Transcript
  • Mads  Almassalkhi1  ([email protected]),  Ralph  Hermans2,  and  Ian  Hiskens1  1  Department  of  Electrical  Engineering  and  Computer  Science,  University  of  Michigan,  Ann  Arbor,  USA  

    2  Department  of  Electrical  Engineering:  Control  Systems,  Eindhoven  University  of  Technology,  Eindhoven,  The  Netherlands  

    Mo#va#on  and  Objec#ve  •  Plug-‐in  electric  vehicles  (PEV)  are  forecasted  to  gain  significant  market  share  in  coming  years  

    •  UIliIes  are  aware  that  their  networks  may  struggle  to  accommodate  en  masse  uncoordinated  charging.  

    •  Overloading  of  transformers  may  result  in  transformer  failure  and  black-‐out  of  full  residenIal  areas.  

    •  Centralized  charging  control  schemes  are  unrealisIc  •  PEV-‐owners  desire  autonomy  

    • Research  objec#ve  

    Solu#on:  Coordinated  Charging  Control  •  Open-‐loop  Centralized  Charging:    

    •  Open-‐loop  Incen#ve-‐based  Coordinated  Charging:  

    •  Centralized  soluIon  is  recovered  in  non-‐centralized  way  as    •  To  increase  robustness,  close  the  loop  with  a  model-‐predicDve  control  (MPC)  scheme:  

    Future  Work  •  Improve  rate  of  convergence  of  incenIve-‐based  method  •  InvesIgate  robustness  of  MPC  scheme  •  Study  nonlinear  representaIons  of  temperature  dynamics  

    Physical  System  Model  

    •  Local  PEV  charging:  

                         

    •  Linearized  transformer  temperature  (about  i = i*):  

    Case-‐study    •  IncenIve-‐based  charging  control  saIsfies  thermal  constraint  and  achieves  near-‐op#mal  performance  

    Lagrangian Relaxation +

    Dual Ascent Method

    Exogenous disturbances

    Complicating constraint prevents full separability!

    Penalizes charging rates and deviations from reference charge level (quadratic)

    Disturbance forecast

    Control (pseudo-price) signal

    λ(p+1)

    Iteration-dependent step-size parameter

    Architecture  of  coordinated  predicDve  PEV  control  

    Formulate  a  non-‐centralized  coordinated  PEV  charging  scheme  that  respects  thermal  restricIons  of  transformer  at  all  Imes.  

    p→∞

    Price Manager

    20:00 22:00 24:00 02:00 04:00 06:00 08:00365

    370

    375

    380

    385

    390

    395

    400

    405

    410

    415

    Time (hr)

    Tem

    per

    atur

    e,T

    (K)

    TmaxCentralizedIncentive-basedUncoordinated

    20:00 22:00 24:00 02:00 04:00 06:00 08:0040

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    Time (hr)

    Tot

    alD

    eman

    d(k

    W)

    Inelastic Demand, d(t)Total demand - centralizedTotal demand - incentive-basedTotal demand - uncoordinated

    20:00 22:00 24:00 02:00 04:00 06:00 08:000

    0.1

    0.2

    0.3

    0.4

    0.5

    Time (hr)

    Avg

    .C

    harg

    ing

    rate

    (kW

    )

    CentralizedIncentive-basedUncoordinated

    20:00 22:00 24:00 02:00 04:00 06:00 08:000.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Time (hr)

    Avg

    .SO

    C UncoordinatedCentralizedIncentive-basedAvg. SOC requirement

    Temperature  Responses   Load  Profiles  

    Avg.  PEV  charging  rates  

    Avg.  SOC  profiles  

    sn[k + 1] = sn[k] + ηnin[k] ∀n ∈ {1, . . . , N}sn[k] ∈ [0, 1]sn[k] ≥ Sn ∀k ≥ Knin[k] ∈ [in,min, in,max]

    mini1[k],...,iN [k]

    N�

    n=1

    Jn(in)

    subject to

    in[k] ∈ Πn�sn[0]

    �∀k

    ΦT [0]+Ψ

    �N�

    n=1

    in[k]

    M

    �+Ψdv̂≤Tmax1K+1

    Set of all in that satisfy above := Πn(sn[0])

    Local Charging Problem

    i(p)n [k] = argminin∈Πn(sn[0])

    Jn�in�+�λ(p)[k]

    ��Ψin[k] ∀n

    i(p)n

    λ(p+1)[k] =

    �λ(p)[k] + α(p)

    �ΦT [0] +Ψ

    �N�

    n=1

    i(p)n [k]

    M

    �+Ψdv̂ − Tmax1K+1

    ��

    +

    PEVs{1, 2, ..., N}

    Substation Transformer

    Price Manager / Coordinator

    T [k]

    {π(p)i }Ni=1

    π[k]

    λ(p)

    v[k] ControlCommunication

    {i(p)n }i∈Nin[k]

    M

    ...

    π1

    π2

    ππN−1

    πN

    ...

    Distribution-levelSubstation

    Transformer

    Distribution feeders

    Load Aggregator

    andPrice

    Manager

    ��� ���

    ...

    T

    sN

    s2

    s1

    sN−1

    λ

    i1

    i2

    iN−1

    iN

    i

    M

    M

    sn state of chargein charging rateηn constant charging parameterKn requested SOC target timeT transformer temperatureTmax temperature limitTamb ambient temperatured inelastic background demandM step-up voltage conversion factorτ, γ, ρ constant transformer parameters

    T [k + 1] = τT [k] + γ

    ��

    n∈N

    in[k]

    M+ id[k]

    �+ ρTamb[k]−

    γ

    2i∗

    T [k] ≤ Tmax


Recommended