36
Advanced Semiconductor Devices Lecture 2 Advanced Semiconductor Devices Lecture 2

AdvSemi_lec2_2013-03-05

Embed Size (px)

Citation preview

Page 1: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 1/36

Advanced

Semiconductor 

Devices

Lecture 2

Advanced

Semiconductor 

Devices

Lecture 2

Page 2: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 2/36

2 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Lecture outline

Review of energy band structure

Simplified band structure and electron concentration

Intrinsic semiconductor 

Extrinsic semiconductors in equilibrium

Semiconductor current

Einstein relationship

Non-equilibrium semiconductors

Continuity equation

 

Page 3: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 3/36

3 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Electron in one-dimensional atomic lattice

22

20

dx

   

0

2

2m E U  

0 E U 

Shrodinger wave equation – Kronig-Penney model

Page 4: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 4/36

4 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Graphical solution

The solution can be compared to the free electron solution

Fold all energy solutions into the first Brillouin zone

Page 5: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 5/36

5 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Electrons and holes

Effective mass is positive for electrons in band 3 – conduction band

Particle mass is negative at the top of band 2 – valence band

Model empty electron states at the top of the valence band as positive

electric charges with positive mass - holes

Page 6: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 6/36

6 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Energy bands in real semiconductors

Energy band structure in Si as a function of the wave-vector k 

Note that the minimum of the conduction band is not directly

above the maximum of the valence band. Si – indirect gap

semiconductor 

Page 7: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 7/367 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

4 - band energy model

Simplified energy band structure for the direct gap semiconductor 

One conduction band

3 valence bands with different effective masses of holes

Effective mass defined for all carriers as

2

/

k m

 E k =

¶ ¶

h

Page 8: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 8/368 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Very simple energy band structure

Simple 2 – band energy structure

Assume that the top of the valence band and the bottom of the

conduction bands are parabolic and isotropic using density of 

states effective masses 22

*

22

*

2

2

n

 p

 E E k m

 E E k m

-

-

h;

h;

Page 9: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 9/36

Page 10: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 10/3610 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Fermi energy and carrier density

Page 11: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 11/3611 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Maxwell – Boltzmann approximation

Can obtain a simple approximation for the Fermi-Dirac integral

Where we define the effective densities of states in the

conduction and valence bands

3/2*

2

3/2*

2

2 2

22

n

 p

m kT 

 N 

m kT  N 

æ ö

º ç ÷è ø

æ öº ç ÷ç ÷

è ø

h

h

( )

( )

/

/

3

3

 F C 

V F 

 E E kT 

C C F 

 E E kT 

V F V 

n N e E E kT  

 p N e E E kT 

-

-

= - ³

= - ³

Page 12: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 12/3612 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Intrinsic semiconductors

Charge neutrality without impurities

in p n= =Write for intrinsic carrier concentration

using Maxwell – Boltzmann approximation

( ) ( )/ /i C V i

 E E kT E E kT 

i C V n N e N e

- -= =

Obtain intrinsic carrier concentration

( )/ /2 V C  G E E kT  E kT 

i C V C V  n N N e N N e- -= =

Page 13: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 13/3613 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Intrinsic semiconductors

Obtain intrinsic carrier concentration

/2G

 E kT 

i C V n N N e-=

*

*3 ln2 4

 pC V i

n

m E E  E kT 

m

æ ö+= + ç ÷ç ÷

è ø

3/2*

*ln ,

2 2

 pC V V V  i

C C n

m E E N N kT  E 

 N N m

æ öæ ö+= + = ç ÷ç ÷ ç ÷

è ø è ø

Derive the intrinsic Fermi level

Page 14: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 14/3614 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Extrinsic carrier concentration

General carrier concentration in terms of 

intrinsic parameters

( )

( )

/

/

 F i

i F 

 E E kT 

i

 E E kT 

i

n n e

 p n e

-

-

=

=

Obtain equilibrium charge balance2

in p n× = 0 D A p n N N + -- + - =

Ionized impurity concentrations

( )

( )

1 exp /

1 exp /

 D D

 D F D

 A A

 A A F 

 N  N  g E E kT 

 N  N 

 g E E kT 

+

-

= é ù+ -ë û

=é ù+ -ë û

Page 15: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 15/3615 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Fermi energy in extrinsic materials

Given carrier concentrations, can determine the Fermi level

For n- or  p-type materials

( )

( )

/

/

ln ln

 F i

i F 

 E E kT 

i

 E E kT 

i

 F i

i i

n n e

 p n e

n p E E kT kT 

n n

-

-

=

=

æ ö æ ö- = = -ç ÷ ç ÷

è ø è ø

ln ,

ln ,

 D F i D i

i

 Ai F A i

i

 N  E E kT N n

n N 

 E E kT N nn

++

--

æ ö- ç ÷

è øæ ö

- ç ÷è ø

; ?

; ?

Page 16: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 16/36

16 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Alternative expressions

Carrier concentration and the Fermi level

For n- or  p-type materials

( ) ( )/ /,

ln ln

 F C V F  E E kT E E kT 

C V 

 F C V 

C V 

n N e p N e

n p E E kT E kT 

 N N 

- -= =

æ ö æ ö= + = -ç ÷ ç ÷

è ø è ø

 Dn N +» A p N -»

ln ln ,

ln ln ,

 D F C D i

C C 

 AV F A i

V V 

n N  E E kT kT N n

 N N 

 p N  E E kT kT N n N N 

++

--

æ ö æ ö- = ç ÷ ç ÷

è ø è ø

æ ö æ ö- ç ÷ ç ÷è ø è ø

; ?

; ; ?

Page 17: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 17/36

17 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Extrinsic carrier concentration

In general

Obtain quadratic equation for n

Which we solve for n and p

0 D A p n N N + -- + - =2

in p

n=

2

0i D A

nn N N 

n

+ -- + - = ( )2 2 0 D A in n N N n+ -- - - =

2

2

2

2

2 2

2 2

 D A D Ai

 A D A Di

 N N N N n n

 N N N N  p n

+ - + -

- + - +

æ ö- -= + +ç ÷

è ø

æ ö- -= + +ç ÷

è ø

Typical values for Si10 31.5 10in cm-» ´

14 3 19 3, 10 10 A D N N cm cm- --:

For n- or  p-type materials Dn N +» A p N -»

Page 18: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 18/36

18 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Energy band bending

1 1C V 

dV 

V  dx

dE dE  

q dx q dx

= -Ñ = -

= =

E  

E  

Potential energy is a function of 

position and can be linked to

electrostatic potential

Express for the electric field

( ) ( )

( )1

 pot 

n

C ref    

 E x qV x

V E E q

= -

= - -

Page 19: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 19/36

19 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Electron drift current

Electric field causes drift of 

carriers resulting in

drift current

Write for electron current

density

Here t 0 

is the transit time

Page 20: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 20/36

20 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Electron drift current

Assuming constant electric filed

We get apparent violation of 

Ohm's law!!!

Page 21: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 21/36

Page 22: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 22/36

22 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Total drift current

Similarly for holes

Obtain total drift current

Note that carrier velocities are

dr 

 p p J qpm = E  *

 p

 p

 p

q

m

t m  =

dr dr dr  

n p n p J J J qn qpm m = + = +E E  

n nm = - E  V p pm = E  V

Page 23: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 23/36

23 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Semiconductor resistivity

Define semiconductor conductivity and resistivity from Ohm's law

For n- or  p-type materials

1dr  J  s  r 

= =E E  

1n pqn qps m m 

 r = = +

1

 D nqN 

 r 

;i Dn n n N  ? ;

1

 A pqN  r 

m ;

i A p n p N ? ;

Page 24: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 24/36

24 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Diffusion Current

Diffusion is due to redistribution of carriers caused by random

thermal motion

Assume, that equal number of particles moves in both + x and - x  

directions in each cross-section

Page 25: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 25/36

25 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Diffusion Current

Assume that all carriers move with the same average velocity

Assume that all carriers move with the same average velocity V

The average distance between two electron collisions is l   

Average life-time between collisions is

l t  =

V

Page 26: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 26/36

26 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Total current

Determine current

2

 pdiff  

 p P P 

l dp J qD D

dx= - º

V

Can express total current as a sum of drift and diffusion currents

dr diff    

n n n n N  

dr diff     p p p p P 

qn qD n

qp qD p

= + = + Ñ

= + = - Ñ

J J J

J J J

E  

E  

Page 27: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 27/36

27 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Equilibrium Fermi level

Fermi level is equivalent to chemical potential by definition

Chemical potential determines the flow of particles between parts of 

the system

Therefore, Fermi level inside a material is constant as a function of 

position under thermodynamic equilibrium (total current is 0)

const (x) F  E  =

Page 28: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 28/36

Page 29: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 29/36

29 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Einstein relationship

Writing for electrons from Boltzmann approximation

C  E 

V  E 

const (x) F  E  =G

 E 

 F C  E E 

kT C n N e

-

= ×

 F C C  E E dE dn d nn

dx dx kT kT dx

-æ ö= = -ç ÷

è ø

Under thermodynamic equilibrium const (x) F  E  =

E  

Page 30: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 30/36

30 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Einstein relationship

C  E 

V  E 

const (x) F  E  =G

 E 

Total current under thermodynamic equilibrium is 0

0 C C n n n n n

dE dE  dn n J qn qD n qD

dx dx kT dxm m = = + = -E  

Einstein relationship follows for electrons (and similarly for holes)

n n p p

kT kT   D D

q qm m = =

E  

Page 31: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 31/36

31 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Non-equilibrium: Quasi-Fermi levels

In non-equilibrium, can not describe semiconductor properties witha single constant Fermi level

Introduce quasi-Fermi levels E FN 

and E FP 

for electrons and holes

 FN C V FP  E E E E 

kT kT  

C V n N e p N e

- -

= × = ×

C  E 

G E  FN  E 

 FP  E 

V  E 

0

0

n n n

 p p p

= + D

= + D

Excess carrier concentrations: Δn and Δ p

Page 32: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 32/36

32 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Non-equilibrium total current

In general, for electrons in 3-dimensions

C  E 

G E  FN  E 

 FP  E 

V  E 

Similarly, for holes

Total current

dr diff    

n n n n n n FN  qn qD n n E  m m = + = + Ñ = ÑJ J J E  

dr diff    

 p p p p p p FP qp qD p p E  m m = + = - Ñ = ÑJ J J E  

n p n FN p FP  n E p E  m m = + = Ñ + ÑJ J J

Page 33: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 33/36

Page 34: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 34/36

34 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Generation -recombination of carriers

Assume low-level injection

Minority carrier recombination rate can be approximated as

0 0, p p n nD D= =

,n p

n p R R

t t 

D D; ;

Band-to-band R-G in indirect band semiconductors is complex and

requires involvement of phonons for momentum conservation

Page 35: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 35/36

35 © V. Ariel 2013 Advanced Semiconductor Devices Lecture 2

Continuity equation

Δ x

( )n

 J x ( )n

 J x x+ D

n

G

n

 R

Consider electron current in a semiconductor bar 

Assume electron generation and recombination

Let Δx approach zero to derive the continuity equation for electrons

( )( ) ( )n n

n n

 J x J x xdn x G R x

dt q q

+ DD = - + - D

- -

Similarly for holes

( )

1 n

n n

dJ dn

G Rdt q dx= + -

( )1 p

 p p

dJ dpG R

dt q dx= - + -

Mi it i diff i ti

Page 36: AdvSemi_lec2_2013-03-05

7/28/2019 AdvSemi_lec2_2013-03-05

http://slidepdf.com/reader/full/advsemilec22013-03-05 36/36

Minority carrier diffusion equation

No electric field

Low level injection in p

-type semiconductor The equilibrium minority carriers

Approximate minority carrier current

Obtain minority carrier diffusion equation

0=E  

n n n n

dn dn

 J qn qD qDdx dxm = + ;E  

2

2

1 pnn

d ndJ  D

q dx dx

D; ( )

1 p nn n

d n dJ G R

dt q dx

D= + -

0 p p pn n n= + D

0 p pn pD =

0 const( ) pn x=

( )2

2

 p p

n n n

d n d n D G R

dt dx

D D= + -