58
Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 1 Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme Philippe Rabiller 2005

Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

  • Upload
    monty

  • View
    144

  • Download
    9

Embed Size (px)

DESCRIPTION

Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme Philippe Rabiller 2005. Plan du cours. ch.1 Introduction ch.2 Vecteurs et champs ch.3 Champ et Potentiel électrostatiques ch.4 Champ Magnétique ch.5 Induction électromagnétique - PowerPoint PPT Presentation

Citation preview

Page 1: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 1

Université de Rennes 1

Licence Sciences Technologie Santé

L2-PCGI

Electromagnétisme

Philippe Rabiller

2005

Page 2: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 2

Plan du cours

• ch.1 Introduction

• ch.2 Vecteurs et champs

• ch.3 Champ et Potentiel électrostatiques

• ch.4 Champ Magnétique

• ch.5 Induction électromagnétique

• ch.6 Propagation des ondes électromagnétiques

• ch.7 Rayonnement électromagnétique

Page 3: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 3

Chapitre 4: Champ Magnétique

4.1 Champ magnétique, loi de Biot et Savart

4.2 Force magnétique exercée sur un conducteur

4.3 Le potentiel vecteur

4.4 Rotationnel du champ magnétique - théorèmed’Ampère

4.5 Utilisation du théorème d’Ampère

4.6 Dipôle Magnétique

4.7 Matériaux Magnétiques

4.8 …

4.9 …

4.10 …

Page 4: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 4

4.1 Champ magnétique, loi de Biot et Savart

Nous avons vu que la conclusion de notre exploration rapide du monde de la relativité restreinte concernant la transformation d’une force lorsqu’on l’observe depuis un repère immobile (1) ou depuis un repère animé d’un mouvement rectiligne uniforme (2) conduisait à:

k

1

i

j2

V

kFjFiFF 1z1y1x1

kFjFiFF 2z2y2x2

2z2z2y2y2x

22x1x FvFvvc

FF

V

V

22x

2y1y cv1

F1F

V

22x

2z1z cv1

F1F

V

Page 5: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 5

4.1 Champ magnétique, loi de Biot et Savart

Soit deux charges immobiles dans le repère (2): Q à l’origine et q à la position . Les vitesses v2x, v2y et v2z sont nulles et les forces s’écrivent:r

k

1

i

j2

V

qr

Q

2/322

22

22o

22x1x

zyx4

xqQFF

2/322

22

22o

22y1y

zyx4

yqQFF

2/322

22

22o

22z1z

zyx4

zqQFF

Page 6: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 6

4.1 Champ magnétique, loi de Biot et Savart

Appliquons maintenant les transformations de Lorentz aux coordonnées. Pour simplifier on prend les deux charges dans le plan (x,y).

k

1

i

j2

V

qr

Q

2/321

21

2o

11x

yxγ4

xqQγF

))/c(1(yxγ4

yqQγF 2

2/321

21

2o

11y V

0F1z

Cette expression peut se mettre sous la forme vectorielle:

32o

3o

1 c4

yQγ

4

QqF

rr kr

VV

Page 7: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 7

1

V

k

4.1 Champ magnétique, loi de Biot et SavartNous pouvons donc résumer ainsi les conséquences de la relativité restreinte:

La force exercée par une particule chargée sur une autre particule, perçue par un observateur dans un repère fixe - alors que les deux charges sont au repos dans un deuxième repère mobile animé d’une vitesse de translation V – ne peut plus s’exprimer simplement par une force radiale. Il est nécessaire d’ajouter une composante perpendiculaire à la première et proportionnelle à la vitesse V . Tout se passe donc comme si on ajoutait un champ supplémentaire: le champ magnétique.

Dans le repère où les charges sont mobiles

F = q ( E + V B )

E = 4or13

Q r1

B = 4r12

oQV sin()k

F = q E E =Q r2

4or23

Dans le repère où les charges sont au reposq

Q

2

r oo=c2oo=c2

Force de Lorentz

Page 8: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 8

Remplaçons la charge ponctuelle Q par un petit élément de longueur dl d’un circuit électrique dans le plan (x,y) parcouru par un courant I. Ce courant est un débit de charges, c’est à dire une quantité de charge par unité de temps (exprimé en ampères, 1A=1Cs-1).

I dl

4.1 Champ magnétique, loi de Biot et Savart

Voyons à présent comment calculer le champ magnétique créé, non pas par une charge ponctuelle en mouvement, mais par un courant de charges en mouvement.

I dl = Q VI dl = Q V

La quantité de charge comprise dans l’élément de circuit est Q = n e S dl et le courant I donné par dQ/dt vaut donc: I = n e S (dl/dt).

Donc en tenant compte du fait qu’en tout point du conducteur dl et V sont parallèles on peut aussi écrire ceci sous la forme :

Supposons que la section S du conducteur électrique est constante sur toute la longueur et que n est la densité homogène de charges mobiles (de charge élémentaire e).

S

n

Or dl/dt représente la vitesse V des charges en écoulement.

V

Page 9: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 9

4.1 Champ magnétique, loi de Biot et SavartLa vitesse des électrons dans les bons conducteurs électriques peut atteindre plusieurs milliers de kilomètres par seconde, mais reste néanmoins très petite devant la vitesse de la lumière. On peut donc remplacer par 1 dans la suite du cours.

D’autre part l’angle est l’angle compris entre la direction de r et la direction de V donc de dl. Ces deux vecteurs étant dans le plan (x,y) ils sont perpendiculaires au vecteur unitaire k. On a donc:

QV sin() k = I dl r sin() k / r = rI dl r

Et l’élément de champ magnétique dB créé par l’élément de circuit dl est alors donné par:

dB = 4o

r3I dl r

Il s’agit de la loi de Biot et Savart. Dans le système international le champ magnétique s’exprime en Tesla (T), le courant électrique en ampères (A) et les longueurs en mètres (m). La constante o vaut alors 4 10-7.

Le vecteur r donne la position de l’endroit où on calcule le champ, par rapport à l’élément de circuit qui est la source de ce champ.!

Page 10: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 10

+V ’

Et la loi de Biot et Savart se généralise de la manière suivante pour un circuit où le courant électrique I est réparti dans l’espace avec une densité de courant j (r ’).

B ( r ) = 4o r3

j (r ’) r (r ’) d3r’

V ’

r ’

r (r ’)

4.1 Champ magnétique, loi de Biot et Savart

Boucles de courants microscopiques dans certains matériaux « MAGNETIQUES » AIMANTS

Le courant I passant à travers une section dS, peut être écrit sous la forme du produit de cette section par une densité de courant j: I = j ·dS.

Ainsi pour un élément de circuit de longueur dl et de section dS, le produit I dl prend la forme (j·dS) dl = j d3r’où d3r’représente un élément de volume du circuit générateur de champ magnétique.

Page 11: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 11

On exprime dl, sin() et r en fonction de et .

I

4.1 Champ magnétique, loi de Biot et Savart

Quelques cas modèles de calcul du champ magnétique à partir de la loi de Biot et Savart

• Fil rectiligne infini

Symétrie axiale + fil infini B ne dépend que de la distance au fil .

x

y

z

dB

4o I dl sin()

r2 |dl r| = dl r sin() dB =

Elément dl // Oz dl r // plan Oxy.

r

dl · l / = tg() dl = dcos2· sin = cos · r = cos

dB = cos() d B = [sin()] = 4o I

4o I

1=-/2 2o I2= /2

Page 12: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 12

« Règle du tire-bouchon »

Si on regarde dans le sens du courant, les lignes de champ sont: • dans un plan perpendiculaire à l’élément de courant et au point où on calcule le champ • dirigées dans le sens de rotation des aiguilles d’une montre.

4.1 Champ magnétique, loi de Biot et Savart

Rappelons l’expression de la loi de Biot et Savart: dB = 4o

r3I dl r

On peut donc retrouver la direction des lignes de champ en utilisant la règle du tire-bouchon: « le courant avance comme le tire-bouchon tourne dans les sens des lignes de champ».

I

Page 13: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 13

= Bo sin3()

• Spire circulaire: calcul sur l’axe de symétrie

4.1 Champ magnétique, loi de Biot et Savart

4r2

o I 2aBz = cos()

Bz = 2(a2+ z2)3/2

o I a2

Par symétrie, Bx = By = 0

4r2

o I dldBz = cos()

Projection sur direction z

Au centre de la spire:

Bo = 2ao I

x

y

z

I

a

dBz

dBr

Page 14: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 14

4.2 Force magnétique exercée sur un conducteur

Plaçons un élément de circuit électrique, de longueur dl et parcouru par un courant électrique I, dans un champ magnétique B. Nous supposons que le champ électrique ambiant est nul et ne nous intéressons donc qu’à la composante de la force magnétique.

La force totale exercée par le champ magnétique sur l’élément de longueur dl est la somme de toutes les forces de Lorentz exercées individuellement sur toutes les charges élémentaires, en nombre N = n S dl.

Idl

B Ici le champ magnétique et l’élément de circuit qui est soumis au champ sont au même endroit.!

F = N q V B = QV B

F = I dl B

Page 15: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 15

Le champ crée par un circuit est l’intégrale (la somme) du champ crée par un élément infinitésimal en sommant sur la totalité du circuit.

4.2 Force magnétique exercée sur un conducteur

De même, la force exercée par un champ magnétique sur un circuit rigide est l’intégrale de la force exercée sur tout élément infinitésimal et en sommant sur la totalité du circuit.

B = 4o I

r3dl r

F = I’ dl ’ BAinsi la force s’exerçant mutuellement entre deux circuits rigides parcourus par des courants I et I’ est donnée par:

F = r3dl ’ ( dl r )

4o I’ I

+-

+-

I

I’

rdl

dl ’

dF

dl r

Il peut également s’exercer un couple !

Moteurs rotatifs

Page 16: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 16

•( A) = 0

4. 3 Le potentiel vecteur

De même que le champ électrique dérive d’un potentiel électrostatique scalaire, le champ magnétique dérive d’un potentiel vectoriel: le potentiel vecteur.

Si l’intérêt de manipuler un champ scalaire plutôt qu’un champ vectoriel est évident dans le cas de l’électrostatique, l’intérêt de manipuler un potentiel vecteur l’est moins à priori, mais permet d’une part de faire un parallèle entre électrostatique et magnétisme et recouvre tout son sens lorsqu’on traite par exemple l’interaction rayonnement matière dans le cadre de la mécanique quantique.

Rappelons quatre identités vectorielles. Soit deux vecteurs A et B et une fonction scalaire f.

•( A B) = B•( A) - A•( B)

(fA ) = (f ) A + f ( A)

•( fA ) = (f )•A + f •A

AB

Page 17: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 17

4. 3 Le potentiel vecteurDivergence du champ magnétique :

Calculons la divergence du champ magnétique à partir de l’expression généralisée de la loi de Biot et Savart:

Nous avons pu inverser l’opérateur Nabla et l’intégrale car ces deux opérations agissent sur des coordonnées différentes (Nabla sur « r » et l’intégrale sur « r’ »).

Appliquons ensuite la deuxième identité vectorielle au terme de droite de l’équation:

Le premier terme de droite de l’équation est nul car agit sur des fonctions de r et j ne dépend que de r’.

0

• j = • j - j • rr3

rr3

rr3

•B = 4o r3

j (r ’) r (r ’) d3r’ •

•( A B) = B•( A) - A•( B)

r'd

r

''

μ 33

o rrrjB

Page 18: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 18

4. 3 Le potentiel vecteur

Divergence du champ magnétique :

Plaçons nous dans un repère cartésien: r2 = x2 + y2 + z2

=

rr3

y

zr3

z

yr3

z

xr3

x

zr3

x

yr3

y

xr3

y

zr3 = y

z(x2+y2+z2)3/2 =

r3

-3zy

z

yr3 = z

y(x2+y2+z2)3/2 =

r3

-3yz+

permutations circulaires

= 0

rr3

Pour calculer le second terme, rappelons que agit sur des fonctions de r, indépendamment de r’. On peut donc, pour simplifier, faire le calcul pour la valeur particulière r’=0.

Page 19: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 19

4. 3 Le potentiel vecteur

Divergence du champ magnétique :

Finalement, nous venons de montrer que la divergence du champ magnétique est nulle.

•B = 0

Potentiel vecteur :

Nous voyons que nous pouvons toujours définir le champ magnétique comme étant le rotationnel d’un autre vecteur que nous appellerons Potentiel Vecteur. Le potentiel vecteur n’est défini qu’à un vecteur près dont le rotationnel est nul ! On parle alors de choix de jauge.

( + ) A C = A C+ = A C = 0si

Rappelons maintenant la première des identités vectorielles •( A) = 0

Page 20: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 20

4. 3 Le potentiel vecteur

Potentiel vecteur :

Pour calculer le potentiel vecteur, nous repartons de l’expression générale du champ magnétique et utilisons la troisième identité vectorielle:

(fA ) = (f ) A + f ( A)

B ( r ) = 4o r3

j (r ’) r (r ’) d3r’

Mais avant, faisons apparaître le terme sous une forme différente : rr3

1r-

1r =

x

1(x2+y2+z2)1/2

y

1(x2+y2+z2)1/2

z

1(x2+y2+z2)1/2

= -

xr3

yr3

zr3

= - rr3

Page 21: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 21

4. 3 Le potentiel vecteur

Potentiel vecteur :

On peut donc écrire le champ magnétique sous la forme:

B ( r ) = j (r ’) d3r’4o 1

r

0

Or 1r j = j

r-

1r j (r ’)

B ( r ) = d3r’4o r

j (r ’)Ce qui conduit pour le champ magnétique à:

A ( r ) = d3r’4o r

j (r ’)

On aboutit donc à la définition du potentiel vecteur (après inversion de « Nabla » et du « Signe Somme »:

AB

Page 22: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 22

4. 3 Le potentiel vecteur

Parallèle avec le potentiel électrostatique :

V( r ) = 1

4o

( r ’)d3r’

| r - r ’|

A ( r ) = d3r’4o

| r - r ’|

j ( r ’)

- V( r ) = E( r )

A( r ) = B( r )

r ’

r - r ’

r

+

Scalaire !!!

Vectoriel !!!

Replaçons nous dans la même géométrie que celle adoptée pour l’étude du potentiel électrostatique:

Ces lois ne sont vraies, sous cette forme, que dans le cas statique. Nous verrons qu’il faut les compléter en électrodynamique…

!

Page 23: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 23

4. 4 Rotationnel du champ magnétique - théorème d’Ampère

En électromagnétisme il y a le théorème de Gauss qui relie le flux du champ électrique à travers une surface fermée à la charge électrostatique totale contenue dans le volume délimité par la dite surface.

De la même manière il existe un autre théorème que nous allons démontrer - le théorème d’Ampère - qui relie la circulation du champ magnétique le long d’un contour au courant total traversant la surface s’appuyant sur ce contour.

= E·dS = =

qi

o

Qtotal

oS

C = B·dl = o Ii = o Itotal

L

V

QE

dS

SV

S

BdlI

Page 24: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 24

Par symétrie:(on remplace r par r’)

= -1

| r - r ’| ’ =| r - r ’|3

1| r - r ’|r - r ’

4. 4 Rotationnel du champ magnétique - théorème d’Ampère

Pour mener à bien la démonstration nous avons besoin de calculs préliminaires.

r ’

r - r ’

r

+ Montrons que = - 1

| r - r ’|1

| r - r ’| ’

| r - r ’| = ( (x-x’)2 + (y-y’)2 + (z-z’)2 )1/2

Vx = - ·((x-x’)2 +(y-y’)2 +(z-z’)2 )3/2

2(x-x’)

21

Vx = - x-x’| r - r ’|3

1| r - r ’|V =

1| r - r ’| = -

| r - r ’|3r - r ’Ici, gradient dans le

monde « sans prime »

Page 25: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 25

4. 4 Rotationnel du champ magnétique - théorème d’Ampère

Montrons à présent que ·A = 0 pour une distribution de charge statique.

·A ( r ) = · d3r’4o | r - r ’|

j ( r ’)

’ · = ’·j ( r ’) + j ( r ’) · | r - r ’|

j ( r ’) 1| r - r ’|’

| r - r ’|1

Remplaçons le gradient en « r » par son homologue en « r’».

· = ·j ( r ’) + j ( r ’) · | r - r ’|

j ( r ’) 1| r - r ’|

| r - r ’|1

Et utilisons l’égalité: = - 1

| r - r ’|1

| r - r ’| ’

•( fA ) = (f )•A + f •A

etdeinversion

0 ' de dépend et en monde"" le dansagit rjr

le vectorielalgèbred'identité

Page 26: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 26

4. 4 Rotationnel du champ magnétique - théorème d’Ampère

Nous obtenons alors: ’ ·| r - r ’|

j ( r ’)| r - r ’|

1 · =| r - r ’|

j ( r ’)’·j ( r ’) -

·A ( r ) = d3r’ - d3r’ 4o ’ ·

| r - r ’|

j ( r ’)| r - r ’|

1 ’·j ( r ’)4o

’·j ( r ’) exprime la loi de conservation de la charge et vaut donc -d(r ’)/dt.

On a donc : A ( r ) = d3r’· oo | r - r ’|( r ’)

4o

1t = c2

-1 V ( r ) t

V d3r = dV V = dV /d3r

V = j [j] = charge/unité de temps/unité surface

d j /d3r (charge /unité volume )/unité de temps

' et en mondes" des séparation" rr

Théorème de la divergence intégrale de surface contenant tous les courants. A la surface le courant est alors nul ou tangent à la surface. Donc l’intégrale est nulle.

'd)'()'('

'd)'(Srj0rj

rr

Srj

ouet

Page 27: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 27

A ( r ) + = 0· c2

1 V ( r ) t

4. 4 Rotationnel du champ magnétique - théorème d’AmpèreNous retrouvons, via les potentiels vecteur et électrostatique, que magnétisme et électrostatique sont bien deux grandeurs liées, ce que nous avait appris l’introduction à la relativité restreinte.

Dans le cas de courants continus, ou régime stationnaire, le potentiel électrostatique ne dépend pas du temps et la divergence du potentiel vecteur est nulle, ce que nous cherchions à démontrer.

A ( r ) = 0·V ( r ) t = 0

Nous allons, une nouvelle fois, utiliser une identité que nous ne démontrerons pas ici (mais que vous pouvez vérifier vous même).

Rotationnel du champ magnétique : B = ( A)

( A) = (·A) - 2A

vecteur 0 vecteur

2Ax

2Ay

2Az

Page 28: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 28

4. 4 Rotationnel du champ magnétique - théorème d’Ampère

Reprenant l’expression du potentiel vecteur trouvée précédemment et notant encore une fois que l’opérateur Nabla n’agit que sur les coordonnées en « r », on peut donc écrire le rotationnel du champ magnétique sous la forme:

d3r’

4o

j ( r ’)

| r - r ’| B = - 2 A = - 2

j ( r ’) d3r’

4o B = - 2 A = -

| r - r ’|2 1

Il faut donc calculer | r - r ’|

2 1| r - r ’|

= · 1 = · R1

Où pour alléger l’écriture nous posons:

= (x-x’)2 + (y-y’)2 + (z-z’)2 1/2 = X2 + Y2 + Z2 1/2 | r - r ’|R =

Et donc les opérations de dérivées seront en "/X " etc.

Page 29: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 29

4. 4 Rotationnel du champ magnétique - théorème d’Ampère

Calculons la composante suivant X de R1

R1

X =

X2 + Y2 + Z2 1/21

X =

X2 + Y2 + Z2 3/2- (1/2) 2X = R3

-X

On aurait pu déduire les deux dernières expressions par permutations circulaires ...

Le laplacien est alors donné par la divergence du vecteur que nous venons de trouver:

| r - r ’|2 1 = ·

R1 = +X

R3

-XY

R3-Y + Z

R3

-Z

R1

Y =

X2 + Y2 + Z2 1/21

Y =

X2 + Y2 + Z2 3/2- (1/2) 2Y = R3

-Y

R1

Z =

X2 + Y2 + Z2 1/21

Z =

X2 + Y2 + Z2 3/2- (1/2) 2Z = R3

-Z

De même pour les composantes suivant Y et Z de R1

Page 30: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 30

4. 4 Rotationnel du champ magnétique - théorème d’Ampère

Calculons la composante suivant X du laplacien :

X2 + Y2 + Z2 3/2X

X

X

R3 X- = -

X2 + Y2 + Z2 3X2 + Y2 + Z2 3/2 - X (3/2) 2X X2 + Y2 + Z2 1/2 = -

R5

2X2 - Y2 - Z2

=X

R3 X-

Et par permutation circulaire :

| r - r ’|2 1

=R5

2X2 - Y2 - Z2 + -X2 + 2Y2 - Z2 + -X2 - Y2 +2Z2

| r - r ’|2 1

= 0 Sauf pour r = r’ !!!

Page 31: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 31

4. 4 Rotationnel du champ magnétique - théorème d’Ampère

En conclusion cette expression du rotationnel du champ magnétique, sous forme intégrale, n’a de sens que localement, c’est à dire pour r’ r !!!

Soit alors un petit volume V ’entourant r et suffisamment petit pour considérer j( r’) homogène sur ce volume - donc égal à j( r) - et qui peut être sorti de l’intégrale .

| r - r ’|2 1

= - | r - r ’|’21

Comme nous l’avions vu pour le gradient de 1/|r-r’|, nous avons l’égalité suivante pour les laplaciens dans les  mondes en « r » et « r’»:

j ( r ’) d3r’

4o B = - 2 A = -

| r - r ’|2 1

On a alors pour le rotationnel du champ magnétique:

4o j ( r )

B = d3r’

| r - r ’|’21

V ’

En « r » En « r ’ »

V ’ tend vers zéro autour de la position r où on regarde le champ magnétique B!

Page 32: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 32

4. 4 Rotationnel du champ magnétique - théorème d’Ampère

Appliquons le théorème de la divergence à l’équation obtenue:

4o j ( r )

B = d3r’

| r - r ’|’21

V ’

’2 | r - r ’|1

= ’·’ | r - r ’|1

S ’’ | r - r ’|

1·dS

S ’

·dS| r - r ’|3( r - r ’) S ’ est une petite surface entourant r.

On peut donc prendre une sphère et R = r-r’ est parallèle à dS

4o j ( r )

B = S ’

dSR2

Or dS en coordonnées sphériques est égal à R2 sin()dd. Donc l’intégrale vaut 4.

Page 33: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 33

4. 4 Rotationnel du champ magnétique - théorème d’Ampère

On aboutit donc après ces quelques étapes de calcul à l’expression locale du théorème d’Ampère:

B( r ) = o j ( r )

Expression valable uniquement en régime stationnaire et pour des matériaux non magnétiques !!!!

Nous pouvons alors intégrer le rotationnel du champ magnétique, ainsi que la densité de courant sur toute une surface:

B( r ) ·dS = o j ( r ) dS

SS

B( r )·dl = oIC

Théorème de StokesCourant traversant la surface S

Théorème d’Ampère

Page 34: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 34

4.5 Utilisation du théorème d’AmpèreLong cylindre conducteur :

Soit un long cylindre conducteur parcouru par un courant Io de densité homogène j

sur toute la section du cylindre de rayon R : Io = R2 j

I(r) = r2 jPour un cylindre de rayon r R :

2r B = o I(r)B(r R ) =

o Io r2R2

Pour un cylindre de rayon r R : I(r) = R2 j = Io

2r B = o IoB(r R ) =

o Io

2r

Symétrie axiale B ne dépend que de r !!!

B( r )·dl =

C

R r

B(r)

Le champ magnétique pénètre linéairement dans un milieu conducteur parcouru par un courant homogène

Si on considère « long » comme « infini », on sait que par symétrie seule la composante azimutale est non nulle. On prend comme contour adapté à la symétrie un cercle perpendiculaire à l’axe du conducteur.

Page 35: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 35

I

z

4.5 Utilisation du théorème d’Ampère

Long solénoïde:Par symétrie B ne dépend ni de z ni de

x

y

z

Br

B

Bz

z

Composante radiale B

B·dS = + Bz·dS = +z B·dS = + B·S·l

B·dS = - Bz·dS = -zCeci est vrai que le cylindre soit à l’intérieur ou à l’extérieur

du solénoïde.

B= 0

Comme , alors le flux de B à travers une surface fermée est nul.

•B = 0

Page 36: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 36

I

z

4.5 Utilisation du théorème d’Ampère

Long solénoïde:

• Le contour C’ est traversé une fois par le courant I et donc à l’extérieur du solénoïde la composante azimutale est donnée par (sauf si le pas de l’hélice est nul, auquel cas le contour n’est traversé par aucun courant) :

Composante azimutale B

La circulation du champ magnétique le long d’un contour du type C (de rayon ) où C’ donne:

C’

CB·dl = 2B

C• A l’intérieur du solénoïde, le contour C n’est traversé par aucun courant et donc B=0 partout à l’intérieur.

B = oI /2à l’extérieur

Page 37: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 37

I

z

4.5 Utilisation du théorème d’AmpèreLong solénoïde:

•Vu de loin ( ), le solénoïde ressemble à un fil infini et Bz( ) = 0, donc Bz=0 partout à l’extérieur.

•Le contour , de longueur h=1 suivant « z » est traversé par un courant NI où N est le nombre de spires par unité de longueur du solénoïde. La circulation de B le long de ce contour vaut Bz·h = Bz = o N I où Bz est alors la seule composante non nulle de B à l’intérieur du solénoïde.

Bz = oN I à l’intérieur

Composante axiale Bz

Comme en dehors du conducteur, on a donc à l’intérieur comme à l’extérieur du solénoïde:

B( r ) = o j ( r ) = 0

Bz

= 0 ( B = 0 et B=cste )

C’est à dire que Bz est constant et peut prendre au plus deux valeurs distinctes à l’intérieur ou à l’extérieur du solénoïde.

Page 38: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 38

4.5 Utilisation du théorème d’Ampère

Long solénoïde: Résumé et Lignes de champ

B= 0

Bz = oN I à l’intérieur

B = oI /2à l’extérieur

I

z

= 0 si hélice à pas nul !!!

Page 39: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 39

4.6 Dipôle Magnétique

• De même que la notion de développement multipolaire est importante et en particulier celle de dipôle électrique car souvent utilisée pour modéliser le comportement de la matière au point de vue électrique, il est important également de faire apparaître la notion de dipôle magnétique, d’autant que les « monopôles » magnétiques n’existent pas.

• Comme dans le cas électrique, la notion de dipôle magnétique fait référence à une situation où l’observation du champ magnétique ou du potentiel vecteur se fait loin du circuit qui leur donne naissance.

• Cette description est tout à fait adaptée lorsqu’on s’intéresse par exemple aux propriétés magnétiques des atomes où les électrons gravitant autour des noyaux constituent des boucles microscopiques de courant (diamagnétisme et paramagnétisme électronique).

Page 40: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 40

Le plan xOz est un plan de symétrie et pour tout élément dl à l’azimut , il existe un autre élément à l’azimut – de telle sorte que les composantes du potentiel vecteur s’ajoutent suivant y et s’annulent suivant x.

z

x

y

Intéressons nous à la boucle de courant ci dessous,

r

4.6 Dipôle Magnétique

dl

a

r’

A(x,0,z)

et plus particulièrement au calcul du potentiel vecteur au point (x,0,z).

Soit e le vecteur unitaire parallèle à dl pour l’azimut .

A = 4oI er ’

a cos d

0

2

A ( r ) = d3r’4o r

j (r ’)

j(r’)d3r’ = I dl = I a de

Page 41: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 41

4.6 Dipôle Magnétique

z

x

y

r

dl

a

r’

A(x,0,z)• d’une part r’2 = r2 + a2 – 2ar cos.

• d’autre part r’ >> a rr’ 1 - + cos

a2

2r2

ar

•le produit scalaire r·a s’écrit ra cos ou xa cos

a cos d1 - + cos

a2

2r2

axr2A = 4r

oI e0

2

• or x = r sin

Ia2xr3A = 4

o e

Ia2

r3A = 4o er sin

• expression que l’on peut mettre sous la forme:

r3A = 4o m r

Il faut exprimer r’ en fonction de r et .

π

0

2

2π(mx)dxcos

Page 42: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 42

4.6 Dipôle Magnétique

z

x

y

r

A

m

r3A = 4o m r

• le potentiel vecteur s’exprime donc sous la forme d’un produit vectoriel:

• la quantité m = I S est le dipôle magnétique associé à la boucle de courant. Son module est donné par le produit du courant par la surface s’appuyant sur la spire de courant jusqu’à présent supposée plane.

• Pour une boucle non plane, on peut généraliser la notion de moment dipolaire (cf. moment inertie en mécanique) :

+r’

dlm =

r’ Idl12

Page 43: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 43

4.6 Dipôle Magnétique

r3A = 4o m r

Calculons à présent le champ magnétique: B( r ) = A( r )

0xmr my

0x/ry/r

4mA 3

3

o

33

3

3

rr

r

r

4mA

yy

xx

yz

xz

o

z

x

y

r

B

m

ici r est quelconque

Page 44: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 44

4.6 Dipôle Magnétique

53/22223 r31

rxz

zyxzxx

z

53/22223 r31

ryz

zyxzyy

z

5

22

3/22223 r3r

rx

zyxx

xx

x

5

22

3/22223 r3r

ry

zyxy

yy

y

25

r333

r4mB

zzyzxzo

Page 45: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 45

z

x

y

rm

4.6 Dipôle Magnétique

On peut remettre cette expression du champ magnétique sous forme vectorielle indépendante d’un choix de repère. On voit apparaître une composante le long du vecteur r et une deuxième dans la direction opposée au moment dipolaire magnétique.

Bm

4o

r3Bm =-m

B

r5B = 4

o 3(m · r ) · r - r2 m

Br

r5Br = 4o 3(m · r ) r

25

r3

3

3

r4

mB

zz

yz

xzo

m

0

0

r4π

μ

r4π

mμ3

o5

o

z

y

xz

Page 46: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 46

4.6 Dipôle MagnétiqueAnalogie avec le champ électrique créé par un dipôle électrique.

r5B = 4

o 3(m · r ) · r - r2 m

Bm

z

x

y

rm

B

BrEp

z

x

y

r

p

E

Er

r5E = 4o

1 3(p · r ) · r - r2 p

Page 47: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 47

4.7 Matériaux Magnétiques

Dans les substances « magnétiques » il existe des « boucles de courant microscopiques » qui donnent naissance à des dipôles magnétiques. Ces dipôles peuvent s’ajouter de façon constructive et la matière devenir ainsi « aimantée ».

M = N m

Si N est la concentration en dipôles magnétiques m par unité de volume, on définit alors l’aimantation M par unité de volume par :

Le potentiel vecteur produit par un élément de volume d3r’ est alors donné par:

dA = 4o M d3r’

| r - r’ |3( r - r’ )

Le potentiel vecteur total vaut: A ( r ) = d3r’4o

M ’ | r - r’ |1

r - r ’1| r - r ’|’ =

| r - r ’|3Et comme on a déjà montré que:

Page 48: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 48

4.7 Matériaux Magnétiques

•( A B) = B•( A) - A•( B) (fA ) = (f ) A + f ( A)

Pour cela on va utiliser des identités, devenues familières (ou presque) :

A ( r ) = d3r’ + d3r’ 4-o

’| r - r’ |

M4o

| r - r’ |’ M

La première nous permet la séparation en deux intégrales:

A ( r ) = d3r’4o

M ’ | r - r’ |1

On peut ramener la précédente intégrale en volume en une somme de deux intégrales, l’une de surface et l’autre en volume faisant apparaître des densités équivalentes de courant en surface e et volume je:

Page 49: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 49

4.7 Matériaux Magnétiques

Dans la deuxième intégrale de la partie droite de l’équation, on reconnaît la forme de la définition générale du potentiel vecteur, à condition de poser:

•( M C) = C•( M) - M•( C)

Pour faire apparaître une expression similaire pour la première intégrale on utilise l’identité suivante, où le vecteur C est un vecteur constant et le vecteur M = M/|r-r’|:

je =’ M

rdCrdCCrd 333 MMM

0

CSdSdCCrd3 MMM

Le théorème de la divergence nous permet de passer d’une intégrale de volume à une intégrale de surface:

Page 50: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 50

4.7 Matériaux Magnétiques

A ( r ) = dS’ + d3r’ 4o

| r - r’ |e

4o

| r - r’ |je

e et je sont des densités de courants dits « Ampériens », à ne pas confondre avec les courants « libres » générés par la mise en mouvement des porteurs de charge libres sous l’action d’un champ électrique externe.

Ceci doit être vrai quelque soit le vecteur C constant, donc les deux intégrales entre parenthèses sont égales:

SdnSdrd3

MMM

On a donc finalement, en posant: e = M n où n est le vecteur normal à la surface en tout point

Page 51: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 51

4.7 Matériaux Magnétiques

Champ magnétique auxiliaire: s’il existe simultanément des courants de charges libres et des courants équivalents ampériens (matière aimantée), le théorème d’Ampère est toujours applicable.

Dans la version « locale », avec jl et je les densités de courant libre et équivalente, le théorème d’Ampère s’écrit donc:

B( r ) = o ( jl ( r ) + je ( r ) )

En rappelant l’expression de la densité de courant équivalente en fonction de l’aimantation on aboutit à:je = M

B( r ) = o ( jl ( r ) + ( r ) ) M

( ) = jl ( r )- MB( r )o

Nous introduisons alors la quantité que nous appellerons champ magnétique auxiliaire.

H =

- Mo

B

Page 52: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 52

4.7 Matériaux Magnétiques

Le théorème d’Ampère prend donc une forme n’impliquant que les courants de charges libres lorsque’il est exprimé en fonction du champ magnétique auxiliaire:

H( r ) = jl

( r )

H( r )·dl = Il

Et sans rentrer dans le détail de l’origine microscopique des dipôles magnétiques, on peut traiter l’aimantation d’un matériau aimanté dans le cadre de la Réponse Linéaire, c’est à dire qu’on écrit que la réponse « Aimantation » est proportionnelle à l’excitation « champ magnétique »:

B = o(H + M)

M = m HB = H = o(1+ m ) H = o r H

m s’appelle la susceptibilité magnétique et r la perméabilité relative.

Page 53: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 53

3.9 Cas des milieux isolants (diélectriques)

Dans les milieux isolants, les charges ne sont pas libres de se déplacer « indéfiniment » lorsqu’elles sont soumises à un champ électrique. Elles sont liées à des « centres attracteurs » et ne peuvent s’écarter plus d’une certaine distance de ces attracteurs, entraînant cependant localement la formation de petits dipôles électriques.

Supposons un matériaux homogène de volume donné où ces dipôles de moment dipolaire p sont en concentration n. Le moment dipolaire total P ou Polarisation Electrique de l’échantillon « par unité de volume » vaut:

P = np

Le potentiel électrostatique créé par unité de volume est alors donné par :

dV( r ) = d3r’ P·(r - r’)

4o |r - r’|3

valable « loin » du diélectrique !!!

Pd3r’

V( r )r r’-

Page 54: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 54

dV( r ) = d3r’ P·’(1/r)4o

3.9 Cas des milieux isolants (diélectriques)

On peut transformer cette expression en introduisant le gradient de la fonction 1/r où r ( r’) = |r - r’| :

Par intégration sur tout le volume de diélectrique on obtient :

r1

V( r ) = P·’

d3r’

1

4o

Expression que l’on peut transformer en tenant compte de l’identité :

•( fA ) = (f )•A + f •A

Pd3r’

V( r )r r’-

Page 55: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 55

3.9 Cas des milieux isolants (diélectriques)

En posant f= 1/r on obtient :

V( r ) = ’· d3r’ - d3r’

14o

rP 1

4o

’·Pr

intégrale de volume

intégrale de surface

V( r ) = - d3r’

14o

14o

’·Pr

P·dSr

Or on a déjà vu que le potentiel est de la forme V(r) = (1/ 4o ) dq/rDonc si N est le vecteur normal à la surface: P·N représente une densité de

charge surfacique de charges liées, tandis que -’·P représente une densité de charge volumique.

Si la polarisation est constante dans l’espace, alors seule la densité de charge surfacique existe. Un diélectrique parallèlépipédique où la polarisation serait perpendiculaire à deux faces se comporte comme un condensateur plan !

Page 56: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 56

3.9 Cas des milieux isolants (diélectriques)

La conservation de charge, implique que si la distribution de charge volumique (de charges liées) est non nulle, il existe un courant de polarisation associé:

·jpol = - = liée

t·Pt

Lorsqu’on applique l’équation de Poisson reliant champ électrique et charge, il faut prendre la charge totale, c’est à dire la somme des charges libres et liées.

jpol =Pt

·D = libresD = oE + P

On introduit alors une nouvelle grandeur, appelée Déplacement Electrique que l’on note D et qui est définie par:

On peut également dire qu’à l’intérieur d’un diélectrique le champ électrique est la somme de deux contributions: une contribution associées aux charges libres D/o et une contribution associée aux charges liées -P/o.

Page 57: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 57

3.9 Cas des milieux isolants (diélectriques)

Sans rentrer dans le détail de l’origine microscopique des dipôles, on peut traiter la polarisation électrique d’un diélectrique dans le cadre de la Réponse Linéaire, c’est à dire qu’on écrit que la réponse « Polarisation » est proportionnelle à l’excitation « champ électrique »:

P = E D = o(1+ )E = or E = E

est la susceptibilité électrique

r est la permittivité électrique relative du milieu

est la permittivité électrique ou constante diélectrique du matériau

Dans le vide =0 et r =1. La plupart des matériaux ont une permittivité relative comprise entre 2 et 5. Cependant on peut trouver des matériaux où cette permittivité relative peut dépasser 105 !

Page 58: Université de Rennes 1 Licence Sciences Technologie Santé L2-PCGI Electromagnétisme

Electromagnétisme - L2 PCGI - Université Rennes 1 - 2005 58

P = E

M = mH

4.7 Matériaux Magnétiques

Parallèle avec la polarisation électrique: On peut établir un parallèle entre électrostatique et magnétostatique:

B = o(H + M)

H = jlje = M B = o jtot

·D = libres jpol =Pt

·E =tot

oD = oE + P

H = B - Mo

champ dans le vide

champ auxiliaire dans

la matière

Réponse de la

matière

« Dans le vide on voit toutes les charges et les courants »

« Mais dans la matière les charges

et les courants libres sont différents»