration changeson average:

    〈K 〉 = 2c2(1− c) L t (large t)

    K is fluctuating

    ρ(K ) =

    ∣∣∣∣∣

    time-averaged density of active sitesfor histories of activity K

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 9 / 21

  • Models of glass formers Kinetically constrained models (KCM)

    Statistics over histories

    Classification of histories according to a time extensive parameter

    activity K = number of configuration changeson average:

    〈K 〉 = 2c2(1− c) L t (large t)

    K is fluctuating

    ρ(K ) =

    ∣∣∣∣∣

    time-averaged density of active sitesfor histories of activity K

    ρ(K ) gives information on non-typical histories

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 9 / 21

  • Models of glass formers Dynamical partition function

    Dynamical partition function

    Fluctuations (1): the micro-canonical wayThermodynamics of configurations

    Ω(E , L) =

    ∣∣∣∣∣

    number of configurationswith energy E

    (large L)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 10 / 21

  • Models of glass formers Dynamical partition function

    Dynamical partition function

    Fluctuations (1): the micro-canonical wayThermodynamics of configurations

    Ω(E , L) =

    ∣∣∣∣∣

    number of configurationswith energy E

    (large L)

    Thermodynamics of histories [à la Ruelle]

    Ωdyn(K , t) =

    ∣∣∣∣∣

    number of historieswith activity K between 0 et t

    (grand t)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 10 / 21

  • Models of glass formers Dynamical partition function

    Dynamical partition function

    Fluctuations (1): the micro-canonical wayThermodynamics of configurations

    Ω(E , L) =

    ∣∣∣∣∣

    number of configurationswith energy E

    (large L)

    Thermodynamics of histories [à la Ruelle]

    Ωdyn(K , t) =

    ∣∣∣∣∣

    number of historieswith activity K between 0 et t

    (grand t)

    micro-canonical ensemble: technically painful

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 10 / 21

  • Models of glass formers Dynamical partition function

    Dynamical partition function

    Fluctuations (2): the canonical wayThermodynamics of configurations

    Z (β, L) =∑

    E

    Ω(E , L) e−β E(n) = e−L f (β) (large L)

    Thermodynamics of histories [à la Ruelle]

    ZK(s, t) =∑

    K

    Ωdyn(K , t) e−s K [hist] = e−t L fK(s) (large tlarge L)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 11 / 21

  • Models of glass formers Dynamical partition function

    Dynamical partition function

    Fluctuations (2): the canonical wayThermodynamics of configurations

    Z (β, L) =∑

    E

    Ω(E , L) e−β E(n) = e−L f (β) (large L)

    Thermodynamics of histories [à la Ruelle]

    ZK(s, t) =∑

    K

    Ωdyn(K , t) e−s K [hist] = e−t L fK(s) (large tlarge L)

    (Dynamical) canonical ensembleβ conjugated to energys conjugated to activity K

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 11 / 21

  • Models of glass formers Dynamical partition function

    Dynamical partition function

    Fluctuations (2): the canonical wayThermodynamics of configurations

    Z (β, L) =∑

    E

    Ω(E , L) e−β E(n) = e−L f (β) (large L)

    Thermodynamics of histories [à la Ruelle]

    ZK(s, t) =∑

    K

    Ωdyn(K , t) e−s K [hist] = e−t L fK(s) (large tlarge L)

    Fluctuations of K

    〈e−sK 〉 ∼ e−t L fK (s)∣∣∣∣∣

    Dynamical free energy fK (s) ↔cumulant generating function of K .

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 11 / 21

  • Models of glass formers s-state

    s-state

    s probes dynamical featuresaverage in the s-state of an observable O:

    O(s) =〈O[hist] e−sK

    〈e−sK 〉

    O[hist] is (for instance) an history-dependent observable

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 12 / 21

  • Models of glass formers s-state

    s-state

    s probes dynamical featuresaverage in the s-state of an observable O:

    O(s) =〈O[hist] e−sK

    〈e−sK 〉

    O[hist] is (for instance) an history-dependent observableinterpretation

    s < 0 : more active histories (“large” K )s = 0 : equilibrium states > 0 : less active histories (“small” K )

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 12 / 21

  • Models of glass formers s-state

    s-state

    s probes dynamical featuresaverage in the s-state of an observable O:

    O(s) =〈O[hist] e−sK

    〈e−sK 〉

    O[hist] is (for instance) an history-dependent observableinterpretation

    s < 0 : more active histories (“large” K )s = 0 : equilibrium states > 0 : less active histories (“small” K )

    Ex: time-averaged density ρ[hist] = 1Lt∫ t

    0 dτ∑

    i ni(τ)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 12 / 21

  • Models of glass formers s-state

    s-state

    s probes dynamical featuresaverage in the s-state of an observable O:

    O(s) =〈O[hist] e−sK

    〈e−sK 〉

    O[hist] is (for instance) an history-dependent observableinterpretation

    s < 0 : more active histories (“large” K )s = 0 : equilibrium states > 0 : less active histories (“small” K )

    Ex: time-averaged density ρ[hist] = 1Lt∫ t

    0 dτ∑

    i ni(τ)

    ρK (s) =〈ρ[hist] e−sK

    〈e−sK 〉

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 12 / 21

  • Models of glass formers Outline

    Outline

    1 Motivationsstatics vs dynamics

    2 Models of glass formersexamplethermodynamics of histories

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 13 / 21

  • Models of glass formers Outline

    Outline

    1 Motivationsstatics vs dynamics

    2 Models of glass formersexamplethermodynamics of historiesresultsdynamical phase coexistence

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 13 / 21

  • Models of glass formers Outline

    Outline

    1 Motivationsstatics vs dynamics

    2 Models of glass formersexamplethermodynamics of historiesresultsdynamical phase coexistence

    3 Perspective

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 13 / 21

  • Models of glass formers Results

    Dynamical phase transition: FA model (d=1)

    -0.02 -0.01 0.01 0.02 0.03 0.04

    -0.06

    -0.04

    -0.02

    0.02

    0.04

    s

    −fK(s)

    Z\[\]�^_[a`cbedgfih�[ajlk

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 14 / 21

  • Models of glass formers Results

    Dynamical phase transition: FA model (d=1)

    -0.02 -0.01 0.01 0.02 0.03 0.04

    -0.06

    -0.04

    -0.02

    0.02

    0.04

    s

    −fK(s)

    m�n_oapcqergsit�oaulv

    w o\m�n_oapcqergsit�oaulv

    Comparison between constrained and unconstrained dynamics

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 14 / 21

  • Models of glass formers Results

    Dynamical phase transition: FA model (d=1)

    -0.02 -0.01 0.01 0.02 0.03 0.04

    -0.06

    -0.04

    -0.02

    0.02

    0.04

    s

    −fK(s)

    L = 100L = 50

    L = 200

    x�y_za{c|e}g~i�zal

    z\x�y_za{c|e}g~i�zal

    Comparison between constrained and unconstrained dynamics

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 14 / 21

  • Models of glass formers Results

    Dynamical phase transition: FA model (d=1)

    -1 1 2 3 4

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    s

    ρK(s)

    ρK(0) = c

    �g

    g�g

    �� �\�

    Comparison between constrained and unconstrained dynamics

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 15 / 21

  • Models of glass formers Dynamical Landau free energy

    Dynamical Landau free energy F(ρ, s)

    Probability, in the s-state, to measurea time-averaged density ρ btw. 0 and t

    ∣∣∣∣∣∼ e−t L F(ρ,s)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 16 / 21

  • Models of glass formers Dynamical Landau free energy

    Dynamical Landau free energy F(ρ, s)

    Probability, in the s-state, to measurea time-averaged density ρ btw. 0 and t

    ∣∣∣∣∣∼ e−t L F(ρ,s)

    e−sK δ(〈n〉 − Lρ

    )〉∣∣∣ ∼ e−t L F(ρ,s)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 16 / 21

  • Models of glass formers Dynamical Landau free energy

    Dynamical Landau free energy F(ρ, s)

    Probability, in the s-state, to measurea time-averaged density ρ btw. 0 and t

    ∣∣∣∣∣∼ e−t L F(ρ,s)

    e−sK δ(〈n〉 − Lρ

    )〉∣∣∣ ∼ e−t L F(ρ,s)

    Extremalization procedure

    fK(s) = minρF(ρ, s)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 16 / 21

  • Models of glass formers Dynamical Landau free energy

    Dynamical Landau free energy F(ρ, s)

    Probability, in the s-state, to measurea time-averaged density ρ btw. 0 and t

    ∣∣∣∣∣∼ e−t L F(ρ,s)

    e−sK δ(〈n〉 − Lρ

    )〉∣∣∣ ∼ e−t L F(ρ,s)

    Extremalization procedure

    fK(s) = minρF(ρ, s)

    Minimum reached at ρ = ρK (s):

    fK(s) = F(ρK (s), s)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 16 / 21

  • Models of glass formers Dynamical Landau free energy

    Dynamical Landau free-energy landscape

    0.2 0.4 0.6 0.8

    0.1

    0.2

    0.3

    0.4

    ρ

    F(ρ, s = 0)

     ¡¢£¤¥¦§¨

    Prob[0,t](ρ) ∼ e−t L F(ρ,s)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 17 / 21

  • Models of glass formers Dynamical Landau free energy

    Dynamical Landau free-energy landscape

    0.2 0.4 0.6 0.8

    0.1

    0.2

    0.3

    0.4

    ρ

    F(ρ, s = 0)

    ©ª«¬ª®¯°±ª²³

    «¬ª®¯�°±ª²³

    Prob[0,t](ρ) ∼ e−t L F(ρ,s)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 17 / 21

  • Models of glass formers Dynamical Landau free energy

    Dynamical Landau free-energy landscape

    0.2 0.4 0.6 0.8

    -0.05

    0.05

    0.1

    0.15

    0.2

    F(ρ, s)

    ρ

    s < 0

    s = 0

    s > 0

    s > s ´ µ

    fK(s) = minρF(ρ, s) = F(ρK(s), s)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 17 / 21

  • Models of glass formers Dynamical Landau free energy

    Dynamical Landau free-energy landscape

    0.2 0.4 0.6 0.8

    -0.05

    0.05

    0.1

    0.15

    0.2

    ρ

    s = 0

    F(ρ, s = 0)

    ¶·c¸¹º¹»¼�¹¸½¿¾s = 0 ÀÁ ¹Â�úÅÄÆgÂ

    ÃÇÄÂ�¶aÈÉc¶�Êg¹ÅÂ˶Ìȶ

    Prob[0,t](ρ) ∼ e−t L F(ρ,s)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 17 / 21

  • Perspective Summary

    Thermodynamics of histories: summary

    Resultss-states ≡ tools to study dynamicsDescription of dynamical phase coexistence→ Dynamical Landau free energy F(ρ, s)←

    Dynamical phase transitionCriticality in a (dynamical) “hidden” dimensionDynamical heterogeneity

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 18 / 21

  • Perspective Summary

    Perspective

    PerspectiveAnomalous relaxation in the FA model.

    ReferencesPRL 95 010601 (2005)J. Stat. Phys. 127 51 (2007)PRL 98 195702 (2007)JSTAT P03004 (2007)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 19 / 21

  • Perspective Summary

    Perspective

    PerspectiveAnomalous relaxation in the FA model.Link with the (χ4 related) growing lenght.

    ReferencesPRL 95 010601 (2005)J. Stat. Phys. 127 51 (2007)PRL 98 195702 (2007)JSTAT P03004 (2007)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 19 / 21

  • Perspective Summary

    Perspective

    PerspectiveAnomalous relaxation in the FA model.Link with the (χ4 related) growing lenght.Other glassy systems

    p-spin modelsstructural glasses (Lennard-Jones)

    ReferencesPRL 95 010601 (2005)J. Stat. Phys. 127 51 (2007)PRL 98 195702 (2007)JSTAT P03004 (2007)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 19 / 21

  • Perspective Summary

    Perspective

    PerspectiveAnomalous relaxation in the FA model.Link with the (χ4 related) growing lenght.Other glassy systems

    p-spin modelsstructural glasses (Lennard-Jones)

    Experimental realisation of s(' 0)-states

    ReferencesPRL 95 010601 (2005)J. Stat. Phys. 127 51 (2007)PRL 98 195702 (2007)JSTAT P03004 (2007)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 19 / 21

  • Perspective Summary

    s-modified dynamics

    Markov processes:

    ∂t P(C, t) =∑

    C′

    {

    W (C′ → C)P(C′, t)︸ ︷︷ ︸

    gain term

    −W (C → C′)P(C, t)︸ ︷︷ ︸

    loss term

    }

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 20 / 21

  • Perspective Summary

    s-modified dynamics

    Markov processes:

    ∂t P(C, t) =∑

    C′

    {

    W (C′ → C)P(C′, t)︸ ︷︷ ︸

    gain term

    −W (C → C′)P(C, t)︸ ︷︷ ︸

    loss term

    }

    More detailed dynamics for P(C, K , t):

    ∂t P(C, K , t) =∑

    C′

    {

    W (C′ → C)P(C′, K−1, t)−W (C → C ′)P(C, K , t)}

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 20 / 21

  • Perspective Summary

    s-modified dynamics

    Markov processes:

    ∂t P(C, t) =∑

    C′

    {

    W (C′ → C)P(C′, t)︸ ︷︷ ︸

    gain term

    −W (C → C′)P(C, t)︸ ︷︷ ︸

    loss term

    }

    More detailed dynamics for P(C, K , t):

    ∂t P(C, K , t) =∑

    C′

    {

    W (C′ → C)P(C′, K−1, t)−W (C → C ′)P(C, K , t)}

    Canonical description: s conjugated to K

    P(C, s, t) =∑

    K

    e−sK P(C, K , t)

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 20 / 21

  • Perspective Summary

    s-modified dynamics

    Markov processes:

    ∂t P(C, t) =∑

    C′

    {

    W (C′ → C)P(C′, t)︸ ︷︷ ︸

    gain term

    −W (C → C′)P(C, t)︸ ︷︷ ︸

    loss term

    }

    More detailed dynamics for P(C, K , t):

    ∂t P(C, K , t) =∑

    C′

    {

    W (C′ → C)P(C′, K−1, t)−W (C → C ′)P(C, K , t)}

    Canonical description: s conjugated to K

    P(C, s, t) =∑

    K

    e−sK P(C, K , t)

    s-modified dynamics [probability non-conserving]

    ∂t P(C, s, t) =∑

    C′

    {

    e−sK W (C′ → C)P(C′, s, t)−W (C → C ′)P(C, s, t)}

    V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 20 / 21

  • Perspective Summary

    Numerical method (with J. Tailleur)

    Evaluation of large deviation functions

    Z (s, t) =∑

    C

    P(C, s, t) =〈

    e−s K〉

    ∼ e−t fK (s)

    discrete time: Giardinà, Kurchan, Peliti [PRL 96, 120603 (2006)]

    continuous time: Lecomte, Tailleur [JSTAT P03004 (2007)]

    Cloning dynamics

    ∂tP(C, s) =∑

    C′

    Ws(C′ → C)P(C′, s)− rs(C)P(C, s)

    ︸ ︷︷ ︸

    modified dynamics

    + δrs(C)P(C, s)

    ︸ ︷︷ ︸

    cloning term

    Ws(C′ → C) = e−sW (C′ → C)rs(C) =

    C′ 6=C Ws(C → C′)

    δrs(C) = rs(C)− r(C)V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 21 / 21

  • Perspective Summary

    Numerical method (with J. Tailleur)

    Evaluation of large deviation functions

    Z (s, t) =∑

    C

    P(C, s, t) =〈

    e−s K〉

    ∼ e−t fK (s)

    discrete time: Giardinà, Kurchan, Peliti [PRL 96, 120603 (2006)]

    continuous time: Lecomte, Tailleur [JSTAT P03004 (2007)]

    Cloning dynamics

    ∂tP(C, s) =∑

    C′

    Ws(C′ → C)P(C′, s)− rs(C)P(C, s)

    ︸ ︷︷ ︸

    modified dynamics

    + δrs(C)P(C, s)

    ︸ ︷︷ ︸

    cloning term

    Ws(C′ → C) = e−sW (C′ → C)rs(C) =

    C′ 6=C Ws(C → C′)

    δrs(C) = rs(C)− r(C)V. Lecomte (MSC-Paris 7, LPT-Orsay) Thermodynamics of histories 17/5/2007 21 / 21

    IntroductionMotivationsOutline

    Models of glass formersThermodynamics of historiesExampleKinetically constrained models (KCM)Dynamical partition functionDynamical partition functions-stateOutlineResultsDynamical Landau free energy

    PerspectiveSummary