1
Mads Almassalkhi 1 ([email protected]), Ralph Hermans 2 , and Ian Hiskens 1 1 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA 2 Department of Electrical Engineering: Control Systems, Eindhoven University of Technology, Eindhoven, The Netherlands Mo#va#on and Objec#ve Plugin electric vehicles (PEV) are forecasted to gain significant market share in coming years UIliIes are aware that their networks may struggle to accommodate en masse uncoordinated charging. Overloading of transformers may result in transformer failure and blackout of full residenIal areas. Centralized charging control schemes are unrealisIc PEVowners desire autonomy Research objec#ve Solu#on: Coordinated Charging Control Openloop Centralized Charging: Openloop Incen#vebased Coordinated Charging: Centralized soluIon is recovered in noncentralized way as To increase robustness, close the loop with a modelpredicDve control (MPC) scheme: Future Work Improve rate of convergence of incenIvebased method InvesIgate robustness of MPC scheme Study nonlinear representaIons of temperature dynamics Physical System Model Local PEV charging: Linearized transformer temperature (about i = i * ): Casestudy IncenIvebased charging control saIsfies thermal constraint and achieves nearop#mal performance Lagrangian Relaxation + Dual Ascent Method Exogenous disturbances Complicating constraint prevents full separability! Penalizes charging rates and deviations from reference charge level (quadratic) Disturbance forecast Control (pseudo-price) signal λ (p+1) Iteration-dependent step-size parameter Architecture of coordinated predicDve PEV control Formulate a noncentralized coordinated PEV charging scheme that respects thermal restricIons of transformer at all Imes. p →∞ Price Manager 20:00 22:00 24:00 02:00 04:00 06:00 08:00 365 370 375 380 385 390 395 400 405 410 415 Time (hr) Temperature, T (K) T max Centralized Incentive-based Uncoordinated 20:00 22:00 24:00 02:00 04:00 06:00 08:00 40 45 50 55 60 65 70 75 80 85 90 Time (hr) Total Demand (kW) Inelastic Demand, d( t ) Total demand - centralized Total demand - incentive-based Total demand - uncoordinated 20:00 22:00 24:00 02:00 04:00 06:00 08:00 0 0.1 0.2 0.3 0.4 0.5 Time (hr) Avg. Charging rate (kW) Centralized Incentive-based Uncoordinated 20:00 22:00 24:00 02:00 04:00 06:00 08:00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Time (hr) Avg. SOC Uncoordinated Centralized Incentive-based Avg. SOC requirement Temperature Responses Load Profiles Avg. PEV charging rates Avg. SOC profiles s n [k + 1] = s n [k ]+ η n i n [k ] n {1,...,N } s n [k ] [0, 1] s n [k ] S n k K n i n [k ] [i n,min ,i n,max ] min i 1 [k ],...,i N [k ] N n=1 J n (i n ) subject to i n [k ] Π n s n [0] k ΦT [0]+ Ψ N n=1 i n [k ] M + Ψ d ˆ v T max 1 K +1 Set of all i n that satisfy above := Π n (s n [0]) Local Charging Problem i (p) n [k ]= arg min i n Π n (s n [0]) J n i n + λ (p) [k ] Ψi n [k ] n i (p) n λ (p+1) [k ]= λ (p) [k ]+ α (p) ΦT [0] + Ψ N n=1 i (p) n [k ] M + Ψ d ˆ v T max 1 K +1 + PEVs {1, 2, ..., N} Substation Transformer Price Manager / Coordinator T [k ] λ (p) v [k ] Control Communication {i (p) n } iN i n [k ] M . . . π π π π 1 π . . . Distribution-level Substation Transformer Distribution feeders Load Aggregator and Price Manager . . . T s N s 2 s 1 s N 1 λ i 1 i 2 i N 1 i N i M M s n state of charge i n charging rate η n constant charging parameter K n requested SOC target time T transformer temperature T max temperature limit T amb ambient temperature d inelastic background demand M step-up voltage conversion factor τ , γ , ρ constant transformer parameters T [k + 1] = τ T [k ]+ γ nN i n [k ] M + i d [k ] + ρT amb [k ] γ 2 i T [k ] T max

ALMASSALKHI MADS Posterelectriconf/2012/posters/...20:00 22:00 24:00 02:00 04:00 06:00 08:00 40 45 50 55 60 65 70 75 80 85 90 Time (hr) Total Demand (kW) Inelastic Demand,d(t) Total

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Mads  Almassalkhi1  ([email protected]),  Ralph  Hermans2,  and  Ian  Hiskens1  1  Department  of  Electrical  Engineering  and  Computer  Science,  University  of  Michigan,  Ann  Arbor,  USA  

    2  Department  of  Electrical  Engineering:  Control  Systems,  Eindhoven  University  of  Technology,  Eindhoven,  The  Netherlands  

    Mo#va#on  and  Objec#ve  •  Plug-‐in  electric  vehicles  (PEV)  are  forecasted  to  gain  significant  market  share  in  coming  years  

    •  UIliIes  are  aware  that  their  networks  may  struggle  to  accommodate  en  masse  uncoordinated  charging.  

    •  Overloading  of  transformers  may  result  in  transformer  failure  and  black-‐out  of  full  residenIal  areas.  

    •  Centralized  charging  control  schemes  are  unrealisIc  •  PEV-‐owners  desire  autonomy  

    • Research  objec#ve  

    Solu#on:  Coordinated  Charging  Control  •  Open-‐loop  Centralized  Charging:    

    •  Open-‐loop  Incen#ve-‐based  Coordinated  Charging:  

    •  Centralized  soluIon  is  recovered  in  non-‐centralized  way  as    •  To  increase  robustness,  close  the  loop  with  a  model-‐predicDve  control  (MPC)  scheme:  

    Future  Work  •  Improve  rate  of  convergence  of  incenIve-‐based  method  •  InvesIgate  robustness  of  MPC  scheme  •  Study  nonlinear  representaIons  of  temperature  dynamics  

    Physical  System  Model  

    •  Local  PEV  charging:  

                         

    •  Linearized  transformer  temperature  (about  i = i*):  

    Case-‐study    •  IncenIve-‐based  charging  control  saIsfies  thermal  constraint  and  achieves  near-‐op#mal  performance  

    Lagrangian Relaxation +

    Dual Ascent Method

    Exogenous disturbances

    Complicating constraint prevents full separability!

    Penalizes charging rates and deviations from reference charge level (quadratic)

    Disturbance forecast

    Control (pseudo-price) signal

    λ(p+1)

    Iteration-dependent step-size parameter

    Architecture  of  coordinated  predicDve  PEV  control  

    Formulate  a  non-‐centralized  coordinated  PEV  charging  scheme  that  respects  thermal  restricIons  of  transformer  at  all  Imes.  

    p→∞

    Price Manager

    20:00 22:00 24:00 02:00 04:00 06:00 08:00365

    370

    375

    380

    385

    390

    395

    400

    405

    410

    415

    Time (hr)

    Tem

    per

    atur

    e,T

    (K)

    TmaxCentralizedIncentive-basedUncoordinated

    20:00 22:00 24:00 02:00 04:00 06:00 08:0040

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    Time (hr)

    Tot

    alD

    eman

    d(k

    W)

    Inelastic Demand, d(t)Total demand - centralizedTotal demand - incentive-basedTotal demand - uncoordinated

    20:00 22:00 24:00 02:00 04:00 06:00 08:000

    0.1

    0.2

    0.3

    0.4

    0.5

    Time (hr)

    Avg

    .C

    harg

    ing

    rate

    (kW

    )

    CentralizedIncentive-basedUncoordinated

    20:00 22:00 24:00 02:00 04:00 06:00 08:000.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Time (hr)

    Avg

    .SO

    C UncoordinatedCentralizedIncentive-basedAvg. SOC requirement

    Temperature  Responses   Load  Profiles  

    Avg.  PEV  charging  rates  

    Avg.  SOC  profiles  

    sn[k + 1] = sn[k] + ηnin[k] ∀n ∈ {1, . . . , N}sn[k] ∈ [0, 1]sn[k] ≥ Sn ∀k ≥ Knin[k] ∈ [in,min, in,max]

    mini1[k],...,iN [k]

    N�

    n=1

    Jn(in)

    subject to

    in[k] ∈ Πn�sn[0]

    �∀k

    ΦT [0]+Ψ

    �N�

    n=1

    in[k]

    M

    �+Ψdv̂≤Tmax1K+1

    Set of all in that satisfy above := Πn(sn[0])

    Local Charging Problem

    i(p)n [k] = argminin∈Πn(sn[0])

    Jn�in�+�λ(p)[k]

    ��Ψin[k] ∀n

    i(p)n

    λ(p+1)[k] =

    �λ(p)[k] + α(p)

    �ΦT [0] +Ψ

    �N�

    n=1

    i(p)n [k]

    M

    �+Ψdv̂ − Tmax1K+1

    ��

    +

    PEVs{1, 2, ..., N}

    Substation Transformer

    Price Manager / Coordinator

    T [k]

    {π(p)i }Ni=1

    π[k]

    λ(p)

    v[k] ControlCommunication

    {i(p)n }i∈Nin[k]

    M

    ...

    π1

    π2

    ππN−1

    πN

    ...

    Distribution-levelSubstation

    Transformer

    Distribution feeders

    Load Aggregator

    andPrice

    Manager

    ��� ���

    ...

    T

    sN

    s2

    s1

    sN−1

    λ

    i1

    i2

    iN−1

    iN

    i

    M

    M

    sn state of chargein charging rateηn constant charging parameterKn requested SOC target timeT transformer temperatureTmax temperature limitTamb ambient temperatured inelastic background demandM step-up voltage conversion factorτ, γ, ρ constant transformer parameters

    T [k + 1] = τT [k] + γ

    ��

    n∈N

    in[k]

    M+ id[k]

    �+ ρTamb[k]−

    γ

    2i∗

    T [k] ≤ Tmax