Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

Embed Size (px)

Citation preview

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    1/33

    Local Investigation of Corrosion Processes byCoupled Electrochemical and Spectroscopic

    Techniques

    M-C. Bernard, S. Joiret, V. Vivier

    Laboratoire Interfaces et Systmes lectrochimiquesCNRS UPR 15 (Paris France)[email protected]@upmc.fr

    Electrochemistry in Historical and Archaeological Conservation Leiden 11-15 January 2010

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    2/33

    Objectives

    Monument to Francis Garnier, Paris

    Coin of post-Roman Empire Vth IIIrd A.D.found in Morocco

    - Characterization of corrosion products (Ramanspectroscopy, SEM, X-Ray diffraction,electrochemical techniques )

    - Characterization of corrosion processes:electrochemical techniques coupled withspectroscopy

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    3/33

    Outline

    How to perform electrochemistry on tiny amount ofpowder materials?

    1. Electrochemical tools for studying powder materials2. Cavity microelectrode Interest of decreasingelectrode size3. Coupling with Raman spectroscopy

    4. Analysis of corrosion products- iron- bronze

    5. Conclusion

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    4/33

    Electrochemical tools for powder materials

    Composite or carbon paste electrode

    Electrode dimension

    diameter ~ 5 - 10 mmmass ~ 5 100 mg

    Use of graphite for electrical conductivity

    and a binder (Teflon) for mechanical properties

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    5/33

    Electrochemical tools for powder materials

    micromanipulator / abrasive electrode

    I. Uchida, H. Fujiyoshi and S. Waki, J. Power sources, 68 (1997) 139.

    M. Perdicakis, N. Grosselin and J. Bessire, Electrochim. Acta, 42 (1997) 3351 D.A. Fiedler, J. Solid State Electrochem., 2 (1998) 315

    1 mm

    scratches

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    6/33

    Cavity microelectrode

    Electrode dimension

    diameter ~ 50 mdepth ~ 25 m

    volume ~ 5 10-8 cm3

    half of the cavity is filledV ~ 2.5 10-8 cm3

    density of the material 1-10

    mass ~ 25 250 ngC. S. Cha, C. M Li, H. X. Yang, and P. F. Liu, J. Electroanal Chem., 368 (1994) 47V. Vivier, C. Cachet-Vivier, C.S. Cha, J-Y. Nedelec, L.T. Yu, Electrochem. Comm. 2 (2000) 180.C. Cachet-Vivier, V. Vivier, C.S. Cha, J-Y. Nedelec, L.T. Yu, Electrochim. Acta. 47 (2001) 181

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    7/33

    Cavity microelectrode

    Let us assume m = 100 ng

    and a specific surface area of10 1000 cm2g-1

    Select = 100 m2 0.01 mm2

    e totE=U-R iOhmic drop:

    ic 0 0

    e e 0

    E -ti =vC + -vC exp

    R R C

    Capacitive current:

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    8/33

    Interest of decreasing electrode dimension

    reversible electrochemical system

    D = 10-5 cm2s-1

    k0 = 1 a = 0.5

    Cox = 10 mM

    r0 = 5 mm

    V = 100 Vs-1

    Re = 2 W

    Cdl = 50 F

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    9/33

    Interest of decreasing electrode dimension

    Significant parameters : Re

    and Cdl

    For a usual working electrode (disk-electrode) smaller than the counter electrodethe current is then forced to flow through a conical volume delimited by the twoelectrodes.

    Ohmic drop

    Time constant

    04

    eR

    r

    2

    0dlC r

    2

    0toti r

    0e totR i r

    0e dlR C r

    workingelectrode

    counterelectrode

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    10/33

    Interest of decreasing electrode dimension

    Significant parameters : Re

    and Cdl

    For a very small working electrode (microelectrode), edge effects and non planardiffusion control the mass transport to the electrode interface.

    Ohmic drop independent of the electrode size

    Time constant

    04

    eR

    r

    2

    0dlC r

    0toti r

    e totR i

    0e dlR C r

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    11/33

    Interest of decreasing electrode dimension

    C. Amatore in Electrochemistry at Ultramicroelectrodes, Physcal Electrochemistry 1995 Chap. 4

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    12/33

    Cavity microelectrode

    -0.2 0.0 0.2 0.4

    -2

    -1

    0

    1

    2

    3

    4

    5

    (c)(b)

    E / VSCE

    (a)

    -0.2 0.0 0.2 0.4

    -2

    -1

    0

    1

    2

    3

    4

    5

    I/A

    E / VSCE

    -0.4 0.0 0.4 0.8

    -100

    -50

    0

    50

    100

    I/mA

    E / VSCE

    Pani powder as an example (0.5 M H2SO4)

    10 cycles

    at 2 Vs-1

    1 cycle

    at 0.5 mVs-1

    1 cycle

    at 0.02 Vs-1

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    13/33

    Outline

    How to perform electrochemistry on tiny amount ofpowder materials?

    1. Electrochemical tools for studying powder materials2. Cavity microelectrode Interest of decreasingelectrode size3. Coupling with Raman spectroscopy

    4. Analysis of corrosion products- iron- bronze

    5. Conclusion

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    14/33

    Coupling with Raman spectroscopy

    250

    200

    150

    100

    50

    0

    200 400 600 800

    Wavenumber (cm-1)

    Wavenumber

    Energy of vibration

    The Raman spectra isa material signature

    IntensityLaser

    Notch

    Filter

    Lens(x80)

    CCDdetector

    potentiostat

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    15/33

    Analysis of corrosion products

    Iron: nail from Bois lAbb Gallo Roman site in France

    Layered structure

    Outer layer

    Inner layer

    Massive iron

    M.C. Bernard, S. Joiret, Electrochim. Acta. 54 (2009) 5199

    Is this structure is protective? How does Iron corrode?

    What can we say about the model of iron dissolution?

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    16/33

    Analysis of corrosion products

    Layered structure

    Outer layer

    Inner layer

    Massive iron

    The process of metallic corrosion associates dissolution of the metal asanodic reaction and a counter part the cathodic reaction. In moisture air thiscan be the reduction of oxygen into hydroxyle anions, in water this can be thereduction of water to hydrogen gas. For long duration buried artefacts,

    oxygen is supposed to be absent close to the object and iron cannotspontaneously reduce water in soils.

    One hypothesis have been proposed: the reduction of already formed ironoxides, which can take place and allowed further corrosion process without

    any oxygen intervention.

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    17/33

    Analysis of corrosion products

    M.C. Bernard, S. Joiret, Electrochim. Acta. 54 (2009) 5199

    50

    60

    70

    80

    LengthY(m)

    60 80 100

    Length X (m)

    00 400 600 800

    Wavenumber (cm-1)

    00 400 600 800

    Wavenumber (cm-1)

    500 1000

    Wavenumber (cm-1)

    500 1000

    Wavenumber (cm-1)

    Goethitea-FeOOH

    MagnetiteFe3O4

    Maghemite-Fe2O3

    carbonate

    Ferrihydrite(Fe2O3,5H2O)

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    18/33

    200 400 600 800

    Wavenumber (cm-1)

    -1A 2hrsE=-1.3

    -1A 1hrE=-1.3

    -0.5A 1hrE=-1.1

    Borate buffer

    60 E=-1.1

    40 E=-1.1

    30 E=-1.1

    15 E=-1.05

    2 E=-1.02

    Sulphate solution

    400 600 800Wavenumber (cm-1)

    Fe3O4

    0 400 600 800

    Wavenumber (cm-1)

    Fe3O4

    SO42-

    i=-500nA

    -500nA/ 1heure = 20 x the theoretical charge for the whole reduction

    Analysis of corrosion products

    M.C. Bernard, S. Joiret, Electrochim. Acta. 54 (2009) 5199

    in situ300s

    ex situ30s

    Lepidocrocite-FeOOH

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    19/33

    Analysis of corrosion products

    M.C. Bernard, S. Joiret, Electrochim. Acta. 54 (2009) 5199

    0 400 600 800 1000

    Wavenumber (cm-1)

    -0.5a 4 heuresv=-1.35

    -0.3a 2heuresv=-1.21

    -50nA 3hrsV=-1.2

    500

    0

    500

    Wavenumber (cm-1)

    dpart

    50nA 1hrV=+1

    50nA 3hrsV=+1

    Goethitea-FeOOH

    Maghemite / Magnetite-Fe2O3 / Fe3O4

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    20/33

    Analysis of corrosion products

    150

    100

    50

    0

    400 600 800 1000

    Wavenumber (cm-1)

    -50 nA1heure E = -0.96 V

    -50 nA

    10 minutes E = -0.93 V

    Taking (ex situ)

    M.C. Bernard, S. Joiret, Electrochim. Acta. 54 (2009) 5199

    Reduction of synthetic lepidocrocite to magnetite and of goethite from patina(easier than pure goethite) is taking place only during hydrogen evolution fromwater reduction. This mecanism is not responsible of ferrous objects

    corrosion.

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    21/33

    Analysis of corrosion products

    M. Serghini-Idrissi et al., Electrochim. Acta. 50 (2005) 4699

    Cu Sn Pb Fe Al

    at.% 80.0 7.75 10.9 0.74 0.54

    wt.% 61.1 11.1 27.2 0.24 0.36

    Alloy composition of the Roman coin bronze

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    22/33

    Analysis of corrosion products

    M. Serghini-Idrissi et al., Electrochim. Acta. 50 (2005) 4699

    B

    F F

    F G

    Cu20

    Sn02

    a-PbO 2PbCO3Pb(OH)2

    PbClOHb-PbO

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    23/33

    Analysis of corrosion products

    M. Serghini-Idrissi et al., Electrochim. Acta. 50 (2005) 4699

    10 cyclesin 10 g/L K2B4O7

    10 mV s-1

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    24/33

    Analysis of corrosion products

    M. Serghini-Idrissi et al., Electrochim. Acta. 54 (2005) 4699

    Raman spectra collected during CV experiments

    Cu20 ; Sn02a-PbO2

    Cupric formCu(II)

    Reduction tometallic species

    Cu20but lost ofcristallinity

    SnO2

    Chemicaldisso

    lution

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    25/33

    Analysis of corrosion products

    M. Serghini-Idrissi et al., Electrochim. Acta. 50 (2005) 4699

    10 cyclesin 10 g/L K2B4O7

    10 mV s-1

    Cu(II)/Cu(0)Cu(I)/Cu(0)

    Cu(II)/Cu(I)

    PbO2/Pb

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    26/33

    Analysis of corrosion products

    M. Serghini-Idrissi et al., Electrochim. Acta. 50 (2005) 4699

    Electrochemical impedance at the corrosion potential

    Diffusion of dissolved oxygen cannot be neglected

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    27/33

    Analysis of corrosion products

    M. Serghini-Idrissi et al., Electrochim. Acta. 50 (2005) 4699

    Reactivity of the patina:oxygen reduction at the patinaredox couple formed by patina products

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    28/33

    Analysis of corrosion products

    C. Chiavari et al., Electrochim. Acta. 52 (2007) 7760

    Possibility of performing layer by layer analysis

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    29/33

    Analysis of corrosion products

    C. Chiavari et al., Electrochim. Acta. 52 (2007) 7760

    Possibility of performing layer by layer analysis

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    30/33

    Analysis of corrosion products

    C. Chiavari et al., Electrochim. Acta. 52 (2007) 7760

    Possibility of performing layer by layer analysis

    - No electrochemical reactivity at pH = 5.6- Same behavior for sample FG1 & FG2 (same layer)- Copper dissolution during the first cycle- Fluorescence for Raman spectroscopy

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    31/33

    Analysis of corrosion products

    C. Chiavari et al., Electrochim. Acta. 52 (2007) 7760

    Possibility of performing layer by layer analysis

    Same model than for the bronze coinOxygen reduction + diffusion

    Patina = redox couple

    the inner layer (with Cu/Zn) exhibits a similar behavior than the bronze coin

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    32/33

    Conclusion

    M. Serghini-Idrissi et al., Electrochim. Acta. 54 (2005) 4699

    - Cavity microelectrode allows studying few amount of material (~100 ng)

    - Possibility to perform Raman spectroscopy and electrochemistrysimultaneously

    - We can scrap off corrosion product layer by layer

  • 8/7/2019 Bernard, M.C. Et Al. Investigation Corrosion Electrochemical Techniques. 2010

    33/33

    Acknowledgments

    M-C. Bernard, S. Joiret (LISE)H. Takenouti (LISE)

    L. Robbiola (ENSCP Toulouse)