66
mel mostafa Djeddi a k Université d'Oum Elbouaghi Département de Mathématiques et Informatique 26 Avril 2015 E-mai:[email protected] https://www.djeddi-kamel.webs.com/apps/documents https://www.slideshare.net/djeddikamel Algèbre Linéaire Cours et Exercices Corrigés

Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Embed Size (px)

Citation preview

Page 1: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

mel mostafa Djeddi a k

Université d'Oum Elbouaghi

Département de Mathématiques et Informatique

26 Avril 2015

E-mai:[email protected]

https://www.djeddi-kamel.webs.com/apps/documents

https://www.slideshare.net/djeddikamel

Algèbre Linéaire

Cours et Exercices Corrigés

Page 2: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Table des matières1 Généralités 2

1.1 Espaces vectoriels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Applications linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Familles libres, génératrices, bases et dimension d’un espace vectoriel 5

2 Matrices 8

3 Exercices et corrigés 37

Page 3: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

1 GénéralitésIl s’agit d’un rappel de certaines notions d’algèbre linéaire, non pas d’un cours

complet sur le sujet.

1.1 Espaces vectorielsOn rappelle ici brièvement les premières définitions.Le corps K sera R ou C en général.

Définition 1. On appelle espace vectoriel sur le corps K tout triplet (E,+, .) où :– (E,+) est un groupe abélien (= commutatif).– . est une loi de composition externe à gauche, i.e une application

K× E → E(λ, x) 7→ λ.x

vérifiant :1. ∀x ∈ E, 1Kx = x

2. ∀λ ∈ K,∀(x, y) ∈ E2, λ(x+ y) = λx+ λy

3. ∀(λ, µ) ∈ K2, (λ+ µ)x = λx+ µx

4. ∀(λ, µ) ∈ K2, (λµ)x = λ(µx)

Définition 2. Soit (E,+, .) unK-espace vectoriel. On appelle sous-espace vectorielde E toute partie F de E stable pour + et . et qui, munie des lois induites, est unK-espace vectoriel.

Pour démontrer qu’un espace est un sous-espace vectoriel, on utilise en généralla caractérisation suivante :

Proposition 1. Soit F ⊂ E

F est un sous-espace vectoriel de E ⇐⇒{F 6= ∅∀(x, y) ∈ F 2,∀(λ, µ) ∈ K2, λx+ µy ∈ F

Définition 3. Soit X une partie de E. On appelle sous-espace vectoriel de Eengendré par X (on le note Vect(X)) le plus petit espace vectoriel contenant X.

2

Page 4: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Définition 4. Soient F et G deux sous-espaces vectoriels d’un même espace vec-toriel E. On appelle somme de F et G et on note F +G

F +G = {x+ y, (x, y) ∈ F ×G}

L’application sommeF ×G → F +G(a, b) 7→ a+ b

est surjective par définition. Lorsqu’elle est injective, on dit que F +G est directeou que F et G sont en somme directe. Dans ce cas, on note F +G = F ⊕G.On dit que F et G sont supplémentaires si

F +G = F ⊕G = E

Proposition 2.F +G = F ⊕G⇐⇒ F

⋂G = {0}

F ⊕G = E ⇐⇒

E = F +G

F⋂G = {0}

Remarque. (a) Il n’y a pas (en général) unicité du supplémentaire :

R2 = Vect {(1, 0)} ⊕ Vect {(0, 1)} = Vect {(1, 0)} ⊕ Vect {(1, 1)}

(b) Ne pas confondre supplémentaire et complémentaire :

R2 = Vect {(1, 0)} ⊕ Vect {(0, 1)} mais (1, 1) /∈ Vect {(1, 0)}⋃

Vect {(0, 1)}

3

Mr D jeddi K amel

Page 5: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

1.2 Applications linéairesDéfinition 5. On appelle application K-linéaire de E vers F toute applicationf : E → F vérifiant :

∀(x, y) ∈ E2,∀(λ, µ) ∈ K2, f(λx+ µy) = λf(x) + µf(y)

On note LK(E,F ) l’ensemble de ces applications. Si E = F , on le note LK(E) etces applications sont appelées endormorphismes.

Lorqu’il n’y a pas de confusion possible, on omet souvent le corps de base pouralléger la notation.

Exemples :(a) IdE ∈ LK(E)

(b) f : R → R appartient à LK(R)x 7→ ax

(c) f : C → C appartient à LR(C) mais n’appartient pas à LC(C)z 7→ z

(d) E = C∞(R)D : E → E appartient à LR(E)

f 7→ f ′

Définition 6. Si f ∈ L(E,F ), l’image de f , notée f(E) ou Imf , est un sous-espacevectoriel de F .

Il en est de même pour le noyau de f , noté kerf et défini par

kerf = {x ∈ E|f(x) = 0}

Proposition 3.f est surjective ⇐⇒ Imf = F

f est injective ⇐⇒ kerf = {0}

Définition 7. On note GL(E) l’ensemble des isomorphismes (endomorphismesbijectifs) de E. Cet ensemble forme alors un groupe pour la loi de composition.

Définition 8. On appelle forme linéaire sur E un K-espace vectoriel toute ap-plication linéaire de E dans K. On note E∗ = LK(E,K) l’ensemble de ces formeslinéaires, autrement appelé l’espace dual de E.

Définition 9. On appelle hyperplan de E tout noyau d’une forme linéaire nonidentiquement nulle sur E.

Remarque. On verra après avec la notion de dimension que cette définition d’hy-perplan rejoint bien en dimension finie celle d’un espace de dimension n− 1.

4

Mr D jeddi K amel

Page 6: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

1.3 Familles libres, génératrices, bases et dimension d’unespace vectoriel

Définition 10. Soit (vi)i∈I une famille de vecteurs de E.1. La somme ∑λivi, où {λi 6= 0} est fini, est appelée combinaison linéaire

(C.L) des {vi}.2. On dit que les vecteurs v1, . . . , vk sont linéairement indépendants ou

encore qu’ils forment une famille libre si , pour tous λ1, . . . , λk dans K, ona l’implication

λ1v1 + . . .+ λkvk = 0⇒ λ1 = λ2 = . . . = λk = 0.

3. On dit au contraire que les vecteurs v1, . . . , vk sont linéairement dépen-dants ou encore qu’ils forment une famille liée s’il existe λ1, . . . , λk dansK tels que :λ1v1 + . . .+ λkvk = 0 et (λ1, . . . , λk) 6= (0, . . . , 0).

4. Les vecteurs v1, . . . , vk engendrent E, ou encore forme une famille gé-nératrice de E si pour tout v ∈ E, il existe x1, . . . , xk dans K tels quev = x1v1 + . . .+ xkvk. Autrement dit Vect(v1, . . . , vk) = E.

5. Une famille libre et génératrice est appelé une base de E.

Exemples :(a) Toute famille formée d’un unique vecteur non nul est libre.(b) Toute famille dont l’un des vecteur est nul est liée.(c) (1, i) est libre dans le R-espace vectoriel C, mais liée dans le C-espace vectoriel

C.(d) Dans Kn, posons ej = (0, . . . , 0, 1, 0, . . . , 0) avec le 1 en j-ème position. Alors

les {ej}j=1...n forment une base, appelée la base canonique de Kn.(e) (1, X, . . . , Xn) est la base canonique de Kn[X].Remarque. On a défini ces notions dans le cadre de famille finie, mais on peut aussile faire pour des familles infinies. Une famille est dite libre si toute sous-famillefinie l’est. Elle est génératrice lorsque tout élement peut s’exprimer comme unecombinaison linéaire finie de ses élements. On peut par exemple se convaincre que(Xk)k>0 est une base (infinie) de K[X].

Théorème 1. S’il existe une base de E de cardinal n <∞, toutes les bases de Eont ce même cardinal n, qu’on appelle alors la dimension de E. Dans ce cas, Eest un espace de dimension finie.

5

Mr D jeddi K amel

Page 7: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Remarque. (i) La compréhension des familles libres ou génératrices et des basesest extrêmement importante car ce sont des outils très utilisés en algèbrelinéaire. En effet, si on connaît une application linéaire sur une base, on laconnaît sur l’espace entier (grâce à la linéarité de la fonction et au caractèregénérateur de la base). C’est pour cette raison que les applications linéairespeuvent être représentées dans un tableau de taille finie, qu’on appellera unematrice.

(ii) Tout espace vectoriel admet des bases.(iii) En dimension finie, on peut compléter une famille libre en une base comme

on peut extraire une base d’une famille génératrice. Il s’agit du théorème dela base incomplète.

Théorème 2 (de la base incomplète). Toute famille libre de vecteurs de E peutêtre complétée en une famille libre et génératrice (i.e une base) de E. Inverse-ment, de toute famille génératrice de E, on peut extraire une sous-famille libre etgénératrice.

On peut s’entraîner à manipuler ces définitions pour démontrer les propriétéssuivantes sur la dimension :

Proposition 4. 1. Soient n > 2, E1, . . . , En des K-espaces vectoriels de di-mension finie, alors ∏n

i=1 Ei est un espace vectoriel de dimension finie et

dimn∏i=1

Ei =n∑i=1

dimEi

2. Si E est de dimension finie et F un sous-espace vectoriel de E, alors dimF 6dimE avec égalité si et seulement si F = E.

3. Si E est de dimension finie et F un sous-espace vectoriel de E, alors Fadmet au moins un supplémentaire dans E et pour tout supplémentaire G deF dans E,

dimG = dimE − dimF

4. [Théorème de Grassman] Si F et G sont deux sous-espaces vectoriels de Ede dimension finie, alors

dim(F +G) = dimF + dimG− dim(F⋂G)

Remarque. (a) On utilise très souvent le fait que F ⊂ E et dimF = dimE pourconclure que F = E

6

Mr D jeddi K amel

(b) On rappelle qu’il n’y a pas en général unicité du supplémentaire.

Page 8: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

(c) On peut tout de suite déduire du théorème de Grassman

E = F ⊕G⇐⇒ dimF + dimG = dimE et F⋂G = {0}

(d) Si F et G sont supplémentaires et si b′ est une base de F , b′′ une base de G,alors b = b′

⋃b′′ est une base de F ⊕G

Proposition 5. Deux K-espaces vectoriels de dimension finie sont isomorphes siet seulement s’ils ont la même dimension.

Définition 11. 1. On appelle rang d’une famille de vecteurs la dimensionde l’espace vectoriel qu’il engendre (Rg(F) = dim Vect(F)).

2. On appelle rang d’une application la dimension de son image (Rg(f) =dim Imf).

Cela nous permet d’arriver au Théorème du rang, très utile en algèbre li-néaire.

Théorème 3. Soit E un espace vectoriel de dimension finie, et F un espace vec-toriel de dimension quelconque. Si f ∈ L(E,F ), alors

Rg(f) + dim ker f = dimE

Ce théorème fondamental a par exemple pour conséquence immédiate la pro-priété bien connue suivante :

Proposition 6. Soient E et F deux espaces vectoriels de dimension finie vérifiantdimE = dimF . Si f ∈ L(E,F ), alors

f est injective ⇐⇒ f est surjective ⇐⇒ f est bijective

Remarque. L’équivalence n’est pas vraie en dimension infinie. Par exemple, l’ap-plication dérivée sur l’espace des polynômes est surjective, mais pas injective. Lamultiplication par X sur ce même espace est injective, mais pas surjective.

7

Mr D jeddi K amel

Page 9: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Matrices

Les matrices sont des tableaux de nombres. La résolution d’un certain nombre de problèmesd’algèbre linéaire se ramène à des manipulations sur les matrices. Ceci est vrai en particulier pourla résolution des systèmes linéaires.

Dans ce chapitre, K désigne un corps. On peut penser à Q, R ou C.

1. Définition

1.1. Définition

Définition 1

– Une matrice A est un tableau rectangulaire d’éléments de K.– Elle est dite de taille n× p si le tableau possède n lignes et p colonnes.– Les nombres du tableau sont appelés les coefficients de A.– Le coefficient situé à la i-ème ligne et à la j-ème colonne est noté ai, j.

Un tel tableau est représenté de la manière suivante :

A =

a1,1 a1,2 . . . a1, j . . . a1,p

a2,1 a2,2 . . . a2, j . . . a2,p

. . . . . . . . . . . . . . . . . .ai,1 ai,2 . . . ai, j . . . ai,p

. . . . . . . . . . . . . . . . . .an,1 an,2 . . . an, j . . . an,p

ou A = (

ai, j)1ÉiÉn1É jÉp

ou(ai, j

).

Exemple 1

A =(

1 −2 50 3 7

)est une matrice 2×3 avec, par exemple, a1,1 = 1 et a2,3 = 7.

Encore quelques définitions :

8

Page 10: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Définition 2

– Deux matrices sont égales lorsqu’elles ont la même taille et que les coefficients corres-pondants sont égaux.

– L’ensemble des matrices à n lignes et p colonnes à coefficients dans K est noté Mn,p(K).Les éléments de Mn,p(R) sont appelés matrices réelles.

1.2. Matrices particulières

Voici quelques types de matrices intéressantes :– Si n = p (même nombre de lignes que de colonnes), la matrice est dite matrice carrée. On

note Mn(K) au lieu de Mn,n(K). a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n...

.... . .

...an,1 an,2 . . . an,n

Les éléments a1,1,a2,2, . . . ,an,n forment la diagonale principale de la matrice.

– Une matrice qui n’a qu’une seule ligne (n = 1) est appelée matrice ligne ou vecteur ligne.On la note

A =(a1,1 a1,2 . . . a1,p

).

– De même, une matrice qui n’a qu’une seule colonne (p = 1) est appelée matrice colonne ouvecteur colonne. On la note

A =

a1,1

a2,1...

an,1

.

– La matrice (de taille n× p) dont tous les coefficients sont des zéros est appelée la matricenulle et est notée 0n,p ou plus simplement 0. Dans le calcul matriciel, la matrice nulle jouele rôle du nombre 0 pour les réels.

1.3. Addition de matrices

Définition 3. Somme de deux matrices

Soient A et B deux matrices ayant la même taille n× p. Leur somme C = A+B est la matricede taille n× p définie par

ci j = ai j +bi j.

En d’autres termes, on somme coefficients par coefficients. Remarque : on note indifféremment ai j

où ai, j pour les coefficients de la matrice A.

Exemple 2

Si A =(3 −21 7

)et B =

(0 52 −1

)alors A+B =

(3 33 6

).

9

Mr D jeddi K amel

Page 11: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Par contre si B′ =(−28

)alors A+B′ n’est pas définie.

Définition 4. Produit d’une matrice par un scalaire

Le produit d’une matrice A = (ai j

)de Mn,p(K) par un scalaire α ∈ K est la matrice

(αai j

)formée en multipliant chaque coefficient de A par α. Elle est notée α · A (ou simplement αA).

Exemple 3

Si A =(1 2 30 1 0

)et α= 2 alors αA =

(2 4 60 2 0

).

La matrice (−1)A est l’opposée de A et est notée −A. La différence A−B est définie par A+(−B).

Exemple 4

Si A =(2 −1 04 −5 2

)et B =

(−1 4 27 −5 3

)alors A−B =

(3 −5 −2−3 0 −1

).

L’addition et la multiplication par un scalaire se comportent sans surprises :

Proposition 1

Soient A, B et C trois matrices appartenant à Mn,p(K). Soient α ∈K et β ∈K deux scalaires.

1. A+B = B+ A : la somme est commutative,

2. A+ (B+C)= (A+B)+C : la somme est associative,

3. A+0= A : la matrice nulle est l’élément neutre de l’addition,

4. (α+β)A =αA+βA,

5. α(A+B)=αA+αB.

Démonstration

Prouvons par exemple le quatrième point. Le terme général de (α+β)A est égal à (α+β)ai j. D’après lesrègles de calcul dans K, (α+β)ai j est égal à αai j +βai j qui est le terme général de la matrice αA+βA.

Mini-exercices

1. Soient A =(−7 2

0 −11 −4

), B =

(1 2 32 3 13 2 1

), C =

( 21 −60 3−3 12

), D = 1

2

(1 0 10 1 01 1 1

), E =

( 1 2−3 0−8 6

). Calculer toutes les

sommes possibles de deux de ces matrices. Calculer 3A+2C et 5B−4D. Trouver α telque A−αC soit la matrice nulle.

2. Montrer que si A+B = A, alors B est la matrice nulle.

3. Que vaut 0 ·A ? et 1 ·A ? Justifier l’affirmation : α(βA)= (αβ)A. Idem avec nA = A+A+·· ·+ A (n occurrences de A).

10

Mr D jeddi K amel

Page 12: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

2. Multiplication de matrices

2.1. Définition du produit

Le produit AB de deux matrices A et B est défini si et seulement si le nombre de colonnes de Aest égal au nombre de lignes de B.

Définition 5. Produit de deux matrices

Soient A = (ai j) une matrice n× p et B = (bi j) une matrice p× q. Alors le produit C = AB estune matrice n× q dont les coefficients ci j sont définis par :

ci j =p∑

k=1aikbk j

On peut écrire le coefficient de façon plus développée, à savoir :

ci j = ai1b1 j +ai2b2 j +·· ·+aikbk j +·· ·+aipbp j.

Il est commode de disposer les calculs de la façon suivante.××××

← B

A →

× × × ×

||

− − − ci j

← AB

Avec cette disposition, on considère d’abord la ligne de la matrice A située à gauche du coefficientque l’on veut calculer (ligne représentée par des × dans A) et aussi la colonne de la matrice B situéeau-dessus du coefficient que l’on veut calculer (colonne représentée par des × dans B). On calculele produit du premier coefficient de la ligne par le premier coefficient de la colonne (ai1 ×b1 j), quel’on ajoute au produit du deuxième coefficient de la ligne par le deuxième coefficient de la colonne(ai2 ×b2 j), que l’on ajoute au produit du troisième. . .

2.2. Exemples

Exemple 5

A =(1 2 32 3 4

)B =

1 2−1 11 1

On dispose d’abord le produit correctement (à gauche) : la matrice obtenue est de taille2×2. Puis on calcule chacun des coefficients, en commençant par le premier coefficient c11 =1×1 + 2× (−1) + 3×1= 2 (au milieu), puis les autres (à droite).

11

Mr D jeddi K amel

Page 13: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

1 2−1 11 1

(1 2 32 3 4

) (c11 c12

c21 c22

) 1 2−1 11 1

(1 2 32 3 4

) (2 c12

c21 c22

) 1 2−1 11 1

(1 2 32 3 4

) (2 73 11

)

Un exemple intéressant est le produit d’un vecteur ligne par un vecteur colonne :

u =(a1 a2 · · · an

)v =

b1

b2...

bn

Alors u×v est une matrice de taille 1×1 dont l’unique coefficient est a1b1 +a2b2 +·· ·+anbn. Cenombre s’appelle le produit scalaire des vecteurs u et v.

Calculer le coefficient ci j dans le produit A ×B revient donc à calculer le produit scalaire desvecteurs formés par la i-ème ligne de A et la j-ème colonne de B.

2.3. Pièges à éviter

Premier piège. Le produit de matrices n’est pas commutatif en général.En effet, il se peut que AB soit défini mais pas BA, ou que AB et BA soient tous deux définis maispas de la même taille. Mais même dans le cas où AB et BA sont définis et de la même taille, on aen général AB 6= BA.

Exemple 6(5 13 −2

)(2 04 3

)=

(14 3−2 −6

)mais

(2 04 3

)(5 13 −2

)=

(10 229 −2

).

Deuxième piège. AB = 0 n’implique pas A = 0 ou B = 0.Il peut arriver que le produit de deux matrices non nulles soit nul. En d’autres termes, on peutavoir A 6= 0 et B 6= 0 mais AB = 0.

Exemple 7

A =(0 −10 5

)B =

(2 −30 0

)et AB =

(0 00 0

).

Troisième piège. AB = AC n’implique pas B = C. On peut avoir AB = AC et B 6= C.

Exemple 8

A =(0 −10 3

)B =

(4 −15 4

)C =

(2 55 4

)et AB = AC =

(−5 −415 12

).

12

Mr D jeddi K amel

Page 14: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

2.4. Propriétés du produit de matrices

Malgré les difficultés soulevées au-dessus, le produit vérifie les propriétés suivantes :

Proposition 2

1. A(BC)= (AB)C : associativité du produit,

2. A(B+C)= AB+ AC et (B+C)A = BA+CA : distributivité du produit par rapportà la somme,

3. A ·0= 0 et 0 · A = 0.

Démonstration

Posons A = (ai j) ∈ Mn,p(K), B = (bi j) ∈ Mp,q(K) et C = (ci j) ∈ Mq,r(K). Prouvons que A(BC)= (AB)C enmontrant que les matrices A(BC) et (AB)C ont les mêmes coefficients.

Le terme d’indice (i,k) de la matrice AB est xik =p∑

`=1ai`b`k. Le terme d’indice (i, j) de la matrice (AB)C

est doncq∑

k=1xik ck j =

q∑k=1

(p∑

`=1ai`b`k

)ck j.

Le terme d’indice (`, j) de la matrice BC est y` j =q∑

k=1b`k ck j. Le terme d’indice (i, j) de la matrice A(BC)

est doncp∑

`=1ai`

(q∑

k=1b`k ck j

).

Comme dans K la multiplication est distributive et associative, les coefficients de (AB)C et A(BC)coïncident. Les autres démonstrations se font comme celle de l’associativité.

2.5. La matrice identité

La matrice carrée suivante s’appelle la matrice identité :

In =

1 0 . . . 00 1 . . . 0...

.... . .

...0 0 . . . 1

Ses éléments diagonaux sont égaux à 1 et tous ses autres éléments sont égaux à 0. Elle se noteIn ou simplement I. Dans le calcul matriciel, la matrice identité joue un rôle analogue à celui dunombre 1 pour les réels. C’est l’élément neutre pour la multiplication. En d’autres termes :

Proposition 3

Si A est une matrice n× p, alors

In · A = A et A · Ip = A.

13

Mr D jeddi K amel

Page 15: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Démonstration

Nous allons détailler la preuve. Soit A ∈ Mn,p(K) de terme général ai j. La matrice unité d’ordre p esttelle que tous les éléments de la diagonale principale sont égaux à 1, les autres étant tous nuls.On peut formaliser cela en introduisant le symbole de Kronecker. Si i et j sont deux entiers, on appellesymbole de Kronecker, et on note δi, j, le réel qui vaut 0 si i est différent de j, et 1 si i est égal à j.Donc

δi, j ={

0 si i 6= j

1 si i = j.

Alors le terme général de la matrice identité Ip est δi, j avec i et j entiers, compris entre 1 et p.La matrice produit AIp est une matrice appartenant à Mn,p(K) dont le terme général ci j est donné

par la formule ci j =p∑

k=1aikδk j. Dans cette somme, i et j sont fixés et k prend toutes les valeurs

comprises entre 1 et p. Si k 6= j alors δk j = 0, et si k = j alors δk j = 1. Donc dans la somme quidéfinit ci j, tous les termes correspondant à des valeurs de k différentes de j sont nuls et il reste doncci j = ai jδ j j = ai j1 = ai j. Donc les matrices AIp et A ont le même terme général et sont donc égales.L’égalité In A = A se démontre de la même façon.

2.6. Puissance d’une matrice

Dans l’ensemble Mn(K) des matrices carrées de taille n×n à coefficients dans K, la multiplicationdes matrices est une opération interne : si A,B ∈ Mn(K) alors AB ∈ Mn(K).En particulier, on peut multiplier une matrice carrée par elle-même : on note A2 = A× A, A3 =A× A× A.On peut ainsi définir les puissances successives d’une matrice :

Définition 6

Pour tout A ∈ Mn(K), on définit les puissances successives de A par A0 = In et Ap+1 = Ap × Apour tout p ∈N. Autrement dit, Ap = A× A×·· ·× A︸ ︷︷ ︸

p facteurs

.

Exemple 9

On cherche à calculer Ap avec A =

1 0 10 −1 00 0 2

. On calcule A2, A3 et A4 et on obtient :

A2 =

1 0 30 1 00 0 4

A3 = A2 × A =

1 0 70 −1 00 0 8

A4 = A3 × A =

1 0 150 1 00 0 16

.

L’observation de ces premières puissances permet de penser que la formule est : Ap =1 0 2p −10 (−1)p 00 0 2p

. Démontrons ce résultat par récurrence.

Il est vrai pour p = 0 (on trouve l’identité). On le suppose vrai pour un entier p et on va ledémontrer pour p+1. On a, d’après la définition,

Ap+1 = Ap × A =

1 0 2p −10 (−1)p 00 0 2p

×

1 0 10 −1 00 0 2

=

1 0 2p+1 −10 (−1)p+1 00 0 2p+1

.

14

Mr D jeddi K amel

Page 16: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Donc la propriété est démontrée.

2.7. Formule du binôme

Comme la multiplication n’est pas commutative, les identités binomiales usuelles sont fausses. Enparticulier, (A+B)2 ne vaut en général pas A2 +2AB+B2, mais on sait seulement que

(A+B)2 = A2 + AB+BA+B2.

Proposition 4. Calcul de (A+B)p lorsque AB = BA

Soient A et B deux éléments de Mn(K) qui commutent, c’est-à-dire tels que AB = BA. Alors,pour tout entier p Ê 0, on a la formule

(A+B)p =p∑

k=0

(pk

)Ap−kBk

où(p

k)

désigne le coefficient du binôme.

La démonstration est similaire à celle de la formule du binôme pour (a+b)p, avec a,b ∈R.

Exemple 10

Soit A =

1 1 1 10 1 2 10 0 1 30 0 0 1

. On pose N = A− I =

0 1 1 10 0 2 10 0 0 30 0 0 0

. La matrice N est nilpotente (c’est-

à-dire il existe k ∈N tel que Nk = 0) comme le montrent les calculs suivants :

N2 =

0 0 2 40 0 0 60 0 0 00 0 0 0

N3 =

0 0 0 60 0 0 00 0 0 00 0 0 0

et N4 = 0.

Comme on a A = I +N et les matrices N et I commutent (la matrice identité commute avectoutes les matrices), on peut appliquer la formule du binôme de Newton. On utilise que Ik = Ipour tout k et surtout que Nk = 0 si k Ê 4. On obtient

Ap =p∑

k=0

(pk

)NkI p−k =

3∑k=0

(pk

)Nk = I + pN + p(p−1)

2! N2 + p(p−1)(p−2)3! N3.

D’où

Ap =

1 p p2 p(p2 − p+1)0 1 2p p(3p−2)0 0 1 3p0 0 0 1

.

15

Mr D jeddi K amel

Page 17: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Mini-exercices

1. Soient A = (0 2 −26 −4 0

), B =

(2 1 00 1 02 −2 −3

), C =

( 8 2−3 2−5 5

), D =

( 52−1

), E =

(x y z

). Quels produits

sont possibles ? Les calculer !

2. Soient A =(0 0 1

0 1 01 1 2

)et B =

(1 0 00 0 21 −1 0

). Calculer A2, B2, AB et BA.

3. Soient A =(2 0 0

0 2 00 0 2

)et B =

(0 0 02 0 03 1 0

). Calculer Ap et Bp pour tout p Ê 0. Montrer que AB =

BA. Calculer (A+B)p.

3. Inverse d’une matrice : définition

3.1. Définition

Définition 7. Matrice inverse

Soit A une matrice carrée de taille n×n. S’il existe une matrice carrée B de taille n×n telleque

AB = I et BA = I,

on dit que A est inversible. On appelle B l’inverse de A et on la note A−1.

On verra plus tard qu’il suffit en fait de vérifier une seule des conditions AB = I ou bien BA = I.

– Plus généralement, quand A est inversible, pour tout p ∈N, on note :

A−p = (A−1)p = A−1 A−1 · · ·A−1︸ ︷︷ ︸p facteurs

.

– L’ensemble des matrices inversibles de Mn(K) est noté GLn(K).

3.2. Exemples

Exemple 11

Soit A = (1 20 3

). Étudier si A est inversible, c’est étudier l’existence d’une matrice B = (a b

c d)

àcoefficients dans K, telle que AB = I et BA = I. Or AB = I équivaut à :

AB = I ⇐⇒(1 20 3

)(a bc d

)=

(1 00 1

)⇐⇒

(a+2c b+2d

3c 3d

)=

(1 00 1

)

Cette égalité équivaut au système : a+2c = 1b+2d = 03c = 03d = 1

Sa résolution est immédiate : a = 1, b = −23 , c = 0, d = 1

3 . Il n’y a donc qu’une seule matrice

possible, à savoir B =(

1 − 23

0 13

). Pour prouver qu’elle convient, il faut aussi montrer l’égalité

BA = I, dont la vérification est laissée au lecteur. La matrice A est donc inversible et A−1 =

16

Mr D jeddi K amel

Page 18: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

(1 −2

30 1

3

).

Exemple 12

La matrice A = (3 05 0

)n’est pas inversible. En effet, soit B =

(a bc d

)une matrice quelconque.

Alors le produit

BA =(a bc d

)(3 05 0

)=

(3a+5b 03c+5d 0

)ne peut jamais être égal à la matrice identité.

Exemple 13

– Soit In la matrice carrée identité de taille n× n. C’est une matrice inversible, et soninverse est elle-même par l’égalité InIn = In.

– La matrice nulle 0n de taille n×n n’est pas inversible. En effet on sait que, pour toutematrice B de Mn(K), on a B0n = 0n, qui ne peut jamais être la matrice identité.

3.3. Propriétés

Unicité

Proposition 5

Si A est inversible, alors son inverse est unique.

Démonstration

La méthode classique pour mener à bien une telle démonstration est de supposer l’existence de deuxmatrices B1 et B2 satisfaisant aux conditions imposées et de démontrer que B1 = B2.Soient donc B1 telle que AB1 = B1 A = In et B2 telle que AB2 = B2 A = In. Calculons B2(AB1). D’unepart, comme AB1 = In, on a B2(AB1)= B2. D’autre part, comme le produit des matrices est associatif,on a B2(AB1)= (B2 A)B1 = InB1 = B1. Donc B1 = B2.

Inverse de l’inverse

Proposition 6

Soit A une matrice inversible. Alors A−1 est aussi inversible et on a :

(A−1)−1 = A

Inverse d’un produit

17

Mr D jeddi K amel

Page 19: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Proposition 7

Soient A et B deux matrices inversibles de même taille. Alors AB est inversible et

(AB)−1 = B−1 A−1

Il faut bien faire attention à l’inversion de l’ordre !

Démonstration

Il suffit de montrer (B−1 A−1)(AB)= I et (AB)(B−1 A−1)= I. Cela suit de

(B−1 A−1)(AB)= B−1(AA−1)B = B−1IB = B−1B = I,

et (AB)(B−1 A−1)= A(BB−1)A−1 = AI A−1 = AA−1 = I.

De façon analogue, on montre que si A1, . . . , Am sont inversibles, alors

(A1 A2 · · ·Am)−1 = A−1m A−1

m−1 · · ·A−11 .

Simplification par une matrice inversible

Si C est une matrice quelconque de Mn(K), nous avons vu que la relation AC = BC où A et B sontdes éléments de Mn(K) n’entraîne pas forcément l’égalité A = B. En revanche, si C est une matriceinversible, on a la proposition suivante :

Proposition 8

Soient A et B deux matrices de Mn(K) et C une matrice inversible de Mn(K). Alors l’égalitéAC = BC implique l’égalité A = B.

Démonstration

Ce résultat est immédiat : si on multiplie à droite l’égalité AC = BC par C−1, on obtient l’égalité :(AC)C−1 = (BC)C−1. En utilisant l’associativité du produit des matrices on a A(CC−1) = B(CC−1), cequi donne d’après la définition de l’inverse AI = BI, d’où A = B.

Mini-exercices

1. Soient A = (−1 −23 4

)et B = (2 1

5 3). Calculer A−1, B−1 , (AB)−1, (BA)−1, A−2.

2. Calculer l’inverse de(1 0 0

0 2 01 0 3

).

3. Soit A =(−1 −2 0

2 3 00 0 1

). Calculer 2A− A2. Sans calculs, en déduire A−1.

4. Inverse d’une matrice : calcul

Nous allons voir une méthode pour calculer l’inverse d’une matrice quelconque de manière efficace.Cette méthode est une reformulation de la méthode du pivot de Gauss pour les systèmes linéaires.Auparavant, nous commençons par une formule directe dans le cas simple des matrices 2×2.

18

Page 20: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

4.1. Matrices 2×2

Considérons la matrice 2×2 : A =(a bc d

).

Proposition 9

Si ad−bc 6= 0, alors A est inversible et

A−1 = 1ad−bc

(d −b−c a

)

Démonstration

On vérifie que si B = 1ad−bc

(d −b−c a

)alors AB = (1 0

0 1). Idem pour BA.

4.2. Méthode de Gauss pour inverser les matrices

La méthode pour inverser une matrice A consiste à faire des opérations élémentaires sur les lignesde la matrice A jusqu’à la transformer en la matrice identité I. On fait simultanément les mêmesopérations élémentaires en partant de la matrice I. On aboutit alors à une matrice qui est A−1.La preuve sera vue dans la section suivante.

En pratique, on fait les deux opérations en même temps en adoptant la disposition suivante : àcôté de la matrice A que l’on veut inverser, on rajoute la matrice identité pour former un tableau(A | I). Sur les lignes de cette matrice augmentée, on effectue des opérations élémentaires jusqu’àobtenir le tableau (I | B). Et alors B = A−1.

Ces opérations élémentaires sur les lignes sont :

1. L i ← λL i avec λ 6= 0 : on peut multiplier une ligne par un réel non nul (ou un élément deK\{0}).

2. L i ← L i+λL j avec λ ∈K (et j 6= i) : on peut ajouter à la ligne L i un multiple d’une autre ligneL j.

3. L i ↔ L j : on peut échanger deux lignes.

N’oubliez pas : tout ce que vous faites sur la partie gauche de la matrice augmentée, vous devezaussi le faire sur la partie droite.

4.3. Un exemple

Calculons l’inverse de A =

1 2 14 0 −1−1 2 2

.

Voici la matrice augmentée, avec les lignes numérotées :

(A | I)=

1 2 1 1 0 04 0 −1 0 1 0−1 2 2 0 0 1

L1

L2

L3

19

Page 21: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

On applique la méthode de Gauss pour faire apparaître des 0 sur la première colonne, d’abord surla deuxième ligne par l’opération élémentaire L2 ← L2 −4L1 qui conduit à la matrice augmentée :

1 2 1 1 0 00 −8 −5 −4 1 0−1 2 2 0 0 1

L2←L2−4L1

Puis un 0 sur la première colonne, à la troisième ligne, avec L3 ← L3 +L1 :

1 2 1 1 0 00 −8 −5 −4 1 00 4 3 1 0 1

L3←L3+L1

On multiplie la ligne L2 afin qu’elle commence par 1 :

1 2 1 1 0 00 1 5

812 −1

8 00 4 3 1 0 1

L2←− 18 L2

On continue afin de faire apparaître des 0 partout sous la diagonale, et on multiplie la ligne L3.Ce qui termine la première partie de la méthode de Gauss :

1 2 1 1 0 00 1 5

812 −1

8 00 0 1

2 −1 12 1

L3←L3−4L2

puis

1 2 1 1 0 00 1 5

812 −1

8 00 0 1 −2 1 2

L3←2L3

Il ne reste plus qu’à « remonter » pour faire apparaître des zéros au-dessus de la diagonale :

1 2 1 1 0 00 1 0 7

4 −34 −5

40 0 1 −2 1 2

L2←L2− 58 L3 puis

1 0 0 −12

12

12

0 1 0 74 −3

4 −54

0 0 1 −2 1 2

L1←L1−2L2−L3

Ainsi l’inverse de A est la matrice obtenue à droite et après avoir factorisé tous les coefficients par14 , on a obtenu :

A−1 = 14

−2 2 27 −3 −5−8 4 8

Pour se rassurer sur ses calculs, on n’oublie pas de vérifier rapidement que A× A−1 = I.

Mini-exercices

1. Si possible calculer l’inverse des matrices :(3 1

7 2),( 2 −3−5 4

),(0 2

3 0),(α+1 1

2 α

).

2. Soit A(θ)= ( cosθ −sinθsinθ cosθ

). Calculer A(θ)−1.

3. Calculer l’inverse des matrices :( 1 3 0

2 1 −1−2 1 1

),(2 −2 1

3 0 51 1 2

),( 1 0 1 0

0 2 −2 0−1 2 0 10 2 1 3

),(2 1 1 1

1 0 0 10 1 −1 20 1 1 0

),

( 1 1 1 0 00 1 2 0 0−1 1 2 0 00 0 0 2 10 0 0 5 3

).

20

Page 22: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

5. Inverse d’une matrice : systèmes linéaires et matricesélémentaires

5.1. Matrices et systèmes linéaires

Le système linéaire a11 x1 + a12 x2 + ·· · + a1p xp = b1

a21 x1 + a22 x2 + ·· · + a2p xp = b2

. . .an1 x1 + an2 x2 + ·· · + anp xp = bn

peut s’écrire sous forme matricielle :a11 . . . a1p

a21 . . . a2p...

...an1 . . . anp

︸ ︷︷ ︸

x1

x2...

xp

︸ ︷︷ ︸

=

b1

b2...

bn

.

︸ ︷︷ ︸A X B

On appelle A ∈ Mn,p(K) la matrice des coefficients du système. B ∈ Mn,1(K) est le vecteur du secondmembre. Le vecteur X ∈ Mp,1(K) est une solution du système si et seulement si

AX = B.

Nous savons que :

Théorème 1

Un système d’équations linéaires n’a soit aucune solution, soit une seule solution, soit uneinfinité de solutions.

5.2. Matrices inversibles et systèmes linéaires

Considérons le cas où le nombre d’équations égale le nombre d’inconnues :

a11 . . . a1n

a21 . . . a2n...

...an1 . . . ann

︸ ︷︷ ︸

x1

x2...

xn

︸ ︷︷ ︸

=

b1

b2...

bn

.

︸ ︷︷ ︸A X B

Alors A ∈ Mn(K) est une matrice carrée et B un vecteur de Mn,1(K). Pour tout second membre,nous pouvons utiliser les matrices pour trouver la solution du système linéaire.

21

Page 23: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Proposition 10

Si la matrice A est inversible, alors la solution du système AX = B est unique et est :

X = A−1B.

La preuve est juste de vérifier que si X = A−1B, alors AX = A(A−1B

) = (AA−1)

B = I ·B = B.Réciproquement si AX = B, alors nécessairement X = A−1B. Nous verrons bientôt que si la matricen’est pas inversible, alors soit il n’y a pas de solution, soit une infinité.

5.3. Les matrices élémentaires

Pour calculer l’inverse d’une matrice A, et aussi pour résoudre des systèmes linéaires, nous avonsutilisé trois opérations élémentaires sur les lignes qui sont :

1. L i ← λL i avec λ 6= 0 : on peut multiplier une ligne par un réel non nul (ou un élément deK\{0}).

2. L i ← L i+λL j avec λ ∈K (et j 6= i) : on peut ajouter à la ligne L i un multiple d’une autre ligneL j.

3. L i ↔ L j : on peut échanger deux lignes.

Nous allons définir trois matrices élémentaires EL i←λL i , EL i←L i+λL j , EL i↔L j correspondant à cesopérations. Plus précisément, le produit E× A correspondra à l’opération élémentaire sur A. Voiciles définitions accompagnées d’exemples.

1. La matrice EL i←λL i est la matrice obtenue en multipliant par λ la i-ème ligne de la matriceidentité In, où λ est un nombre réel non nul.

EL2←5L2 =

1 0 0 00 5 0 00 0 1 00 0 0 1

2. La matrice EL i←L i+λL j est la matrice obtenue en ajoutant λ fois la j-ème ligne de In à la

i-ème ligne de In.

EL2←L2−3L1 =

1 0 0 0−3 1 0 00 0 1 00 0 0 1

3. La matrice EL i↔L j est la matrice obtenue en permutant les i-ème et j-ème lignes de In.

EL2↔L4 = EL4↔L2 =

1 0 0 00 0 0 10 0 1 00 1 0 0

Les opérations élémentaires sur les lignes sont réversibles, ce qui entraîne l’inversibilité desmatrices élémentaires.

Le résultat de la multiplication d’un matrice élémentaire E par A est la matrice obtenue eneffectuant l’opération élémentaire correspondante sur A. Ainsi :

22

Page 24: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

1. La matrice EL i←λL i × A est la matrice obtenue en multipliant par λ la i-ème ligne de A.

2. La matrice EL i←L i+λL j × A est la matrice obtenue en ajoutant λ fois la j-ème ligne de A à lai-ème ligne de A.

3. La matrice EL i↔L j × A est la matrice obtenue en permutant les i-ème et j-ème lignes de A.

Exemple 14

1.

EL2← 13 L2

× A =

1 0 00 1

3 00 0 1

×

x1 x2 x3

y1 y2 y3

z1 z2 z3

=

x1 x2 x313 y1

13 y2

13 y3

z1 z2 z3

2.

EL1←L1−7L3 × A =

1 0 −70 1 00 0 1

×

x1 x2 x3

y1 y2 y3

z1 z2 z3

=

x1 −7z1 x2 −7z2 x3 −7z3

y1 y2 y3

z1 z2 z3

3.

EL2↔L3 × A =

1 0 00 0 10 1 0

×

x1 x2 x3

y1 y2 y3

z1 z2 z3

=

x1 x2 x3

z1 z2 z3

y1 y2 y3

5.4. Équivalence à une matrice échelonnée

Définition 8

Deux matrices A et B sont dites équivalentes par lignes si l’une peut être obtenue à partirde l’autre par une suite d’opérations élémentaires sur les lignes. On note A ∼ B.

Définition 9

Une matrice est échelonnée si :– le nombre de zéros commençant une ligne croît strictement ligne par ligne jusqu’à ce

qu’il ne reste plus que des zéros.Elle est échelonnée réduite si en plus :

– le premier coefficient non nul d’une ligne (non nulle) vaut 1 ;– et c’est le seul élément non nul de sa colonne.

Exemple d’une matrice échelonnée (à gauche) et échelonnée réduite (à droite) ; les ∗ désignent descoefficients quelconques, les + des coefficients non nuls :

+ ∗ ∗ ∗ ∗ ∗ ∗0 0 + ∗ ∗ ∗ ∗0 0 0 + ∗ ∗ ∗0 0 0 0 0 0 +0 0 0 0 0 0 00 0 0 0 0 0 0

1 ∗ 0 0 ∗ ∗ 00 0 1 0 ∗ ∗ 00 0 0 1 ∗ ∗ 00 0 0 0 0 0 10 0 0 0 0 0 00 0 0 0 0 0 0

23

Page 25: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Théorème 2

Étant donnée une matrice A ∈ Mn,p(K), il existe une unique matrice échelonnée réduite Uobtenue à partir de A par des opérations élémentaires sur les lignes.

Ce théorème permet donc de se ramener par des opérations élémentaires à des matrices dont lastructure est beaucoup plus simple : les matrices échelonnées réduites.

Démonstration

Nous admettons l’unicité.L’existence se démontre grâce à l’algorithme de Gauss. L’idée générale consiste à utiliser des substitu-tions de lignes pour placer des zéros là où il faut de façon à créer d’abord une forme échelonnée, puisune forme échelonnée réduite.

Soit A une matrice n× p quelconque.

Partie A. Passage à une forme échelonnée.Étape A.1. Choix du pivot.On commence par inspecter la première colonne. Soit elle ne contient que des zéros, auquel cas onpasse directement à l’étape A.3, soit elle contient au moins un terme non nul. On choisit alors un telterme, que l’on appelle le pivot. Si c’est le terme a11, on passe directement à l’étape A.2 ; si c’est unterme ai1 avec i 6= 1, on échange les lignes 1 et i (L1 ↔ L i) et on passe à l’étape A.2.Au terme de l’étape A.1, soit la matrice A a sa première colonne nulle (à gauche) ou bien on obtientune matrice équivalente dont le premier coefficient a′

11 est non nul (à droite) :

0 a12 · · · a1 j · · · a1p

0 a22 · · · a2 j · · · a2p...

......

...0 ai2 · · · ai j · · · aip...

......

...0 an2 · · · an j · · · anp

= A ou bien

a′11 a′

12 · · · a′1 j · · · a′

1pa′

21 a′22 · · · a′

2 j · · · a′2p

......

......

a′i1 a′

i2 · · · a′i j · · · a′

ip...

......

...a′

n1 a′n2 · · · a′

n j · · · a′np

∼ A.

Étape A.2. Élimination.On ne touche plus à la ligne 1, et on se sert du pivot a′

11 pour éliminer tous les termes a′i1 (avec i Ê 2)

situés sous le pivot. Pour cela, il suffit de remplacer la ligne i par elle-même moinsa′

i1a′

11× la ligne 1, ceci

pour i = 2, . . . ,n : L2 ← L2 − a′21

a′11

L1, L3 ← L3 − a′31

a′11

L1,. . .Au terme de l’étape A.2, on a obtenu une matrice de la forme

a′11 a′

12 · · · a′1 j · · · a′

1p0 a′′

22 · · · a′′2 j · · · a′′

2p...

......

...0 a′′

i2 · · · a′′i j · · · a′′

ip...

......

...0 a′′

n2 · · · a′′n j · · · a′′

np

∼ A.

Étape A.3. Boucle.

24

Page 26: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Au début de l’étape A.3, on a obtenu dans tous les cas de figure une matrice de la forme

a111 a1

12 · · · a11 j · · · a1

1p0 a1

22 · · · a12 j · · · a1

2p...

......

...0 a1

i2 · · · a1i j · · · a1

ip...

......

...0 a1

n2 · · · a1n j · · · a1

np

∼ A

dont la première colonne est bien celle d’une matrice échelonnée. On va donc conserver cette premièrecolonne. Si a1

11 6= 0, on conserve aussi la première ligne, et l’on repart avec l’étape A.1 en l’appliquantcette fois à la sous-matrice (n−1)× (p−1) (ci-dessous à gauche : on « oublie » la première ligne etla première colonne de A) ; si a1

11 = 0, on repart avec l’étape A.1 en l’appliquant à la sous-matricen× (p−1) (à droite, on « oublie » la première colonne) :

a122 · · · a1

2 j · · · a12p

......

...a1

i2 · · · a1i j · · · a1

ip...

......

a1n2 · · · a1

n j · · · a1np

a112 · · · a1

1 j · · · a11p

a122 · · · a1

2 j · · · a12p

......

...a1

i2 · · · a1i j · · · a1

ip...

......

a1n2 · · · a1

n j · · · a1np

Au terme de cette deuxième itération de la boucle, on aura obtenu une matrice de la forme

a111 a1

12 · · · a11 j · · · a1

1p0 a2

22 · · · a22 j · · · a2

2p...

......

...0 0 · · · a2

i j · · · a2ip

......

......

0 0 · · · a2n j · · · a2

np

∼ A,

et ainsi de suite.Comme chaque itération de la boucle travaille sur une matrice qui a une colonne de moins que laprécédente, alors au bout d’au plus p−1 itérations de la boucle, on aura obtenu une matrice échelonnée.

Partie B. Passage à une forme échelonnée réduite.Étape B.1. Homothéties.On repère le premier élément non nul de chaque ligne non nulle, et on multiplie cette ligne parl’inverse de cet élément. Exemple : si le premier élément non nul de la ligne i est α 6= 0, alors oneffectue L i ← 1

αL i. Ceci crée une matrice échelonnée avec des 1 en position de pivots.

Étape B.2. Élimination.On élimine les termes situés au-dessus des positions de pivot comme précédemment, en procédantà partir du bas à droite de la matrice. Ceci ne modifie pas la structure échelonnée de la matrice enraison de la disposition des zéros dont on part.

Exemple 15

Soit

A =

1 2 3 40 2 4 6−1 0 1 0

.

A. Passage à une forme échelonnée.

25

Mr D jeddi K amel

Page 27: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Première itération de la boucle, étape A.1. Le choix du pivot est tout fait, on garde a111 = 1.

Première itération de la boucle, étape A.2. On ne fait rien sur la ligne 2 qui contient déjà unzéro en bonne position et on remplace la ligne 3 par L3 ← L3 +L1. On obtient

A ∼

1 2 3 40 2 4 60 2 4 4

.

Deuxième itération de la boucle, étape A.1. Le choix du pivot est tout fait, on garde a222 = 2.

Deuxième itération de la boucle, étape A.2. On remplace la ligne 3 avec l’opération L3 ←L3 −L2. On obtient

A ∼

1 2 3 40 2 4 60 0 0 −2

.

Cette matrice est échelonnée.

B. Passage à une forme échelonnée réduite.Étape B.1, homothéties. On multiplie la ligne 2 par 1

2 et la ligne 3 par −12 et l’on obtient

A ∼

1 2 3 40 1 2 30 0 0 1

.

Étape B.2, première itération. On ne touche plus à la ligne 3 et on remplace la ligne 2 parL2 ← L2 −3L3 et L1 ← L1 −4L3. On obtient

A ∼

1 2 3 00 1 2 00 0 0 1

.

Étape B.2, deuxième itération. On ne touche plus à la ligne 2 et on remplace la ligne 1 parL1 ← L1 −2L2. On obtient

A ∼

1 0 −1 00 1 2 00 0 0 1

qui est bien échelonnée et réduite.

5.5. Matrices élémentaires et inverse d’une matrice

Théorème 3

Soit A ∈ Mn(K). La matrice A est inversible si et seulement si sa forme échelonnée réduiteest la matrice identité In.

26

Mr D jeddi K amel

Page 28: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Démonstration

Notons U la forme échelonnée réduite de A. Et notons E le produit de matrices élémentaires tel queEA =U .

⇐= Si U = In alors EA = In. Ainsi par définition, A est inversible et A−1 = E.=⇒ Nous allons montrer que si U 6= In, alors A n’est pas inversible.

– Supposons U 6= In. Alors la dernière ligne de U est nulle (sinon il y aurait un pivot sur chaqueligne donc ce serait In).

– Cela entraîne que U n’est pas inversible : en effet, pour tout matrice carrée V , la dernièreligne de UV est nulle ; on n’aura donc jamais UV = In.

– Alors, A n’est pas inversible non plus : en effet, si A était inversible, on aurait U = EA et Userait inversible comme produit de matrices inversibles (E est inversible car c’est un produitde matrices élémentaires qui sont inversibles).

Remarque

Justifions maintenant notre méthode pour calculer A−1.Nous partons de (A|I) pour arriver par des opérations élémentaires sur les lignes à (I|B).Montrons que B = A−1. Faire une opération élémentaire signifie multiplier à gauche par unedes matrices élémentaires. Notons E le produit de ces matrices élémentaires. Dire que l’onarrive à la fin du processus à I signifie EA = I. Donc A−1 = E. Comme on fait les mêmesopérations sur la partie droite du tableau, alors on obtient EI = B. Donc B = E. Conséquence :B = A−1.

Corollaire 1

Les assertions suivantes sont équivalentes :(i) La matrice A est inversible.

(ii) Le système linéaire AX =(

0...0

)a une unique solution X =

(0...0

).

(iii) Pour tout second membre B, le système linéaire AX = B a une unique solution X .

Démonstration

Nous avons déjà vu (i) =⇒ (ii) et (i) =⇒ (iii).Nous allons seulement montrer (ii) =⇒ (i). Nous raisonnons par contraposée : nous allons montrer laproposition équivalente non(i) =⇒ non(ii). Si A n’est pas inversible, alors sa forme échelonnée réduiteU contient un premier zéro sur sa diagonale, disons à la place `. Alors U à la forme suivante

1 0 · · · c1 ∗ ·· · ∗0

. . . 0... · · · ∗

0 0 1 c`−1 · · · ∗0 · · · 0 0 ∗ ·· · ∗0 · · · 0 0 ∗ ·· · ∗...

...... · · · 0

. . ....

0 · · · · · · 0 ∗

. On note X =

−c1...

−c`−1

10...0

.

Alors X n’est pas le vecteur nul, mais U X est le vecteur nul. Comme A = E−1U , alors AX est le vecteurnul. Nous avons donc trouvé un vecteur non nul X tel que AX = 0.

27

Mr D jeddi K amel

Page 29: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Mini-exercices

1. Exprimer les systèmes linéaires suivants sous forme matricielle et les résoudre en

inversant la matrice :

{2x+4y= 7−2x+3y=−14

,

x+ z = 1−2y+3z = 1x+ z = 1

,

x+ t =αx−2y=βx+ y+ t = 2y+ t = 4

.

2. Écrire les matrices 4×4 correspondant aux opérations élémentaires : L2 ← 13 L2, L3 ←

L3− 14 L2, L1 ↔ L4. Sans calculs, écrire leurs inverses. Écrire la matrice 4×4 de l’opéra-

tion L1 ← L1 −2L3 +3L4.

3. Écrire les matrices suivantes sous forme échelonnée, puis échelonnée réduite :( 1 2 31 4 0−2 −2 −3

),(1 0 2

1 −1 12 −2 3

),( 2 0 −2 0

0 −1 1 01 −2 1 4−1 2 −1 −2

).

6. Matrices triangulaires, transposition, trace, matrices sy-métriques

6.1. Matrices triangulaires, matrices diagonales

Soit A une matrice de taille n× n. On dit que A est triangulaire inférieure si ses élémentsau-dessus de la diagonale sont nuls, autrement dit :

i < j =⇒ ai j = 0.

Une matrice triangulaire inférieure a la forme suivante :

a11 0 · · · · · · 0

a21 a22. . .

......

.... . . . . .

......

.... . . 0

an1 an2 · · · · · · ann

On dit que A est triangulaire supérieure si ses éléments en-dessous de la diagonale sont nuls,autrement dit :

i > j =⇒ ai j = 0.

Une matrice triangulaire supérieure a la forme suivante :

a11 a12 . . . . . . . . . a1n

0 a22 . . . . . . . . . a2n...

. . . . . ....

.... . . . . .

......

. . . . . ....

0 . . . . . . . . . 0 ann

28

Page 30: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Exemple 16

Deux matrices triangulaires inférieures (à gauche), une matrice triangulaire supérieure (àdroite) : 4 0 0

0 −1 03 −2 3

(5 01 −2

) 1 1 −10 −1 −10 0 −1

Une matrice qui est triangulaire inférieure et triangulaire supérieure est dite diagonale. Autre-ment dit : i 6= j =⇒ ai j = 0.

Exemple 17

Exemples de matrices diagonales :−1 0 00 6 00 0 0

et

(2 00 3

)

Exemple 18. Puissances d’une matrice diagonale

Si D est une matrice diagonale, il est très facile de calculer ses puissances Dp (par récurrencesur p) :

D =

α1 0 . . . . . . 00 α2 0 . . . 0...

. . . . . . . . ....

0 . . . 0 αn−1 00 . . . . . . 0 αn

=⇒ Dp =

αp1 0 . . . . . . 0

0 αp2 0 . . . 0

.... . . . . . . . .

...0 . . . 0 α

pn−1 0

0 . . . . . . 0 αpn

Théorème 4

Une matrice A de taille n× n, triangulaire, est inversible si et seulement si ses élémentsdiagonaux sont tous non nuls.

Démonstration

Supposons que A soit triangulaire supérieure.– Si les éléments de la diagonale sont tous non nuls, alors la matrice A est déjà sous la forme

échelonnée. En multipliant chaque ligne i par l’inverse de l’élément diagonal aii, on obtientdes 1 sur la diagonale. De ce fait, la forme échelonnée réduite de A sera la matrice identité. Lethéorème 3 permet de conclure que A est inversible.

– Inversement, supposons qu’au moins l’un des éléments diagonaux soit nul et notons a`` lepremier élément nul de la diagonale. En multipliant les lignes 1 à `−1 par l’inverse de leur

29

Page 31: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

élément diagonal, on obtient une matrice de la forme

1 ∗ ·· · · · · ∗0

. . . ∗ ·· · · · · ∗0 0 1 ∗ ·· · ∗0 · · · 0 0 ∗ ·· · ∗0 · · · 0 0 ∗ ·· · ∗...

...... · · · 0

. . ....

0 · · · · · · 0 ∗

.

Il est alors clair que la colonne numéro ` de la forme échelonnée réduite ne contiendra pas de 1comme pivot. La forme échelonnée réduite de A ne peut donc pas être In et par le théorème 3, An’est pas inversible.

Dans le cas d’une matrice triangulaire inférieure, on utilise la transposition (qui fait l’objet de la sectionsuivante) et on obtient une matrice triangulaire supérieure. On applique alors la démonstration ci-dessus.

6.2. La transposition

Soit A la matrice de taille n× p

A =

a11 a12 . . . a1p

a21 a22 . . . a2p...

......

an1 an2 . . . anp

.

Définition 10

On appelle matrice transposée de A la matrice AT de taille p×n définie par :

AT =

a11 a21 . . . an1

a12 a22 . . . an2...

......

a1p a2p . . . anp

.

Autrement dit : le coefficient à la place (i, j) de AT est a ji. Ou encore la i-ème ligne de A devientla i-ème colonne de AT (et réciproquement la j-ème colonne de AT est la j-ème ligne de A).

Notation : La transposée de la matrice A se note aussi souvent tA.

Exemple 19

1 2 34 5 −6−7 8 9

T

=

1 4 −72 5 83 −6 9

0 3

1 −5−1 2

T

=(0 1 −13 −5 2

)(1 −2 5)T =

1−25

L’opération de transposition obéit aux règles suivantes :

30

Page 32: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Théorème 5

1. (A+B)T = AT +BT

2. (αA)T =αAT

3. (AT )T = A

4. (AB)T = BT AT

5. Si A est inversible, alors AT l’est aussi et on a (AT )−1 = (A−1)T .

Notez bien l’inversion : (AB)T = BT AT , comme pour (AB)−1 = B−1 A−1.

6.3. La trace

Dans le cas d’une matrice carrée de taille n× n, les éléments a11, a22, . . . ,ann sont appelés leséléments diagonaux.Sa diagonale principale est la diagonale (a11,a22, . . . ,ann).

a11 a12 . . . a1n

a21 a22 . . . a2n...

.... . .

...an1 an2 . . . ann

Définition 11

La trace de la matrice A est le nombre obtenu en additionnant les éléments diagonaux de A.Autrement dit,

tr A = a11 +a22 +·· ·+ann.

Exemple 20

– Si A = (2 10 5

), alors tr A = 2+5= 7.

– Pour B =( 1 1 2

5 2 811 0 −10

), trB = 1+2−10=−7.

Théorème 6

Soient A et B deux matrices n×n. Alors :

1. tr(A+B) = tr A + trB,

2. tr(αA) = α tr A pour tout α ∈K,

3. tr(AT ) = tr A,

4. tr(AB) = tr(BA).

31

Page 33: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Démonstration

1. Pour tout 1 É i É n, le coefficient (i, i) de A+B est aii + bii. Ainsi, on a bien tr(A+B) = tr(A) +tr(B).

2. On a tr(αA)=αa11 +·· ·+αann =α(a11 +·· ·+ann)=αtr A.

3. Étant donné que la transposition ne change pas les éléments diagonaux, la trace de A est égaleà la trace de AT .

4. Notons ci j les coefficients de AB. Alors par définition

cii = ai1b1i +ai2b2i +·· ·+ainbni.

Ainsi,tr(AB) = a11b11 +a12b21 +·· · +a1nbn1

+a21b12 +a22b22 +·· · +a2nbn2...

+an1b1n +an2b2n +·· · +annbnn.

On peut réarranger les termes pour obtenir

tr(AB) = a11b11 +a21b12 +·· · +an1b1n

+a12b21 +a22b22 +·· · +an2b2n...

+a1nbn1 +a2nbn2 +·· · +annbnn.

En utilisant la commutativité de la multiplication dans K, la première ligne devient

b11a11 +b12a21 +·· ·+b1nan1

qui vaut le coefficient (1,1) de BA. On note di j les coefficients de BA. En faisant de même avecles autres lignes, on voit finalement que

tr(AB)= d11 +·· ·+dnn = tr(BA).

6.4. Matrices symétriques

Définition 12

Une matrice A de taille n×n est symétrique si elle est égale à sa transposée, c’est-à-dire si

A = AT ,

ou encore si ai j = a ji pour tout i, j = 1, . . . ,n. Les coefficients sont donc symétriques par rapportà la diagonale.

Exemple 21

Les matrices suivantes sont symétriques :

(0 22 4

) −1 0 50 2 −15 −1 0

32

Page 34: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Exemple 22

Pour une matrice B quelconque, les matrices B ·BT et BT ·B sont symétriques.Preuve : (BBT )T = (BT )TBT = BBT . Idem pour BTB.

6.5. Matrices antisymétriques

Définition 13

Une matrice A de taille n×n est antisymétrique si

AT =−A,

c’est-à-dire si ai j =−a ji pour tout i, j = 1, . . . ,n.

Exemple 23

(0 −11 0

) 0 4 2−4 0 −5−2 5 0

Remarquons que les éléments diagonaux d’une matrice antisymétrique sont toujours tous nuls.

Exemple 24

Toute matrice est la somme d’une matrice symétrique et d’une matrice antisymétrique.

Preuve : Soit A une matrice. Définissons B = 12 (A + AT ) et C = 1

2 (A − AT ). Alors d’une partA = B+C ; d’autre part B est symétrique, car BT = 1

2 (AT + (AT )T )= 12 (AT + A)= B ; et enfin C

est antisymétrique, car CT = 12 (AT − (AT )T )=−C.

Exemple :

Pour A =(2 108 −3

)alors A =

(2 99 −3

)︸ ︷︷ ︸symétrique

+(

0 1−1 0

)︸ ︷︷ ︸

antisymétrique

.

Mini-exercices

1. Montrer que la somme de deux matrices triangulaires supérieures reste triangulairesupérieure. Montrer que c’est aussi valable pour le produit.

2. Montrer que si A est triangulaire supérieure, alors AT est triangulaire inférieure. Et siA est diagonale ?

3. Soit A = x1

x2...

xn

. Calculer AT · A, puis A · AT .

4. Soit A = (a bc d

). Calculer tr(A · AT ).

5. Soit A une matrice de taille 2×2 inversible. Montrer que si A est symétrique, alors A−1

aussi. Et si A est antisymétrique ?

6. Montrer que la décomposition d’une matrice sous la forme « symétrique + antisymé-

33

Mr D jeddi K amel

Page 35: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

trique » est unique.

4.6 Changement de Bases

Dé�nition 4.6.1. : On appelle matrice de passage de la base {ei} à la base

{e′i} du même espace vectoriel E, la matrice Pei→e′i dont les colonnes sont

les composantes des vecteurs e′i dans la base {ei} :

Pei→e′i =

p11 . . . p1n... . . .

...

pn1 . . . pnn

= M(idE)e′i,ei.

Remarque 4.6.1. : Une matrice de passage est toujours inversible et on a

(Pei→e′i)−1 = Pe′i→ei

.

Proposition 4.6.1. : Soient x ∈ E, {ei} et {e′i} deux bases de E, P = Pei→e′iet X = M(x)ei

, X ′ = M(x)e′i, on a X ′ = P−1X.

Preuve : PX ′ = M(idE)e′i,eiM(x)e′i = M(idE(x))ei

= M(x)ei= X.

Exemple 4.6.1. :

Soit R2 muni de deux bases, la base canonique {e1, e2} et la base {e′1, e′2}dé�nie par :

e′1 = 2e1 + e2, e′2 = 3e1 + 2e2

Soit x = 2e1 + 3e2, calculons les composantes de x dans la base {e′1, e′2}.

P =

(2 3

1 2

), P−1 =

(2 −3

−1 2

), X ′ =

(2 −3

−1 2

)(2

3

)=(

−5

4

)x = −5e′1 + 4e′2.

34

Mr D jeddi K amel

Page 36: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Proposition 4.6.2. : Soient f ∈ L(E,E′), {e1, ..., en}, {ε1, ..., εn} deux

bases de E et{e′1, ..., e

′p

},{ε′1, ..., ε

′p

}deux bases de E'.

Notons A = M(f)ei,e′j, A′ = M(f)εi,ε′j , P = Pei→εi

, Q = Pe′j→ε′j .

On a alors A′ = Q−1AP .

Preuve :

E(ei)f−→ E′(e′j)

idE ↓ ↓ idE′

E(εi)f−→ E′(ε′j)

On a foidE = idE'of d'où M(foidE) = M(idE'of), c'est à dire

M(f)εi,ε′jM(idE)ei,εi

= M(idE')e′j ,ε′jM(f)ei,e′j,

c'est à dire A′P−1 = Q−1A donc A′ = Q−1AP .

Corollaire 4.6.1. : Soient f ∈ L(E) et {e1, ..., en}, {e′1, ..., e′n} deux bases

de E.

Notons A = M(f)ei, A′ = M(f)e′i et P = Pei→e′i.

On a alors A′ = P−1AP .

Dé�nition 4.6.2. : Deux matrices A, A′ ∈ Mn(K) sont dites semblables

s'il existe une matrice P ∈Mn(K) inversible telle que :

A′ = P−1AP .

Exemple 4.6.2. :

Soit f un endomorphisme de R2 qui dans la base canonique {ei} est re-

présenté par la matrice : A = M(f)ei=

(3 −1

0 2

).

35

Mr D jeddi K amel

Mr D jeddi K amel

Mr D jeddi K amel

Page 37: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Déterminons la matrice A′ qui représente f dans la base e′1 = (0,−1) et

e′2 = (1, 1).

On a

A′ = P−1AP

=

(1 −1

1 0

)(3 −1

0 2

)(0 1

−1 1

)

=

(3 −3

3 −1

)(0 1

−1 1

)

=

(3 0

1 2

).

4.7 Rang d'une Matrice

Dé�nition 4.7.1. : Soit {v1, ..., vn} une famille de vecteurs, on appelle rang

de la famille, la dimension de l'espace engendré par les vecteurs vi.

Soit A′ ∈Mp,n(K), A = (c1, ..., cn) où l'on a noté ci les vecteurs colonnes

de A (ci ∈ Kp). On appelle rang de A le rang de la famille des vecteurs

colonnes de A.

Proposition 4.7.1. : Soit f ∈ L(E,E'). Soient {e1, ..., en} et{e′1, ..., e

′p

}deux bases quelconques de E et E' respectivement et A = M(f)ei,e′j

= (aij).

On a alors rangf = rangA.

Ainsi deux matrices qui représentent la même application linéaire dans des

bases di�érentes ont même rang ; en particulier deux matrices semblables ont

même rang.

36

Mr D jeddi K amel

Mr D jeddi K amel

Page 38: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

érie 1 :

------------------------------------------------------------------------------------ S

1ière année Maths et Inf2014/2015

Exercice 1R) :

– E1 ={

f : [0,1]→ R}

[0,1], muni del’addition f +g des fonctions et de la multiplication par un nombre réel λ · f .

– E2 ={(un) : N→ R

}: l’ensemble des suites réelles muni de l’addition des suites définie par (un)+ (vn) =

(un + vn) et de la multiplication par un nombre réel λ · (un) = (λ ×un).– E3 =

{P ∈ R[x] | degP ≤ n

}: l’ensemble des polynômes à coefficients réels de degré inférieur ou égal à n

muni de l’addition P+Q des polynômes et de la multiplication par un nombre réel λ ·P.

Exercice 2Déterminer lesquels des ensembles E1, E2, E3 et E4 sont des sous-espaces vectoriels de R3.E1 = {(x,y,z) ∈ R3 | 3x−7y = z}E2 = {(x,y,z) ∈ R3 | x2− z2 = 0}E3 = {(x,y,z) ∈ R3 | x+ y− z = x+ y+ z = 0}E4 = {(x,y,z) ∈ R3 | z(x2 + y2) = 0}

Soient { }

et { } deux sous-ensembles de .

On admettra que est un sous-espace vectoriel de .

Soient , et

1. Montrer que est un sous-espace vectoriel de .

2. Déterminer une famille génératrice de et montrer que cette famille est une base.

3. Montrer que { } est une base de .

4. Montrer que { } est une famille libre de .

5. A-t-on .

6. Soit , exprimer dans la base { }.

Montrer que les ensembles ci-dessous sont des espaces vectoriels (sur: l’ensemble des fonctions à valeurs réelles définies sur l’intervalle

Espace vectoriel

Exercice 3

Exercice 4

Dans E = R3, soient u1 = (1, 1, 3), u2 = (1,−1,−1), v1 = (1, 0, 1) et v2 = (2,−1, 0)que vect(u1, u2) = vect(v1, v2).

.Montrer

Matière: Algèbre linéaireResponsable: Mr

Université d Oum’ Elbouaghi Algérie.D jeddi K amel.E-mail:[email protected]

37

Page 39: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Correction de l’exercice 1

Corrections

E-mail:[email protected]

Pour qu’un ensemble E, muni d’une addition x+ y ∈ E (pour tout x,y ∈ E) et d’une multiplication par unscalaire λ ·x∈ E (pour tout λ ∈K, x∈ E), soit un K-espace vectoriel il faut qu’il vérifie les huit points suivants.

1. x+(y+ z) = (x+ y)+ z (pour tout x,y,z ∈ E)

2. il existe un vecteur nul 0 ∈ E tel que x+0 = x (pour tout x ∈ E)

3. il existe un opposé −x tel que x+(−x) = 0 (pour tout x ∈ E)

4. x+ y = y+ x (pour tout x,y ∈ E)Ces quatre premières propriétés font de (E,+) un groupe abélien.

5. 1 · x = x (pour tout x ∈ E)

6. λ · (x+ y) = λ · x+λ · y (pour tout λ ∈ K =, pour tout x,y ∈ E)

7. (λ +µ) · x = λ · x+µ · x (pour tout λ ,µ ∈ K, pour tout x ∈ E)

8. (λ ×µ) · x = λ · (µ · x) (pour tout λ ,µ ∈ K, pour tout x ∈ E)

Il faut donc vérifier ces huit points pour chacun des ensembles (ici K = R).Commençons par E1.

1. f +(g+h) = ( f +g)+h ; en effet on bien pour tout t ∈ [0,1] : f (t)+(g(t)+h(t)

)=(

f (t)+g(t))+h(t)

d’où l’égalité des fonctions f +(g+h) et ( f +g)+h. Ceci est vrai pour tout f ,g,h ∈ E1.

2. le vecteur nul est ici la fonction constante égale à 0, que l’on note encore 0, on a bien f +0 = f (c’est-à-dire pour tout x ∈ [0,1], ( f +0)(t) = f (t), ceci pour toute fonction f ).

3. il existe un opposé − f définie par − f (t) =−(

f (t))

tel que f +(− f ) = 0

4. f +g = g+ f (car f (t)+g(t) = g(t)+ f (t) pour tout t ∈ [0,1]).

5. 1 · f = f ; en effet pour tout t ∈ [0,1], (1 · f )(t) = 1× f (t) = f (t). Et une fois que l’on compris que λ · fvérifie par définition (λ · f )(t) = λ × f (t) les autres points se vérifient sans peine.

6. λ · ( f +g) = λ · f +λ ·g7. (λ +µ) · f = λ · f +µ · f

8. (λ ×µ) · f = λ · (µ · f ) ; en effet pour tout t ∈ [0,1], (λ ×µ) f (t) = λ (µ f (t))

Voici les huit points à vérifier pour E2 en notant u la suite (un)n∈N

1. u+(v+w) = (u+ v)+w

2. le vecteur nul est la suite dont tous les termes sont nuls.

3. La suite −u est définie par (−un)n∈N

4. u+ v = v+u

5. 1 ·u = u

38

Page 40: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

4. u+ v = v+u

5. 1 ·u = u

6. λ · (u+ v) = λ ·u+λ · v : montrons celui-ci en détails par définition u+ v est la suite (un + vn)n∈N et pardéfinition de la multiplication par un scalaire λ · (u+ v) est la suite

(λ × (un + vn)

)n∈N qui est bien la

suite(λun +λvn)

)n∈N qui est exactement la suite λ ·u+λ · v.

7. (λ +µ) ·u = λ ·u+µ · v8. (λ ×µ) ·u = λ · (µ ·u)

Voici ce qu’il faut vérifier pour E3, après avoir remarqué que la somme de deux polynômes de degré ≤ n estencore un polynôme de degré ≤ n (même chose pour λ ·P), on vérifie :

1. P+(Q+R) = (P+Q)+R

2. il existe un vecteur nul 0 ∈ E3 : c’est le polynôme nul

3. il existe un opposé −P tel que P+(−P) = 0

4. P+Q = Q+P

5. 1 ·P = P

6. λ · (P+Q) = λ ·P+λ ·Q7. (λ +µ) ·P = λ ·P+µ ·P8. (λ ×µ) ·P = λ · (µ ·P)

Correction de l’exercice 2

1. (a) (0,0,0) ∈ E1.

(b) Soient (x,y,z) et (x′,y′,z′) deux éléments de E1. On a donc 3x− 7y = z et 3x′− 7y′ = z′. Donc3(x+ x′)−7(y+ y′) = (z+ z′), d’où (x+ x′,y+ y′,z+ z′) appartient à E1.

(c) Soit λ ∈R et (x,y,z)∈ E1. Alors la relation 3x−7y = z implique que 3(λx)−7(λy) = λ z donc queλ (x,y,z) = (λx,λy,λ z) appartient à E1.

2. E2 = {(x,y,z) ∈ R3 | x2− z2 = 0} c’est-à-dire E2 = {(x,y,z) ∈ R3 | x = z ou x = −z}. Donc (1,0,−1)et (1,0,1) appartiennent à E2 mais (1,0,−1) + (1,0,1) = (2,0,0) n’appartient pas à E2 qui n’est enconséquence pas un sous-espace vectoriel de R3.

3. E3 est un sous-espace vectoriel de R3. En effet :(a) (0,0,0) ∈ E3.

(b) Soient (x,y,z) et (x′,y′,z′) deux éléments de E3. On a donc x+y− z = x+y+ z = 0 et x′+y′− z′ =x′+ y′+ z′ = 0. Donc (x+ x′)+ (y+ y′)− (z+ z′) = (x+ x′)+ (y+ y′)+ (z+ z′) = 0 et (x,y,z)+x′,y′,z′ x+ x′,y+ y′,z+ z′ appartient à E3.

(c) Soit λ ∈ R et (x,y,z) ∈ E3. Alors la relation x+ y− z = x+ y+ z = 0 implique que λx+λy−λ z =λx+λy+λ z = 0 donc que λ (x,y,z) = (λx,λy,λ z) appartient à E3.

4. Les vecteurs (1,0,0) et (0,0,1) appartiennent à E4 mais leur somme (1,0,0)+(0,0,1) = (1,0,1) ne luiappartient pas donc E4 n’est pas un sous-espace vectoriel de R3.

39

Page 41: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Correction de l’exercice 3

1.

{

{

{

{

Donc ce qui montre que est un sous-espace vectoriel de

{

Soient et

{

et {

{

Ce qui montre que

Et finalement est un sous-espace vectoriel de .

, on a

{

Autre méthode

2.

{ } est une famille génératrice de , ce vecteur est non nul, c’est une base de , bref est la droite

engendrée par le vecteur .

3.

et ne sont pas proportionnels, ils forment une famille libre de donc .

donc par conséquent .

On déduit de cela que et que par suite la famille { } est libre (dans ) à deux éléments,

c’est une base de .

40

Mr D jeddi K amel

Page 42: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

4.

et { } est libre donc { } est libre (c’est une base de ,

puisque cette famille a trois éléments)

5. { } est une base de , { } est une base de et { } est une base de par conséquent

6. On cherche tels que

{

{

{

{

Correction de l’exercice 4

Dans E = R , soient u1 = (1, 1, 3), u2 = (1,−1,−1), v1 = (1, 0, 1) et v2 = (2,−1, 0). Montrerque vect(u1, u2) = vect(v1, v2).

Première méthode. Pour montrer que vect(u1, u2) ⊂ vect(v1, v2), il suffit de montrer queu1 et u2 sont tous deux combinaison linéaire de v1 et v2. L’équation u1 = xv1 + yv2 estéquivalente à

1 = x+ 2y1 = −y3 = x

dont la solution est donnée par x = 3 et y = −1. L’équation u2 = xv1 +yv2 est équivalenteà

1 = x+ 2y−1 = −y−1 = x

dont la solution est donnée par x = −1 et y = 1. Donc, vect(u1, u2) ⊂ vect(v1, v2).Réciproquement, pour prouver que vect(v1, v2) ⊂ vect(u1, u2), il suffit de prouver que v1et v2 sont combinaison linéaire de u1 et u2. L’équation v1 = xu1 + yu2 est équivalente à

1 = x+ y0 = x− y1 = 3x− y.

On résoud ce système en faisant L1 +L2 qui donne x = 1/2, on obtient ensuite y = 1/2 eton vérifie que cela fonctionne dans la dernière équation. De même, on peut prouver quev2 est combinaison linéaire de u1 et u2.Troisième méthode. On peut rechercher une équation de F = vect(u1, u2) et deG = vect(v1, v2).

On a :

(x, y, z) ∈ F ⇐⇒ ∃(a, b) ∈ R2,

x = a+ by = a− bz = 3a− b

41

Page 43: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

⇐⇒ ∃(a, b) ∈ R2,

a+ b = x

2b = x− y (L1 − L2 → L2)4b = 3x− z (3L1 − L3 → L3)

⇐⇒ ∃(a, b) ∈ R2,

a+ b = x

2b = x− y (L1 − L2 → L2)0 = x+ 2y − z (L3 − 2L2 → L3)

Ce dernier système admet une solution si et seulement si x + 2y − z = 0. On a doncF = {(x, y, z) ∈ R3; x+ 2y − z = 0}. De même,

(x, y, z) ∈ G ⇐⇒ ∃(a, b) ∈ R2,

x = a+ 2by = −bz = a

⇐⇒ ∃(a, b) ∈ R2,

x+ 2y − z = 0

y = −bz = a

Ce dernier système admet donc une solution si et seulement si x+ 2y− z = 0. On a doncG = {(x, y, z) ∈ R3; x+ 2y − z = 0}. Il est alors clair que F = G.

42

Mr D jeddi K amel

Page 44: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

On considère l’application f définie de 3IR vers 3IR par : ),,()),,(( zzxzyzyxf +−=

1) Montrer que l’application f est linéaire.

2) Calculer ff o et en déduire que f est un automorphisme.

3) Déterminer )( fKer et )Im( f .

Exercice 2

1) On considère l’application linéaire f définie de 3IR vers 4IR par :

),,,()),,((:),,( 3 zyxxzzyyxzyxfIRzyx +++++=∈∀

a) Calculer l’image de la base canonique de 3IR par f .

b) En déduire une base de )Im( f et le rang de f ( ))( frg .

c) Déterminer le noyau de f ( ))( fKer et en déduire le rang de f ( ))( frg .

2) Mêmes questions pour l’application linéaire g définie de 3IR vers 4IR par :

),,,()),,((:),,( 3 zyxzyxzyxzyxzyxgIRzyx −+−+−−+−−+=∈∀

1) Déterminer une base de )Im( f et une base de )( fKer pour chacune des applications

linéaires.

a) f définie de 3IR vers

2IR par : ),(),,( zyxzyxzyxf −−+−=

b) f définie de 3IR vers

2IR par : ),(),,( xzyzyxzyxf −+−−=

c) f définie de 2IR vers

3IR par : ),,(),( yxxyyxyxf −+−=

d) f définie de 3IR vers

3IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++=

e) f définie de 3IR vers

3IR par : ),,(),,( zyxzyxzyxzyxf −++−++=

2) Déterminer 1−f si elle existe.

Dans 3IR , on considère le sous espace vectoriel V défini par { }0/),,( 3 =−∈= zxIRzyxV .

1) Donner une base B du sous espace vectoriel V .

2) On considère l’application linéaire g définie de V vers 2IR par :

),()),,(( yxyxzyxg −+=

a) Calculer l’image de la base B par f et en déduire une base de )Im(g .

b) Montrer que g est un isomorphisme de V vers 2IR et déterminer 1−g .

Série 2: Applications linéairesExercice 1

Exercice 3

Exercice 4

E-mail:[email protected]

2015

43

Page 45: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Correction de l’exercice 1

1) Montrons que l’application f est linéaire.

♦ Soit ( )23),( IRyx ∈ : ),,( 321 xxxx = et ),,( 321 yyyy =

� On vérifie que 2),( IR∈∀ βα , on a : ( ) ( )yfxfyxf ..)..( βαβα +=+

♦ L’application f est alors linéaire.

2)

♦ Calcul de l’application ff o .

� ( )( ) ( )( ) ( )zzxzyfzyxffzyxffzzxzyzyxf ,,,,,,),,()),,(( +−==⇒+−= o

� ( )( ) ( ) ( ) ),,(,)(,)(,,,, zyxzzzyzzxzzxzyzyxff =+−−+=+−=⇒ o

� ⇒ 3IRIdff =o

♦ f est un automorphisme :

� L’application f est linéaire.

� L’application f est bijective et ff =−1 : 3IR

Idff =o

3) Déterminons )( fKer et )Im( f .

♦ Déterminons )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer

� )(),,( fKerzyx ∈ ssi )0,0,0(),,( =+− zzxzy

� ssi

==+=−

0

0

0

z

zx

zy

ssi

==−=

==

0

0

0

z

zx

zy

� { })0,0,0()( =fKer

♦ Déterminons )Im( f : >=< )(),(),(Im 321 efefeff , { }321 ,, eee une base de 3IR

� { }321 ,, eee la base canonique de 3IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e

−======

)1,1,1()(

)0,0,1()(

)0,1,0()(

33

22

11

efu

efu

efu

: >=< 321 ,,Im uuuf

� On pose { }321 ,, uuuS = : >=< 321 ,,Im uuuf

Corrections

E-mail:[email protected]

44

Page 46: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Correction de l’exercice 2

1) ),,,()),,(( zyxxzzyyxzyxf +++++=

a) Calculons l’image de la base canonique { }321 ,, eee de 3IR par f .

===

===

)1,1,1,0()(

)1,0,1,1()(

)1,1,0,1()(

)1,0,0(

)0,1,0(

)0,0,1(

3

2

1

3

2

1

ef

ef

ef

e

e

e

b) Déduisons en une base de )Im( f et ( ))( frg

♦ Déterminons une base de )Im( f

� >>=<=< 321321 ,,)(),(),(Im uuuefefeff avec :

===

)1,1,1,0(

)1,0,1,1(

)1,1,0,1(

3

2

1

u

u

u

� Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg

� Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?

0

00

0

0

0

)0,0,0,0(... 321

321

213

23

21

321

31

32

21

332211 ===⇒

=++=−=

−=−=

=++=+=+=+

⇒=++ ααα

αααααα

αααα

ααααααααα

ααα uuu

� Le système { }321 ,, uuuS = est alors libre 3)( =⇒ Srg

♦ { }321 ,, uuu est alors une base de fIm : 3Im IRf =

♦ ⇒== 3)dim(Im)( ffrg 3)( =frg

c) Déterminons une base de )( fKer et ( ))( frg

♦ Déterminons une base de )( fKer : { })0,0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer

� Déterminons le rang du système 321 ,, uuuS = : 3)(1 ≤≤ Srg

o Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?

o )0,0,0(.. 332211 =++ uuu ααα

o )0,0,0()1,1,1.()0,0,1.()1,0,1.( 321 =−++⇒ ααα

45

Page 47: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

� )(),,( fKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx

� ssi

=++=+=+=+

0

0

0

0

zyx

zx

zy

yx

ssi

−−=−=

=−=−=

zxy

xz

xyz

yx

ssi 0=== zyx

♦ Donc : { })0,0,0()( =fKer , ( ) 0)(dim =fKer

♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3 fKerfrgIRfKerfrg 3)( =frg

2) ),,,()),,(( zyxzyxzyxzyxzyxg −+−+−−+−−+=

a) Calculons l’image de la base canonique { }321 ,, eee de 3IR par g .

−−=−−=−−=

===

)1,1,1,1()(

)1,1,1,1()(

)1,1,1,1()(

)1,0,0(

)0,1,0(

)0,0,1(

3

2

1

3

2

1

eg

eg

eg

e

e

e

b) Déduisons en une base de )Im(g et ( ))(grg

♦ Déterminons une base de )Im(g

� >>=<=< 321321 ,,)(),(),(Im uuuegegegf avec :

−−=−−=−−=

)1,1,1,1(

)1,1,1,1(

)1,1,1,1(

3

2

1

u

u

u

� Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg

� Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?

� { }321 ,, uuuS = est lié car 23 uu −= 3)( <⇒ Srg

• Cherchons si 2)( =Srg :

� Le système { }21,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg

♦ { }21,uu et { }31,uu sont deux base de gIm : >>=<=< 3121 ,,Im uuuug

♦ ⇒== 2)dim(Im)( ggrg 2)( =grg

46

Page 48: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

c) Déterminons une base de )(gKer et ( ))(grg

♦ Déterminons une base de )(gKer :

{ })0,0,0,0(),,(/),,()( 3 =∈= zyxgIRzyxgKer

� )(),,( gKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx

� ssi

=−+−=+−−

=+−=−+

0

0

0

0

)4(

)3(

)2(

)1(

zyx

zyx

zyx

zyx

ssi

+−=−+

zyx

zyx 0

)2(

)1( ssi

==

−+

zy

x 0

)2()1(

)2()1(

� ssi )1,1,0.(),,0(),,( yyyzyx == , ( )IRy ∈

♦ Donc : >=< )1,1,0()(gKer , ( ) 1)(dim =gKer

♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3 gKergrgIRgKergrg 2)( =grg

Correction de l’exercice 3

1) Déterminons )( fKer et )Im( f .

a. ),(),,( zyxzyxzyxf −−+−=

� Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer

o )(),,( fKerzyx ∈ ssi )0,0(),( =−−+− zyxzyx

o ssi

=−−=+−

0

0

zyx

zyx ssi

−==−

yxz

yx 0 ssi

==

0z

yx

o >=< )0,1,1()( fKer , { })0,1,1( est une base de )( fKer

� Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff

o { }321 ,, eee la base canonique de 3IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e

o On pose { }321 ,, uuuS = avec

−==−−==

==

)1,1()(

)1,1()(

)1,1()(

33

22

11

efu

efu

efu

: >=< 321 ,,Im uuuf

47

Page 49: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg

• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?

� { }321 ,, uuuS = est lié car 12 uu −= 3)( <⇒ Srg

• Cherchons si 2)( =Srg :

� Le système { }32,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg

o { }32,uu et { }31,uu sont deux base de fIm

o >>=<=< 3132 ,,Im uuuuf , 2Im IRf =

b. ),(),,( xzyzyxzyxf −+−−=

� Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer

o )(),,( fKerzyx ∈ ssi )0,0(),( =++−−− zyxzyx

o ssi

=++−=−−

0

0

zyx

zyx ssi 0=−− zyx ssi zyx += , ( )IRzy ∈,

o ssi )1,0,1.()0,1,1.(),,(),,( zyzyzyzyx +=+= , ( )IRzy ∈,

o Donc : >=< )1,0,1(),0,1,1()( fKer , { })1,0,1(),0,1,1( est une base de )( fKer

� Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff

o { }321 ,, eee la base canonique de 3IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e

o On pose { }321 ,, uuuS = avec

−==−==−==

)1,1()(

)1,1()(

)1,1()(

33

22

11

efu

efu

efu

: >=< 321 ,,Im uuuf

o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg

• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?

� { }321 ,, uuuS = est lié car 123 uuu −== 3)( <⇒ Srg

• Cherchons si 2)( =Srg :

� Le système { }21,uu est lié car 12 uu −=

� Le système { }31,uu est lié car 13 uu −=

� Le système { }32,uu est lié car 23 uu =

• 2)( <⇒ Srg

48

Mr D jeddi K amel

Page 50: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

o Le système { }1u est libre 1)( =⇒ Srg

o { }1u est alors une base de fIm : >=>=<=< 321Im uuuf

c. ),,(),( yxxyyxyxf −+−=

� Déterminons une base de )( fKer : { })0,0,0(),(/),()( 2 =∈= yxfIRyxfKer

o )(),( fKeryx ∈ ssi )0,0,0(),,( =−+− yxxyyx

o ssi

=+=−

0

0

yx

yx ssi

−==

yx

yx ssi 0== yx

o Donc : { })0,0()( =fKer

� Déterminons une base de )Im( f : >=< )(),(Im 21 efeff

o { }21,ee la base canonique de 2IR : )0,1(1 =e , )1,0(2 =e

o On pose { }21,uuS = , avec

−−====

)1,1,1()(

)1,1,1()(

22

11

efu

efu : >=< 21,Im uuf

o Déterminons le rang du système { }21,uuS = : 2)(1 ≤≤ Srg

• Cherchons si 2)( =Srg : { }21,uuS = est-il libre ? { }21,uuS = est libre (calcul)

o 2)( <⇒ Srg

o { }21,uuS = est alors une base de fIm : >=< 21,Im uuf

d. ),22,2(),,( zyxzyxzyxzyxf −+−++++=

� Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer

o )(),,( fKerzyx ∈ ssi )0,0,0(),22,2( =−+−++++ zyxzyxzyx

o ssi

=−+−=++

=++

0

022

02

)3(

)2(

)1(

zyx

zyx

zyx

ssi

=+−=+

=+

yzx

yzx

y

)(2

0

)3(

)2(

)3()1(

ssi

∈−=

=

IRx

xz

y 0

o ssi )1,0,1.(),0,(),,( −=−= xxxzyx , ( )IRx∈

o Donc : >−=< )1,0,1()( fKer

� Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff

o { }321 ,, eee la base canonique de 3IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e

49

Page 51: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

o On pose { }321 ,, uuuS = avec

−====

−==

)1,2,1()(

)1,1,2()(

)1,2,1()(

33

22

11

efu

efu

efu

: >=< 321 ,,Im uuuf

o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg

• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?

� { }321 ,, uuuS = est lié car 13 uu = 3)( <⇒ Srg

• Cherchons si 2)( =Srg :

� Le système { }21,uu (ou bien { }32,uu ) est libre (calcul) 2)( =⇒ Srg

o { }21,uu et { }32,uu sont deux base de fIm : >>=<=< 3221 ,,Im uuuuf

e. ),,(),,( zyxzyxzyxzyxf −++−++=

� Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer

o )(),,( fKerzyx ∈ ssi )0,0,0(),,( =−++−++ zyxzyxzyx

o ssi

=−+=+−=++

0

0

0

)3(

)2(

)1(

zyx

zyx

zyx

ssi

===

+−−

0

0

0

)3()2(

)2()1(

)3()1(

x

y

z

o Donc : { })0,0,0()( =fKer

� Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff

o { }321 ,, eee la base canonique de 3IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e

o On pose { }321 ,, uuuS = avec

−==−==

==

)1,1,1()(

)1,1,1()(

)1,1,1()(

33

22

11

efu

efu

efu

: >=< 321 ,,Im uuuf

o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg

• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?

� On vérifie que { }321 ,, uuuS = est libre (calcul).

• 3=⇒ S

50

Mr D jeddi K amel

Page 52: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

o { }321 ,, uuu est alors une base de fIm : 3Im IRf =

� Pour déterminer une base de )Im( f , sans calcul, il suffit de remarquer que :

o f est injective car : { })0,0,0()( =fKer

o f est alors un endomorphisme injectif de 3IR , donc f est bijective.

o Donc f est surjective et alors 3Im IRf =

2) Déterminons 1−f , lorsqu’elle existe.

a. f définie de 3IR vers

2IR par : ),(),,( zyxzyxzyxf −−+−=

� 23 dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective :

o 2Im IRf = donc f est surjective.

o { })0,0,0()( ≠fKer donc f n’est pas injective.

b. f définie de 3IR vers

2IR par : ),(),,( xzyzyxzyxf −+−−=

� 23 dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective :

o 1)dim(Im =f , donc 2Im IRf ≠ donc f n’est pas surjective.

o { })0,0,0()( ≠fKer donc f n’est pas injective.

c. f définie de 2IR vers

3IR par : ),,(),( yxxyyxyxf −+−=

� 23 dimdim IRIR < , donc f ne peut pas être surjective donc f ne peut pas être

bijective :

o 2)dim(Im =f , donc 3Im IRf ≠ donc f n’est pas surjective.

o { })0,0()( =fKer donc f est injective.

o f définie de 3IR vers

3IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++=

� 33 dimdim IRIR = , donc f peut être bijective :

� f est bijective ssi f est injective ssi f est surjective

o 2)dim(Im =f donc 3Im IRf ≠ et f n’est pas surjective.

o { })0,0,0()( ≠fKer donc f n’est pas injective.

o f n’est alors pas un automorphisme de 3IR .

51

Page 53: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

d. f définie de 3IR vers

3IR par : ),,(),,( zyxzyxzyxzyxf −++−++=

� 33 dimdim IRIR = , donc f peut être bijective :

� f est bijective ssi f est injective ssi f est surjective

o 3Im IRf = donc f est surjective.

o { })0,0,0()( =fKer donc f est injective.

o f est alors un automorphisme de 3IR .

♦ Déterminons alors 1−f .

� 1−f définie de 3IR vers

3IR par : ),,(),,(1 zyxZYXf =− ssi ),,(),,( ZYXzyxf =

� ),,(),,( ZYXzyxf = ssi ),,(),,( ZYXzyxzyxzyx =−++−++

� ssi

=−+=+−=++

Zzyx

Yzyx

Xzyx

)3(

)2(

)1(

ssi

+=−=−=

+−−

ZYx

YXy

ZXz

2

2

2

)3()2(

)2()1(

)3()1(

ssi

+=

−=

−=

ZYx

YXy

ZXz

2

1

2

12

1

2

12

1

2

1

♦ La bijection réciproque 1−f de ),,(),,( zyxzyxzyxzyxf −++−++= est alors définie de

3IR vers 3IR par :

−−+=− ZXYXZYZYXf2

1

2

1,

2

1

2

1,

2

1

2

1),,(1

Correction de l’exercice 2

1) Déterminons une base de { }0/),,( 3 =−∈= zxIRzyxV :

♦ Vzyx ∈),,( ssi 0== zx ssi )1,0,1.()0,1,0.(),,(),,( xyxyxzyx +== , ( )IRyx ∈,

♦ Donc : { })1,0,1(),0,1,0(=B est une base de V , 2dim =V

2) l’application linéaire g définie de V vers 2IR par : ),()),,(( yxyxzyxg −+=

52

Page 54: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

a) Calculons l’image de la base B de V par g .

{ }

=−=

==

=)1,1()(

)1,1()(

)1,0,1(

)0,1,0(:,

2

1

2

121 ug

ug

u

uuuB

b) Montrons que g est un isomorphisme de V vers 2IR et déterminons 1−g .

♦ Montrons que g est un isomorphisme de V vers 2IR :

� g est une application linéaire de V vers 2IR et 2)dim(dim 2 == IRV

� Pour montrer que g est un isomorphisme, il suffit alors de montrer que g est injective

ou g est surjective.

� Montrons que g est injective : { })0,0,0()(?

=gKer

o Déterminons )(gKer : { })0,0(),,(/),,()( =∈= zyxgVzyxfKer

o )(),,( gKerzyx ∈ ssi

=−=+=−

0

0

0

yx

yx

zx

ssi 0=== zyx

o Donc : { })0,0,0()( =gKer

� g est alors injective donc bijective.

Ou bien :

� Montrons que g est surjective : 2

?

)Im( IRg =

o >>=<=< 2121 ,))(),(Im vvugugg avec :

=−=)1,1(

)1,1(

2

1

v

v

o Déterminons le rang du système { }21,vvS = : 2)(1 ≤≤ Srg

o Le système { }21,vvS = est libre (calcul) 2)dim(Im2)( =⇒=⇒ gSrg

o { }21,uu est alors une base de gIm : 2)Im( IRg =

� g est alors surjective donc bijective.

♦ g est alors un isomorphisme de V vers 2IR .

53

Page 55: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

♦ Déterminons 1−g : ),,(),(1 zyxYXg =−

ssi ),(),,( YXzyxg = , avec Vzyx ∈),,(

� ( )VzyxYXzyxg ∈= ),,(),,(),,( ssi

=−=+=−

Yyx

Xyx

zx 0

)3(

)2(

)1(

� ssi

−=+=

=

−+

YXy

YXx

xz

2

2

)3()2(

)3()2(

)1(

ssi

−=

+=

+=

YXy

YXx

YXz

2

1

2

12

1

2

12

1

2

1

♦ L’isomorphisme réciproque 1−g de ),()),,(( yxyxzyxg −+= est alors définie de 2IR vers

par :

+−+=− YXYXYXYXg2

1

2

1,

2

1

2

1,

2

1

2

1),(1

54

Page 56: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

érie 3 :

------------------------------------------------------------------------------------ S

1ière année Maths et Inf2014/2015

Exercice 1

Matière: Algèbre linéaireResponsable: Mr

Université d Oum’

Matrices

=01

12A

=21

10B .

BA + , BA × , AB × , 2A 2B .

).(2)( 222 BABABA ×++=+ ?

=12

01A

=21

02B .

On considère les matrices

a. Calculer

b. A-t-on

Mêmes questions pour les matrices

et

et

et

1)

2)

Soit la matrice 𝐴 de définie par : 𝐴 = (13 −8 −1212 −7 −126 −4 −5

)

1. Montrer que 𝐴 est inversible et calculer son inverse 𝐴−1.

2. En déduire 𝐴𝑛, pour tout 𝑛 entier.

Exercice 3

Soit 𝐴 la matrice de définie par : 𝐴 = (0 1 11 0 11 1 0

)

1. Calculer 𝐴2.

2. Trouver un polynôme 𝑃 de degré 2 tel que 𝑃(𝐴) = 𝑂.

3. En déduire 𝐴−1.

4. Retrouver 𝐴−1 par une autre méthode.

Exercice 4Calculer les déterminants des matrices suivantes :(

7 11−8 4

) 1 0 63 4 155 6 21

1 0 23 4 55 6 7

1 0 −12 3 54 1 3

0 1 2 31 2 3 02 3 0 13 0 1 2

0 1 1 01 0 0 11 1 0 11 1 1 0

1 2 1 21 3 1 32 1 0 61 1 1 7

Exercice 2

Elbouaghi Algérie.D jeddi K amel.E-mail:[email protected]

55

Page 57: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Exercice 5

Soit 𝛽 = (𝑒1, 𝑒2, 𝑒3) la base canonique de ℝ3.

Soit 𝑢 l’endomorphisme de ℝ3 dont la matrice dans la base canonique est :

𝐴 = (1 4 4−1 −3 −30 2 3

)

Soient 𝑎 = 𝑒1 − 𝑒2 + 𝑒3, 𝑏 = 2𝑒1 − 𝑒2 + 𝑒3 et 𝑐 = 2𝑒1 − 2𝑒2 + 𝑒3 trois vecteurs de ℝ3

1. Montrer que 𝛽′ = (𝑎, 𝑏, 𝑐) est une base de ℝ3.

2. Déterminer la matrice de passage 𝑃 de 𝛽 à 𝛽′. Calculer 𝑃−1.

3. Déterminer la matrice 𝑅 de 𝑢 dans la base 𝛽′.

4.

a) Calculer 𝑃−1𝐴𝑃 en fonction de 𝑅

b) Calculer 𝑅4

c) En déduire les valeurs de 𝐴4𝑛.

Exercice 6

−−

−=

211

121

112

A 33IAB += .

2B B . 2A A .

A

On considère les matrices 1)

a. Exprimer en fonction de

b. En déduire en fonction de

c. La matrice est-elle inversible ?

et on pose

−−

−−

=

2111

1211

1121

1112

A 43IAB += . 2) Mêmes questions pour les matrices et

56

Mr D jeddi K amel

Page 58: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Correction de l’exercice 1

1)

=01

12A

=21

10B

BA + , BA × , AB × , 2A et 2B .

=+

22

22BA ,

10

41BA ,

14

01AB ,

=

12

252A ,

=

52

212B

b. 222 .2)( BBAABA +×+≠+ : ABBA ×≠×

♦ )()()( 2 BABABA +×+=+

=+⇒

88

88)( 2BA

=+×+

84

128.2 22 BBAA

2)

=12

01A et

=21

02B

a. Calcul de BA + , BA × , AB × , 2A et 2B .

=+

33

03BA ,

25

02BA ,

25

02AB ,

=

14

012A ,

=

44

042B

b. 222 .2)( BBAABA +×+=+ : ABBA ×=×

♦ )()()( 2 BABABA +×+=+

=+⇒

918

09)( 2BA

=+×+

918

09.2 22 BBAA

a. Calcul de

et

Corrections

E-mail:[email protected]

57

Page 59: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Correction de l’exercice 2

𝑌 = 𝐴𝑋 ⇔ 𝐴𝑋 = 𝑌

⇔ {13𝑥1 − 8𝑥2 − 12𝑥3 = 𝑦112𝑥1 − 7𝑥2 − 12𝑥3 = 𝑦26𝑥1 − 4𝑥2 − 5𝑥3 = 𝑦3

13𝐿2 − 12𝐿12𝐿3 − 𝐿2

{13𝑥1 − 8𝑥2 − 12𝑥3 = 𝑦15𝑥2 − 12𝑥3 = 13𝑦2 − 12𝑦1−𝑥2 + 2𝑥3 = 2𝑦3 − 𝑦2

5𝐿3 + 𝐿2{

13𝑥1 − 8𝑥2 − 12𝑥3 = 𝑦15𝑥2 − 12𝑥3 = 13𝑦2 − 12𝑦1

−2𝑥3 = 10𝑦3 − 5𝑦2 + 13𝑦2 − 12𝑦1

⇔ {

13𝑥1 = 𝑦1 + 8𝑥2 + 12𝑥35𝑥2 = 13𝑦2 − 12𝑦1 + 12𝑥3𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3

⇔ {

13𝑥1 = 𝑦1 + 8𝑥2 + 12(6𝑦1 − 4𝑦2 − 5𝑦3)

5𝑥2 = 13𝑦2 − 12𝑦1 + 12(6𝑦1 − 4𝑦2 − 5𝑦3) = 60𝑦1 − 35𝑦2 − 60𝑦3𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3

⇔ {13𝑥1 = 73𝑦1 − 48𝑦2 − 60𝑦3 + 8(12𝑦1 − 7𝑦2 − 12𝑦3)

𝑥2 = 12𝑦1 − 7𝑦2 − 12𝑦3𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3

⇔ {13𝑥1 = 169𝑦1 − 104𝑦2 − 156𝑦3

𝑥2 = 12𝑦1 − 7𝑦2 − 12𝑦3𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3

⇔ {𝑥1 = 13𝑦1 − 8𝑦2 − 12𝑦3𝑥2 = 12𝑦1 − 7𝑦2 − 12𝑦3𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3

⇔ (

𝑥1𝑥2𝑥3) = (

13 −8 −1212 −7 −126 −4 −5

)(

𝑦1𝑦2𝑦3)

Donc 𝐴−1 = (13 −8 −1212 −7 −126 −4 −5

) = 𝐴

Le mieux aurait été de changer les rôles de 𝑥1 et 𝑥3 dans le premier système.

𝐴2 = 𝐼 donc 𝐴2𝑛 = 𝐴2 𝑛 = 𝐼𝑛 = 𝐼 et 𝐴2𝑛+1 = 𝐴2𝑛𝐴 = 𝐴.

Correction de l’exercice 3

1. et 2.

𝐴2 = (0 1 11 0 11 1 0

)(0 1 11 0 11 1 0

) = (2 1 11 2 11 1 2

) = 𝐴 + 2𝐼 donc 𝑃(𝑋) = 𝑋2 − 𝑋 − 2

𝐴2 − 𝐴 = 2𝐼 ⇔ 𝐴(𝐴 − 𝐼) = 2𝐼 ⇔ 𝐴 ×𝐴−𝐼

2= 𝐼 donc 𝐴−1 =

𝐴−𝐼

2=

1

2(−1 1 11 −1 11 1 −1

)

58

Mr D jeddi K amel

Page 60: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

𝐴𝑋 = 𝑌 ⇔ (0 1 11 0 11 1 0

)(

𝑥1𝑥2𝑥3) = (

𝑦1𝑦2𝑦3) = {

𝑥2 + 𝑥3 = 𝑦1𝑥1 + 𝑥3 = 𝑦2𝑥1 + 𝑥2 = 𝑦3

𝑥1 dans la

𝑥1et 𝑥2 soit on intervertit la ligne 1 avec une ligne où il y a un 𝑥1

Ici il y a un problème pour appliquer le pivot de Gauss parce qu’il n’y a pas de

termes en première ligne, il y a deux façons d’arranger ce problème, soit

on intervertit , c’est

ce que nous allons faire.

𝐿1𝐿2𝐿3

{𝑥2 + 𝑥3 = 𝑦1𝑥1 + 𝑥3 = 𝑦2𝑥1 + 𝑥2 = 𝑦3

⇔𝐿2𝐿1𝐿3

{𝑥1 + 𝑥3 = 𝑦2 𝑥2 + 𝑥3 = 𝑦1𝑥1 + 𝑥2 = 𝑦3

⇔𝐿1𝐿2

𝐿3 − 𝐿1

{𝑥1 + 𝑥3 = 𝑦2 𝑥2 + 𝑥3 = 𝑦1 𝑥2 − 𝑥3 = −𝑦2 + 𝑦3

𝐿1𝐿2

𝐿3 − 𝐿2

{

𝑥1 + 𝑥3 = 𝑦2 𝑥2 + 𝑥3 = 𝑦1 −2𝑥3 = −𝑦1 − 𝑦2 + 𝑦3

⇔ {

𝑥1 = −𝑥3+ 𝑦2𝑥2 = −𝑥3 + 𝑦1

𝑥3 =1

2𝑦1 +

1

2𝑦2 −

1

2𝑦3

{

𝑥1 = −(

1

2𝑦1 +

1

2𝑦2 −

1

2𝑦3) + 𝑦2

𝑥2 = −(1

2𝑦1 +

1

2𝑦2 −

1

2𝑦3) + 𝑦1

𝑥3 =1

2𝑦1 +

1

2𝑦2 −

1

2𝑦3

{

𝑥1 = −

1

2𝑦1 +

1

2𝑦2 +

1

2𝑦3

𝑥2 =1

2𝑦1 −

1

2𝑦2 +

1

2𝑦3

𝑥3 =1

2𝑦1 +

1

2𝑦2 −

1

2𝑦3

⇔ (

𝑥1𝑥2𝑥3)

=

(

−1

2

1

2

1

21

2−1

2

1

21

2

1

2−1

2)

(

𝑦1𝑦2𝑦3) Donc

𝐴−1 =

(

−1

2

1

2

1

21

2−1

2

1

21

2

1

2−1

2)

Correction de l’exercice 4

1. Le déterminant de la matrice(

a bc d

)est∣∣∣∣a bc d

∣∣∣∣= ad−bc∣∣∣∣ 7 11−8 4

∣∣∣∣= 7×4−11× (−8) = 116.

2. Nous allons voir différentes méthodes pour calculer les déterminants.

Première méthode. Règle de Sarrus. Pour le matrice 3×3 il existe une formule qui permet de calculer

directement le déterminant.

.

Donc

59

Page 61: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

∣∣∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣∣∣= a11a22a33 +a12a23a31 +a21a32a13−a13a22a31−a11a32a23−a12a21a33

Donc∣∣∣∣∣∣1 0 63 4 155 6 21

∣∣∣∣∣∣= 1×4×21+0×15×5+3×6×6−5×4×6−6×15×1−3×0×21 =−18

Attention ! La règle de Sarrus ne s’applique qu’aux matrices 3×3.

3. Deuxième méthode. Se ramener à une matrice diagonale ou triangulaire.Si dans une matrice on change un ligne Li en Li−λL j

avec les colonnes.alors le déterminant reste le même.

Même chose

L1 1 0 2L2 3 4 5L3 5 6 7

=1 0 2

L2←L2−3L1 0 4 −1L3←L3−5L1 0 6 −3

=

1 0 20 4 −1

L3←L3− 32 L2

0 0 −32

= 1×4× (−32) =−6

cients sur la diagonale.On a utilisé le fait que le déterminant d’une matrice diagonale (ou triangulaire) est le produitdes coeffi

4. Troisième méthode. Développement par rapport à une ligne ou une colonne.par rapport à la deuxième colonne.∣∣∣∣∣∣

1 0 −12 3 54 1 3

∣∣∣∣∣∣= (−0)×∣∣∣∣2 54 3

∣∣∣∣+(+3)×∣∣∣∣1 −14 3

∣∣∣∣+(−1)×∣∣∣∣1 −12 5

∣∣∣∣= 0+3×7−1×7 = 14

Nous allonsdévelopper

Bien souvent on commence par simplifier la matrice en faisant apparaître un maximum de 0 par lesopérations élémentaires sur les lignes et les colonnes. Puis on développe en choisissant la ligne ou lacolonne qui a le plus de 0.

5. On fait apparaître des 0 sur la première colonne puis on développe par rapport à cette colonne.

∆ =

L1 0 1 2 3L2 1 2 3 0L3 2 3 0 1L4 3 0 1 2

=

0 1 2 31 2 3 0

L3←L3−2L2 0 −1 −6 1L4←L4−3L2 0 −6 −8 2

=−1 2 3−1 −6 1−6 −8 2

Pour calculer le déterminant 3×3 on fait apparaître des 0 sur la première colonne, puis on la développe.

−∆ =L1 1 2 3L2 −1 −6 1L3 −6 −8 2

=1 2 3

L2←L2+L1 0 −4 4L3←L3+6L1 0 4 20

= 1∣∣∣∣−4 4

4 20

∣∣∣∣=−96

60

Mr D jeddi K amel

Page 62: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

Donc ∆ = 96.

6. La matrice a déjà beaucoup de 0 mais on peut en faire apparaître davantage sur la dernière colonne, puison développe par rapport à la dernière colonne.

∆′ =

L1 0 1 1 0L2 1 0 0 1L3 1 1 0 1L4 1 1 1 0

=

0 1 1 01 0 0 1

L3←L3−L2 0 1 0 01 1 1 0

=0 1 10 1 01 1 1

On développe ce dernier déterminant par rapport à la première colonne :

∆′ =

0 1 10 1 01 1 1

= 1×∣∣∣∣1 11 0

∣∣∣∣=−1

7. Toujours la même méthode, on fait apparaître des 0 sur la première colonne, puis on développe parrapport à cette colonne.

∆′′ =

L1 1 2 1 2L2 1 3 1 3L3 2 1 0 6L4 1 1 1 7

=

1 2 1 2L2←L2−L1 0 1 0 1L3←L3−2L1 0 −3 −2 2L4←L4−L1 0 −1 0 5

=1 0 1−3 −2 2−1 0 5

On développe par rapport à la deuxième colonne :

∆′′ =−2×

∣∣∣∣ 1 1−1 5

∣∣∣∣=−12

Correction de l’exercice 5

det(𝑎, 𝑏, 𝑐) = |1 2 2−1 −1 −21 1 1

| =

𝐶3 − 𝐶2|1 2 2−1 −1 −20 0 −1

|

= − |1 2−1 −1

| = −(−1 + 2) = −1 ≠ 0

Donc (𝑎, 𝑏, 𝑐) est une base de ℝ3

1.

2.

𝑃 = (1 2 2−1 −1 −21 1 1

)

𝑃𝑋 = 𝑌 ⇔ (1 2 2−1 −1 −21 1 1

)(

𝑥1𝑥2𝑥3) = (

𝑦1𝑦2𝑦3) ⇔

𝐿1𝐿2𝐿3

{𝑥1 + 2𝑥2 + 2𝑥3 = 𝑦1−𝑥1 − 𝑥2 − 2𝑥3 = 𝑦2𝑥1 + 𝑥2 + 𝑥3 = 𝑦3

61

Page 63: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

𝐿1𝐿2 + 𝐿1𝐿3 + 𝐿2

{𝑥1 + 2𝑥2 + 2𝑥3 = 𝑦1 𝑥2 = 𝑦1 + 𝑦2 −𝑥3 = 𝑦2 + 𝑦3

⇔ {𝑥1 = −2𝑥2 − 2𝑥3 + 𝑦1

𝑥2 = 𝑦1 + 𝑦2 𝑥3 = −𝑦2 − 𝑦3

⇔ {𝑥1 = −2𝑦1 − 2𝑦2 + 2𝑦2 + 2𝑦3 + 𝑦1

𝑥2 = 𝑦1 + 𝑦2 𝑥3 = −𝑦2 − 𝑦3

⇔ {𝑥1 = −𝑦1 + 2𝑦3

𝑥2 = 𝑦1 + 𝑦2 𝑥3 = −𝑦2 − 𝑦3

Donc

𝑃−1 = (−1 0 21 1 00 −1 −1

)

3. Les coordonnées de 𝑢(𝑎) dans la base 𝛽 sont

(1 4 4−1 −3 −30 2 3

)(1−11) = (

1−11)

Donc 𝑢(𝑎) = 𝑎

Les coordonnées de 𝑢(𝑏) dans la base 𝛽 sont

(1 4 4−1 −3 −30 2 3

)(2−11) = (

2−21)

Donc 𝑢(𝑏) = 𝑐

Les coordonnées de 𝑢(𝑐) dans la base 𝛽 sont

(1 4 4−1 −3 −30 2 3

)(2−21) = (

−21−1)

Donc 𝑢(𝑐) = −𝑏

Par conséquent

𝑅 = (1 0 00 0 −10 1 0

)

4.

a)

𝑃−1𝐴𝑃 = (−1 0 21 1 00 −1 −1

)(1 4 4−1 −3 −30 2 3

)(1 2 2−1 −1 −21 1 1

)

= (−1 0 21 1 00 −1 −1

)(1 2 −2−1 −2 11 1 −1

) = (1 0 00 0 −10 1 0

) = 𝑅

62

Page 64: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

b)

𝑅2 = (1 0 00 0 −10 1 0

)(1 0 00 0 −10 1 0

) = (1 0 00 −1 00 0 −1

)

𝑅4 = 𝑅2𝑅2 = (1 0 00 −1 00 0 −1

)(1 0 00 −1 00 0 −1

) = (1 0 00 1 00 0 1

) = 𝐼

c) 𝑅 = 𝑃−1𝐴𝑃 ⇔ 𝐴 = 𝑃𝑅𝑃−1

𝐴4 = 𝑃𝑅𝑃−1𝑃𝑅𝑃−1𝑃𝑅𝑃−1𝑃𝑅𝑃−1 = 𝑃𝑅4𝑃−1 = 𝑃𝐼𝑃−1 = 𝐼

Donc

𝐴4𝑛 = (𝐴4)𝑛 = 𝐼𝑛 = 𝐼 Correction de l’exercice 6

1)

−−

−=

211

121

112

A , 33IAB +=

a. 2B en fonction de B :

=⇒+=111

111

111

3 3 BIAB

=111

111

111

B : ⇒

=×=333

333

3332 BBB BB .32 =

b. 2A en fonction de A .

♦ 33 33 IBAIAB −=⇒+=

♦ Les matrices B et 3).3( I− commutent : BIBBI ).3().3().3( 33 −=−×=×−

� ( ) ( ) ( ) 23

23

23

2 .32.3.3 BBIIIBA +×−×+−=−=⇒

� ( ) BIBBIBBIIBA .3.9.3.6.9.6.9.3 332

32

32 −=+−=+−=−=⇒ , car BB .32 =

� ABIBIA .3).3.(3.3.9 332 −=+−−=−=⇒ , BIA +−= 3.3

� Donc AA .32 −=

c. La matrice A n'est pas inversible :

� On suppose que la matrice A est inversible

� On a alors 31 IAA =× −

et AA .32 −=

� Donc 311 .3.3 IAAAAAA −=⇒×−=×× −−

� Or 3.3 IA −≠ , donc la matrice A n'est pas inversible.

63

Mr D jeddi K amel

Page 65: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

2)

−−

−−

=

2111

1211

1121

1112

A , 43IAB +=

a. 2B en fonction de B :

=⇒+=

1111

1111

1111

1111

3 4 BIAB

=

1111

1111

1111

1111

B : ⇒

=×=

4444

4444

4444

4444

2 BBB BB .42 =

b. 2A en fonction de A .

♦ 44 33 IBAIAB −=⇒+=

♦ Les matrices B et 4).3( I− commutent : BIBBI ).3().3().3( 44 −=−×=×−

� ( ) ( ) ( ) 24

24

24

2 .32.3.3 BBIIIBA +×−×+−=−=⇒

� BIBBIBBIA .2.9.4.6.9.6.9 442

42 −=+−=+−=⇒ , car BB .42 =

� AIBIIBIIA .23).3).(2(3.2.63 444342 −=+−−+=−+=⇒ , BIA +−= 4.3

� Donc AIA .23 42 −=

c. La matrice A est inversible :

� 444442

42 ).2(

3

1.).2(.

3

13.2.23 IIAAIIAAIAAAIA =

+×⇒=+×⇒=+⇒−=

� Donc 44 /).2(3

1)4( IBAIABMB =×

+=∈∃

� Donc la matrice A est inversible et ).2(3

14

1 IAA +=−

64

Mr D jeddi K amel

Page 66: Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa

érie 4 :

------------------------------------------------------------------------------------ S

1ière année Maths et Inf2014/2015

Exercice 1

Matière: Algèbre linéaireDjeddiKResponsable: Mr

Université d Oum Elbouaghi’

Résolution de systèmes d'équations

65